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Abstract

Many important mechanical properties of materials, such as strength and hardness, de-

pend on their microstructural features. There is hence a need to quantify the microstruc-

tural features, such as phase volume fraction and average grain size, quickly and accurately

from a microstructure image. Manual identification by materials scientists is often slow

and labour intensive and suffers from poor repeatability. Therefore, digital image process-

ing techniques, such as the watershed transform, are often deployed to automate the task

by dividing the microstructure images into areas containing each individual microstruc-

tural feature so that data about the microstructural characteristics can be extracted.

However, watershed transform is prone to oversegmentation, a situation where the image

is too finely divided into segmented regions. In this report, we propose using fast Fourier

transform (FFT) and frequency domain operations to improve the reliability of water-

shed transform. We develop a systematic procedure to process a microstructural image

for effective segmentation and demonstrate the possibility of the following microstructural

data collection. We verify the effectiveness of our approach on two microstructure image

of titanium alloy, a type of alloy widely used in industries.

Keywords— Microstructure analysis, Fast Fourier transform, Watershed transform, Titanium

alloy, Computer vision
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1 Introduction

Ti6Al4V is widely used in industries due to its high strength-to-weight ratio and strong

resistance to corrosion. Many such mechanical properties are claimed to be dependent

on the microstructural features of the alloy [1]. The popularity of Ti6Al4V, particularly

within high value manufacturing sectors such as aerospace, often makes it the subject of

microstructural analysis. Ti6Al4V, as a two-phase material, demonstrates a wide variety

of different microstructural features, making research developed for Ti6Al4V more likely

to be applicable to other materials [2].

Several techniques, both manual and automatic, have been proposed to quantify mi-

crostructural features of a microstructure image. The American Society for Testing and

Materials (ASTM) E112 standard suggests a manual procedure to measure the average

grain size of metals [3]. Several lines are drawn across the image and any interception with

grain boundaries is marked. The average number of interceptions per unit length gives

an approximation of the average grain size. Random placement of lines avoids bias, but

aspect ratio of grains could not be measured. Manually placing the lines along the length

and width of each grain gives a more accurate measurement, but may result in biased

results [2]. The labour intensive nature of such undertakings undermines the reliability

and repeatability of the data collected.

A few automatic procedures have been developed to analyse the microstructure image.

It is recognised that the most crucial step is obtaining an accurate segmentation of the

image that effectively isolate individual grains [4]. Subsequent data extraction becomes

straightforward once segmentation is successfully conducted. Tiley et al. [5] and Collins et

al. [6] deployed Photoshop and its extension Fovea Pro to quantify microstructure features

in Titanium alloys. Yang and Liu [7] proposed using Canny edge detection algorithm for

segmentation of an image that has been denoised with a Gaussian blurring filter, before

using Image-P Plus software for data collection. Sosa et al. [4] developed a software

system called MIPAR to automatically measure several microstructural features. The

software is able to use the fast Fourier transform of a microstructure image and conduct

frequency domain operations to improve the quality of image, so as to improve the quality

of the subsequent segmentation. Campbell et al. [2] utilised edge detection algorithms to

identify the boundaries of grains. Markers are placed in the centre of closed boundaries to

improve subsequent watershed transform. Campbell et al. also proposed a region-merging

algorithm to reduce oversegmentation.

However, there are certain limitations in the existing techniques. Edge detection algo-

rithms used by Yang and Liu and Campbell et al. are prone to noise in the image caused

by different factors such as uneven illumination, leading to less reliable results. Edge de-
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tection is also less reliable when the boundary between the foreground and the background

is unclear due to lower contrast between the two areas’ intensity. Fast Fourier transform

in MIPAR developed by Sosa et al. is only used to address the problem of milling arte-

fact, while it can be further utilised to identify edges and improve segmentation results.

The commercial nature of both MIPAR and Fovea Pro may discourage researchers from

adopting them and being closed-source software, they may be difficult to customise for

different scenarios. Our approach uses Python and its open-source libraries, including

OpenCV and Numpy, to automatically process microstructural images. The open-source

nature of our system makes it more versatile and simple to verify and customise. This

report proposes using fast Fourier transform, in addition to other processing techniques,

to extract certain desired features of an image. This report also develops several sim-

ple algorithms to demonstrate the possibility of subsequent data collection, though the

main focus is on effective segmentation, which is the most critical step to achieve reliable

quantification of the microstructural features [2] [4].

2 Computer Vision Analysis

We present a systematic procedure to process and analyse a Ti6Al4V microstructure

image using Python and OpenCV, an open-source computer vision library. The workflow

is shown in Figure 1.

Input Filtering Thresholding

FFT

Watershed Data extraction

either

or

Figure 1: Image analysis workflow

To achieve effective segmentation with watershed transform, it is important to obtain

a clean, binarised image while preserving the edges in the image before segmentation.

Therefore, a wide range of techniques is adopted, including filtering, thresholding and

fast Fourier transform, to process the image before implementing the watershed trans-

form. Subsequent data extraction can be conducted using the labelled image produced

by watershed transform. The effectiveness of our approach is tested on two microstruc-

tural images. One image is provided by material scientists from A*STAR’s Institute of

Materials Research and Engineering (IMRE). It is a backscattered electron image taken

with a field-emission scanning electron microscope (FESEM). The other one is provided

by MIPAR software. We shall denote the former IMRE image and the latter MIPAR

image (Figure 2).
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(a)

(b)

Figure 2: Microstructure images used in this report where (a) image provided by IMRE
(b) image provided by MIPAR

2.1 Denoising and Thresholding

The initial raw image is filtered to reduce noise that will cause oversegmentation at later

stages. Several well-known image filtering techniques are tested, including the median

filter, the bilateral filter and the Gaussian blurring (Figure 3). Generally, a technique

that will preserve the edge features of the image while denoising is preferred. For our

image, Gaussian blurring is found to be the most successful among the techniques tested,

in agreement with previous research [2] [7].

The image is then thresholded and binarised. Among the various thresholding techniques

available in OpenCV, Otsu’s method [8] proves to be the most effective. Otsu’s method

automatically calculates the optimal global threshold that will best separate the fore-

ground pixels from the background ones, creating two classes of pixels. The algorithm

attempts to find a single intensity threshold that minimises the inter-class variance. In

scanning electron microscope images, there is a clear distinction between the gray scale

5
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Figure 3: Filtered image using Gaussian blurring with a 5 × 5 kernel.

Figure 4: Thresholded image using Otsu’s method

intensities of the grains and the background, as pointed out by previous research [7].

Therefore, the intensity histogram of the image shows clear peaks for the foreground

and the background pixels. Otsu’s method can hence produce a cleaner, binarised image

effectively with a single global threshold (Figure 4).

2.2 Fast Fourier Transform

After the thresholding, the image still may not be suitable for watershed transform due

to oversegmentation caused by noises in the image. One additional processing step is

introduced to improve the reliability of watershed transform, through the use of fast

Fourier transform (FFT). FFT converts the binary image from its spatial domain to the

frequency domain, so as to allow for frequency domain operations on the image to extract

specific features and reduce noise. The processed frequency image is then converted back

to the spatial domain with an inverse Fourier transform. The FFT transform F (x, y) of

6
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a M by N image, which is represented by a function f(m,n), is given by Equation 1:

F (x, y) =
M−1∑
m=0

N−1∑
n=0

f(m,n)e−i2π(xm
M +y n

N ) (1)

Conversely, with the frequency domain image represented by a function F (x, y), its inverse

Fourier transform is given by Equation 2:

f(m,n) =
1

MN

M−1∑
m=0

N−1∑
n=0

F (x, y)ei2π(xm
M +y n

N ) (2)

Sharp intensity changes, which occur in the boundary regions in the image, correspond

to high frequencies in the frequency image [9]. The direction along with such transitions

occur dictate the orientation of the high frequency parts in the frequency image [4]. A

mask is applied onto the FFT image to select such frequencies in an effort to retain the

edge features. Figure 5 shows the FFT of the previous thresholded image.

Figure 5: Fast Fourier transform of the thresholded image

Notice that there are spikes along certain directions. The spikes are frequencies that

represent the boundary pixels in the original image where the intensity experiences a

sharp change. To extract these frequencies, a mask defined by two parameters θ and ∆y

is used to extract each spike. θ determines the angle of the mask while ∆y determines

the width of the mask:

F (x, y) =

F (x, y) if N−∆y
2 + tan(θ)(x− M

2 ) ≤ y ≤ N−∆y
2 + tan(θ)(x− M

2 )

0 otherwise
(3)

7
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After applying several masks along certain directions, a frequency image with only the

desired frequencies preserved is obtained. The processed frequency image is then con-

verted back to its spatial domain using the inverse Fourier transform. An image with

clearer, sharper edges is obtained (Figure 6), and it is able to minimise oversegmentation

during the eventual watershed transform.

Figure 6: FFT-processed image

2.3 Watershed Transform

Watershed transform is adopted to segment the image. With watershed transform, the

image is taken as a topographical relief and flooded [10]. Sources are situated at local

minima, and when floods from two regions meet, a ’dam’ is built to prevent mixing

of the floods. Eventually, all the ’dams’ indicate the boundary regions of the original

image. However, due to the large number of minima points caused by noises in the image,

watershed transform often suffers from oversegmentation [11]. Apart from denoising the

image, using a marker-based watershed transform also helps to improve the segmentation

result [12]. A marker indicates the desired locations where flooding should take place, so

as to minimise oversegmentation. The method has been proven successful by applications

in other areas [13] [14] [15].

Distance transform and connected components analysis are deployed to generate the

markers. If a FFT-processed image is used, it must be first thresholded to obtain a binary

image. Using an OpenCV function, the distance transform of the image is obtained.

The distance transform assigns each pixel of an image with its distance to the nearest

background pixel [16]. This means that pixels nearer to the centre of each grain have

a higher value compared other pixels. Therefore, thresholding the distance transform

with an appropriate threshold yields the foreground area of the image, which represent

the central part of the grains. The boundary area is then identified by subtracting the
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morphological dilation of the FFT-processed image with the foreground area.

Connected components analysis is then used to label each foreground area in the thresh-

olded distance transform image with a unique integer [17]. This labelled image is used

as the marker for watershed transform. The marker-based watershed transform algo-

rithm provided by OpenCV takes the FFT-processed image and the marker as input, and

returns an image with grains pixels labelled with unique integers starting from 2, back-

ground with 1 and boundaries with -1. Extracting only the boundary pixels’ locations and

colouring corresponding pixels in the original BSE image provides us with a segmented

microstructural image. Segmentation results on full and cropped IMRE images are shown

in Figure 7 and 8.

3 Reducing Oversegmentation

The labelled image produced by watershed transform may exhibit oversegmentation, as

shown in Figure 7c. The oversegmenation can be reduced by altering parameters for

the watershed transform, but sometimes the problem persists after testing with several

sets of parameters. Therefore, an algorithm is introduced to reduce oversegmentation

by region merging. Noting that the oversegmented parts are often small, area is used

as the selection criterion for merging regions. Labelled regions that have areas below a

predetermined threshold are merged with their surrounding regions. The images before

and after reducing oversegmentation are shown in Figure 9.

Composite merging criteria, such as the one used in [2], can be developed according to

the type of oversegmentation shown in different images.

4 Data Extraction

For this section, we demonstrate the possibility of data extraction from the labelled image

produced in the previous section. We shall focus on a section of the image, such as the

one in Figure 8 for this section and the following result analysis.

The output labelled image (Figure 8c) of the watershed transform can be viewed as a m

by n matrix, represented by m(x, y), with integer elements. It can be use to facilitate

data extraction from the microstructural image. Area of each grain is simply reflected by

the total number of pixels labelled with the grain’s corresponding unique integer. With

the total area of grains, volume fraction of the alpha phase (low intensity foreground) and

beta phase (high intensity background) can be computed since area fraction and volume

fraction are taken as equivalent [18].

9
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(a)

(b)

(c)

Figure 7: Segmentation results where (a) original IMRE image (b) segmentation of the
image (c) labelled image
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(a) (b) (c)

Figure 8: Segmentation results where (a) a section of the IMRE image (b) segmentation
of the section (c) labelled image of the section

(a)

(b)

Figure 9: Results of reducing oversegmentation where (a) before reducing (b) after re-
ducing

11
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For the circumference of each grain, an algorithm is used to compute the number of

boundary pixels of each grain, thus yielding the circumference. Every grain is labelled

by an integer starting from 2. For each pixel labelled by an integer larger or equal to 2,

the unique values in its eight neighbouring pixels can be retrieved. If this set of values

contains -1, which represent the boundary pixels, this pixel is taken as one part of the

circumference. For one particular grain, all pixels that have -1 as one of their neighbouring

pixels are extracted and used to construct the circumference. The algorithm is repeated

for each grain.

m(x, y) =

m(x, y) if − 1 is in its neighbouring pixels

0 otherwise
(4)

To measure the width and length, and hence the size of each grain, an ellipse is fit to the

region occupied by it. This is done with another OpenCV function, cv2.fitEllipse, which

uses the algorithm developed by [19]. The estimated width and length of the grain is

given by the length of the minor-axis and major-axis respectively. The average grain size

is given by Equation 5, where Ln and Dn are the length and width of a grain respectively

[2].

GS =
Ln +Dn

2
(5)

It must be noted that all data collected is represented by numbers of pixels, which do not

directly reflect the real values of the microstructural features. The area data, for example,

represents the total amount of pixels in a certain grain. The real values can be deduced

upon knowing the size of the digital image and the relevant data, such as magnification

and aspect ratio, of the scanning instrument.

5 Results and Discussion

Now we present the results of our approach. Due to the limited dataset of this student

project, we only have two microstructure images to work with. However, since the two

images exhibit different image qualities and different microstructure features, they are

able to reflect the effectiveness of our algorithm.

Figure 8b and 8c shows the segmentation result and the labelled image on a section of

the IMRE image. Table 1 shows the data extracted from the labelled image.

Figure 10 shows another set of results based on a section of the MIPAR image. The data

12
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Grain no Area Circumference Width Length Grain Size
1 16115 1137 17 43 30
2 21919 1350 78 407 243
3 12380 929 148 167 158
4 33017 1489 113 359 236
5 12580 946 - - -
6 6214 708 42 221 132
7 4460 435 68 130 99

Table 1: Data extracted from the segmentation result of IMRE image

(a) (b) (c)

Figure 10: Segmentation results where (a) a section of a microstructure image from
MIPAR (b) segmentation of the section (c) labelled image of the section

is shown in table 2.

Overall, our method achieved good segmentation result and a good labelled image on the

IMRE image. Area and circumference data fits our expectation based on the relative size

of the grains. The grain size data, however, is not satisfactory at times. For example, in

Table 1, Grain 1 has a problematic length and width, while on Grain 5, the algorithm fails.

The problem is more significant in Table 2. This could be due to the OpenCV function

not working as expected when handling a shape with complex boundary features and

overall shapes. However, the purpose of our algorithm is mainly demonstrative, and more

accurate and flexible data extraction methods can be developed by future research.

13
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Grain no Area Circumference Width Length Grain size
1 5542 724 36 243 140
2 11188 990 8 13 11
3 3937 717 21 262 142
4 1079 354 12 136 75
5 6667 1077 6 7 6
6 5568 1033 7 12 10
7 1234 371 14 141 78
8 1048 264 11 108 60
9 357 132 11 44 28
10 224 77 10 23 17
11 160 61 13 16 15

Table 2: Data extracted from the segmentation result of MIPAR image

6 Comparison with Existing Techniques

We further demonstrate the effectiveness of our approach with comparison to both manual

and several automatic methods.

6.1 Comparison with Manual Measurement

Our method’s measurement of phase volume fraction is compared with manual measure-

ment. As suggested by ASTM E562 [18], the manual measurement uses the point count

method for measuring phase volume fraction. A regular grid of points is superposed over

the image and number of points that are inside the region of interest is noted. If the point

is on the boundaries, one-half a ’hit’ is counted. Then the total number of ’hits’ divided

by the total number of points gives the volume fraction of the phase of interest.

Table 3 shows the comparison of phase volume fraction measurement between our method

and manual method.

α volume fraction β volume fraction
Our method on IMRE image 86.4% 14.6%

Manual on IMRE image 85.7% 14.3%
Our method on MIPAR image 60.7% 39.3%

Manual on MIPAR image 60.0% 40.0%

Table 3: Comparison of phase volume fraction measurement between our method and
manual method

There is a good match between our method and manual method in both IMRE and MI-

PAR image, with our method’s alpha volume fraction being 0.7% higher than manual

14
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method in both images. This may be due to the subjectivity involved in manual mea-

surement of the volume fraction. Since the manual method requires one to select points

that are either in the alpha grain area or on the boundary, points that are located on less

distinct boundary lines may be consistently left out during manual measurement, leading

to a lower alpha volume fraction.

There is a significant reduction in the time taken to perform measurements using our

image processing algorithm. The images shown in Figure 2a and 2b took an average of

3.79s to process, segment and quantify, far shorter than the measurement time needed for

manual measurements of more than 15 minutes. Automatic methods like ours allow for

a large quantity of microstructure images to be analysed within a short period of time.

The automated nature of the algorithm also ensures repeatability.

6.2 Comparison with Techniques Used by Previous Research

6.2.1 Canny Edge Detection

The segmentation results of our method are compared with Canny edge detection, which

is employed in [7] to achieve segmentation of alpha and beta grains in Ti6Al4V. Canny

edge detection is also used in [2].

As shown in Figure 11 and 12, compared to Canny edge detection used in [7], our water-

shed transform achieved a better segmentation result on IMRE image with clearer and

more complete boundary lines. Watershed transform also has the benefit of generating a

connected component labelled image that will facilitate data extraction.

6.2.2 MIPAR Software

Lastly our method is compared against with the MIPAR software. MIPAR offers a variety

of image processing tools for the user to analyse the image in a graphical user interface.

MIPAR provides Gaussian filtering and thresholding, and an automatic watershed trans-

form function. After filtering and thresholding, the watershed transform provided by

MIPAR is used to segment our IMRE image and the image provided by MIPAR. The

comparison with our method is shown in Figure 13 and 14.

It appears that our method achieves a slightly better result with less oversegmentation

in the IMRE image. In the MIPAR image, however, our method has a less desirable

outcome with some parts of the image not properly segmented. This may be anticipated

as algorithms of MIPAR are better optimised for its own images. MIPAR software is

equipped with a wide range of other functions which may help with the segmentation

so the result shown does not represent the full potential of the software. Instead, the
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comparison serves to demonstrate the usefulness of our approach in certain scenarios.

7 Conclusion

We have presented a systematic approach to automatically segment a microstructure

image, using watershed transform and a variety of techniques that help to improve the

segmentation result. Fast Fourier transform is used to allow for frequency domain op-

erations that extract edge features in certain directions. We tested our method on two

different microstructure images. An algorithm is developed to reduce oversegmentation.

The overall segmentation results are mostly positive, while the labelled image produced by

watershed transform may be less accurate in cases where the transition from foreground

to background is not very clear. The efficiency advantage of our automated method over

manual measurement is evident, while more sophisticated data extraction algorithm can

be developed for more accurate quantification of microstructural features. We compared

our method against manual techniques and ones employed by previous researchers, and

the result showed our method’s usefulness in many scenarios. The open-source nature

of Python and OpenCV makes our method easier to adapt and customise to fit different

needs.
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Figure 11: Comparison of segmentation results where (a) original IMRE image (b) seg-
mented image using our method (c) segmented image using Canny edge detection
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(a) (b) (c)

Figure 12: Comparison of segmentation results where (a) a section of the IMRE image (b)
segmented section using our method (c) segmented section using Canny edge detection
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Figure 13: Comparison of segmentation results on IMRE image where (a) segmentation
result using our method (b) segmented section using MIPAR software
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(a)

(b)

Figure 14: Comparison of segmentation results on MIPAR image where (a) segmentation
result using our method (b) segmented section using MIPAR software
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