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On Optimal Favoritism in Asymmetric Competitions 

 

David Lu               Sérgio Parreiras 

 
 

Abstract 
 

Favoritism towards a relatively weak competitor is well adopted as an effective instrument to 
enhance productive effort supply in asymmetric contests in a variety of economic 
environments. Examples include affirmative actions in college admissions, preferential 
treatment to internal job candidates in job applications and domestic firms in government 
procurements. In this paper, we investigate the effort-maximizing favoritism rule in 
asymmetric two-player contests with all-pay auction technology, while accommodating fully 
flexible favoritism rules. Our analysis allows players' values to be their private information or 
public information.  
 
In the incomplete information scenario, we explicitly characterize the effort-maximizing 
favoritism rule and the associated equilibrium bidding strategies under plausible assumptions. 
We find that under hazard rate dominance in terms of players' values distributions, a weaker 
player always wins if his/her opponent has the same value. However, this is not true merely 
under first-order dominance. Surprisingly, when compared to a standard all-pay auction 
without favoritism, we find that the effort-maximizing favoritism rule does not necessarily 
make the weaker player win with a higher chance and thus may not increase the winner 
diversity. 
 
In the complete information scenario in which both players' values are fixed, we find that at 
the optimum, the weaker player with lower value is extremely favored; however his/her 
winning chance converges to zero. This finding illustrates that the extreme effort-maximizing 
favoritism rule certainly decreases winner diversity in this scenario of complete information.  
 
Our findings shed light on the optimal design of affirmative action in college admission and 
preferential treatments of different parties in labor market and international trade. 
 
 
Keywords: Affirmative action, All-pay auction, Asymmetric contest, Favoritism, Labor market, 
Incentive compatibility, International trade, Government procurement, Mechanism design, 
Revelation principle, Sports. 
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1 Introduction

Economic, political, social and athletic competitions, in which the contestants are asymmetric, are

abundant. In R&D races, innovators are typically endowed with different technological capacities

and expertise. In government procurements, suppliers (say domestic versus foreign firms) can be

heterogeneous in their provision efficiencies. In job promotions within hierarchical organizations,

contenders usually differ in their competitiveness. In political campaigns, some candidates are

more popular or less financially constrained compared to their opponents. In school admissions,

applicants come from diverse racial, economic and social and backgrounds. In athletic events, such

as golf and horse racing, players essentially differ in their levels of training, field experiences and

physical conditions.

It has long been recognized that heterogeneity in contestants’ competitiveness can hinder their

incentive to exert high effort overall. For example, one notable empirical study by Brown (2011)

convincingly shows that average score of golf players falls in the presence of a superstar like Tiger

Woods. The intuition behind this finding is clear: with the presence of a dominant opponent,

weaker players have less incentive to exert effort due to the slim chance of winning the grand

award. Given this, the superstar does not need to exert much effort to win.

This undesirable discouragement effect of player heterogeneity on total effort supply has stimu-

lated enormous academic interest on investigating how to mitigate or overcome it. A well received

insight from literature is that leveling the battle field by favoring the weaker player is essential

to encourage the weaker and discipline the stronger. In other words, introducing appropriate fa-

voritism, say head start and/or handicap, in the originally asymmetric competition can mitigate

the discouragement effect of player heterogeneity.

In this paper, we further investigate the effort-maximizing favoritism rule while adopting an

analytical framework of two-player all pay auction with incomplete information or complete infor-

mation. Differentiating from previous literature, we allow fully nonlinear favoritism rules without

restricting to linear instruments such as headstarts, handicaps, or a combination of the two. We will

identify the optimal favoritism rules and the induced equilibrium bidding strategies, and study the

properties and implications of these rules. In this paper, a favoritism rule is defined as a player’s

1
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winning effort threshold as a function of the other player’s effort. A player wins if and only if

his/her effort is above this threshold.

Our main analysis adopts an incomplete information scenario in which players’ values of winning

the competition are their private information. In this setting, explicitly solving for the players’

equilibrium strategies is an intimidating task, if not impossible. This means that searching for the

optimal favoritism rule by directly comparing across the explicit equilibria under all rules is nearly

impossible. We instead adopt an innovative indirect approach by establishing an effort bound

following Myerson’s (1981) mechanism design methodology. Then we show this effort bound can

be achieved by a particular favoritism rule under the induced equilibrium. Both the favoritism rule

and equilibrium are explicitly constructed based on results obtained while applying the Myerson

approach.1 At the optimum, we find that the weaker player in the sense of hazard rate dominance

must win his/her stronger opponent if they share the same value. However, this is not true if

the dominance is in the sense of first order stochastic dominance. Different players can win the

competition if their value is the same but it falls in different ranges. Surprisingly, we find that

under optimal favoritism, a weaker player’s expected winning chance can be lower than that in a

standard all pay auction, which reveals that effort-maximizing favoritism may perversely reduce

the winner diversity.

We further investigate the effort-maximizing favoritism rule while assuming players’ values

are public information. This setting is also quite popular in the literature. We find that the

effort-maximizing favoritism rule would favor the weak player to the extreme. However, at the

optimum, the weak player would (almost) always lose the competition. This finding reveals that

the extreme effort-maximizing favoritism certainly decreases winner diversity in this scenario of

complete information. One implication of our finding is that the well received insight of “fully

leveling the playing field” (e.g. Nti (2004) and Fu (2006), etc.) is no longer applicable once

nonlinear favoritism rules are allowed.

This insight of using favoritism to better incentivize the contestants is corroborated by an es-

tablished line of theoretical studies, which provide sound economic justification for policies and

practices that specify preferential treatment of contestants in asymmetric competitions. The most

1Favoritism rule inducing efficient allocation can be similarly constructed.

2
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salient example is affirmative action in school admissions (see Fu (2006), Frank (2012)). In the

US, in-state students and minorities are preferred in college admissions in many states. Similar

practices are adopted in EU universities that favor EU students versus non-EU students. McAfee

and McMillan (1989) provide economic rationale (i.e. cost reduction) for a government’s prefer-

ential treatment to domestic local enterprises (versus foreign multinational corporations) in public

procurements.2 Epstein et al. (2011) also emphasize on the benefit of public policies that favor

small and medium-sized firms in government procurements. Ayres and Cramton (1996) find em-

pirical evidence supporting this rationale. Chan (1996) shows that in promotional competitions

within organizations, preferential treatments of the internal employees can better incentivize them

if external candidates are much stronger.3 Preferential policies are often observed in sports. For

example, to make the competition more exciting, higher ranked competitors are often handicapped

in golf and horse racing (Chowdhury et al. (2019)). Che and Gale (1998) find that the practice of

imposing a bidding cap on political lobbying to handicap the financially less constrained politicians

can generate a perverse effect of inducing higher expenditure. Che and Gale (2003) establish that

with asymmetric contestants, it is optimal to handicap the most efficient to boost their overall

performance. This insight echoes the rationale for the research recognition programs, where young

researchers obtain head-starts (Kirkegaard (2012)).

Besides studies mentioned above, this line of the literature on favoritism also includes Clark

and Riis (2000), Konrad (2002), Gavious et al. (2002), Nti (2004), Sahuguet (2006),Tsoulouhas

et al. (2007), Frank et al. (2013), Seel and Wasser (2014), Frank et al. (2018), Zhu (2019), Fu

and Wu (2020) among many others. Typically, all these studies are conducted using the analytical

framework of Tullock contest and/or all pay auction either with complete or incomplete informa-

tion. Unlike our paper which allows nonlinear favoritism rules, the favoritism in these existing

studies focuses on linear instruments, including head start (an additive bias on a player’s perfor-

mance/effort) and handicap ( a multiplicative bias on a player’s performance/effort). Our study

further strengthens these studies by providing the fully effort-maximizing favoritism rule without

imposing any restrictions.

2According to Feess et al. (2008), in Germany, there is a clause which allows awarding a public procurement
contract to a local firm when its bid is not more than 5% higher than the lowest bid.

3Schotter and Weigelt (1992) find experimental evidence that affirmative action programs significantly increase
overall effort levels when the cost disadvantage of weaker group is severe.

3
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Favoritism towards weaker competitors can also promote the diversity of winner group, as

illustrated by Fu (2006), Pastine and Pastine (2012) and Lee (2013). These studies nevertheless

find that typically there is a tension between effort-maximization and winner diversity when the

contest organizer is restricted to adopt linear favoritism instruments, including head start and

handicap. Our findings further complement these studies by revealing the possibility that effort-

maximizing favoritism can perversely reduce the diversity of winner group. This result clearly has

important policy implications, since preferential policies including affirmative actions typically aim

at boosting winner diversity.

The rest of the paper is organized as follows. In Section 2, we set up the model with incomplete

information. Section 3 contains the main analysis. Section 4 is a discussion of environment with

complete information. Section 5 provides some concluding remarks.

2 Model setup with incomplete information

We adopt an analytical framework of all pay auctions with incomplete information. There are

two players i = 1, 2. Bidder i’s value of winning the auction is vi, i = 1, 2. Values vi is private

information of bidder i. Bidder i’s value distribution is Gi(·) with density gi(·) > 0 on [0, v̄].

We assume the following standard regularity condition on the virtual value functions, which is

well adopted in the literature.

Assumption 1. Virtual value functions Ji(vi) = vi − 1−Gi(vi)
gi(vi)

are increasing in vi on [0, v̄].

Clearly we have the following result.

Lemma 1. J1(v̄) = J2(v̄) = v̄.

Assumption 2. (i) g1(0) = g2(0); (ii) g1(·) and g2(·) single cross in (0, v̄]. There exists v̂ ∈ (0, v̄)

such that g1(v) < g2(v) if v ∈ (0, v̂), and g1(v) > g2(v) if v ∈ (v̂, v̄];(iii) g1(·) and g2(·) are

continuous.

Assumption 2 implies that G2(·) first order stochastically dominates G1(·).4 In this sense, bidder

4If the cumulative distribution functions cross in (0, v̄), then their difference has at lease two internal extreme
points, at which the density functions must cross with each other.

4
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1 is a weaker bidder than bidder 2. The assumption of g1(0) = g2(0) if for analytical simplification.

Our analysis applies when g1(0) ≤ g2(0).

For example, consider G1(v1) = (v1)4 on [0, 1] and G2(v2) = (v2)2 on [0, 1]. We thus have that

player 1 is stronger in the sense of first order dominance. Moreover, g1(v) = 2v and g2(v) = 4v3,

which satisfy Assumption 2. In addition, we have G1(v) stochastically dominates G2(v) in the sense

of hazard rate, i.e. g2(v)
1−G2(v) ≥

g1(v)
1−G1(v) . Note g1(v)

1−G1(v) = 4v3

1−v4 = 2v
1−v2

2v2

1+v2
≤ 2v

1−v2 = g2(v)
1−G2(v) .

The players make their bids/effort simultaneously. The player with higher bid wins and pays his

bid/effort cost, which equals his/her bid. The ties are broken randomly, unless it will be specified

alternatively. Bidder i’s bid is denoted by bi ≥ 0, i = 1, 2. The higher bidder wins and both bidders

incur the cost of their bid, which is bi. In other words, the marginal cost of bid is normalized

as 1 for both bidders. In this paper, we use “bid” and “effort” interchangeably. A player’s bid

is interpreted as their effort supply. A bidder’s expected payoff is his/her value multiplied by his

winning probability then minus his/her bid/effort. The contest organizer’s payoff is simply the

total bids of the bidders, i.e. their total effort supply. Everyone is risk neutral.

3 The analysis

In our analysis, we allow a fully flexible favoritism rule as specifies as follows.

Definition 1. The favoritism rule is specified by bidder 2’s winning threshold B(b1) ∈ [0, v̄], which

is an increasing function defined on [0, v̄]. This rule means that bidder 1 placing bid b1 wins if and

only if bidder 2’s bid b2 is no greater than B(b1).

The inverse function is defined as B−1(b2), which means that bidder 2 placing bid b2 wins if and

only if bidder 1’s bid b1 is no greater than B−1(b2). We consider the set of favoritism rules which

induce monotone pure-strategy equilibrium, b1(v1) and b2(v2), with b1(0) = b2(0) = 0. Note that

this set is not empty. When B(b1) is an identity function, Amann and Leininger (1996) establish

the existence and uniqueness of increasing pure strategy equilibrium. We will show later that a

monotone pure strategy equilibrium exists under the identified optimal favoritism rule. Theorem 6

in Athey (2001) can be applied to establish the existence of monotone pure strategy equilibrium.

5
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A mechanism described by winning rule pi(v1, v2) and payment rule xi(v1, v2), i = 1, 2 is a direct

mechanism since it is defined on players’ type spaces (here their values). A direct mechanism is

truthful if and only if at equilibrium, both bidders reveal their values truthfully. In other words,

revealing one’s type truthfully maximize his/her expected payoff, given the other player is revealing

his/her type truthfully.

The favoritism rule together with the induced monotone pure-strategy equilibrium generates

a truthful direct mechanism (formally defined as below): winning rule pi(v1, v2) and effort supply

rule xi(v1, v2), i = 1, 2:

p1(v1, v2) =

 1, if b1(v1) ≥ B−1(b2(v2)),

0, if b1(v1) < B−1(b2(v2)),
and p2(v1, v2) = 1− p1(v1, v2), (1)

and x1(v1, v2) = b1(v1), x2(v1, v2) = b2(v2). (2)

On the other hand, our following analysis only relies on the existence of equilibrium in either pure

strategy or mixed strategy. Relying on Theorem 6* in Dasgupta and Maskin (1986), it is standard

to show the existence of equilibrium in our setting. If the equilibrium is in mixed strategy, pi(v1, v2)

in a direct mechanism can be defined as player i’s equilibrium winning probability in the all pay

auction conditional on their values v1 and v2; payments xi(v1, v2) can be defined as their expected

equilibrium payments in the all pay auction conditional on their values v1 and v2.

Remark 1. Our setup is different from Myerson (1981) who allows the sum of the players winning

probabilities to be strictly smaller than 1. Our goal is not the derive an unrestricted optimal mech-

anism which maximises the total effort. Our goal is to derive the optimal favouritism rule based on

bids within the analytical framework of all-pay auctions.

3.1 Roadmap

We first identify the effort-maximizing mechanism with the restriction of
∑

i p1(v1, v2) = 1. Note

that this constraint must be satisfied by any bidding equilibrium and favoritism rule in an all pay

auction. Then we identify the favoritism rule together with the induced monotone pure-strategy

equilibrium, which generates the same total expected effort. If this procedure goes through, then

6
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the identified favoritism rule is the optimal rule, which generates the maximal expected effort.

3.2 Truthful direct mechanism and effort bound

Consider direct mechanisms {pi(v1, v2), xi(v1, v2), i = 1, 2} with
∑

i pi(v1, v2) = 1. Following Myer-

son (1981), we can focus on truthful direct mechanisms.

Given the other bidder j reveals his/her value truthfully, the bidder i’s expected payoff is the

following if his/her value is vi and s/he reports v′i :

πi(v
′
i, vi) =

∫ v̄

0

[
pi(v

′
i, vj)vi − xi(v′i, vj)

]
gj(vj)dvj . (3)

Since we require the mechanism is truthful, this means that reporting truthfully, v′i = vi,

maximizes his/her expected payoff:

πi(vi, vi) ≥ πi(v′i, vi),∀v′i, vi ∈ [0, v̄]. (4)

Since v′i = vi maximizes πi(v
′
i, vi) for given vi, we must have

∂πi(v
′
i, vi)

∂v′i
|v′i=vi = 0. (5)

This is called first order condition for maximizations.

We now look at the property of maximized optimal payoff π∗i (vi) = πi(vi, vi) = πi(v
′
i, vi)|v′i=vi .

dπ∗i (vi)

dvi
=

dπi(vi, vi)

dvi
=
∂πi(v

′
i, vi)

∂v′i
|v′i=vi +

∂πi(v
′
i, vi)

∂vi
|v′i=vi

=
∂πi(v

′
i, vi)

∂vi
|v′i=vi =

{∫ v̄

0

[
pi(v

′
i, vj)

]
gj(vj)dvj

}
|v′i=vi (6)

=

∫ v̄

0
[pi(vi, vj)] gj(vj)dvj ,

which is bidder i’s expected winning probability upon his/her truthful revelation of his/her value.

7
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Let

Pi(vi) =

∫ v̄

0
[pi(vi, vj)] gj(vj)dvj . (7)

Alternatively, we can write

Pi(t) =

∫ v̄

0
[pi(t, vj)] gj(vj)dvj , ∀t ∈ [0, v̄]. (8)

Therefore,
dπ∗i (t)

dt
= Pi(t). (9)

This result is called envelop theorem in the mechanism design literature, which says that the slope

of the bidders’ expected payoff as a function of his/her own value is his/her expected winning

probability.

Recall that we consider favoritism rule which induces monotone pure-strategy equilibrium,

b1(v1) and b2(v2), with b1(0) = b2(0) = 0. This means that we must have π∗i (0) = πi(0, 0) = 0 at

equilibrium.

Using π∗i (0) and condition (6), we can fully pin down the bidders’ expected payoff as follows if

his/her value is vi:

π∗i (vi)− π∗i (0) =

∫ vi

0

[
dπ∗i (t)

dt

]
dt =

∫ vi

0
Pi(t)dt,

i.e., π∗i (vi) =

∫ vi

0
Pi(t)dt. (10)

Since bidder i’s value vi follows distribution Gi(·), his/her expected payoff is

∫ v̄

0
π∗i (vi)gi(vi)dvi =

∫ v̄

0

∫ vi

0
Pi(t)dtgi(vi)dvi =

∫ v̄

0

∫ vi

0
Pi(t)gi(vi)dtdvi.

8
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Switching the order of integration, we have

∫ v̄

0
π∗i (vi)gi(vi)dvi

=

∫ v̄

0

∫ v̄

t
gi(vi)Pi(t)dvidt =

∫ v̄

0

[∫ v̄

t
gi(vi)dvi

]
Pi(t)dt

=

∫ v̄

0
[1−Gi(t)]Pi(t)dt =

∫ v̄

0

[
1−Gi(t)
gi(t)

]
Pi(t)gi(t)dt

=

∫ v̄

0

[
1−Gi(vi)
gi(vi)

]
Pi(vi)gi(vi)dvi =

∫ v̄

0

[
1−Gi(vi)
gi(vi)

] [∫ v̄

0
pi(vi, vj)gj(vj)dvj

]
gi(vi)dvi

=

∫ v̄

0

∫ v̄

0

[
1−Gi(vi)
gi(vi)

]
pi(vi, vj)gj(vj)gi(vi)dvidvj . (11)

We next look at the expression for the seller’s expected payoff, and investigate how it relates to

the selling probabilities.

TE =

∫ v̄

0

∫ v̄

0
[x1(v1, v2) + x2(v1, v2)]g1(v1)g2(v2)dv1dv2. (12)

By definition (3), we have

π∗i (vi) = πi(vi, vi) =

∫ v̄

0
[pi(vi, vj)vi − xi(vi, vj)] gj(vj)dvj .

Thus,

∫ v̄

0
π∗i (vi)gi(vi)dvi =

∫ v̄

0
πi(vi, vi)gi(vi)dvi =

∫ v̄

0

∫ v̄

0
[pi(vi, vj)vi − xi(vi, vj)] gj(vj)dvjgi(vi)dvi.

(13)

9
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Using (12) and (13), we have

TE +

∫ v̄

0
π∗1(v1)g1(v1)dv1 +

∫ v̄

0
π∗2(v2)g2(v2)dv2

=

∫ v̄

0

∫ v̄

0
[x1(v1, v2) + x2(v1, v2)]g1(v1)g2(v2)dv1dv2

+

∫ v̄

0

∫ v̄

0
[p1(v1, v2)v1 − x1(v1, v2)] g2(v2)dv2g1(v1)dv1

+

∫ v̄

0

∫ v̄

0
[p2(v1, v2)v2 − x2(v1, v2)] g1(v1)dv1g2(v2)dv2

=

∫ v̄

0

∫ v̄

0
[p1(v1, v2)v1 + p2(v1, v2)v2] g1(v1)dv1g2(v2)dv2.

Therefore,

TE =

∫ v̄

0

∫ v̄

0
[p1(v1, v2)v1 + p2(v1, v2)v2] g1(v1)dv1g2(v2)dv2

−
[∫ v̄

0
π∗1(v1)g1(v1)dv1 +

∫ v̄

0
π∗2(v2)g2(v2)dv2

]
.

Using (11), we further have

TE =

∫ v̄

0

∫ v̄

0
[p1(v1, v2)v1 + p2(v1, v2)v2] g1(v1)dv1g2(v2)dv2

−
∫ v̄

0

∫ v̄

0

[
1−G1(v1)

g1(v1)

]
p1(v1, v2)g2(v2)g1(v1)dv1dv2

−
∫ v̄

0

∫ v̄

0

[
1−G2(v2)

g2(v2)

]
p2(v1, v2)g1(v1)g2(v2)dv1dv2

=

∫ v̄

0

∫ v̄

0

 p1(v1, v2)
[
v1 − 1−G1(v1)

g1(v1)

]
+p2(v1, v2)

[
v2 − 1−G2(v2)

g2(v2)

]
 g1(v1)g2(v2)dv1dv2. (14)

10
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By definition of Ji(vi) = vi − 1−Gi(vi)
gi(vi)

, i = 1, 2. We have

TE =

∫ v̄

0

∫ v̄

0
{p1(v1, v2)J1(v1) + p2(v1, v2)J2(v2)} g1(v1)g2(v2)dv1dv2. (15)

Recall the restriction of p1(v1, v2) + p2(v1, v2) = 1, we have

TE =

∫ v̄

0

∫ v̄

0
{p1(v1, v2) [J1(v1)− J2(v2)] + J2(v2)} g1(v1)g2(v2)dv1dv2. (16)

Define

p∗1(v1, v2) =

 1, if J1(v1)− J2(v2) ≥ 0,

0, if J1(v1)− J2(v2) < 0,
and p∗2(v1, v2) = 1− p∗1(v1, v2). (17)

Then the following TE∗ provides an effort bound in an all pay auction with an arbitrary

favoritism rule B(b1) we consider.

TE∗ =

∫ v̄

0

∫ v̄

0
{p∗1(v1, v2) [J1(v1)− J2(v2)] + J2(v2)} g1(v1)g2(v2)dv1dv2. (18)

Theorem 1. In our all pay auction, the total expected effort inducible under any favoritism rule

cannot go beyond TE∗.

Remark 2. If we can find a particular favoritism rule B∗(b1), which induces at equilibrium total

expected effort TE∗in the original all pay auction, then rule B∗(b1) must be optimal.

Remark 3. Total expected effort must be TE∗ if at equilibrium winning probabilities p∗1(v1, v2) is

induced and π∗i (0) = 0, i.e. a bidder with value 0 has zero payoff.

3.3 Optimal favoritism rule and bidding equilibrium in all pay auction

We first identify an all pay effort supply rule, which supports winning probabilities p∗i (v1, v2), i = 1, 2

such that they together constitute a truthful direct mechanism.

11
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Recall (10) and by definition

π∗i (vi) = πi(vi, vi) =

∫ v̄

0
[pi(vi, vj)vi − xi(vi, vj)] gj(vj)dvj .

We have for p∗i (v1, v2), i = 1, 2, we have

∫ vi

0

∫ v̄

0
p∗i (t, vj)gj(vj)dvjdt =

∫ v̄

0
[p∗i (vi, vj)vi − xi(vi, vj)] gj(vj)dvj

=

∫ v̄

0
p∗i (vi, vj)vigj(vj)dvj −

∫ v̄

0
xi(vi, vj)gj(vj)dvj .

Let b∗i (vi) =
∫ v̄

0 xi(vi, vj)gj(vj)dvj . Recall P ∗i (vi) =
∫ v̄

0 p
∗
i (vi, vj)gj(vj)dvj .

Then

b∗i (vi) = viP
∗
i (vi)−

∫ vi

0
P ∗i (t)dt. (19)

Lemma 2. (i) Under Assumption 2, we have J1(0) = J2(0). (ii) P ∗′i (vi) ≥ 0, ∀vi ≥ 0; P ∗′i (vi) > 0,

∀vi > 0.

Proof: J1(0) = J2(0) = − 1
gi(0) . Define v̂j(vi) ∈ [0, v̄] by Ji(vi) = Jj(v̂j(vi)). Note v̂j(vi) increases

with vi. P
∗
i (vi) =

∫ v̂j(vi)
0 gj(vj)dvj = Gj(v̂j(vi)). Thus, P ∗′i (vi) = gj(v̂j(vi))v̂

′
j(vi) > 0. 2

Lemma 3. b∗i (0) = 0, b∗′i (0) = 0, b∗′i (vi) > 0,∀vi > 0.

Proof: It is clear that b∗i (0) = 0.

b∗′i (vi) = P ∗i (vi) + viP
∗′
i (vi)− P ∗i (vi) = viP

∗′
i (vi). (20)

2

We are now ready to define the favoritism rule: Bidder 1 wins if and only if

J1(b∗−1
1 (b1)) ≥ J2(b∗−1

2 (b2)).

12
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In other words,

(B∗)−1(b2) = b∗1 ◦ (J−1
1 ) ◦ J2 ◦ b∗−1

2 (b2), and B∗(b1) = b∗2 ◦ (J−1
2 ) ◦ J1 ◦ b∗−1

1 (b1). (21)

We next establish the following result.

Proposition 1. Under favoritism rule (B∗)−1(b2) or equivalently B∗(b1), it is an equilibrium for

bidder i to adopt bidding strategy b∗i (vi).

Proof: Suppose bidder 2 adopts strategy b∗2(v2). Note that bidder 1 has no incentive to bid above

b∗1(v̄), since bidding b∗1(v̄) makes sure he wins. We consider bidder 1’s expected payoff if s/he bids

b1 = b∗1(v′1), v′1 ∈ [0, v̄], and his/her value is v1:

π1(b1; v1) = v1 Pr(v2|b∗2(v2) ≤ B∗(b1))− b1 = v1 Pr(v2|v2 ≤ b∗−1
2 ◦B∗(b1))− b1

= v1 Pr(v2|v2 ≤ (J−1
2 ) ◦ J1 ◦ b∗−1

1 (b1))− b1 = v1 Pr(v2|J2(v2) ≤ J1(v′1))− b∗1(v′1)

= v1P
∗
1 (v′1)− b∗1(v′1).

Let

π̃1(v′1; v1) = v1P
∗
1 (v′1)− b∗1(v′1).

We want to show for given v1, π̃1(v′1; v1) is maximized at v′1 = v1. For this purpose, we want to

show the following results:

∂π̃1(v′1; v1)

∂v′1
|v′1=v1 = 0;

∂π̃1(v′1; v1)

∂v′1
|v′1>v1 < 0;

∂π̃1(v′1; v1)

∂v′1
|v′1<v1 > 0. (22)

Note
∂π̃1(v′1; v1)

∂v′1
= v1P

∗′
1 (v′1)− b∗′1 (v′1).

Using (20), we have
∂π̃1(v′1; v1)

∂v′1
=
[
v1 − v′1

]
P ∗′1 (v′1).

13
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Thus (22) holds, which means π̃1(v′1; v1) is maximized at v′1 = v1. In other words, bidding

b1 = b∗1(v1) is optimal for bidder 1. Similarly, we can show that given bidder 1 adopts strategy

b∗1(v1), it is optimal for bidder 2 to bid b2 = b∗2(v2) if his/her value is v2. 2

We next establish the following result.

Proposition 2. Under favoritism rule (B∗)−1(b2) or equivalently B∗(b1), and equilibrium bidding

strategy b∗i (vi), (i) bidder i wins if and only if Ji(vi) ≤ Jj(vj). In other words, winning rule

p∗i (vi, vj), i = 1, 2 is implemented; (ii) π∗i (0) = 0.

Proof: Suppose bidder 1’s value is v1 and bidder 2’s value is v2. Then at equilibrium, bidder 1

bids b∗1(v1) and bidder 2 bids b∗2(v2). Bidder 1 wins if and only if b∗2(v2) ≤ B∗(b∗1(v1)), which is

J2(v2) ≤ J1(v1).

Bidders bid zero when their value is zero. Even when they win, their value is zero. Therefore,

π∗i (0) = 0. 2

Based on Remarks 2 and 3, we have the following result according to our roadmap.

Theorem 2. Favoritism rule (B∗)−1(b2) or equivalently B∗(b1) is optimal in the original all pay

auction setting. Under this rule, the bidding equilibrium b∗i (vi), i = 1, 2 generates total expected

effort of TE∗ in (18).

Remark 4. We assumed that g1(0) = g2(0) in Assumption 2(i). This assumption is not necessary

for the above construction to work. We only need g1(0) ≤ g2(0). One can verify that with g1(0) ≤

g2(0), under the above constructed favoritism rule, the identified b∗1(v1) and b∗2(v2) still constitute a

bidding equilibrium, which achieves the revenue bound TE∗ in (18).

3.4 Does the weaker necessarily win with higher chance under the optimal

favoritism?

One question naturally arises: Compared to the a scenario of standard all pay auction without

favoritism, does the optimal favoritism necessarily give higher expected winning chance to the

weaker player? Surprisingly, the answer to this question is negative. We illustrate this by the
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following example. Let

G1(v1) = (v1)2, ∀v1 ∈ [0, 1] and G2(v2) = v2,∀v2 ∈ [0, 1].

We thus have

g1(v1) = 2v1,∀v1 ∈ [0, 1] and g2(v2) = 1,∀v2 ∈ [0, 1].

Note that we have G1(v) stochastically dominates G2(v) in the sense of hazard rate, i.e.

g2(v)
1−G2(v) ≥

g1(v)
1−G1(v) , since 1−G1(v)

g1(v) = 1−v2
2v = (1 − v)1+v

2v ≥ 1 − v = 1−G2(v)
g2(v) . We thus have As-

sumptions 1 and 2 hold except 2(i). We still have g1(0) < g2(0), which ensures that our procedure

goes through as we have clarified in the model setup.

Remark 5. Since we have J1(v1) < J2(v2) for v1 = v2 = v, we have that the effort-maximizing

favoritism rule mast favor the weaker player 2 compared to the efficient allocation rule, which always

makes the player with higher value to win.

3.4.1 Players’ winning chances under optimal favoritism

Under the optimal favoritism, the winning rule of (17) can be rewritten as

p∗1(v1, v2) =

 1, if v2 ≤ 3(v1)2−1
4v1

+ 1
2 and v1 ∈ [1

3 , 1],

0, otherwise,
and p∗2(v1, v2) = 1− p∗1(v1, v2).

Player 1’s expected winning probability under the optimal favoritism is:

P ∗1 =

∫ 1

1
3

G2(
3(v1)2 − 1

4v1
+

1

2
)(2v1)dv1 =

∫ 1

1
3

(
3(v1)2 − 1

4v1
+

1

2
)(2v1)dv1

=

∫ 1

1
3

(
3(v1)2 − 1

2
+ v1)dv1 =

{
1

2

[
(v1)3 − v1

]
+

(v1)2

2

}
|11/3

=
1

2
− {1

2

[
(
1

3
)3 − 1

3

]
+

(1
3)2

2
} =

16

27
.
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It follows that player 2’s expected winning chance is:

P ∗2 =
11

27
.

3.4.2 Players’ winning chances in a standard all pay auction with no favoritism

To pin down the expected winning chances of the players in a standard all pay auction with no

favoritism does not require us to explicitly solve for the equilibrium bidding strategy. What we

need to pin down is player 2’s winning threshold k(v1) for each value of player 1. According to

Amann and Leininger (1996), this function k(v1) is the unique solution of the following differential

equation with boundary condition k(1) = 1 :5

k′(v1) =
k(v1)g1(v1)

v1g2(k(v1))
= 2k(v1).

Therefore, the solution is:

k(v1) = exp(2v1 − 2).

We now are ready to calculate player 1’s expected winning probability in a standard all pay

auction:

P̌ ∗1 =

∫ 1

0
G2(exp(2v1 − 2))(2v1)dv1 =

∫ 1

0
(exp(2v1 − 2))(2v1)dv1

=
1

e2

∫ 1

0
v1d exp(2v1) =

1

e2

{
v1 exp(2v1)|10 −

∫ 1

0
exp(2v1)dv1

}

=
1

e2

{
v1 exp(2v1)− exp(2v1)

2

}
|10 =

1

e2

{
exp(2)

2
− 1

2

}

=
1

2
[1 +

1

e2
].

5Please refer to page 9 in Amann and Leininger (1996) for detail.
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It follows that player 2’s expected winning chance is:

P̌ ∗2 =
1

2
[1− 1

e2
].

3.4.3 Comparison of equilibrium winning chances

We next show that in our example, the winning chance of weaker player (player 2) is lower under

the optimal favoritism, i.e. P ∗2 < P̌ ∗2 . For this purpose, we need to show 27 < 5e2, which clearly

holds as e ≈ 2.718.

Remark 6. This result indicates that the optimal favoritism rule does not necessarily leads to a

higher winning chance to the weaker player, although it is intended to favor the weaker player.

The discriminatory policy forces the stronger player to bid more aggressively, which makes him/her

winning with a higher chance at equilibrium. This observation will be confirmed again when we

study the complete information setting in Section 4.1.

3.5 Further implications of the optimal favoritism rule

We next investigate the implications of optimal favoritism rule defined by: Bidder 1 wins if and

only if

J1(v1) ≥ J2(v2).

In particular, we want to study whether it is possible that a particular bidder is always favored in

terms of winning chances, provided the two bidders have the same value.

Recall that we have shown Ji(vi) starts from the same point under our assumption,6 and ends

at the same point regardless.

With two symmetric bidders, we have G1(v) = G2(v), which means J1(v) = J2(v) and b∗1(v) =

b∗2(v). We thus have the following result.

Theorem 3. With two symmetric bidders, at optimum, there is no favoritism. The bidder with

higher value bids higher and wins.

6This property however is not needed for the following analysis.
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Recall we assume that G1(v) stochastically dominates G2(v) in the sense of first order domi-

nance, i.e. G2(v) ≥ G1(v), which is implied by Assumption 2. The following condition of hazard

rate dominance further strengthens this assumption.

Condition 1. G1(v) stochastically dominates G2(v) in the sense of hazard rate, i.e. g2(v)
1−G2(v) ≥

g1(v)
1−G1(v) .

Under Condition 1, we can rank virtual value functions J1(v) and J2(v) as shown in the following

lemma.

Lemma 4. Under Condition 1, we have J1(v) ≤ J2(v).

Theorem 4. Under Condition 1, bidder 2, the weaker player, always wins when both bidders have

the same value.

Next, we show that it is possible that J1(v1) and J2(v2) cross in (0, v), even when G1(v)

stochastically first-order dominates G2(v).

Condition 2. g1(v) < g2(v) in a small neighborhood of 0, and g1(v)� g2(v) in a small neighbor-

hood of v̄.

Remark 7. Note Condition 2 is consistent with single-crossing density functions as required by

Assumption 2, which entails first-order dominance of cumulative distribution functions.

Lemma 5. Under Condition 2, J1(v) < J2(v) in a small neighborhood of 0, and J1(v) > J2(v) in

a small neighborhood of v̄; Moreover, J1(v) and J2(v) must cross at least once in (0, v).

Theorem 5. Under Condition 2, in different value ranges, at optimum, different bidders win the

competition if the bidders have the same value.

3.6 Favoritism achieving efficient allocation

We now look the favoritism rule that achieves the efficient allocation, i.e. always making the player

with higher value to win. This winning rule can be written as

p̃∗1(v1, v2) =

 1, if v1 − v2 ≥ 0,

0, if v1 − v2 < 0,
and p̃∗2(v1, v2) = 1− p̃∗1(v1, v2). (23)
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The corresponding expected winning probabilities are:

P̃ ∗i (vi) =

∫ v̄

0
[p̃∗i (vi, vj)] gj(vj)dvj . (24)

Then let

b̃∗i (vi) = viP̃
∗
i (vi)−

∫ vi

0
P̃ ∗i (t)dt. (25)

We are now ready to define the favoritism rule: Bidder 1 wins if and only if

b̃∗−1
1 (b1) ≥ b̃∗−1

2 (b2).

In other words,

(B̃∗)−1(b2) = b̃∗1 ◦ b̃∗−1
2 (b2), and B̃∗(b1) = b̃∗2 ◦ b̃∗−1

1 (b1). (26)

Following the same procedure as in Section 3.3, we can show that b̃∗1(v1) and b̃∗2(v2) constitute

an increasing pure strategy Bayesian equilibrium under favoritism rule (B̃∗)−1(b2) or B̃∗(b1). To

save space, we omit the proofs. The following is an example which illustrates this procedure of

deriving the favoritism rule and equilibrium bidding strategies.

3.6.1 Example

We now use an example to illustrate how to write down the efficient favoritism rule and the induced

equilibrium bidding strategies of the players. To this end, we assume

G1(v1) = (v1)2, ∀v1 ∈ [0, 1] and G2(v2) = v2,∀v2 ∈ [0, 1].

We thus have

g1(v1) = 2v1,∀v1 ∈ [0, 1] and g2(v2) = 1,∀v2 ∈ [0, 1].
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The efficient winning rule of (23) can be rewritten as

p̃∗1(v1, v2) =

 1, if v1 − v2 ≥ 0,

0, if v1 − v2 < 0,
and p̃∗2(v1, v2) = 1− p̃∗1(v1, v2).

It follows that

P̃ ∗1 (v1) =

∫ 1

0
p∗1(v1, v2)g2(v2)dv2 =

∫ v1

0
g2(v2)dv2 = G2(v1) = v1,

and

P ∗2 (v2) =

∫ 1

0
p∗2(v1, v2)g1(v2)dv2 =

∫ v2

0
g1(v1)dv1 = G1(v2) = (v2)2.

The equilibrium bidding strategies are given by (25):

b̃∗1(v1) = v1P̃
∗
1 (v1)−

∫ v1

0
P̃ ∗1 (t)dt = (v1)2 −

∫ v1

0
tdt =

(v1)2

2
,

and

b̃∗2(v2) = v2P̃
∗
2 (v2)−

∫ v2

0
P̃ ∗2 (t)dt = (v2)3 −

∫ v2

0
t2dt =

2(v2)3

3
.

Therefore, we have

(B̃∗)−1(b2) = b̃∗1 ◦ b̃∗−1
2 (b2) = (

1

2
)5/3(3b2)2/3, and B̃∗(b1) = b̃∗2 ◦ b̃∗−1

1 (b1) =
2(2b1)3/2

3
.

Note
B̃∗(b1)

b1
=

25/2(b1)1/2

3
, b1 ∈ [0,

1

2
].

Let b̂1 = 9
32 . Then we have

B̃∗(b1)

b1

 < 1, if b1 ∈ [0, b̂1),

> 1, if b1 ∈ (b̂1,
1
2 ].

Remark 8. Therefore, to achieve efficient allocation in this example setting, the contest organizer

must favor the weaker player (i.e. player 2) if the stronger player’s bid is lower than b̂1; and the
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contest organizer must favor the stronger player (i.e. player 1) if the stronger player’s bid is higher

than b̂1.

The winning chance of the weaker player (player 2) under the efficient favoritism rule is

P̃ ∗2 =

∫ 1

0
G1(v2)dv2 =

∫ 1

0
(v2)2dv2 =

1

3
,

which is smaller than that (i.e. P ∗2 = 11
27) under the effort-maximizing favoritism rule. This means

the effort-maximizing favoritism rule indeed enhances the weaker player’s winning chance if we use

the efficient allocation as reference point.

4 Discussions: when players’ values are public information

The literature on favoritism in asymmetric competitions also studies the environment with complete

information. In this section, we adopt such a setting and study the effort-maximizing favoritism

rule. We will reveal that the optimal rule would favor the weak player to the extreme. However,

at the optimum, the weak player would (almost) always lose the competition.

We adopt an analytical framework of all pay auctions with complete information. There are two

players i = 1, 2. Player i’s value of winning the auction is vi, i = 1, 2, which are public information.

The players make their bids/effort simultaneously. The player with higher bid wins and pays his

bid/effort cost, which equals his/her bid. The ties are broken randomly, unless it will be specified

alternatively. The contest organizer and players’ payoffs are specified in the same way as in Section

2: A player’s expected payoff is his/her value multiplied by his/her winning probability minus

his/her effort cost. The contest organizer maximizes players’ expected total bids/effort.

4.1 Analysis with complete information

Without loss of generality, we assume v1 > v2, i.e. bidder 1 is a stronger bidder. Bidder i’s

bid/effort is denoted by bi ≥ 0, i = 1, 2. The higher bidder wins and both bidders incur the cost of

their bid, which is bi.
7

7The bidder with higher value wins when there is a tie in their bids.
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Definition 2. The favoritism rule is specified by bidder 2’s winning threshold B(b1) ∈ [0, v2], which

is an increasing function defined on [0, v1]. This rule means that bidder 1 placing bid b1 wins if and

only if bidder 2’s bid b2 is no greater than B(b1). We use B−1(b2) denote the inverse function.

We first provide a general result of equilibrium construction under an arbitrary favoritism rule,

which is defined as above.

Proposition 3. Consider favoritism rule B2(b1) such that B(0) = 0 and B(b̄1) = v2 where b̄1 ∈

[v2, v1]. Then the following is a mixed strategy equilibrium:

F1(b1) =
B(b1)

v2
, b1 ∈ [0, b̄1], and F2(b2) =

v1 − b̄1
v1

+
B−1(b2)

v1
, b2 ∈ [0, v2]. (27)

At equilibrium, bidder 1 enjoys an expected payoff of v1 − b̄1; and bidder 1 has an expected payoff

of zero.

Proof: Given bidder 2 plays F2(b2) and the favoritism rule B(b1), bidder 1’s expected payoff is as

follows if he bids b1 ∈ [0, b̄1] :

π1(b1) = F2(B(b1))v1 − b1 =

[
v1 − b̄1
v1

+
B−1(B(b1))

v1

]
v1 − b1 = v1 − b̄1.

Given bidder 1 plays F1(b1) and the favoritism rule B−1(b2), bidder 2’s expected payoff is as follows

if he bids b2 ∈ [0, v2] :

π2(b2) = F1(B−1(b2))v2 − b2 =
B(B−1(b2))

v2
v2 − b2 = 0.

2

We next construct the following favoritism rule denoted by bidder 2’s winning threshold B(b1)

and derive the associated equilibrium Fi(bi), i = 1, 2 by Proposition 3. Recall that this rule B(b1)

means that bidder 1 placing bid b1 wins if and only if bidder 2’s bid b2 is no greater than B(b1).

The restriction we impose on B−1(b2) is that it is increasing and B−1(0) = 0. In particular,

one can write B−1(b2) = b2 · κ(b2) where κ(b2) ∈ [0,+∞).
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Take small positive numbers ε and δ. Let

B(b1)

v2
=


b1

v1−δε, if 0 ≤ b1 ≤ v1 − δ,

ε+ 1−ε
δ [b1 − (v1 − δ)], v1 − δ ≤ b1 ≤ v1.

(28)

Note B(b1) ∈ [0, v2].

The inverse function of B(b1) is denoted by

B−1(b2)

v1
=


b2/v2
ε (1− δ/v1), if 0 ≤ b2 ≤ v2ε,

(1− δ/v1) + δ/v1
1−ε [b2/v2 − ε], if v2ε ≤ b2 ≤ v2.

(29)

Define bidding strategies

F1(b1) =
B(b1)

v2
, and F2(b2) =

B−1(b2)

v1
. (30)

Based on Proposition 3, we have the following result.

Corollary 1. F1(b1) and F2(b2) constitute a mixed strategy bidding equilibrium in the all pay

auction under favoritism rule denoted by bidder 2’s winning threshold B(b1), which is described in

(28).

Each bidder i’s expected effort equals vi Pr(i wins) minus his equilibrium payoff. Therefore the

total expected effort from any equilibrium must be smaller than
∑

i vi Pr(i wins) ≤ v1. We thus

have the following result.

Proposition 4. The total expected effort induced in an all pay auction under any favoritism rule

must be no greater than v1.

Note at the above identified equilibrium that bidders’ equilibrium payoff is zero. Therefore,

each bidder i’s expected effort equals vi Pr(i wins). We have the total expected effort is

TE = v1 [1− Pr(bidder 2 wins)] + v2 Pr(bidder 2 wins)

= v1 + [v2 − v1] Pr(bidder 2 wins).

23



20
20

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

We next show that for the constructed equilibrium and favoritism rule, the total expected effort

converges to the upper bound v1 when ε and δ converge to zero.

Proposition 5. For the constructed equilibrium and favoritism rule, the total expected effort con-

verges to the upper bound v1 when ε and δ converge to zero.

Proof: Recall TE = v1+ [v2 − v1] Pr(bidder 2 wins) since both players’ equilibrium payoffs are

zero. For our purpose, we only need to show that Pr(bidder 2 wins) converges to zero.

Pr(bidder 2 wins) =

∫ v2

0

∫ B−1(b2)

0
dF1(b1)dF2(b2) =

∫ v2

0
F1(B−1(b2))dF2(b2)

=

∫ v2

0

B(B−1(b2))

v2
dF2(b2) =

∫ v2

0

b2
v2
dF2(b2) =

b2
v2
F2(b2)|v20 −

∫ v2

0

1

v2
F2(b2)db2

= 1− 1

v2

[∫ v2ε

0

b2/v2

ε
(1− δ/v1)db2 +

∫ v2

v2ε

{
(1− δ/v1) +

δ/v1

1− ε
[b2/v2 − ε]

}
db2

]
.

Note that 0 ≤
∫ v2ε

0
b2/v2
ε (1 − δ/v1)db2 <

ε/v2
ε (1 − δ/v1) · [v2ε − 0] = (1 − δ/v1) · ε. Therefore∫ v2ε

0
b2/v2
ε (1− δ/v1)db2 converges to zero when ε→ 0+.

Note
∫ v2
v2ε

{
(1− δ/v1) + δ/v1

1−ε [b2/v2 − ε]
}
db2 converges to

∫ v2
0 db2 = v2 when ε→ 0+ and δ → 0+.

Therefore, Pr(bidder 2 wins) converges to 0 when ε→ 0+ and δ → 0+. 2

Remark 9. Such nonlinear favoritism rule favors bidder 2 extremely to incentivize bidder 1, i.e.

the stronger bidder, to bidder close to his value; at the same time, at the equilibrium, bidder 2 wins

with probability 0 even he is extremely favored. Note that in a standard all pay auction, the weaker

player wins with probability v2
2v1

(> 0) at equilibrium.8.

Remark 10. For the above identified optimal favoritism rule, we have that at the limit, the stronger

player wins with probability 1, and both players have zero expected payoff. We claim these properties

must be satisfied by any optimal favoritism rule, which induces the upper bound effort v1. which

is identified in Proposition 4. Let TEi, i = 1, 2 denote player i’s expected effort. Note player i’s

8See Hillman and Riley (1989) or Baye et al. (1996) for the equilibrium bidding strategies in a standard all pay
auction. This bidding equilibrium can also be obtained by Proposition 3 and setting B1(b2) and B2(b1) as identity
functions.
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expected payoff is

πi = vi Pr(bidder i wins)− TEi.

Therefore, the total expected effort

TE1 + TE2 = v1 [1− Pr(bidder 2 wins)] + v2 Pr(bidder 2 wins)− [π1 + π2]

= v1 + [v2 − v1] Pr(bidder 2 wins)− [π1 + π2].

Note that players’ participation constraints mean that we must have πi ≥ 0. To have TE1 + TE2 =

v1, we must have Pr(bidder 2 wins) = 0 and πi = 0.

Geometric interpretation

Next, we present a graphical interpretation of the logic behind the above identified optimal design.

Consider the bidding equilibriums of Proposition 3. Player 1’s expected effort is

TE1 =

∫ b̄1

0
b1dF1(b1) =

∫ b̄1

0
b1d

B(b1)

v2

= [b1
B(b1)

v2
]|b̄10 −

1

v2

∫ b̄1

0
B(b1)db1

= b̄1 −
1

v2

∫ b̄1

0
B(b1)db1,

and player 2’s expected effort is

TE1 =

∫ v2

0
b2dF2(b2) =

∫ v2

0
b2d[

v1 − b̄1
v1

+
B−1(b2)

v1
]

= b2[
v1 − b̄1
v1

+
B−1(b2)

v1
]|v20 −

∫ v2

0
[
v1 − b̄1
v1

+
B−1(b2)

v1
]db2

= v2 −
v1 − b̄1
v1

v2 −
1

v1

∫ v2

0
B−1(b2)db2

=
v2

v1
b̄1 −

1

v1

∫ v2

0
B−1(b2)db2.
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Therefore, we have

TE1 + TE2 = b̄1 +
v2

v1
b̄1 −

[
1

v2

∫ b̄1

0
B(b1)db1 +

1

v1

∫ v2

0
B−1(b2)db2

]
.

Note that
∫ b̄1

0 B(b1)db1 +
∫ v2

0 B−1(b2)db2 is simply the area of [0, b̄1]× [0, v2]. Thus,

∫ b̄1

0
B(b1)db1︸ ︷︷ ︸
X

+

∫ v2

0
B−1(b2)db2︸ ︷︷ ︸

Y

= b̄1v2, ∀B(·), s.t.: B(0) = 0, B(b̄1) = v2.

Since 1
v2
> 1

v1
, to maximize TE1 + TE2, we want to minimize

∫ b̄1
0 B(b1)db1. This means that

X =
∫ b̄1

0 B(b1)db1 = 0 and Y =
∫ v2

0 B−1(b2)db2 = b̄1v2 at the limit. This requires that B(b1) takes

very low value when b1 is lower than b̄1.

As a result, in the limit, we have 1
v2
X + 1

v1
Y = b̄1v2

v1
at the optimum.

Thus,

TE1 + TE2 = b̄1 +
v2

v1
b̄1 −

b̄1v2

v1
= b̄1,

which means that to maximize TE1 + TE2, we should set b̄∗1 = v1 at optimum.

For this optimal b̄∗1 = v1, the identified favoritism rule B(b1) in (28) indeed makes
∫ b̄∗1

0 B(b1)db1 =∫ v1
0 B(b1)db1 close to zero as B(b1) takes very low value when b1 is lower than v1 − δ.
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b1

b2

Y =
∫ v2

0 B−1(b2)db2

b2 = B(b1)

X =
∫ b1

0 B(b1)db1

(b1, v2)

0

Figure 1: Illustration of Optimal Choice of Favoritism Rule

5 Concluding remarks

Asymmetric competitions are everywhere. Introducing favoritism in these competitions is an effec-

tive way to mitigate the discouragement effect due to the heterogeneity of players. The literature

on favoritism in asymmetric competitions has so far been focusing on linear instruments such as

headstart and handicap. In this paper, we generalize the analysis to accommodate fully non-

linear favoritism rules, and explicitly characterize the effort-maximizing favoritism rules and the

induced equilibria in an analytical framework of all pay auctions with incomplete and/or complete

information. Our optimal designs provide further guidance to better incentivize many asymmetric

competitions in economic, political, social, and athletic contexts.

Besides effort elicitation, winner diversity is also one important consideration as evidenced by
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the rationale for the introduction of affirmative actions in school admissions, etc. Our findings

reveal that favoritism focusing on pure effort-maximization can rather hurt the diversity compared

to a standard all pay auction without favoritism. This result indicates that policy makers need to

exercise caution when designing desirable favoritism rule. One possible extension of our study is

to consider an objective of weight average of effort supply and winner diversity. We leave this to

future work.
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