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Abstract

A standard playing card, of size 8.80cm ⇥ 6.30cm and material plastic-coated paper, can travel

a very long distance provided that spin is imparted as it is thrown. The motion of the card is

primarily determined by the initial linear velocity, spinning angular velocity, and angle of attack.

The aim of the research is to investigate the e↵ects of these parameters on the distance travelled

and trajectory of a playing card, and to explain the e↵ects from both qualitative and quantitative

approaches. After conducting experiments and computational simulation, we reached the conclu-

sions that the deflection of the shape has a positive relationship with the spinning angular velocity

and a negative relationship with the attack angle; and distance travelled has a positive relationship

with the initial linear velocity and a negative relationship with the attack angle. Also, a simplified

motion model has been established with certain premises.

Keywords: Playing cards, Magnus e↵ect, Turbulent flow, Gyroscope stability, Computational

fluid dynamics.



20
20

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

Contents

1 Introduction 3

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theory 5

2.1 Laminar and turbulent flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Air resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Magnus E↵ect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Reynolds Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.5 K � ✏ Turbulent Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.6 Gyroscope Stability and Precession . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Model 9

3.1 CFDs model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Lift Force on the Card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.2 Constants Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Rigid Body Motion Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 Translational Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.2 Rotational Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.3 Initial Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Experiment 15

4.1 Experimental Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1 Launching Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.2 Refinement of Data Collection Process . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Qualitative Experimental Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2.1 Changing Spinning Angular Velocity . . . . . . . . . . . . . . . . . . . . . . . 18

4.2.2 Changing Initial Linear Velocity . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2.3 Changing Attack Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 Comparison with Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1



20
20

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

4.3.1 Result Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.4 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.4.1 Instability of Surrounding Air . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.4.2 Inaccuracy in Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.5 Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.5.1 Improving Launching Device . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.5.2 Wind Tunnel Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Conclusion 23

A Appendix 25

A.1 Mathematica Code for the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2



20
20

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

Introduction

1.1 Background

Throwing playing cards, which was first introduced in the West by stage magicians in the 19th

century, has gained new popularity on the Internet these days. Videos shooting this phenomenon

have millions of views. However, there is relatively little scientific documentation on the factors

a↵ecting the trajectory of the playing card and the distance it traveled. The complication of analysis

mainly comes from the aerodynamic aspect.

1.2 Literature Review

White (1979) uses the case of a flat plate in a laminar flow as a typical example for analysing

aerodynamic force. However, in our case, the spinning motion of the playing card may have e↵ects

on the aerodynamic force.

Amor Pilon (2015) concludes that although di↵erences are observed, the behaviors of the flow

for both flat plate and smooth rotating disk with or without roughness are almost identical. This

assists our understanding of the case when the angle of attack is zero. However, when the attack

angle is introduced, such approximation might not be valid due to the violation of symmetry.

Jiang et al. (2011) researches on and obtains approximate formulas for the calculation of the lift

and drag coe�cients for flat plates with large attack angles, which are applicable to our research’s

experiments. This simplifies our equation for calculation of aerodynamic forces acting on the flying

playing card significantly.

Cross (2014) gives the conditions for both the positive Magnus e↵ect and negative Magnus ef-

fect. This would be helpful to us in analysing the deflection of the shape.

Glenn Research Center (2013) published the calculation of Kutta-Joukowski lift for a cylinder.

This provides us with a possible approach to calculate the Magnus force on the playing card.

3
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White (1979) points out that when Mach number is less than 0.3, air can be deemed as incom-

pressible fluid. This simplifies the analysis significantly.

Additionally, White (1979) also states that Reynold’s number can be a good indicator of whether

a laminar flow or turbulent flow is the real case. However, when an attack angle is introduced, the

calculation of Reynold’s number in this case is alien, and existing calculation cannot be adopted

directly. Also, other than the Reynold’s number, disturbance accounts for the formation of turbu-

lence. This makes designing our experiments more challenging.

Launder and Spalding (1983) points out that the extensive list of unmeasurable unknowns in the

original k-epsilon model is minimised by adopting the standard k-epsilon turbulent model. Thus,

adopting the standard k-epsilon model provides us with insights of the turbulent flow in the case

where the attack angle is large.

Scarborough (1958) explains the gyroscope stability and gyroscope equation. This could be helpful

in explaining the inclination of the card in air and possible deflection in the trajectory of the card.

However, a more quantitative analysis in this case is needed.

4
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Theory

2.1 Laminar and turbulent flow

We will start o↵ by analyzing the airflow over a non-rotating flat plate. As shown in the figure

below, airflow over the front region of the plate is steady, and a laminar flow boundary is developed.

In the transition region, airflow becomes unsteady due to the chaotic oscillation of the air molecules,

and it eventually becomes completely turbulent. In order to investigate the e↵ect of turbulence

on the motion of the playing card, it is necessary to consider small eddy flows which occur in the

turbulent region on the card into consideration.

Figure 2.1: Flow of air over a flat plate

The spinning motion adds complexity to the problem. The spinning of the card may cause the

airflow to be more chaotic and result in the formation of vortexes in our model. Magnus e↵ect,

which has a significant impact on the motion of the card, may also occur due to the rotation motion

of the card.

2.2 Air resistance

As the mass of a playing card is measured to be 1.75 ⇤ 10�3(kg), air resistance has a significant

impact on the motion of the card. The magnitude of air resistance can be described by the following

formula:

F =
⇢ACd

2
v2 (2.1)

where ⇢ is the fluid density (kg/m3), A the area pressed by air (m2), Cd the drag coe�cient, and v

the speed of the object (m/s). In the case of playing card, the drag coe�cient is hard to determine

5
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due to its changing angular speed and attack angle. The bending of the card and turbulent flows

around the card may also cause value change in the drag coe�cient.

2.3 Magnus E↵ect

It is observed that a rotating card experiences deflection during its motion, and we will explain

this phenomenon using the Magnus e↵ect. As the ratio of the peripheral velocity of the edge of

the spinning playing card, v = 16⇡(rad/s) ⇤ 0.0755(m) = 3.79(m/s), to the linear velocity of the

playing card, u = 7.5m/s, is around 0.569, greater than the threshold value of 0.5, positive Magnus

e↵ect should be observed.

On a cylinder, the force due to rotation is known as Kutta-Joukowski lift, which is given by

F

L
= ⇢vG (2.2)

where G = 2⇡r2!, L is the thickness (m), ! the angular speed (rad/s), ⇢ the fluid density (kg/m3),

v the speed of the object (m/s) and r the radius of the cylinder (m). In the following calculation,

r of the playing card is taken as the geometry mean of the card’s half length and half width, so

r = 5.56 ⇤ 10�3(m)

Thus, given the velocity and angular velocity of the card, the force produced by the Magnus

e↵ect can be calculated.

2.4 Reynolds Number

Reynolds number (Re number) helps to determine the behaviour of the airflow. At low Re number,

airflow is more likely to be dominated by laminar flow while at high Re number, airflow is more

likely to be turbulent.

Re number can be calculated as:

Re =
⇢uL

µ
=

uL

v
(2.3)

where ⇢ is the density of the fluid (kg/m3), u the flow speed (m/s), L a characteristic linear di-

mension (m), µ the dynamic viscosity of the fluid (Pa/s), and v the kinematic viscosity of the fluid

(m2/s).

In the case of a playing card, µ = 4.0(Pa/s), L = 0.0755(m), v = 1.48⇤10�5(m2/s). So, Re = 20405,

which turbulent flow is dominant unless stabilizing e↵ects are introduced. As a result, k�✏ turbulent

model is chosen for our model.

6
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2.5 K � ✏ Turbulent Model

The most general form of Navier-Stokes equations is given as:

@⇢

@t
+r · (⇢u) = 0 (2.4)

⇢
@u

@t
+ ⇢(u ·r)u = r · [�pI+ ⌧ ] + F (2.5)

⇢Cp

✓
@T

@t
+ (u ·r)T

◆
= �(r · q) + ⌧ : S� T

⇢

@⇢

@T

����
p

✓
@p

@t
+ (u ·r)p

◆
+Q (2.6)

Where equation(2.4) represents the conservation of mass, equation(2.5) represents the conservation

of kinetic energy and equation(2.6) represents the conservation of energy.

The equations can be simplified when the fluid is incompressible. The maximum initial linear ve-

locity by human throwing is around 15.0(m/s), which is 0.04 Mach and is significantly smaller than

the threshold value of 0.3. Thus, it is reasonable to assume air as incompressible in our experiments.

When the fluid is incompressible and Newtonian, Navier-Stokes equations take the form:

⇢@u
@t + ⇢(u ·r)u = r ·

⇥
�pI+ µ

�
ru+ (ru)T

�⇤
+ F

⇢r · u = 0
(2.7)

The k�✏ model includes two additional variables: the turbulent kinetic energy, k, and the turbulent

dissipation rate, ". The turbulent viscosity is:

µT = ⇢Cµ
k2

"
(2.8)

where Cµ is a experimental determined constant.

The transport equation for k is:

⇢
@k

@t
+ ⇢u ·rk = r ·

✓✓
µ+

µT

�k

◆
rk

◆
+ Pk � ⇢" (2.9)

where Pk is:

Pk = µT

✓
ru :

�
ru+ (ru)T

�
� 2

3
(r · u)2

◆
� 2

3
⇢kr · u

The transport equation for " is:

⇢
@"

@t
+ ⇢u ·r" = r ·

✓✓
µ+

µT

�"

◆
r"

◆
+ C"1

"

k
Pk � C"2⇢

"2

k
(2.10)

Though the derivation of above equations is beyond the scope of our research, it is worth mentioning
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that these equations are used in computational fluid dynamics programs (CFDs) to calculate the

numerical solutions to our aerodynamic models.

2.6 Gyroscope Stability and Precession

It is observed that a playing card falls quickly to the ground and performs tumbling motion when

the angular velocity is low. In contrast, with high angular velocity, a card has a stable axis of

rotation due to gyroscope stability: resistance of a rotating body to change its axis of rotation.

Angular momentum imparted when the card spins, as L = Izw = 8.0 ⇤ 10�5 (kgm2/s), where

Iz = 1.71 ⇤ 10�6 (kgm2) and w = 15⇡ (rad/s). As the card moves forward, air resistance force

exerts torque on the card so the angular velocity of the card gradually decreases. With an estimated

pressure di↵erence of 0.1(Pa) when the card is flat, expected magnitude of torque ⌧ would be in the

order of magnitude 10�6. Since L > ⌧ , the gyroscope stability provided by the spinning motion of

the card mitigates the e↵ects of disturbance of the air so the card is able to maintain a horizontal

motion.

Also, precession is observed that the card spins about one axis and the net torque exerts on the

card about a second axis, the spinning card will precess about the third axis as explained by the

gyroscope equation. Formula will be:

⌧ = ! ⇥ L (2.11)

Figure 2.2: Precession of the card

8
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Model

We chose COMSOL, a multiphysics stimulation platform, as our computation software. COM-

SOL uses Finite Element Method (FEM), breaking our model into small elements and repeating

iterations to find solutions for our k � ✏ model.

3.1 CFDs model

A traditional way of analysing the aerodynamic e↵ect of an object is to put the object in a wind

tunnel. We build our model under similar condition as shown in the following diagram:

Figure 3.1: Model Setup

In the model, the playing card is placed in the middle with an attack angle of 45� to the x-axis. A

uniform airflow of velocity 2.5(m/s) enters from the left inlet. The direction of the flow is from left

to the right and is parallel to the x-axis. Additionally, the air density is taken as 1.183(kg/m3),

while the viscosity of air is taken as 1.81 ⇤ 105(Pa/s). The standard atmosphere pressure is used

in our computation.

9



20
20

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

3.1.1 Lift Force on the Card

The resultant streamlines of the airflow when the velocity is 2.5 (m/s), attack angle is 45�, and

angular velocity is 10⇡ (rad/s), are shown as below:

Figure 3.2: Side view Figure 3.3: Front view

Figure 3.4: Back view Figure 3.5: Display of the vortex

The card is rotating in an anti-clockwise direction when viewed from above. From Figure 3.3, the

velocity of the streamlines of air is at its minimum at the corner where the card cuts the airflow.

However, as shown in Figure 3.4, the average velocity of streamlines is even slower at the back side

of the card. By Bernoulli’s principle, a pressure di↵erence between the playing card’s upper and

lower surface is produced which will provide lift force for the playing card. Since the magnitude of

the streamline filed is uneven, a torque is produced which subsequently reduces the playing card’s

angular velocity.

The lift force can be further explained by investigating the vortex shown in the Figure 3.5. The

playing card experiences a vortex lift e↵ect as the card flows over the vortex and is pulled inwards

and downwards, generating the lift force.

3.1.2 Constants Determination

Many constants are derived through COMSOL simulation. The derived values of the constants are

then used in the construction of rigid body motion model. Due to the chaotic nature of playing card

model, a slight change in variables may result in significant change in the card’s motion obtained.

Moreover, variables such as the attack angle, the initial velocity of the card, or the pressure di↵er-

ence keep changing during the motion. In order to simplify our calculation, slight changes in the

value of variables are not taken into account in our model calculation, and the value of constants

10
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are averaged to minimise errors.

For instance, in order to determine the lift drag constant Cd, we set the attack angle to be 90� as

shown by Figure 3.6 and Figure 3.7. By integrate the force acting on the card, the force opposing

the movement of the card is measured. Substitute this into equation (2.1), then we can determine

the value of Cd.

Figure 3.6: Side view (streamline) Figure 3.7: Front view (pressure)

A set of constants calculated is displayed below.

Variable Description Value

P Average pressure di↵erence 0.1 N/m2

A Pressure area on card 5 ⇤ 10�4m2

Cd Drag coe�cient 1.72

⌧0 Torque on the card in the rotation plane �1.7 ⇤ 10�6kgm2

3.1.3 Assumptions

In our model, the playing card is considered as a rigid body, and we assume angular velocity has

no e↵ect on the air resistance force experienced by the playing card.

We will justify our assumption by proving that the bending of the playing card during its motion

is insignificant and thus can be ignored. A standard playing card is made of paper coated with a

layer of cellulose acetate polymer, or a layer of vinyl plastics. The young’s modulus of paper ranges

from 2.0 to 4.0(GPa)(azo, nd), while that of the cellulose acetate polymer and the vinyl polymers

are between 2.4 and 4.1 (GPa)(vin, nd). Thus, a minimum Young’s modulus value 2.0 (GPa) can

be used for calculation of the maximum deformation of the playing card in flight. As shown by the

following COMSOL simulation, expected maximum di↵erence in the pressure between edges and

the centre is 8.0(Pa) (when the wind velocity is 2.5(m/s), the attack angle is 45� and the angular

velocity is 10⇡(rad/s); the playing card is rotating in anti-clockwise direction when viewed above

the front).

11
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By calculation, the card’s maximum deflection is 0.000247(m), which is negligible as compared to

its half-length (0.0440m) or half-width (0.0315m). Thus, it is reasonable to consider the playing

card as a rigid body in our modelling process. The calculation of the maximum deflection is given

as:

ymax = �↵qb4

Et3
(3.1)

where E is Young’s modulus, t is the plate thickness, ↵ and � is the constant derived from table

below(fla, nd), q is the load per unit area.

Figure 3.10: Table of value of ↵,� for di↵erent a/b values

We calculate the Resistance force experienced by the playing card when there is an angular accel-

eration as shown in the graph:

Figure 3.11: Plot of Air Resistance against Angular Velocity

Even though the angular velocity of the playing card is increasing, the change of the air resistance

12
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is not significant. Thus, it is justified that the changes in angular velocity have insignificant e↵ect

on the air resistance experienced by the flying playing card.

3.2 Rigid Body Motion Simulation

We denote the launching direction as positive-x direction, counter-gravity direction as positive-z,

and set up a Cartesian coordinate system according to right-hand rule. The displacement of the

landing point of the card parallel to the y-axis reflects the distance travelled by the card, while the

displacement parallel to the x-axis describes the shape of the trajectory. As the calculation of the

aerodynamic forces for flat plate with large angles of attack is extremely complicated, and such

scenarios are relevant to our focus to a small extent only, we do not discuss them. Instead, our

main focus is on cases with small angles of attack which are less than 30�. In these cases, the drag

force component is much more significant than the lift force component. Hence, only drag force

component is included in our equations.

Figure 3.12: Tracker frame-by-frame analysis

3.2.1 Translational Motion

In x-direction, only air resistance force is concerned. By Newton’s second law,

mẍ(t) = �0.5⇢CdA sin ✓(t)ẋ(t)2 (3.2)

In y-direction, only air resistance force is concerned. By Newton’s second law,

mÿ(t) = �⇢Cdẋ(t) cos ✓(t)(2⇡r
2)(15⇡)(th) cos�(t)

8
<

:
0.5⇢CdA sin ✓(t)ẏ(t)2 ˙y(t) < 0

�0.5⇢CdA sin ✓(t)ẏ(t)2 ˙y(t) � 0
(3.3)

13
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In z-direction, air resistance force and gravity are concerned. By Newton’s second law,

mz̈(t) = �mg +

8
<

:
0.5⇢Cd2A cos ✓(t) cos�(t)ż(t)2 ˙z(t) < 0

�0.5⇢Cd2A cos ✓(t) cos�(t)ż(t)2 ˙z(t) � 0
(3.4)

3.2.2 Rotational Motion

With the aid of the concept of Euler angle, we define the rotation about x-axis as �, the rotation

about y-axis as ✓, the rotation about z-axis as ↵.

Also, when calculating the moment of inertia, Iz is normally calculated as M(a2 + b2)/12. Then,

for Ix and Iy, since the card is spinning at high speeds, Ix and Iy are approximately the same. By

applying perpendicular axis theorem, each is half of Iz.

For the rotation about x-axis, only the torque by aerodynamic forces is concerned. By Newton’s

second law for rotation,

PAr sin ✓(t) = Ixy ¨✓(t) (3.5)

For the rotation about y-axis, precession and torque by aerodynamic forces are concerned. By

Newton’s second law for rotation,

Iz( ˙↵(t) ˙�(t))� PAr sin�(t) = Ixy ¨�(t) (3.6)

For the rotation about z-axis, only the torque by aerodynamic forces is concerned. By Newton’s

second law for rotation,

Iz ¨�(t) = �⌧0 (3.7)

3.2.3 Initial Condition

To solve the di↵erential equations numerically, for the 6 unknowns in the equations, 12 initial

conditions are required.

x(0) = 0 ˙x(0) = v0 cos ✓0

y(0) = 0 ˙y(0) = 0

z(0) = 1.25 ˙z(0) = v0 sin ✓0

✓(0) = ✓0 ˙✓(0) = 0

�(0) = 0 ˙�(0) = 0

↵(0) = 0 ˙↵(0) = !

(3.8)

where v stands for initial linear velocity (m/s), ✓0 stands for the attack angle, and ! stands for the

spinning angular velocity (rad/s). The initial velocity in the z direction is not zero because a force

is applied in the z direction by the rubber band to shoot the card.

14
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Experiment

4.1 Experimental Set-up

The experiments were conducted in the physics laboratory of the Science Research Centre of Hwa

Chong Institution. The ventilations were switched o↵ and motions were minimised to ensure a

relatively breezeless condition as close as possible where still air could be assumed to hold.

4.1.1 Launching Device

Our launching device is designed as follows: a retort stand is secured to the horizontal surface by a

G-clamp. Two boss clamps are then secured onto the retort stand, with one used to fix the acrylic

card holder and the other used for fixing the rubber band. When launching, the rubber bands are

pulled back and the length pulled is measured using a ruler with a precision of 0.1 centimeters.

The rubber band is then released, subsequently hitting the edge of the playing card and imparting

an angular velocity as well as a linear velocity to the card.

Figure 4.1: Top view Figure 4.2: Front view Figure 4.3: Side view

During experimentation, variables are varied as follows: the initial linear velocity is varied by

using di↵erent number of rubber bands to vary the force during collision, and hence the energy

imparted and initial linear velocity obtained; the spinning angular velocity is varied by adjusting

the point of contact between the released rubber band the playing card; lastly, the angle of attack
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is varied by adjusting the angle between the card holder and the horizontal. The above mentioned

methods are, at the same time, used to control the respective variables.

To ensure the reliability of the data collected, we adopted the following methods. All playing

cards used are identical, ensuring a consistent mass of the card in each experiment. The cards are

new and completely flat, minimising the possibility of disturbing the air. Rubber bands used are

also identical to ensure a constant spring constant. The force exerted by the spring at the instant

of contact is therefore directly proportional to the stretch of the rubber band, enabling us to use

the lengths of elongation of the rubber band as an indication of the relative initial linear velocity

imparted.

4.1.2 Refinement of Data Collection Process

To facilitate the processing of data, all playing cards are coloured with one side black and the

other side red for the purpose of clear tracking in the subsequent frame-by-frame analysis of video.

Multiple white boards are set at the background of the video to better contrast the playing card

in motion.

Figure 4.4: Tracker frame-by-frame analysis
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Two cameras with high frame rates of 100 frames per second are used, with one installed at the

front of the launching device collecting front views, and the other installed at the side collecting

side views. The relatively high fps enables us to capture the motion of the cards in small time

intervals.

4.2 Qualitative Experimental Data Analysis

The frame-by-frame analysis in Tracker is used to identify the position of the playing card and mea-

sure the initial linear speed and spinning angular velocity of the playing card, while Mathematica

is used to point-plot the trajectory.

The Cartesian coordinate system used in our data analysis has the same orientation the coordinate

system constructed preciously in the rigid body motion simulation.

Figure 4.5: Figure of Cartesian coordinate system

In our analysis, deflection is represented by the displacement of the playing card’s landing point

parallel to the x-axis, while the distance travelled refers to the displacement of the card parallel to

the y-axis.

For each set of experimental variables, we conduct five sets of experiments to collect consistent

sets of data. The data is then averaged and used as the representative data for the specific condi-

tion.
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4.2.1 Changing Spinning Angular Velocity

As shown in the graph, distance traveled is independent of the angular spinning velocity, while the

deflection in trajectory has a positive relationship with the angular spinning velocity.

Figure 4.6: Trajectories with di↵erent initial spinning angular velocities

4.2.2 Changing Initial Linear Velocity

As shown in the graph, distance traveled has a positive relationship with the initial linear velocity,

while the trajectory is independent of the initial linear velocity.

Figure 4.7: Plot of Air Resistance against Angular Velocity
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4.2.3 Changing Attack Angle

As shown in the graph, distance traveled has a negative relationship with the angle of attack, while

the deflection in trajectory has a positive relationship with the attack angle.

Figure 4.8: Trajectories with di↵erent angles of attack

4.3 Comparison with Model

4.3.1 Result Analysis

For our experiments, due to the constraints of the launching device, a y-component velocity will be

imparted to the card. This will be included in our initial conditions in the rigid body motion model.

Several sets of data are presented as follows:

Figure 4.9: Data Set 1 Figure 4.10: Data Set 2

As observed, the heights calculated by the model tends to be larger than the actual values and the

calculated distance travelled tends to be smaller than the actual distance travelled. These could be

because due to the constraints of the launching device, actual attack angle is smaller than expected,
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leading to larger height reached and shorter period in air, subsequently smaller distance travelled.

Generally, the rigid body motion can be a good approximation with certain limitations.

4.3.2 Limitations

The model is only suitable for relatively small angles of attack, namely less than or equal to 30�,

because when the attack angle is large, the calculation of air resistance is complicated with the

turbulent flow situation.

Additionally, the model requires the spinning angular velocity to be larger than 10⇡(rad/s) so

that a steady flight can be presumed as the gyroscope stability e↵ect is more significant.

4.4 Error Analysis

4.4.1 Instability of Surrounding Air

The air is not absolutely still during our data collection process, as human movements and heat

flow generates random motion of the air which could not be possibly eliminated.

4.4.2 Inaccuracy in Tracking

As frame-by-frame analysis in Tracker is utilised to obtain all measurements of the distance trav-

elled by the card, the initial linear velocity, and the spinning angular velocity, the resolution of the

frame images is crucial to ensure accuracy. However, due to resource limitations, we use cameras

with high frame rate of 100 frames per second instead of high speed cameras which could capture

images with a much higher frame rate of 250 frames per second. The relatively longer exposure

time needed for the filming a↵ects the quality of the frames, as the playing card continues its

motion during the short time interval, leading to unclear edges of the card. As such, the centre of

mass of the playing card has to be estimated during the tracking process, leading to a maximum

uncertainty of 0.50 centimeters and hence a percentage uncertainty of 5.0%.
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4.5 Improvement

4.5.1 Improving Launching Device

Below is our proposal for improvements of the launching device. The primary motor serves the

purpose of adjusting the initial linear velocity by adjusting its rotating speed; the secondary motor

adjusts the playing card’s initial spinning angular velocity by adjusting its rotating speed; the at-

tack angle can be adjusted by orientating the whole device at di↵erent angles. The part to launch

the playing card has two layer, namely inner and outer layer. The playing card is fixed to the inner

layer, and the outer layer can be pushed out to detach the card.

Figure 4.11: Diagram of the improved design

Another possible design is proposed by the Youtuber Mark Rober. The computer-aided design is

shown in the figure below. The card deck is underneath the bottom of the launching device. The

first belt and a pulley then, slide cards forward to the front of the machine one card at a time.

A second belt, which is wrapped around an O ring and connected to a motor, is responsible for

imparting the spin to the card. The initial linear velocity and the spinning angular velocity of the

card can be changed by adjusting the variable resistors connected in the circuit, while the angle of

attack can be varied by orienting the whole launching device to a particular angle to the horizontal

level.(Mark Rober, 2018)

Figure 4.12: Possible design of launching device
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4.5.2 Wind Tunnel Experiment

Currently, our research on aerodynamic forces is only based on CFD simulation while wind tunnel

experiments are lacking. CFD might be a good approximation for most cases. However, its ac-

curacy depends on the size of meshes. Hence, if a wind tunnel experiment can be carried out to

determine the constants needed, the modelling can be more accurate.
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Conclusion

1) The deflection of the trajectory is positively correlated to the spinning angular velocity, while

it has a negative correlation with the attack angle. Initial linear velocity has insignificant e↵ect on

the shape of the trajectory.

2) The distance travelled is positively correlated to the initial linear velocity and a negative re-

lationship with the attack angle. Spinning angular velocity has insignificant e↵ect on the distance

travelled by the card.

3) Also, a simplified motion model has been established with certain premises.

4) Tips for throwing the playing card far: horizontal launch, large initial linear velocity, and

su�cient spinning angular velocity.
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Appendix

A.1 Mathematica Code for the Model

In [1219]:= rule={m- >0.00175 ,P1 ->0.1,P2 ->0.1,A1 ->0.0005,A2 ->0.0005,v->7,g->9.81,

A- >0.005544 ,Con ->1.72 ,\[ Rho]->1.293,r->0.0556,th - >0.00027 ,Ixy - >0.00000085407 ,

Iz - >0.00000170814 , torque ->6.3 10^-5}

position=

NDSolve [{

m x’’[t]== -0.5 \[Rho] Con (A Sin[\[ Theta][t]]) (x’[t])^2,

m y’’[t]==If[y’[t]<0, 0.5 \[Rho] Con (A Sin[\[Phi][t]]) (y’[t])^2,

-0.5 \[Rho] Con (A Sin [\[ Phi][t]])(y’[t])^2]

-\[Rho] x’[t] Cos [\[ Theta ][t]] (2 Pi r^2 15 pi th) Cos [\[ Phi][t]],

m z’’[t]==-m g + If[z’[t]<0,

0.5 \[Rho] 2 (A Cos [\[ Theta][t]] Cos [\[ Phi][t]]) (z’[t])^2,

-0.5 \[Rho] Con (A Cos [\[ Theta ][t]] Cos [\[ Phi][t]]) (z’[t])^2],

P1 A1 r Sin [\[ Theta ][t]]== Ixy \[Theta]’’[t],

Iz(\[ Phi]’[t]\[ Phi]’’[t])-P2 A2 r Sin [\[ Phi][t]]== Ixy \[Phi]’’[t],

Iz \[Alpha]’’[t]==-torque ,

\[Theta ][0]== Pi/18,

\[Theta ]’[0]==0,

\[Phi ][0]==0 ,

\[Phi ]’[0]==0,

x[0]==0 ,

x ’[0]==v Cos [\[ Theta ][0]],

y[0]==0 ,

y ’[0]==0.17 ,

z[0]==1.25 ,

\[Alpha ][0]==0 ,

\[Alpha ] ’[0]==16 Pi,

z ’[0]==v Sin [\[ Theta ][0]]

}/.rule ,{x,y,z,\[ Theta],\[Phi],\[ Alpha],\[ Alpha]’},{t,0,1.27},

MaxStepSize - >0.0001]

Out [1219]= {m- >0.00175 ,P1 ->0.1,P2 ->0.1,A1 ->0.0005,A2 ->0.0005,v->7,g->9.81,

A- >0.005544 ,Con ->1.72 ,\[ Rho]->1.293,r->0.0755,th - >0.00027 ,Ixy - >8.5407*10^ -7 ,

Iz - >1.70814*10^ -6 , torque - >0.000063}

Out [1220]= {{x->InterpolatingFunction[Domain: {{0. ,1.27}}

Output: scalar

],y->InterpolatingFunction[Domain: {{0. ,1.27}}

Output: scalar
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],z->InterpolatingFunction[Domain: {{0. ,1.27}}

Output: scalar

],\[Theta]->InterpolatingFunction[Domain: {{0. ,1.27}}

Output: scalar

],\[Phi]->InterpolatingFunction[Domain: {{0. ,1.27}}

Output: scalar

],\[Alpha]->InterpolatingFunction[Domain: {{0. ,1.27}}

Output: scalar

],\[Alpha ]^\[ Prime]->InterpolatingFunction[Domain: {{0. ,1.27}}

Output: scalar

]}}

In [1169]:= a=Import["/Users/liutianchi/Desktop /10 deg zui xin .xlsx"]

In [1221]:= xx=x/. position [[1 ,1]]

yy=y/. position [[1 ,2]]

zz=z/. position [[1 ,3]]

\[Theta ]\[ Theta ]=\[ Theta ]/. position [[1 ,4]]

\[Phi ]\[ Phi ]=\[ Phi ]/. position [[1 ,5]]

Out [1221]= InterpolatingFunction[Domain: {{0. ,1.27}}

Output: scalar

]

Out [1222]= InterpolatingFunction[Domain: {{0. ,1.27}}

Output: scalar

]

Out [1223]= InterpolatingFunction[Domain: {{0. ,1.27}}

Output: scalar

]

Out [1224]= InterpolatingFunction[Domain: {{0. ,1.27}}

Output: scalar

]

Out [1225]= InterpolatingFunction[Domain: {{0. ,1.27}}

Output: scalar

]

In [1226]:= FindRoot[zz[t]==0,{t ,0.7}]

Out [1226]= {t - >1.03444}

In [1227]:= Show[{ ListPointPlot3D[a,PlotRange ->Automatic],

ParametricPlot3D [{xx[t],yy[t],zz[t]},{t ,0 ,1.0344351444781088 ‘} ,

PlotRange ->Automatic ]}]
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