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MEROMORPHIC FUNCTIONS WITH THE SAME

PREIMAGES AT SEVERAL FINITE SETS

KENTA SUZUKI

Abstract. Let p and q be nonconstant meromorphic functions on Cm.
We show that if p and q have the same preimages as one another, count-
ing multiplicities, at each of four nonempty pairwise disjoint subsets
S1, . . . , S4 of C, then p and q have the same preimages as one another at
each of infinitely many subsets of C, and moreover g(p) = g(q) for some
nonconstant rational function g(x) whose degree is bounded in terms of
the sizes of the Si’s. This result is new already when m = 1, and it
implies many previous results about the extent to which a meromorphic
function is determined by its preimages of a few points or a few small
sets, in addition to yielding new consequences such as a classification of
all possibilities when two of the Si’s have size 1.
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2 KENTA SUZUKI

1. Introduction

As a consequence of his theory of value distribution of meromorphic func-
tions, Nevanlinna [35] showed that a nonconstant meromorphic function on
the complex plane is uniquely determined by its inverse images at any five
points of the Riemann sphere C∞. He also showed that if nonconstant mero-
morphic functions p, q on the complex plane have the same preimages as one
another, counting multiplicities, at each of four points in C∞, then there is a
Möbius transformation µ such that p = µ◦q. In this paper we develop a new
theory which addresses preimages of sets rather than merely preimages of
points. In case the sets have size 1, our results generalize Nevanlinna’s four-
values theorem and the “counting multiplicities” version of Nevanlinna’s
five-values theorem. We will use the following standard terminology:

Notation. We writeM(R) for the set of meromorphic functions on a com-
plex manifold R (which in this paper can always be assumed to be either
Cm or a compact Riemann surface such as the Riemann sphere C∞).

Definition 1.1. We say that p, q ∈M(R) share CM a subset S of C∞ if the
p-preimages of S coincide with the q-preimages of S, counting multiplicities.

Definition 1.1 involves the multiplicity of an element of R under an ele-
ment ofM(R). We will recall the definition of this notion in Section 2. We
note that this and other concepts become simpler in case R has dimension
1, and that all results in this paper are new in the one-dimensional case.

Our first result asserts that if nonconstant p, q ∈ M(Cm) share CM four
“essentially different” finite sets, then there is a nonconstant rational func-
tion g(x) ∈ C(x) such that g ◦ p = g ◦ q and deg(g) is bounded in terms
of the sizes of the shared sets; it follows that p and q share CM (counting
multiplicities) infinitely many finite sets.

Theorem 1.2. Pick a positive integer m and nonconstant p, q ∈ M(Cm).
Suppose that p and q share CM each of n finite subsets S1, . . . , Sn of C∞
for some n ≥ 4, where no Si is contained in ∪j 6=iSj. Then g ◦ p = g ◦ q for

some nonconstant g ∈ C(x) such that deg(g) ≤ 1
n−3(−2 +

∑n
i=1|Si|), where

in addition if n ≥ 5 then deg(g) ≤ maxi|Si|.

Note that if g ◦ p = g ◦ q for some g ∈ C(x) \ C then p−1(g−1(α)) =
q−1(g−1(α)) for each α ∈ C∞, so if α is not a critical value of g(x) then
g−1(α) is a set of size deg(g) which is shared CM by p and q. This yields
the following consequence of Theorem 1.2:

Corollary 1.3. If the conditions of Theorem 1.2 hold then p and q share CM
infinitely many pairwise disjoint k-element subsets of C∞ for some integer
k with k ≤ 1

n−2(−2 +
∑n

i=1|Si|); moreover, if n ≥ 5 then we may choose

k ≤ maxi|Si|.

Theorem 1.2 is already new when m = 1, where it may be viewed as a
vast generalization of Nevanlinna’s “four values” result and the CM version
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MEROMORPHIC FUNCTIONS SHARING SEVERAL SETS 3

of his “five values” result. For, if p, q share CM five points then Theorem 1.2
implies that g◦p = g◦q with deg(g) = 1, so that p = q. Likewise if p, q share
CM four points then Theorem 1.2 implies that g ◦ p = g ◦ q with deg(g) ≤ 2.
If deg(g) = 1 then we again obtain p = q. If deg(g) = 2 then g = µ◦x2◦ν for
some Möbius transformations µ, ν ∈ C(x), so that x2 ◦ ν ◦ p = x2 ◦ ν ◦ q and
thus ν ◦p = εν ◦ q for some ε ∈ {1,−1}, whence p = η ◦ q where η := ν−1 ◦ εν
is a Möbius transformation. In Section 8 we will show that our results also
imply many other results from the literature, in addition to yielding many
new results when one imposes further hypotheses on the sizes of the shared
sets Si. Thus, our results provide a new perspective which connects many
old and new results as being consequences of the single general Theorem 1.2.

Theorem 1.2 motivates the following definition:

Definition 1.4. We say that p, q ∈ M(Cm) are quasi-equivalent if there
exists a nonconstant g ∈ C(x) such that g ◦ p = g ◦ q.

We emphasize that quasi-equivalence is much more restrictive than alge-
braic dependence. For instance, any two rational functions p, q ∈ C(x) are
algebraically dependent, but the vast majority of such p, q are not quasi-
equivalent. Further, as explained before Corollary 1.3, quasi-equivalence
is more directly related to value-sharing questions than algebraic depen-
dence. We have seen hundreds of papers about value-sharing which in-
clude examples showing that their results would not be true with weaker
hypotheses; but we checked that all such examples in these papers consist of
quasi-equivalent functions, so it is conceivable that the results of the papers
would remain true with weaker hypotheses, once one adds to the conclusion
some pairs of quasi-equivalent functions. More generally, it seems natural
to seek results showing that certain value-sharing hypotheses imply quasi-
equivalence, and conversely to produce examples of non-quasi-equivalent
functions with interesting value-sharing properties.

Finally, we note that for applications of Theorem 1.2 it is crucial to have
a good bound on deg(g), in terms of the sizes of the shared sets. It turns
out that different types of arguments are needed to prove the existence of
g(x) than to bound its degree.

Example 1.5. Theorem 1.2 cannot be improved to three shared sets, since
for instance p(x) := (ex+2)/(ex+1) does not take the values 1 or 2, so that
p and 2p share CM {∞}, {0}, and {2}, but there is no nonconstant g ∈ C(x)
for which g ◦p = g ◦2p. In this example the meromorphic functions p and 2p
are algebraically dependent; more generally, we will show in Proposition 3.11
that if nonconstant p, q ∈M(Cm) are algebraically dependent and share CM
three disjoint nonempty finite sets then g(p) = αg(q) for some α ∈ C∗ and

some nonconstant g ∈ C(x). A different type of example is (ex
2−1)/(ex−1)

and (e−x
2−1)/(e−x−1), which are algebraically independent but share CM

{∞}, {0}, and {1}.
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4 KENTA SUZUKI

Many authors have studied pairs of meromorphic functions which share
some sets of prescribed sizes. In order to apply our theory to this type of
question, and also in order to prove the bounds on deg(g) in Theorem 1.2,
we describe the collection of all sets shared CM by any two quasi-equivalent
meromorphic functions p and q. A routine set theory exercise shows that if
p and q share two sets S and T , then p and q also share S ∪ T , S ∩ T , and
S \ T . Thus every nonempty finite set which is shared CM by p and q can
be written as the union of minimal shared sets, where we define a minimal
shared set to be a nonempty shared set which does not properly contain
any other nonempty shared set. Moreover, distinct minimal shared sets are
disjoint, and any union of minimal shared sets is again a shared set. If p
and q are quasi-equivalent then let g(x) be a nonconstant rational function
of the smallest possible degree such that g(p) = g(q). Let Λg be the set of
points α in C∞ such that g has the same multiplicity at each g-preimage
of α; thus, Λg includes all points which are not critical values of g (and
possibly some critical values as well), so that in particular Λg includes all
but finitely many points of C∞. For each α ∈ C∞, we write g−1(α)set for the
set of distinct g-preimages of α. As explained before Corollary 1.3, the set
g−1(α)set is shared CM by p and q whenever α ∈ Λg. Conversely, in most
situations the collection of such sets g−1(α)set comprises all minimal shared
sets for p and q:

Theorem 1.6. For quasi-equivalent p, q ∈ M(Cm) \ C, let g(x) ∈ C(x) be
a minimal-degree nonconstant rational function for which g ◦ p = g ◦ q, and
define Λg as above. Then one of the following occurs:

(1.6.1) The collection of all sets g−1(α)set with α ∈ Λg equals the collection
of all minimal shared sets for p and q.

(1.6.2) For some β ∈ Λg, g
−1(β)set is the union of two distinct minimal

shared sets S1, S2, and the collection of all minimal shared sets for
p and q consists of S1, S2, and all sets g−1(α)set with α ∈ Λg \ {β}.

In light of Theorems 1.2 and 1.6, in order to describe the possibilities
for p, q, S1, . . . , S4 where the Si’s are disjoint nonempty finite subsets of
C∞ which are shared CM by p, q ∈ M(Cm) \ C, there are two remaining
problems:

(1.7.1) Determine all solutions to g ◦p = g ◦ q in nonconstant p, q ∈M(Cm)
and g ∈ C(x) \ C.

(1.7.2) For each solution (g, p, q) to (1.4.1) in which g has minimal degree
among all solutions to (1.4.1) for the relevant p and q, determine
whether (1.6.2) holds.

There are dozens of papers solving (1.4.1) when g, p, q satisfy additional
restrictive properties, for instance [2, 3, 4, 5, 6, 10, 15, 17, 18, 19, 23, 24, 25,
26, 29, 37, 41, 51, 52, 53]. The recent papers [9, 13, 31, 32] went beyond the
cases treated previously, by solving (1.4.1) when any of the following hold:

• the numerator of (g(x)− g(y))/(x− y) is irreducible
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MEROMORPHIC FUNCTIONS SHARING SEVERAL SETS 5

• g(x) = f(x)n for some positive integer n, where there is a primitive
n-th root of unity ζ such that f(p(x)) = ζf(q(x)) and the numerator
of f(x)− ζf(y) is irreducible
• some α ∈ C∞ has at most two distinct g-preimages.

By using a more detailed version of Theorem 1.6 (namely Theorem 6.7),
we will determine all situations when (1.6.2) holds in each of the above
three cases, yielding Proposition 8.14, Proposition 8.16, and Theorem 8.19,
respectively. An informal conclusion is that (1.6.2) rarely holds, except when
β has very few g-preimages. We note that the proof in case some element has
two preimages ultimately relies on the classification of finite simple groups,
which has not been applied previously to this type of question. We then
use these results to exhibit all nonconstant p, q ∈ M(Cm) which share CM
two points and two distinct nonempty finite sets which do not contain either
point. The full result is Theorem 8.27; a concise consequence is as follows.

Theorem 1.8. Suppose distinct nonconstant p, q ∈M(Cm) share CM four
disjoint nonempty finite subsets of C∞, of which at least two have size 1. Let
g(x) be a minimal-degree nonconstant rational function such that g◦p = g◦q.
Then there exist Möbius transformations µ and ν such that µ ◦ g ◦ ν is one
of the following:

(1) xm(x− 1)n with m,n > 0 and m+ n ≥ 3
(2) xn with n ≥ 2
(3) Tn(x) with n ≥ 5, where Tn(cos θ) = cosnθ
(4)

(
(ζ − 1)(x2 + 1) + 2(ζ + 1)x

)n
/xn with n ≥ 3 and ζ a primitive n-th

root of unity

(5) (x+ α− 2)
(
2x3 − 2x2 + (α+ 1)(x+ 1)

)3
/x5 with α2 = 5

(6) (2x+ 11− 5α)2(x2 + x− 1)4/x5 with α2 = 5
(7) (x3 + 6x2 + 3x− 1)3/x3

(8) (4x4 + 16x3 + 8x− 1)2/x4

(9) (x2 − 6x+ 1)4/x2

(10) (x+ 1)4(x+ 6α+ 10)2/x2 with α2 = 3
(11) (x2 + 10x+ 5)3/x5

(12) (3x2 + 6x− 1)2/x.

Conversely, for each rational function g(x) in the above list, and any positive
integer m, there exist distinct nonconstant p, q ∈ M(Cm) which share four
disjoint nonempty finite subsets of C∞, of which at least two have size 1,
where in addition g(x) is a minimal-degree nonconstant rational function
such that g ◦ p = g ◦ q.

We now briefly explain how our results relate to previous results in the
literature. Suppose nonconstant p, q ∈ M(Cm) share CM the disjoint
nonempty finite subsets S1, . . . , Sn of C∞, where n ≥ 4. When m = 1,
the possibilities when three Si’s have size 1 were determined in [42], gener-
alizing previous results of [21, 50] when a fourth has size 2. We will give
a very short self-contained proof of this special case of Theorem 1.8 (for
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6 KENTA SUZUKI

all m) in Proposition 8.1, in order to illustrate how to apply our results to
specific situations. Likewise, in Proposition 8.8 we give a short proof of the
possibilities when four Si’s have size at most 2; when m = 1, this implies the
combination of Nevanlinna’s four-values result with the results of the papers
[45, 46, 48, 50], which address the cases that the number of one-element Si’s
is 1, 0, 2, 3, respectively. The paper [40] determined the possibilities when
m = 1 and the Si’s have sizes 1, 1, 3, 3, which again follows easily from our
methods, and is a special case of the much more difficult Theorem 1.8. The
previous result closest to ours is [21, Thm. 3], which asserts that if m = 1
and n ≥ 4 and some Si has size 1 then p and q must be algebraically depen-
dent. Finally, since p := ex and q := −ex share CM each set S = {α,−α}
with α ∈ C \ {0}, it is not true that if n is big enough and the Si’s have the
same size then p = q, contradicting the assertion in [22, XXIII].

It would be interesting to seek analogues of our results for shared sets
ignoring multiplicities (IM). Some first steps in this direction are taken in
[44, 47], but the following questions remain open:

Question 1.9. Is there an absolute constant N so that if nonconstant p, q ∈
M(C) share IM N disjoint nonempty finite subsets of C∞ then g ◦ p = g ◦ q
for some g ∈ C(x) \ C?

Question 1.10. If nonconstant p, q ∈M(C) share IM infinitely many finite
subsets of C∞ then must there be some g ∈ C(x) \C for which g ◦ p = g ◦ q?

Remark 1.11. Question 1.9 is open even in the simplest case when p and q
are polynomials. Question 1.10 has an affirmative answer in that case, since
p and q only have finitely many critical values, so that by repeatedly taking
intersections and set differences of the given shared sets we obtain infinitely
many IM-shared sets which contain no critical values and hence are shared
CM, whence the conclusion follows from our results (or in this case from the
easier Lemma 3.9). Finally, the multivariable analogues of these questions
are also open.

This paper is organized as follows. In the next section we list the notation
and terminology we will use. In Section 3 we show that if p, q ∈ M(Cm)
share four disjoint finite sets then g◦p = g◦q for some nonconstant g ∈ C(x).
Our proof combines several new ideas with ingredients from Nevanlinna’s
proof of his “four values” theorem, which in turn was based an earlier argu-
ment due to Pólya [38]. Our proof yields no bound on deg(g) in terms of the
sizes of the shared sets, and the next four sections are required to prove such
a bound. In Section 4 we describe the collection of all rational functions g(x)
which satisfy g ◦ p = g ◦ q for prescribed meromorphic functions p, q on an
arbitrary complex manifold R. In Section 5 we prove some useful properties
about multiplicities of preimages of points under a minimal-degree noncon-
stant g(x) ∈ C(x) satisfying g ◦ p = g ◦ q. The results in Section 4 and
especially Section 5 are of independent interest; certainly the combination
of Galois-theoretic and topological methods used in these sections is quite
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MEROMORPHIC FUNCTIONS SHARING SEVERAL SETS 7

different from previous work in the subject. In Section 6 we describe the
collection of all sets shared CM by any prescribed p, q ∈ M(Cm) for which
g ◦ p = g ◦ q for some g ∈ C(x) \C, and prove a refinement of Theorem 1.6.
In Section 7 we combine the results of the previous sections in order to prove
a generalization of Theorem 1.2. Finally, in Section 8 we prove several re-
sults that facilitate applying our results to specific situations, and use these
to classify all possibilities for p, q, S1, . . . , S4 when certain conditions hold.
This yields simple proofs of many previous results, in addition to several
new results such as a refinement of Theorem 1.8

2. Notation and terminology

In this section we list the notation and terminology used in this paper.
These are also defined when first used, but we list them here for ease of
reference.

We first recall the standard definition of multiplicity of points under a
meromorphic function.

Definition 2.1. Let R be a complex manifold, let p : R → C be a holo-
morphic function which is not identically zero, and let α be a point in
Zp := {β ∈ R : p(β) = 0}. Further, let Oα be the local ring consisting of
the germs at α of holomorphic functions defined on a neighborhood of α,
and let I be the ideal of Oα consisting of all elements which vanish on Zp.
Letting k be the maximal integer for which p ∈ Ik, we say that p has a zero
of multiplicity k at α, and write mp(α) := k. If α ∈ R \ Zp then we define
mp(α) := 0.

For any meromorphic function p ∈ M(R) and a point α ∈ R for which
p(α) ∈ C, we may write p− p(α) in a neighborhood of α as the quotient of
two holomorphic functions q/r, and the multiplicity of p at α is νp(α) :=
mq(α) − mr(α). Finally, if p(α) = ∞ then the multiplicity of p at α is
νp(α) := ν1/p(α).

• C∗ := C \ {0}
• C∞ := C ∪ {∞} is the Riemann sphere
• M(R) is the set of all meromorphic functions on the complex man-

ifold R
• for p ∈ M(Cm) \ C we write E(p) := C∞ \ p(Cm) for what is some-

times called the set of Picard exceptional values of p; Picard’s little
theorem says |E(p)| ≤ 2
• a multiset (or “set with multiplicities”) is a collection of elements

which need not be distinct
• p−1(α) is the multiset of all preimages of α ∈ C∞ under some non-

constant p ∈M(R), counted with multiplicities
• Sset is the set of distinct elements in the multiset S
• if S is a nonempty finite multiset then gcdmult(S) denotes the great-

est common divisor of the multiplicities of all elements of S
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8 KENTA SUZUKI

• if S is a multiset and k is a positive integer then Sk denotes the
union of k copies of S
• {a∗m, b} is the multiset having m copies of a and one copy of b
• G1(p, q) is defined in Definition 4.1
• minimal shared multisets are defined in Definition 6.1
• the multisets Tα are defined in Definition 6.3
• Tn(x) is the degree-n Chebyshev polynomial, namely the unique

polynomial such that Tn(cos θ) = cosnθ.

3. Four shared sets implies infinitely many

Theorem 3.1. If nonconstant p, q ∈ M(Cm) share CM each of four finite
multisets S1, . . . , S4 of elements of C∞, where no Si is contained in the
union of the other Sj’s, then g ◦ p = g ◦ q for some nonconstant g ∈ C(x).
Conversely, if p, q ∈M(Cm) \C and g ∈ C(x) \C satisfy g ◦ p = g ◦ q then p
and q share CM each of infinitely many pairwise disjoint k-element subsets
of C∞, where k := deg(g).

The proof of Theorem 3.1 relies on the following several-variable gener-
alization (see [16, Thm. 3.5] or [20, p. 54]) of a classical result of Borel
[8]:

Lemma 3.2. For any n > 0, if r1, . . . , rn are entire functions on Cm which
have no zeroes, and r1 + · · · + rn = 0, then ri = αrj for some i 6= j and
some α ∈ C∗.

We begin by adapting this result to our setting. It is convenient to use
the language of divisors.

Definition 3.3. For any complex manifold R, the divisor of a nonconstant
p ∈ M(R) is the formal Z-linear combination of points of R defined as the
sum of the zeroes of p minus the sum of the poles of p, where the zeroes
and poles are counted with multiplicities. If p is introduced as an element
of C(x) then we view p as an element ofM(C∞) when defining its divisor –
thus, in this situation we allow ∞ as a possible zero or pole of p, although
we would not allow this if the same function p were instead introduced as
an element of M(C).

Lemma 3.4. Pick p, q ∈ M(Cm) \ C and fi, gi ∈ C(x) \ C (for i = 1, 2, 3),
and suppose that for each i the divisor of fi(p) equals the divisor of gi(q).
Then there exist integers n1, n2, n3 which are not all zero and for which
F (p)/G(q) is in C∗, where F :=

∏3
i=1 f

ni
i and G :=

∏3
i=1 g

ni
i . If in addition

each fi has at least one zero or pole which is not a zero or pole of any other
fj, then F and G are nonconstant.

Proof. Write hi(x, y) := fi(x)/gi(y) for i = 1, 2, 3. Since the field extension
C(x, y)/C has transcendence degree 2, the three elements hi ∈ C(x, y) must
be algebraically dependent. Thus there is a nonzero polynomial P (u, v, w) ∈
C[u, v, w] such that P (h1, h2, h3) = 0. Writing P (u, v, w) :=

∑
cr,s,tu

rvswt
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MEROMORPHIC FUNCTIONS SHARING SEVERAL SETS 9

where the sum is over a nonempty finite set ∆ of triples (r, s, t) of nonneg-
ative integers, and each cr,s,t is in C∗, it follows that

∑
cr,s,th

r
1h
s
2h
t
3 = 0.

Recall that the hi’s are in C(x, y), and substitute p for x and q for y to
obtain

∑
cr,s,tH

r
1H

s
2H

t
3 = 0 where Hi := hi(p, q) = fi(p)/gi(q). Since fi(p)

and gi(q) have the same divisor, their ratio Hi has no zeroes or poles. Thus,
for each triple (r, s, t) ∈ ∆, the function cr,s,tH

r
1H

s
2H

t
3 is entire and has no

zeroes, so by Lemma 3.2 there are two distinct triples (r, s, t) and (r′, s′, t′)

in ∆ for which Hr
1H

s
2H

t
3 = αHr′

1 H
s′
2 H

t′
3 with α ∈ C∗. Writing n1 := r − r′,

n2 := s− s′, and n3 := t− t′, it follows that
∏3
i=1H

ni
i = α, or equivalently

F (p)/G(q) = α where F :=
∏3
i=1 f

ni
i and G :=

∏3
i=1 g

ni
i . Here n1, n2, n3 are

integers which are not all zero.
Now suppose that each fi has at least one zero or pole δi which is not

a zero or pole of any other fj . Since at least one ni is nonzero, it follows
that the corresponding δi is a zero or pole of F , so that F is nonconstant.
G(q) = F (p)/α is also nonconstant, so that G is nonconstant as well. �

In order to apply Lemma 3.4 to specific p, q ∈M(R), we need to exhibit
fi, gi ∈ C(x) for which fi(p) and gi(q) have the same divisor. In our situation,
fi will be a product of integer powers of the characteristic polynomials of
some shared multisets. By a slight abuse of notation, if S is a finite multiset
of elements of a complex manifold R then we also write S for the divisor on
R defined as the formal sum of the elements of the multiset S.

Lemma 3.5. Let p and q be nonconstant meromorphic functions on a com-
plex manifold R, and let S1 and S2 be disjoint nonempty finite multisets of
elements of C∞ such that p and q share each Si CM. Then there are inte-
gers n1, n2 > 0 and a nonconstant h ∈ C(x) such that the divisor of h(x) is
n1S1 − n2S2 and the divisors of h(p) and h(q) are equal.

Proof. First assume that neither Si contains ∞. Let fi(x) :=
∏
α∈Si

(x− α)
be the characteristic polynomial of Si. By hypothesis, the fi’s are noncon-
stant coprime polynomials such that, for each i, fi ◦ p and fi ◦ q have the
same zeroes CM. Then h(x) := f1(x)deg f2/f2(x)deg f1 is a nonconstant ra-
tional function whose numerator and denominator are monic polynomials
of the same degree, so that h(∞) = 1. Thus the zeroes of h(p) coincide
CM with the zeroes of f1(p)

deg f2 , which coincide CM with the zeroes of
f1(q)

deg f2 , and hence with the zeroes of h(q). Likewise, the poles of h(p)
agree CM with the poles of h(q). Since the zeroes of h consist of |S2| copies
of S1, and the poles of h consist of |S1| copies of S2, this proves the result
in case neither Si contains ∞.

If some Si contains ∞ then let T := S1 ∪ S2 and let µ(x) be a Möbius
transformation such that µ(T ) does not contain ∞. Then p̂ := µ ◦ p and

q̂ := µ ◦ q share CM each multiset Ŝi := µ(Si), where the Ŝi’s are nonempty

and disjoint but do not contain ∞. Thus there is a nonconstant ĥ ∈ C(x)

such that ĥ(p̂) and ĥ(q̂) have the same divisor, where in addition the divisor
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10 KENTA SUZUKI

of ĥ is n1Ŝ1 − n2Ŝ2 for some positive integers n1, n2. Then h := ĥ ◦ µ has
divisor n1S1 − n2S2, and the divisors of h(p) and h(q) are identical. �

With these ingredients in hand, we now prove that if p and q share four
multisets then we obtain a weaker version of our desired functional equation.

Proposition 3.6. For any nonconstant p, q ∈ M(Cm), and any pairwise
disjoint nonempty finite multisets S1, . . . , S4 of elements of C∞ such that
p, q share CM each Si, there exist h ∈ C(x) \ C and γ ∈ C∗ such that
h ◦ p = γh ◦ q. Moreover, h can be chosen so that its divisor is a Z-linear
combination of S1, S2, S3, S4.

Proof. By Lemma 3.5, for each i = 1, 2, 3 there exist a nonconstant hi ∈ C(x)
and positive integers ui, vi such that hi(x) has divisor uiSi − viS4 and the
divisors of hi(p) and hi(q) equal one another. By Lemma 3.4, there are

integers n1, n2, n3 which are not all zero and for which h :=
∏3
i=1 h

ni
i is

nonconstant and h(p) = γ · h(q) for some γ ∈ C∗. Since the divisor of h is∑3
i=1(niuiSi − niviS4), this yields the result. �

Our proof of Theorem 3.1 also uses the following result of Coman and
Poletsky [11, Thm. 5.2]:

Lemma 3.7. If nonconstant p, q ∈M(Cm) are algebraically dependent then
there exist a compact Riemann surface R of genus 0 or 1, a holomorphic
map r : Cm → R, and p0, q0 ∈M(R) such that p = p0 ◦ r and q = q0 ◦ r.

Remark 3.8. The special case m = 1 of Lemma 3.7 was proved in [7,
Thm. 1] independently and simultaneously to [11].

In order to apply Lemma 3.7 to questions about shared multisets, we first
address shared multisets on a compact Riemann surface.

Lemma 3.9. Let R be a compact Riemann surface, and pick p0, q0 ∈
M(R) \ C. If S1, S2, S3 are disjoint nonempty finite multisets of elements
of C∞ such that p0, q0 share CM S1 and S2, and p−10 (S3)set ⊆ q−10 (S3)set,
then g ◦ p0 = g ◦ q0 for some nonconstant g ∈ C(x).

Proof. Write vi :=
∏
α∈Si

(x − α) and w := vdeg v21 /vdeg v12 . Since vi ◦ p0
and vi ◦ q0 have the same zeroes CM, and w(∞) = 1, the functions w ◦ p0
and w ◦ q0 have the same divisor. Thus γ := w(p0)/w(q0) is a holomorphic
map R → C∞ which has no zeroes or poles, so compactness of R implies
γ ∈ C∗. Compactness also implies that each element of S3 has the form
s = p0(θ) with θ ∈ R, and then w(p0(θ)) = γw(q0(θ)) is in γw(S3). Thus
w(S3)set ⊆ γw(S3)set. Since all zeroes and poles of w are in S1 ∪ S2, the
set w(S3)set is contained in C∗. Since this set is finite and nonempty, and
is preserved by multiplication by γ, it follows that γn = 1 for some positive
integer n, so that wn ◦ p0 = wn ◦ q0. �

We also use the following generalization of Picard’s little theorem:
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MEROMORPHIC FUNCTIONS SHARING SEVERAL SETS 11

Lemma 3.10. If R is a compact Riemann surface and h : Cm → R is a
nonconstant holomorphic map which is not surjective, then there exists a
biholomorphic map R → C∞, and R \ h(Cm) has size at most 2.

Proof. For any nonempty finite subset E of R \ h(Cm), write R0 := R \ E .
Then h induces a nonconstant holomorphic map Cm → R0, so R0 cannot be
hyperbolic (e.g. by [34, Lemma 2.3]). Thus R has genus zero (so R ∼= C∞)
and E has size at most 2. �

Proof of Theorem 3.1. If g ◦ p = g ◦ q then p and q share CM the multiset
Sα := g−1(α) for any α ∈ C∞. Plainly |Sα| = deg(g) and Sα ∩ Sβ = ∅ when
α 6= β, and moreover Sα is a set whenever α is not one of the finitely many
critical values of g. Thus p and q share CM infinitely many pairwise disjoint
sets, each of which has size deg(g).

Conversely, we now assume that p and q share CM each of four pairwise
disjoint finite multisets S1, . . . , S4 of elements of C∞, where in addition no i is
contained in the union of the other Sj ’s. Proposition 3.6 yields h ∈ C(x)\C
and γ ∈ C∗ such that h ◦ p = γh ◦ q, and thus p and q are algebraically
dependent. By Lemma 3.7, there exist a compact Riemann surface R, a
holomorphic map r : Cm → R, and p0, q0 ∈ M(R) such that p = p0 ◦ r and
q = q0 ◦ r. Since p and q are nonconstant, also p0, q0, r are nonconstant.
The identity h ◦ p = γh ◦ q now becomes h ◦ p0 ◦ r = γh ◦ q0 ◦ r, so that
h ◦ p0 = γh ◦ q0. Since R is compact, we can speak of the degrees of p0 and
q0 (i.e., the numbers of preimages of any point, counted with multiplicities),
and the above identity implies deg(h) · deg(p0) = deg(h) · deg(q0), whence
deg(p0) = deg(q0).

For any finite multiset S of elements of C∞, the multiset p−1(S) is the
union of all r−1(α) with α ∈ p−10 (S). Thus S is shared CM by p and q

if and only if the multiset differences p−10 (S) \ q−10 (S) and q−10 (S) \ p−10 (S)

each consist of elements of E := R \ r(Cm). Since p−10 (S) and q−10 (S) have
the same size, and they also have the same size after removing all copies of
elements of E from both of them, it follows that p−10 (S) and q−10 (S) contain
the same number of elements of E (when counted with multiplicities).

We may assume that at most two of the Si’s are shared CM by p0 and
q0, since otherwise Lemma 3.9 produces g ∈ C(x) \ C with g ◦ p0 = g ◦ q0,
whence also g ◦ p = g ◦ q. By relabeling the Si’s if needed, we may assume
that for i ∈ {1, 2} we have p−10 (Si) 6= q−10 (Si), so that p−10 (Si) \ q−10 (Si) and

q−10 (Si)\p−10 (Si) are disjoint nonempty multisets of the same size which each
consist of elements of E . We have |E| ≤ 2 by Lemma 3.10, and also the four
multisets p−10 (Si) are pairwise disjoint, as are the four multisets q−10 (Si).
Thus there are distinct α1, α2 ∈ E , and positive integers e1, e2, such that for
each i ∈ {1, 2}

• p−10 (Si) \ q−10 (Si) consists of ei copies of αi, and

• q−10 (Si) \ p−10 (Si) consists of ei copies of α3−i.
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12 KENTA SUZUKI

Since E = {α1, α2} is contained in p−10 (S1 ∪ S2) and q−10 (S1 ∪ S2), it follows

that p−10 (Sj) = q−10 (Sj) for j ∈ {3, 4}. Next, for T := S1 ∪ S2, the multiset

p−10 (T ) is the union of ∪2i=1(p
−1
0 (Si)∩q−10 (Si)) with e1 +e2 copies of each αi,

and this union also equals q−10 (T ). Hence p0 and q0 share CM the disjoint
multisets T , S3, and S4, so by Lemma 3.9 there exists g ∈ C(x) \ C such
that g ◦ p0 = g ◦ q0, whence also g ◦ p = g ◦ q. �

We conclude this section with a variant of Theorem 3.1 addressing al-
gebraically dependent meromorphic functions which share three multisets.
This result will not be used elsewhere in this paper.

Proposition 3.11. Suppose algebraically dependent p, q ∈M(Cm)\C share
CM three disjoint nonempty finite multisets S1, S2, S3 of elements of C∞.
Then g(p) = αg(q) for some nonconstant g(x) ∈ C(x) and some α ∈ C∗.

Proof. By Lemma 3.7, we can write p = p0 ◦ r and q = q0 ◦ r for some
compact Riemann surface R, some holomorphic map r : Cm → R, and some
p0, q0 ∈ M(R). Writing E := R \ r(Cm), put Ai := E ∩ p−10 (Si) and Bi :=

E ∩ q−10 (Si). For each i ∈ {1, 2, 3}, one of the following holds:

(1) Ai = Bi = ∅
(2) Ai 6= ∅ = Bi
(3) Ai = ∅ 6= Bi
(4) Ai 6= ∅ and Bi 6= ∅.

Since the multisets p−10 (Si) and q−10 (Si) agree except for copies of elements

of Ai in p−10 (Si) and elements of Bi in q−10 (Si), we see that

• if (1) holds then p−10 (Si) = q−10 (Si)

• if (2) holds then |p−10 (Si)| > |q−10 (Si)|
• if (3) holds then |p−10 (Si)| < |q−10 (Si)|.

Since |p−10 (Si)| = deg(p0) · |Si|, it follows that

• if (1) holds then deg(p0) = deg(q0)
• if (2) holds then deg(p0) > deg(q0)
• if (3) holds then deg(p0) < deg(q0).

Thus there cannot be i, j for which two different cases among (1),(2),(3)
hold. Since |E| ≤ 2 by Lemma 3.10, there is at least one i for which Ai
is empty, so that (1) or (3) holds for that i; and likewise there is at least
one j for which Bj is empty, so that (1) or (2) holds for that j. Thus
(1) holds for at least one i, and every j satisfies either (1) or (4). Write
fi(x) :=

∏
α∈Si

(x − α), and put ni := |Si|. If p−10 (Si) = q−10 (Si) for at
least two i’s, say i = 1 and i = 2, then for g := (f2)

n1/(f1)
n2 we see

that g ◦ p0 and g ◦ q0 have the same divisor, so their ratio is constant by
compactness of R, yielding the desired conclusion. Henceforth assume that
there is exactly one i for which p−10 (Si) = q−10 (Si). We may assume that (1)
holds for i = 3 but (4) holds for i = 1 and i = 2. Then A1, B1, A2, B2 each
have size 1, and A1 ∪ A2 and B1 ∪ B2 are the same two-element set. Here
deg(p0) = deg(q0), so that |p−10 (Si)| = |q−10 (Si)| for each i, whence since the
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MEROMORPHIC FUNCTIONS SHARING SEVERAL SETS 13

multisets of elements of C∞ \ E in p−10 (Si) and q−10 (Si) coincide, it follows

that the multisets of elements of E in p−10 (Si) and q−10 (Si) have the same size.
Since A1∩B1 = ∅, we have A1 = B2 = {α1} and A2 = B1 = {α2}, where, for
i ∈ {1, 2} and some positive integer ei, the multisets p−10 (Si) \ q−10 (Si) and

q−10 (Si)\p−10 (Si) consist of ei copies of αi and ei copies of α3−i, respectively.
Putting h := (f1)

e2(f2)
e1 , it follows that h(p0) and h(q0) have the same

zeroes CM, so for g := hn3/(f3)
deg(h) the functions g(p0) and g(q0) have the

same divisor and hence have constant ratio. Finally, g(x) is nonconstant
since each element of S3 is a pole of g(x). �

4. Minimal relations between meromorphic functions

Theorem 3.1 yields nonconstant rational functions g(x) such that g(p) =
g(q), for prescribed p, q ∈ M(Cm) \ C satisfying certain shared-multiset
hypotheses. In this section we describe the collection of all rational functions
g(x) satisfying g(p) = g(q). We also solve the analogous problem for the
equation g(p)/g(q) ∈ C∗.

Definition 4.1. For any complex manifold R and any nonconstant p, q ∈
M(R), let G1(p, q) be the set of all g ∈ C(x) \ C such that g ◦ p = g ◦ q.
When the choices of p and q are clear, we write G1 for G1(p, q).

Proposition 4.2. Let R be a complex manifold, and pick p, q ∈M(R) \C.
If G1 is nonempty and g1(x) is a minimal-degree element of G1 then G1 =
{d ◦ g1 : d ∈ C(x) \ C}.

Proof. Let L be the set of all g(x) ∈ C(x) for which g ◦ p = g ◦ q. Then
L contains C and is preserved by addition, multiplication, and division by
nonzero elements, so L is a field between C and C(x). Since L 6= C by
hypothesis, Lüroth’s theorem [39, Thm. 2] implies L = C(h(x)) for some
nonconstant h(x) ∈ L. For any minimal-degree g1 ∈ G1, since g1 ∈ L we
have g1 = µ◦h for some nonconstant µ ∈ C(x). Minimality of deg(g1) implies
µ(x) is a Möbius transformation, so that L = C(g1(x)), which implies the
conclusion. �

In the applications of our main results in Section 8, we will use an analogue
of Proposition 4.2 for the set Ω of g ∈ C(x) such that g(p)/g(q) ∈ C∗. Our
proof of Proposition 4.2 does not carry over to this situation, since Ω is
not closed under addition. We will circumvent this issue by showing that if
g, h ∈ Ω then the field C(g(x), h(x)) equals C(f(x)) for some f ∈ Ω. This is
the key to the proof of the next result.

Definition 4.3. For any complex manifold R, and any nonconstant p, q ∈
M(R), let G2(p, q) be the set of all g(x) ∈ C(x)\C for which g(p)/g(q) ∈ C∗.
When the choices of p and q are clear, we write G2 for G2(p, q).

Proposition 4.4. Let R be a complex manifold and pick p, q ∈M(R) \ C.
Suppose G2 is nonempty, and let g2(x) be any element of G2 having the
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14 KENTA SUZUKI

smallest possible degree. Writing α := g2(p)/g2(q), define

s :=

{
n if α is a primitive n-th root of unity

0 if α is not a root of unity.

Then G2 is the set of nonconstant rational functions of the form (xku(xs))◦g2
with k ∈ Z and u ∈ C(x). Moreover, if h ∈ G2 and β := h(p)/h(q) then the
numerator of h(x)− βh(y) is divisible by the numerator of g2(x)− αg2(y).

Proof. For any h ∈ G2, put β := h(p)/h(q), and note that α, β ∈ C∗. Since
C(g2(x), h(x)) is a subfield of C(x) which properly contains C, Lüroth’s the-
orem implies C(g2(x), h(x)) = C(f(x)) for some nonconstant f(x) ∈ C(x).

Since C(f(x)) contains both g2(x) and h(x), we have g2 = ĝ2◦f and h = ĥ◦f
for some nonconstant ĝ2, ĥ ∈ C(x). Since f(x) ∈ C(g2(x), h(x)), there is a bi-
variate rational function H(x, y) ∈ C(x, y) such that H(g2(x), h(x)) = f(x).

Rewriting this as H(ĝ2(f(x)), ĥ(f(x))) = f(x) shows that H(ĝ2(x), ĥ(x)) =
x. Thus

f ◦ p = H(g2 ◦ p, h ◦ p) = H(αg2 ◦ q, βh ◦ q) = H(αĝ2 ◦ f ◦ q, βĥ ◦ f ◦ q).

Let µ(x) := H(αĝ2(x), βĥ(x)), so that µ ∈ C(x) and µ ◦ f ◦ q = f ◦ p. Then

ĝ2 ◦ µ ◦ f ◦ q = ĝ2 ◦ f ◦ p = g2 ◦ p = αg2 ◦ q = αĝ2 ◦ f ◦ q,

so that ĝ2 ◦ µ = αĝ2. Therefore µ(x) is a Möbius transformation which
permutes each of the multisets ĝ2

−1(0) and ĝ2
−1(∞). These two multisets

are nonempty, finite, and disjoint. Every Möbius transformation has the
form ν−1 ◦ θ ◦ ν for Möbius transformations ν(x) and θ(x) where θ(x) is
either γx (with γ ∈ C∗) or x+ 1. Since x+ 1 only preserves one nonempty
finite subset of C∞, namely {∞}, also ν−1 ◦ (x + 1) ◦ ν only preserves one
nonempty finite subset of C∞. Thus µ = ν−1 ◦γx◦ν for some γ ∈ C∗. Since
µ ◦ f ◦ q = f ◦ p, it follows that

γν ◦ f ◦ q = ν ◦ µ ◦ f ◦ q = ν ◦ f ◦ p,

so that ν ◦f ∈ G2. Since g2 = ĝ2 ◦f , minimality of deg(g2) implies deg(ĝ2) =
1, so that f = ĝ2

−1 ◦ g2 and thus

h = ĥ ◦ f = ĥ ◦ ĝ2−1 ◦ g2.

Therefore h = d ◦ g2 with d ∈ C(x).
Conversely, for any nonconstant d ∈ C(x) and any β ∈ C∗, put h := d◦g2.

Then h(p) = βh(q) if and only if

βd ◦ g2 ◦ q = βh(q) = h(p) = d ◦ g2 ◦ p = d ◦ αg2 ◦ q,

or equivalently βd = d ◦ αx. All solutions to the latter equation were de-
scribed in [1] and [33], yielding the desired description of G2. For any such
h(x), since x−y divides the numerator of d(x)−d(y), substituting g2(x) for
x and αg2(y) for y shows that the numerator of g2(x) − αg2(y) divides the
numerator of d(g2(x))− d(αg2(y)) = h(x)− βh(y). �
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5. Complete multiple values of the minimal-degree rational
function relating p and q

In this section we prove a result about the multiplicities of points under a
minimal-degree g ∈ G1; this will be used in our proof of Theorem 1.2. Recall
that if S is a multiset then Sset denotes the underlying set, and gcdmult(S)
denotes the greatest common divisor of the multiplicities of all the elements
of S.

Proposition 5.1. For a complex manifold R, and nonconstant p, q ∈M(R),
suppose that g(p) = g(q) for some g ∈ C(x) \ C, and choose one such g(x)
of minimal degree. Then there are at most two points α ∈ C∞ for which
gcdmult(g−1(α)) > 1.

We will deduce Proposition 5.1 from the following result, which is of
independent interest.

Proposition 5.2. Pick a nonconstant g ∈ C(x) and distinct α1, α2, α3 ∈
C∞. Suppose that ei := gcdmult(g−1(αi)) is at least 2 for each i = 1, 2, 3.
Then the triple (e1, e2, e3) is a permutation of an element of

N := {(2, 2, r) : r > 1} ∪ {(2, 3, s) : 3 ≤ s ≤ 5}.
Let π be a permutation of {1, 2, 3} such that the triple N := (eπ(1), eπ(2), eπ(3))
is in N , and let µ(x) be the unique Möbius transformation which maps the
points απ(1), απ(2), απ(3) to 1, 0, ∞, respectively. Then µ ◦ g = fN ◦ h for
some h ∈ C(x), where

f(2,2,r) =
(xr + 1)2

4xr

f(2,3,3) =
(x4 + 8x)3

64(x3 − 1)3

f(2,3,4) =
(x8 + 14x4 + 1)3

108(x5 − x)4

f(2,3,5) =
(x20 − 228x15 + 494x10 + 228x5 + 1)3

−1728(x11 + 11x6 − x)5
.

Conversely, for each N ∈ N we have

gcdmult(f−1N (1)) = N(1)

gcdmult(f−1N (0)) = N(2)

gcdmult(f−1N (∞)) = N(3),

and there is a finite set TN of Möbius transformations such that

fN (x)− fN (y) =

∏
ν∈TN (x− ν(y))

DN (x)
,

where DN (x) is the denominator exhibited in the definition of fN (x). Fi-
nally, for each ν ∈ TN there is a positive integer k with k < deg(fN ) such
that the composition ν ◦ ν ◦ · · · ◦ ν of k copies of ν equals x.
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16 KENTA SUZUKI

Remark 5.3. The rational functions fN (x) in Proposition 5.2 date back
at least to the 19-th century book of Klein [27]. These rational functions
generate the fields of rational functions invariant under the non-cyclic finite
rotation groups of the sphere, namely the groups of rotational symmetries
of the regular dihedron, tetrahedron, octahedron, or icosahedron. Thus the
field extension C(x)/C(fN (x)) is Galois with Galois group Dr, A4, S4 or
A5 according as N is (2, 2, r), (2, 3, 3), (2, 3, 4), or (2, 3, 5); moreover, the
elements of the Galois group are the maps x 7→ ν(x) with ν ∈ TN . For a
beautiful exposition of this material, see [49].

Proof that Proposition 5.2 implies Proposition 5.1. Let α1, α2, α3 be distinct
points in C∞, and suppose that each value ei := gcdmult(g−1(αi)) is greater
than 1. Proposition 5.2 implies that µ ◦ g = fN ◦ h for some Möbius trans-
formation µ(x), some N ∈ N , and some h ∈ C(x). Since g(p) = g(q), we
have fN (h(p)) = fN (h(q)), so that

∏
ν∈TN (h(p) − ν(h(q))) = 0, and thus

h(p) = ν(h(q)) for some ν ∈ TN . By Proposition 5.2, the order of ν(x)
under composition is an integer k which is less than deg(fN ). We will give
two different proofs that this information yields a contradiction, one using
Galois theory and one from first principles.

We first give the algebraic proof. The function σ : C(x) → C(x) defined
by σ(u(x)) := u(ν(x)) is an order-k automorphism of the field C(x). Writing
L for the set of elements of C(x) fixed by σ, Artin’s theorem from Galois
theory [28, Thm. VI.1.8] implies that L is a subfield of C(x) such that
[C(x) : L] = k. Since L properly contains C, by Lüroth’s theorem we have
L = C(u(x)) for some nonconstant u(x) ∈ C(x), and it is known that [C(x) :
C(u(x))] = deg(u). But then u(h(p)) = u(ν(h(q)) = σ(u)(h(q)) = u(h(q)),
which contradicts minimality of deg(g) since deg(u ◦ h) = k · deg(h) <
deg(fN ) · deg(h) = deg(g).

We now give the self-contained proof. If ν(∞) 6= ∞ then the numerator
of the rational function ν(x) − x has degree 2 and hence has a zero in C.
Thus in any case the set S of fixed points of ν(x) is nonempty. Let ρ(x)
be a Möbius transformation such that ρ(∞) ∈ S and if |S| > 1 then also
ρ(0) ∈ S. Then θ := ρ−1 ◦ ν ◦ ρ is a Möbius transformation having |S| fixed
points and having the same order under composition as does ν(x), which
by Proposition 5.2 is an integer k less than deg(fN ). If |S| = 1 then ∞
is the unique fixed point of θ(x), so that θ(x) is a degree-one polynomial
and θ(x) − x is a nonzero constant β, whence θ(x) = x + β has infinite
order under composition, contradiction. Thus |S| > 1, so θ(x) fixes 0 and
∞, and hence θ(x) = ζx for some ζ ∈ C∗. Plainly the order of θ(x) under
composition is the order of ζ under multiplication, so that ζ is a primitive
k-th root of unity. Since ρ−1(h(p)) = ζρ−1(h(q)), it follows that G1 contains
xk ◦ ρ−1 ◦ h, contradicting minimality of deg(g). �

We have now reduced the proof of Proposition 5.1 to the proof of Propo-
sition 5.2. Our proof of the latter result uses the following version of the
Hurwitz genus formula for holomorphic maps C∞ → C∞:
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MEROMORPHIC FUNCTIONS SHARING SEVERAL SETS 17

Lemma 5.4. Any g ∈ C(x) of degree k > 0 satisfies

2k − 2 =
∑
α∈C∞

(
k − |g−1(α)set|

)
.

The Hurwitz formula immediately implies that for any nonconstant ra-
tional function g(x), there cannot be four distinct points α ∈ C∞ for which
|g−1(α)set| ≤ deg(g)/2, and hence there cannot be four distinct α ∈ C∞ for
which gcdmult(g−1(α)) > 1. However, there do exist nonconstant g ∈ C(x)
for which gcdmult(g−1(α)) > 1 for three distinct α ∈ C∞, and the goal of
Proposition 5.2 is to describe them all. Although the existence of such func-
tions was known long ago, the classification of them is new, and our proof
of this classification is rather indirect and unexpected.

Proof of Proposition 5.2. Writing k := deg(g), we have |g−1(αi)set| ≤ k/ei,
so Lemma 5.4 implies that

2k − 2 ≥
3∑
i=1

(
k − |g−1(α)set|

)
≥

3∑
i=1

(
k − k

ei

)
,

whence
∑3

i=1 1/ei > 1. Since the ei’s are integers greater than 1, and since
1 = 1/3 + 1/3 + 1/3 = 1/2 + 1/4 + 1/4 = 1/2 + 1/3 + 1/6, it follows
that (e1, e2, e3) is a permutation of an element of N . Now let π, N , µ
be as in the statement of the result. It is easy to check directly that for
γ ∈ C∞ the multiplicity of fN at γ is N(1), N(2), N(3), or 1, according as
fN (γ) is 1, 0, ∞, or another value. Now view fN and ĝ := µ ◦ g as branched
coverings S2 → S2, and let B be the set of branch points of ĝ, which includes
the branch points of fN . Then the branched coverings fN and ĝ become
topological covering maps when we restrict the domain to avoid preimages
of B, yielding finite topological covering maps ψ : S2 \f−1N (B)→ S2 \B and
φ : S2 \ ĝ−1(B)→ S2 \B. Form the pullback of φ along ψ as usual, yielding
the diagram

X S2 \ f−1N (B)

S2 \BS2 \ ĝ−1(B)

π2

ψπ1
φ

where X := {(a, b) ∈ (S2 \ ĝ−1(B)) × (S2 \ f−1N (B)) : φ(a) = ψ(b)} and π1
and π2 are projections on the first and second coordinates, respectively. We
may compactify the topological covering map φ ◦ π1 : X → S2 \ B (see

e.g. [14, §2]) in order to obtain a branched covering η : X̂ → S2 which
factors as η = g ◦ π̂1 = fN ◦ π̂2 where π̂i is the induced extension of πi. For
each β ∈ S2, the multiplicity under ĝ of every point in ĝ−1(β) is divisible
by the multiplicity under fN of every point in f−1N (β), so by elementary
covering space theory it follows that π̂1 is an unbranched covering. Since S2
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18 KENTA SUZUKI

is simply connected, this implies that the restriction of π̂1 to any connected

component Y of X̂ will be a homeomorphism θ1 : Y → S2, so if θ2 is the
restriction of π̂2 to Y then ĝ = fN ◦ θ2 ◦ θ−11 . Here θ2 ◦ θ−11 is a finite-degree
branched covering S2 → S2. Of course, any such branched covering induces
a holomorphic function C∞ → C∞, which in turn is a rational function
h(x) such that µ ◦ g = fN ◦ h. Finally, the remaining assertions about the
factorization of fN (x)− fN (y) and the orders of elements of TN are easy to
verify directly, given that TN is the group (under the operation of functional
composition) generated by the set UN defined as follows:

U(2,2,r) := {ζxe : ζr = 1, e ∈ {1,−1}}

U(2,3,3) :=
{
e2πi/3x,

x+ 2

x− 1

}
U(2,3,4) :=

{
ix,

x+ 1

x− 1

}
U(2,3,5) :=

{
ζx,

(ζ3 + 1)x+ 1

x− ζ2 − 1

}
where ζ := e2πi/5. �

Remark 5.5. The topological argument in the above proof can be written
in the language of algebraic geometry, by considering the normalizations of
components of the fibered product of the morphisms P1 → P1 induced by
fN and µ ◦ g. We chose topological language since we thought this would
be more familiar to some complex analysts in our audience.

6. Minimal shared multisets

In this section we prove a generalization of Theorem 1.6, by describing
the collection of all shared multisets for some nonconstant p, q ∈ M(Cm),
under the assumption that g(p) = g(q) for some nonconstant g ∈ C(x). We
begin by addressing the analogous question for meromorphic functions on
an arbitrary complex manifold.

6.1. Arbitrary complex manifolds.

Definition 6.1. For any complex manifold R and any nonconstant p, q ∈
M(R), a minimal shared multiset for p and q is a nonempty finite multiset
S of elements of C∞ such that S is shared CM by p and q, but no nonempty
proper sub-multiset of S is shared CM by p and q.

Lemma 6.2. If S is a finite multiset of elements of C∞, then S is shared
CM by p and q if and only if S is the union of finitely many minimal shared
multisets for p and q.

Proof. If S is shared, and T is a minimal shared multiset contained in S,
then S \ T is a shared multiset which is smaller than S, so by induction on
|S| we see that S is a union of minimal shared multisets. Conversely, any
union of shared multisets is itself shared. �



20
20

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

es 
Award
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In light of the above result, in order to describe all shared multisets for
p and q, it suffices to describe the minimal shared multisets. We now intro-
duce a large collection of shared multisets Tα in case g(p) = g(q) for some
nonconstant g ∈ C(x). It will turn out that, in many situations, these Tα
comprise the collection of all minimal shared multisets.

Definition 6.3. Let p and q be nonconstant meromorphic functions on a
complex manifold R, and suppose that the set G1 from Definition 4.1 is
nonempty. Let g ∈ G1 have the smallest possible degree. For any α ∈ C∞,
let Rα be the multiset g−1(α), let gcdmult(Rα) denote the greatest common
divisor of the multiplicities of the elements of Rα, and let Tα be the multiset
having the same underlying set as Rα, but in which the multiplicity of each
element is 1/ gcdmult(Rα) times the multiplicity of the element in Rα.

Example 6.4. If p = ez and q = −ez for R = C then we may choose g(x) to
be x2, so that R0 = {0, 0} has gcdmult(R0) = 2 and thus T0 = {0}; likewise
T∞ = {∞}, but for any α /∈ {0,∞} we have Rα = {β,−β} with β2 = α, so
that gcdmult(Rα) = 1 and Tα = Rα.

Lemma 6.5. Let p, q be nonconstant meromorphic functions on a complex
manifold R such that G1 is nonempty. Then each Tα with α ∈ C∞ is a
nonempty finite multiset which is shared CM by p and q, and every minimal
shared multiset is contained in one of the multisets Tα. The collection of all
Tα’s depends only on p and q, and not on the choice of a minimal-degree
function in G1.

Proof. By taking preimages of α on both sides of the equation g ◦ p = g ◦ q,
we see that p, q share CM Rα, and hence also Tα. Plainly Tα is nonempty
and finite. By Proposition 4.2, any other choice of g has the form ĝ := µ ◦ g
for some Möbius transformation µ; denoting the corresponding multisets by

T̂α, it follows that Tα = T̂µ(α), so that the collection of all Tα’s equals the

collection of all T̂α’s. Finally, the union of the Tα’s is C∞, so for any minimal
shared multiset S there is some α for which S ∩ Tα is nonempty; but then
S ∩ Tα is a shared multiset, so minimality of S implies S ∩ Tα = S, whence
S ⊆ Tα. �

We now show that if R is a compact Riemann surface and G1 is nonempty
then the Tα comprise all minimal shared multisets for p and q.

Proposition 6.6. If p and q are nonconstant meromorphic functions on a
compact Riemann surface R, and G1 is nonempty, then the minimal shared
multisets for p and q are precisely the multisets Tα with α ∈ C∞.

Proof. Pick a minimal-degree g ∈ G1, and suppose that some Tα is not
a minimal shared multiset. Since Tα is shared CM by p and q, it is the
union of two or more (not necessarily distinct) minimal shared multisets.
Since gcdmult(Tα) = 1, these minimal shared multisets in Tα cannot all be
equal, so Tα contains two disjoint minimal shared multisets S1 and S2. By
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20 KENTA SUZUKI

Lemma 3.5, there are integers n1, n2 > 0 and a nonconstant h ∈ C(x) such
that the divisor of h(x) is n1S1−n2S2 and the functions h(p) and h(q) have
the same divisor. Then γ := h(p)/h(q) is in C∗ since R is compact. For any
β ∈ C∞ with β 6= α, the set h(Tβ)set is a nonempty finite subset of C∗, and
for any δ ∈ Tβ there is some ε ∈ R such that δ = q(ε), whence δ′ := p(ε) is
an element of Tβ satisfying

h(δ′) = h(p(ε)) = γ · h(q(ε)) = γ · h(δ).

Thus h(Tβ)set is preserved by multiplication by γ, so γ is a root of unity
and hence hn(p) = hn(q) for some positive integer n. By Proposition 4.2
we have hn = d ◦ g for some d ∈ C(x), so the divisor of hn is a Z-linear
combination of g−1(α)’s. But this is impossible because the divisor of hn

has positive coefficients at the elements of S1 and negative coefficients at
the elements of S2. This contradiction shows that in fact every Tα must be
a minimal shared multiset. �

6.2. Complex m-space. We now prove the following generalization of The-
orem 1.6, which involves both the shared multisets Tα from Definition 6.3
and the set G1 from Definition 4.1.

Theorem 6.7. Pick nonconstant p, q ∈M(Cm) for which G1 is nonempty,
and let g(x) be a minimal-degree element of G1. Then one of the following
occurs:

(6.7.1) The collection of all multisets Tα with α ∈ C∞ equals the collection
of all minimal shared multisets for p and q.

(6.7.2) For some β ∈ C∞, the multiset Tβ is the union of positive numbers
of copies of each of two distinct minimal shared multisets S1, S2,
and the collection of all minimal shared multisets consists of S1, S2,
and all Tα with α 6= β. In this case we can write p = p0 ◦ r and
q = q0 ◦ r for some r ∈ M(Cm) and some p0, q0 ∈ C(x) such that
g(p0) = g(q0), and for any such p0, q0, r there will be two Picard
exceptional values γ, δ of r, with γ ∈ p−10 (S1) ∩ q−10 (S2) and δ ∈
p−10 (S2) ∩ q−10 (S1), where in addition for each i = 1, 2 the multisets

p−10 (Si) and q−10 (Si) coincide except for copies of γ and δ.

Proof. Since g(p) = g(q), the functions p and q are algebraically indepen-
dent. By Lemma 3.7, there is a compact Riemann surface R for which
p = p0(r) and q = q0(r) for some p0, q0 ∈ M(R) and some holomorphic
map r : Cm → R. Thus for any multiset S of elements of C∞, the multiset
p−1(S) is the union of r−1(α) for α ∈ p−10 (S). It follows that p and q share

S CM if and only if the multiset differences A(S) := p−10 (S) \ q−10 (S) and

B(S) := q−10 (S) \ p−10 (S) both consist of elements of the set E := R\ r(Cm),
which has size at most 2 by Lemma 3.10.

Suppose (6.7.1) does not hold, so, by Lemma 6.5, some Tα is not a min-
imal shared multiset. Since gcdmult(Tα) = 1, it follows that Tα contains
two disjoint minimal shared multisets S1 and S2. The identity g(p0(r)) =
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g(p) = g(q) = g(q0(r)) implies that g(p0) = g(q0), so in particular deg(p0) =
deg(q0). Thus p−10 (Si) and q−10 (Si) have the same size, so also Ai := A(Si)
and Bi := B(Si) have the same size ni. Proposition 6.6 implies that Si is
not shared by p0 and q0, so ni > 0. Thus Ai contains an element γi. Since
Ai consists of elements of E , and |E| ≤ 2, disjointness of the Si’s implies
that Ai consists of ni copies of γi. Likewise, since Ai and Bi are disjoint, Bi
must consist of ni copies of γ3−i, so (6.7.2) holds. �

Example 6.8. The second possibility in Theorem 6.7 can actually occur.
For instance, let k, n be integers with 0 < k < n, put ζ := e2πi/n, and let
p := (ex + ζk)/(ex + 1) and q := ζp. Then we may choose g := xn, so
that g−1(1) = {1, ζ, ζ2, . . . , ζn−1} is the union of S1 := {ζ, ζ2, . . . , ζk} and
S2 := {ζk+1, ζk+2, . . . , ζn}. Here p has no preimages of 1 or ζk, so q has no
preimages of ζ or ζk+1, whence

p−1(S1) = p−1({ζ, ζ2, . . . , ζk−1}) = q−1({ζ2, ζ3, . . . , ζk}) = q−1(S1),

and likewise p−1(S2) = q−1(S2).

7. Bounding the degree of a rational function relating p and q

In this section we use the results of the previous two sections in order to
bound the degree of a minimal-degree element of G1 in terms of the sizes of
shared multisets. The combination of these bounds with Theorem 3.1 yields
Theorem 1.2.

Theorem 7.1. Pick nonconstant p, q ∈M(Cm), and let S1, . . . , Sn be finite
multisets of elements of C∞ such that p, q share CM each Si, where n ≥ 4
and no Si is contained in the union of the other Sj’s. Then g(p) = g(q) for
some nonconstant g ∈ C(x) such that deg(g) ≤ 1

n−3(−2 +
∑n

i=1|(Si)set|). If

n ≥ 5 then we can choose g(x) to have degree at most maxi|Si|. Moreover, if
n ≥ 5 and the Si’s are minimal shared multisets then maxi|Si| is the smallest
degree of any nonconstant g ∈ C(x) for which g(p) = g(q).

Remark 7.2. In order to obtain the best bound on deg(g) from Theo-
rem 7.1, it is sometimes advantageous to ignore some of the Si’s when ap-
plying the bounds in this result. For instance, if n > 5 then we can choose
g(x) to have degree at most the size of the fifth-smallest Si. Likewise, if
n = 5 and one Si is much larger than the others then the best bound will
come from applying the first bound in Theorem 7.1 to the other four Sj ’s.
This shows that the first bound is sometimes better than the second bound
when they both apply; conversely, if n ≥ 5 and the Si’s are sets of the same
size then the second bound is better than the first.

Proof. By Theorem 3.1 there is a nonconstant g ∈ C(x) such that g(p) =
g(q). Choose one such g(x) for which k := deg(g) is as small as possible.
For each i, let Ri be a minimal shared multiset contained in Si \ ∪j 6=iSj , so
that the Ri’s are pairwise disjoint. Let I be the set of values i for which Ri
has the form Tαi with αi ∈ C∞. Theorem 6.7 implies that |I| ≥ n− 2, and
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in addition if |I| = n − 2 then there is some α ∈ C∞ for which Tα is the
union of copies of the two multisets Ri with i /∈ I. Thus if |I| = n− 2 then
V := g(∪ni=1Ri) has size n−1, and g−1(V ) is the union of copies of the Ri’s,
so Lemma 5.4 yields

2k − 2 ≥
∑
α∈V

(
k − |g−1(α)set|

)
= (n− 1)k −

n∑
i=1

|(Ri)set|

≥ (n− 1)k −
n∑
i=1

|(Si)set|,

whence k ≤ 1
n−3
(
−2 +

∑n
i=1|(Si)set|

)
. If |I| ≥ n − 1 then V := g(∪i∈IRi)

has the same size as I, so Lemma 5.4 yields

2k − 2 ≥
∑
α∈V

(
k − |g−1(α)set|

)
= k|I| −

∑
i∈I
|(Ri)set|

≥ (n− 1)k −
n∑
i=1

|(Si)set|,

so that again k ≤ 1
n−3
(
−2 +

∑n
i=1|(Si)set|

)
.

By Proposition 5.1 there are at most two elements i ∈ I for which g−1(αi)
consists of more than one copy of Ri. Thus if n ≥ 5 then, since |I| ≥ n−2 ≥
3, there is some i ∈ I for which g−1(αi) = Ri, so that

k = deg(g) = |g−1(αi)| = |Ri| ≤ max({|Sj | : 1 ≤ j ≤ n}).
Finally, if n ≥ 5 then k = |Ri| for some i, and every Rj is contained in some
g−1(αj) and hence has size at most k, so k = maxnj=1|Rj |. �

8. Classification results under additional hypotheses

In this section we apply our results in order to describe all p, q ∈M(Cm)
which share a collection of multisets that satisfy certain types of additional
constraints.

8.1. Three points. We first give a quick proof of the classification of p, q
sharing four multisets of which at least three have size 1. Later in this section
we will prove the analogous result in which “three” is replaced by “two”.
Since the proof of the latter result relies on the results of some long and
difficult papers, it seems worthwhile to illustrate the techniques by proving
the present special case.

Proposition 8.1. If distinct p, q ∈ M(Cm) \ C share CM three distinct
α1, α2, α3 ∈ C∞ in addition to a finite nonempty multiset of elements of
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C∞ \ {α1, α2, α3}, then p, q satisfy either case 1 of Table 1 (on page 28)
or case 1 or 6 of Table 3, after replacing p and q by µ ◦ p and µ ◦ q for
some Möbius transformation µ(x), and possibly interchanging p and q. The
minimal shared multisets for p and q are listed in case 1 of Table 2 or case
1 or 6 of Table 4.

Remark 8.2. In case the Si are sets and m = 1, Proposition 8.1 was proved
in [42], generalizing special cases proved previously in [21, 50].

Proof. By Theorem 3.1, we have g◦p = g◦q for some nonconstant g ∈ C(x).
Choose g(x) to have minimal degree. Since p 6= q, we have deg(g) > 1. By
Lemma 5.4, at most two points have a unique g-preimage, and if there
are two then all other points have deg(g) distinct g-preimages. Thus, by
Theorem 6.7, there are distinct α, β, γ ∈ C∗ satisfying one of the following:

(1) α, β each have a unique g-preimage, and (6.7.2) applies to g−1(γ)
(2) α has a unique g-preimage, β has two g-preimages, and (6.7.2) ap-

plies to g−1(β).

Replace g, p, q by µ◦g◦ν−1, ν◦p, ν◦q for suitable Möbius transformations
µ and ν in order to assume in (1) that g = xk and in (2) that g = xj(x−1)k,
where j, k are positive integers. In (1) we have p = ζq where ζ is a primitive
k-th root of unity, yielding case 6 of Table 3. In (2), if gcd(j, k) = 1 then
(g(x)−g(y))/(x−y) is irreducible by [4, Prop. 2.4 and Lemma 4.5], yielding
case 1 of Table 1. In (2), if ` := gcd(j, k) > 1 then p(x) = ζp(y) for some

primitive `-th root of unity ζ, and g = x` ◦ f where f(x) := xj/`(x− 1)k/`.
Then f(x) − ζf(y) is irreducible by [4, Lemmas 3.1 and 4.5], yielding case
1 of Table 3. �

8.2. Points in components of fibered products. One of the main ques-
tions we must address is: for prescribed nonconstant p, q ∈ M(Cm) such
that f ◦ p = f ◦ q for some f ∈ C(x) \ C, which of the possibilities in
Theorem 6.7 describes the minimal shared multisets for p and q? In partic-
ular, when does the unusual case (6.7.2) hold? We now recall some general
lemmas that are useful for resolving this.

Definition 8.3. For any f(x) ∈ C(x) \ C and any α ∈ C∞, we write ef (α)
for the multiplicity of f at α.

We will use the following three well-known results:

Lemma 8.4. Let g, h, p0, q0 ∈ C(x) \C satisfy g ◦ p0 = h ◦ q0 and deg(g) =
deg(q0), and suppose that the numerator of g(x) − h(y) is irreducible. For
any α, β ∈ C∞ such that g(α) = h(β), the intersection p−10 (α) ∩ q−10 (β)
contains precisely m := gcd(eg(α), eh(β)) distinct elements of C∞, and the
multiplicities of p0 and q0 at each such element are eh(β)/m and eg(α)/m,
respectively.

Lemma 8.5. Let g, p0, q0 ∈ C(x) \ C satisfy g ◦ p0 = g ◦ q0 and deg(p0) =
deg(g)−1 but p0 6= q0, and suppose that the numerator of (g(x)−g(y))/(x−y)
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is irreducible. For any distinct α, β ∈ C∞ such that g(α) = g(β), the inter-
section p−10 (α) ∩ q−10 (β) contains precisely m := gcd(eg(α), eg(β)) distinct
elements of C∞, and the multiplicities of p0 and q0 at each such element
are eg(β)/m and eg(α)/m, respectively.

Lemma 8.6. Let g, p0, q0 ∈ C(x) \C satisfy H(p0, q0) = 0 where H(x, y) is
an irreducible factor of the numerator of (g(x) − g(y))/(x − y) and the x-
degree of H(x, y) is deg(p0). For any α, γ ∈ C∞ such that eg(α) = eg(γ) = 1,

there is at most one point δ in p−10 (α)∩ q−10 (γ), and if such a point δ exists
then g(α) = g(γ) and α 6= γ and ep0(δ) = eq0(δ) = 1.

Remark 8.7. Although variants of these results have been used for over
100 years, the only reference we know which proves a result of sufficient
generality to imply Lemmas 8.4 and 8.5 is [12, Lemma 7.1], which actually
addresses the more general setting of fibered products of tamely ramified
branched covers of a nonsingular projective curve over an arbitrary field.
The above three results follow from [12, Lemma 7.1] upon noting that the
map z 7→ (p0(z), q0(z)) is the normalization map for the curve g(x) = h(y),
(g(x)− g(y))/(x− y) = 0, or H(x, y) = 0, respectively.

8.3. Four sets of size at most 2. We now use our results to prove a
several-variable generalization of the known classification of p, q ∈ M(C)
sharing four sets of size at most 2:

Proposition 8.8. Let p, q be nonconstant meromorphic functions on Cm.
If p, q share CM four pairwise disjoint nonempty subsets S1, . . . , S4 of C∞
with |Si| ≤ 2 then p = µ ◦ q for some Möbius transformation µ(x).

Remark 8.9. When m = 1, the above result is the combination of Nevan-
linna’s four-values theorem with the results of the papers [45, 46, 48, 50],
which address the cases that the number of Si’s of size 1 is 1, 0, 2, 3, re-
spectively. Further, the proof in [46] relies on [30], and the result in [48] has
extra hypotheses besides the sizes of the Si’s, but according to [46] the proof
in [48] does not require these hypotheses. Proposition 8.8 was conjectured
in [44], after special cases had been proven in [21, 36, 43, 48, 50].

Proof. Pick a minimal-degree g(x) ∈ G1, say with n := deg(g). Note that if
n = 1 then p = q, and if n = 2 then p = µ(q) for some Möbius transformation
µ(x) (as we explained after Theorem 1.2). Henceforth assume n ≥ 3. By
Theorem 6.7, at least two Si’s are unions of Tβ’s, say S1 and S2. If S1 is the
union of more than one Tβ then, since |S1| ≤ 2, Lemma 5.4 implies that each
element of C∞ \ g(S1) has n distinct g-preimages. Thus |S2| = n|g(S2)|, so
n ≤ 2, contradiction. Hence S1 = Tα for some α ∈ C∞, and likewise
S2 = Tβ. Upon replacing g by ν◦g for a suitable Möbius transformation ν(x),
we may assume that α = 0 and β =∞. Since S1 and S2 are sets, it follows
from the definition of Tγ that the divisor of g is uS1− vS2 for some positive
integers u and v with u|S1| = n = v|S2|. Writing d := gcd(u, v), since
|Si| ≤ 2 we see that d|Si| = n for at least one i ∈ {1, 2}, say for i = 1. Since
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all zeroes and poles of the rational function g(x) have multiplicity divisible
by d, we have g = hd for some h ∈ C(x), where deg(h) = n/d = |S1| ≤ 2
and S1 = h−1(0) and S2 = h−1(∞)set. The identity hd ◦ p = hd ◦ q implies
that h ◦ p = ζh ◦ q for some ζ with ζd = 1, where minimality of deg(g)
implies ζ is a primitive d-th root of unity. This yields the desired Möbius
transformation if deg(h) = 1, so we assume deg(h) = 2. Since n > 2 and
n = d · deg(h) = 2d, we must have d > 1. If the numerator of h(x)− ζh(y)
is reducible then each factor H(x, y) of this numerator has x-degree 1 and
y-degree 1, and some such factor satisfies H(p, q) = 0, so p = µ(q) for
some Möbius transformation µ(x). Henceforth assume the numerator of
h(x) − ζh(y) is irreducible. Each γ ∈ C∗ has d ≥ 2 distinct preimages
under xd, and hence has at least d distinct preimages under g, with equality
holding if and only if each d-th root of γ has a unique h-preimage. By
Lemma 5.4, at most two values have a unique h-preimage, so all but at
most one γ ∈ C∗ have more than two g-preimages. Thus (6.7.2) holds, so
p = p0 ◦ r and q = q0 ◦ r for some r ∈ M(Cm) and some p0, q0 ∈ C(x),
whence h(p0) = ζh(q0). We may choose p0, q0, r so that p0 has the smallest
possible degree, which in this case is 2 since h(x) = ζh(y) is irreducible and
deg(h) = 2. By Lemma 5.4, exactly two elements of C∞ have a unique p0-
preimage, which by Lemma 8.5 implies that exactly one element of C∞ has
a unique h-preimage and two ζh-preimages. Thus if ζ = −1 then the two
values with a unique h-preimage are not negatives of one another, so that for
any ζ each multiset Tβ with β ∈ C∗ contains at least three distinct elements.
From (6.7.2), it follows that there is some γ ∈ C∗ for which Tγ is the union of
copies of S3 and S4. Upon replacing g(x) by g(x)/γ, we may assume γ = 1,
so that S3 ∪ S4 = ∪θd=1h

−1(θ)set. If d > 2 then, since at most two of these
θ’s have a unique h-preimage, it follows that 4 ≥ |S3∪S4| ≥ 2d−2, so d = 3
and two cube roots of unity have a unique h-preimage. Upon multiplying h
by a suitable cube root of unity, we may assume that ζ and ζ2 have unique h-
preimages, so by Lemma 8.5 each of p−10 (h−1(ζ)) and q−10 (h−1(ζ2)) consists
of two points which each have unequal multiplicities under p0 and q0; thus
all four of these points must be Picard exceptional values of r, contradiction.
Hence d = 2, so the two values with a unique h-preimage are not negatives
of one another. If an element of {1,−1} has a unique h-preimage then we
get a contradiction in the same way as above, so assume that h−1({1,−1})
consists of four distinct elements. By Lemma 8.5, for each a ∈ A := h−1(1)
and each b ∈ B := h−1(−1), both p−10 (a)∩q−10 (b) and p−10 (b)∩q−10 (a) consist
of a single point. Since |A| = |B| = 2 and A∪B = S3 ∪ S4, this yields eight
points of p−10 (S3 ∪ S4) having different images under p0 and q0, where at

most two of these points are in p−10 (S3) ∩ q−10 (S3) and at most two are in

p−10 (S4) ∩ q−10 (S4). This leaves at least four points which must be Picard
exceptional values of r, contradiction. �

8.4. Restrictions on β in (6.7.2). We now present three results restricting
the elements β that can occur in (6.7.2). These use the set G1(p, q) from
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Definition 4.1. The goal of these results is to show that, for various choices
of g, p, q, there are only finitely many possibilities for an element β in (6.7.2),
so that testing these possibilities becomes a finite problem.

Lemma 8.10. Pick p, q ∈ M(Cm) \ C which can be written as p = p0 ◦ r
and q = q0 ◦ r with p0, q0 ∈ C(x) and r ∈M(Cm), and choose p0, q0, r which
minimize deg(p0). Suppose that G1 := G1(p, q) is nonempty, and let g ∈ G1
have minimal degree. If deg(p0) > max(1,deg(g)/2 − 1) and β ∈ C∞ has
deg(g) distinct g-preimages then g−1(β) is a minimal shared multiset for p
and q.

Proof. Suppose otherwise. By Theorem 6.7, g−1(β) contains two minimal
shared multisets S1 and S2, where in addition p−10 (Si) ∩ q−10 (S3−i) consists
of copies of a single point for each i ∈ {1, 2}. Without loss we may assume
that |S1| ≤ k/2, where k := deg(g). Since β has deg(g) distinct g-preimages,
we have eg(α) = 1 for each α ∈ g−1(β). By Lemma 8.6, for each α ∈ S1
we see that both p−10 (α) and q0(p

−1
0 (α)) are sets of size deg(p0), and the

latter set does not contain α. Since deg(p0) > k/2− 1 ≥ |S1| − 1, it follows
that q0(p

−1
0 (α)) contains at least deg(p0) − |S1| + 1 > 0 elements of S2 for

each α ∈ S1. Thus |S1| = 1 and deg(p0) − |S1| + 1 = 1, so deg(p0) = 1,
contradiction. �

Lemma 8.11. Pick p, q ∈ M(Cm) \ C which can be written as p = p0 ◦ r
and q = q0 ◦ r with p0, q0 ∈ C(x) and r ∈ M(Cm), and choose p0, q0, r
which minimize deg(p0). Suppose that deg(p0) > max(1, (deg(g) − 2)/4)
and G1 := G1(p, q) is nonempty, and let g ∈ G1 have minimal degree. If
β ∈ C∞ has deg(g) distinct g-preimages but g−1(β) is not a minimal shared
multiset for p and q then there exist distinct α, γ ∈ p−10 (g−1(β)) such that
p0(α) = q0(γ) and p0(γ) = q0(α).

Proof. Suppose otherwise. By Theorem 6.7, g−1(β) is the union of two
nonempty shared sets S1 and S2, where in addition p−10 (Si) ∩ q−10 (S3−i)
consists of copies of a single point for each i ∈ {1, 2}. Without loss we may
assume that |S1| ≤ k/2, where k := deg(g). Since β has deg(g) distinct
g-preimages, we have eg(α) = 1 for each α ∈ g−1(β). By Lemma 8.6, for

each α ∈ S1 we see that both p−10 (α) and q0(p
−1
0 (α)) are sets of size deg(p0),

and the latter set does not contain α. We show first that |S1| > 2: for, since
T := q0(p

−1
0 (α)) has size deg(p0) > 1 and contains at most one element of S2,

it must contain at least one element α′ of S1; since T does not contain α, we
have α′ 6= α, and U := q0(p

−1
0 (α′)) does not contain either α or α′, but U has

size deg(p0) > 1 and U contains at most one element of S2, so U contains an
element of S1 distinct from α and α′, whence |S1| > 2. Since q0(p

−1
0 (α))∩S2

is empty for all but one α ∈ S1, and has size 1 for the excluded α, it
follows that q0(p

−1
0 (α))∩S1 has size deg(p0) for all but one α ∈ S1, and size

deg(p0)−1 for the excluded α. Likewise p0(q
−1
0 (α′))∩S1 has size deg(p0) for

all but one α′ ∈ S1, and size deg(p0)− 1 for the excluded α′. Since |S1| > 2,
there is some α ∈ S1 for which both q0(p

−1
0 (α)) ∩ S1 and p0(q

−1
0 (α)) ∩ S1
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have size deg(p0). By hypothesis, these sets are disjoint from each other and
from {α}, so |S1| ≥ 1 + 2 deg(p0), whence deg(g) ≥ 2|S1| ≥ 2 + 4 deg(p0),
contradiction. �

Remark 8.12. It is straightforward to prove analogues of the previous
lemma with weaker bounds on deg(p0) but more possibilities in the conclu-
sion.

Although the hypotheses of the following result are quite special, they
cover situations arising in the proof of Theorem 8.19.

Lemma 8.13. Pick p, q ∈ M(Cm) \ C which can be written as p = p0 ◦ r
and q = q0 ◦ r with p0, q0 ∈ C(x) and r ∈ M(Cm), and choose p0, q0, r
which minimize deg(p0). Suppose that deg(p0) = 3 and q0 = p0 ◦µ for some
Möbius transformation µ(x) such that µ ◦ µ = x, and suppose in addition
that G1 := G1(p, q) is nonempty. Let g ∈ G1 have minimal degree, and pick
β ∈ C∞ which has deg(g) distinct g-preimages. If g−1(β) is not a minimal
shared multiset for p and q then deg(g) ≥ 10, and if deg(g) = 10 then there
are distinct α, γ ∈ g−1(β) such that q0(p

−1
0 (α)) = q0(p

−1
0 (γ)).

Proof. Since β has k := deg(g) distinct g-preimages, each α ∈ g−1(β) satis-
fies eg(α) = 1, and g−1(β) is a k-element set. By Lemma 8.6, if α ∈ g−1(β)

then each of p−10 (α), q−10 (α), q0(p
−1
0 (α)), and p0(q

−1
0 (α)) is a 3-element set,

where in addition the latter two sets do not contain α. Moreover, the prop-
erties of µ(x) imply that for γ, δ ∈ g−1(β) we have p−10 (γ) ∩ q−10 (δ) = ∅ if

and only if p−10 (δ) ∩ q−10 (γ) = ∅. By Proposition 6.7.2, if g−1(β) is not a
minimal shared multiset for p and q then g−1(β) is the union of two disjoint
minimal shared multisets S1 and S2, each of which is in fact a set. We may
assume |S1| ≤ |S2|. By Proposition 6.7.2, there is a unique δ ∈ S1 for which
p0(q

−1
0 (δ)) ∩ S2 is nonempty, and then p0(q

−1
0 (δ)) contains two distinct ele-

ments α, γ of S1 \ {δ}. Assume k ≤ 10, so that |S1| ≤ 5. Since p0(q
−1
0 (α))

is a three-element subset of S1 \ {α}, it contains at least one element ε of
S1 \ {α, γ, δ}. Then p0(q

−1
0 (ε)) is a three-element subset of S1 \ {δ, ε}, so it

contains at least one element π of S1 \ {α, γ, δ, ε}. Since |S1| ≤ 5, it follows
that S1 = {α, γ, δ, ε, π} and k ≥ 2|S1| = 10. Hence p0(q

−1
0 (ε)) = {α, γ, π}

and p0(q
−1
0 (π)) = {α, γ, ε}, so q0(p

−1
0 (α)) = {δ, ε, π} = q0(p

−1
0 (γ)), as de-

sired. �

8.5. Classifications under irreducibility hypotheses. We now deter-
mine all possibilities for p, q ∈ M(Cm) and all of their shared multisets in
two of the main classes of such p, q which satisfy the conditions of Theo-
rem 1.2.

Proposition 8.14. Let g, p0, q0 ∈ C(x) \ C satisfy g ◦ p0 = g ◦ q0 and
deg(p0) = deg(g)−1 but p0 6= q0, and suppose that the numerator of (g(x)−
g(y))/(x − y) is irreducible. Put p := p0 ◦ r and q := q0 ◦ r for some
r ∈ M(Cm) \ C. Then g(x) is a minimal-degree element of G1 for p and q.
Pick β ∈ C∞ and suppose that Tβ is not a minimal shared multiset for p
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and q. Then Tβ contains two minimal shared multisets, each of which has
size 1. Moreover, g, p0, q0, β, and the set E of Picard exceptional values of r
appear in Table 1, after we compose with Möbius transformations µ, ν, ρ to
replace g, p0, q0, r, β by µ ◦ g ◦ ν−1, ν ◦ p0 ◦ ρ, ν ◦ q0 ◦ ρ, ρ−1 ◦ r, µ(β).

Table 1

Case g p0 q0 β E

1 xj(x− 1)k
xj − 1

xj+k − 1
p0 ◦

1

x
0 {∞, 0}

2
(x2 + 2x− 1

3)2

x

−3x3

x3 + 1
p0 ◦

x+ 1

2x− 1
∞ {0,−1}

3
(x2 + 10x+ 5)3

x5

p0 =
1

25
x5 +

1

5
x4 +

3

5
x3 + x2 + x

q0 = p0 ◦
5

x
, β =∞, E = {∞, 0}

Note: j and k are coprime positive integers.

Proof. If g = u ◦ v with u, v ∈ C(x) then the numerator of g(x) − g(y) is
divisible by the numerator of v(x)−v(y), which in turn is divisible by x−y.
The irreducibility hypothesis therefore implies that g(x) cannot be written
as the composition of lower-degree rational functions, so Proposition 4.2
implies g(x) is a minimal-degree element of G1. For β ∈ C∞, define Tβ with
respect to g(x), and suppose that Tβ is not a minimal shared multiset for p
and q. By Proposition 6.7, Tβ is the union of more or more copies of each of

two distinct minimal shared multisets S1 and S2, where p−10 (Si)∩ q−10 (S3−i)
consists of one or more copies of a Picard exceptional value αi for r, and
p−10 (Si) and q−10 (Si) coincide except for copies of α1 and α2. For any a ∈ S1
and b ∈ S2, Lemma 8.5 implies that p−10 (a) ∩ q−10 (b) and p−10 (b) ∩ q−10 (a)
each contain gcd(eg(a), eg(b)) distinct points. Thus gcd(eg(a), eg(b)) = 1 and
each Si consists of copies of a single point, which by minimality of Si implies
|Si| = 1. Now the result follows by inspecting the list of possibilities in [13]
(or alternately [31]). The statement of the result takes into account the
possibility of equivalences between different examples caused by composing
with suitable Möbius transformations. �

Remark 8.15. In light of Theorem 6.7, the minimal shared multisets for p
and q in the three cases in Table 1 are as follows:

Proposition 8.16. Let f, p0, q0 ∈ C(x) \ C satisfy deg(p0) = deg(f) and
f ◦ p0 = ζf ◦ q0 where ζ is a primitive n-th root of unity with n > 1, and
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Table 2. Minimal shared multisets for p, q in Table 1

Case Minimal shared multisets not of the form g−1(α)

1 {∞}, {0}, {1}, and if j = k = 1 then {1/2}

2 {∞}, {0}, {roots of x2 + 2x− 1/3}

3 {∞}, {0}, {roots of x2 + 10x+ 5}

suppose that the numerator of f(x) − ζf(y) is irreducible. Put p := p0 ◦ r
and q := q0 ◦ r for some r ∈M(Cm) \C. Then g(x) := f(x)n is a minimal-
degree element of G1 for p and q. Pick β ∈ C∞ and suppose that Tβ is
not a minimal shared multiset for p and q. Then Tβ contains precisely two
distinct minimal shared multisets S1 and S2, at least one of which has size 1.
Moreover, f, p0, q0, β and the set E of Picard exceptional values of r appear
in Table 3, after we compose with Möbius transformations ν, ρ, and µ = αxε

with ε ∈ {1,−1} to replace f, p0, q0, r, β, ζ by µ ◦ f ◦ ν−1, ν ◦ p0 ◦ ρ, ν ◦ q0 ◦ ρ,
ρ−1 ◦ r, αnβε, ζε, and also after possibly replacing p0, q0, ζ by q0, p0, 1/ζ.
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3
0

K
E
N
T
A

S
U
Z
U
K
I

Table 3. Solutions where the numerator of f(x)− ζf(y) is irreducible

Case f p0 q0 ζ β E Conditions

1 xj(x− 1)k
δxj − 1

δxj+k − 1
xkp0(x) δk 0 {0,∞} j, k > 0 coprime; δk 6= 1

2
x2 + 2 ζ+1

ζ−1x+ 1

x

x2 + x

x− ζ

1
ζx

2 − x
x+ 1

ζ ∞ {−1, ζ} ζ /∈ {1,−1}

3
(x+ 1)2(x+ 6s+ 10)

x

−(s+ 1)x2(x+ 1)

x2 − sx+ 1

p0(x)

x3
−1 ∞ {0,∞} s2 = 3

4
x3 + 6x2 + 3x− 1

x

ωx2(x+ 1)

x2 − (2ω + 1)x− 1

−ωp0(x)

x3
ω ∞ {0,∞} ω3 = 1 6= ω

5
(x2 − 6x+ 1)2

x

x− 1

x4 + 2x3 + 2x2 + x
−x4p0(x) −1 ∞ {0,∞}

6 x x ζx ζ 1 {1, ζk} k ∈ Z, ζk 6= 1

7 2x2 − 1
2x

x2 + 1

x2 − 1

x2 + 1
−1 1 {1,∞}
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Proof. Since f(p) = ζf(q) and the numerator of f(x)− ζf(y) is irreducible,
the last assertion in Proposition 4.4 implies that f(x) is a minimal-degree
element of G2. In light of this, Proposition 4.4 implies that g(x) := f(x)n

is a minimal-degree element of G1. For β ∈ C∞, define Tβ as usual (with
respect to g(x)), and suppose that Tβ is not a minimal shared multiset for p
and q. By Proposition 6.7, Tβ is the union of one or more copies of each of

two distinct minimal shared multisets S1 and S2, where p−10 (Si)∩ q−10 (S3−i)
consists of one or more copies of a Picard exceptional value αi for r, and
p−10 (Si) and q−10 (Si) coincide except for copies of α1 and α2.

First suppose β ∈ {0,∞}. Then for any a ∈ S1 and b ∈ S2 we have
f(a) = β = ζf(b), so by Lemma 8.4 there are gcd(ef (a), ef (b)) distinct

points in p−10 (a) ∩ q−10 (b). Since this multiset consists of copies of a single
point, it follows that gcd(ef (a), ef (b)) = 1 and that each of S1 and S2
consists of copies of a single point, which by minimality of Si implies S1 =
{a} and S2 = {b}. By inspecting the list in [31] of all f(x) ∈ C(x) with
|f−1(∞)set| = 2 for which f(x) = ζf(y) defines an irreducible curve of genus
0, we find that cases (1)–(5) in Table 3 include all possibilities.

Henceforth suppose β ∈ C∗. Then f(S1)∪ f(S2) consists of all n-th roots
of β, so there exist a ∈ S1 and b ∈ S2 with f(a) = ζf(b). For any such a, b,
by Lemma 8.4 there are gcd(ef (a), ef (b)) points in p−10 (a) ∩ q−10 (b); thus
gcd(ef (a), ef (b)) = 1 and f(S1)∩ ζf(S2) consists of a single point w, where
in addition a is the unique point in f−1(w)∩S1 and b is the unique point in
f−1(w/ζ) ∩ S2. Writing k := deg(f), we may assume k > 1, since if k = 1
then we obtain case (6) in Table 3.

Now suppose f−1(w)set 6= {a}. Then f−1(w) contains an element of S2,
so that ζf(S2) contains ζw, whence f−1(ζw) is contained in S2. Continuing
in this way shows that S2 contains f−1(ζiw) for i = 1, 2, . . . , n − 1. Thus
(S1)set = {a}, so minimality of S1 implies S1 = {a}; also f−1(w/ζ)set = {b}.
Moreover, for any c ∈ f−1(ζw) we have c ∈ S2, and p−10 (c) ∩ q−10 (a) 6= ∅
by Lemma 8.4; thus f−1(ζw)set = {c}. By Lemma 8.4, a has a unique p0-
preimage, and each point in f−1(w) has at most k/2 distinct p0-preimages.
It follows from Lemma 5.4 that |f−1(w)set| ≤ 2. Since ef (a) is coprime
to k = deg(f), and k > 1, we have ef (a) 6= k, so that f−1(w) contains a
unique element d distinct from a. Thus ef (d) = k−ef (a) is coprime to k, so

|p−10 (d)|set = 1, which by Lemma 5.4 implies that every element of C∞\{a, d}
has k distinct p0-preimages. Moreover, the ζf -preimages of ζw are a and
d, and the f -preimage of ζw is c, so since ef (a) and ef (d) are coprime to
k = ef (c) we see that c has precisely two p0-preimages, whence k = 2. By
Lemma 5.4, there is a unique γ ∈ C∞ \{w/ζ} such that |f−1(γ)set| = 1, and
Lemma 8.4 implies that that |f−1(ζγ)set| = 1, since otherwise each element
of f−1(ζγ) would have a unique p0-preimage. Thus γ ∈ {0,∞}, so since
also ζw has a unique f -preimage, we must have ζw = w/ζ and hence n = 2,
yielding case 7 in Table 3.
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32 KENTA SUZUKI

Finally, suppose that f−1(w)set = {a}. Since gcd(ef (a), ef (b)) = 1 and
deg(f) > 1, we must have f−1(w/ζ)set 6= {b}. Thus upon replacing p0, q0, ζ
by q0, p0, 1/ζ, we reduce to the previous case. �

Remark 8.17. The minimal shared multisets for p and q in the seven cases
in Table 3 are as follows, where we recall that g = fn where n > 1 and ζ is
a primitive n-th root of unity:

Table 4. Minimal shared multisets for p, q in Table 3

Case Minimal shared multisets not of the form g−1(α)

1 {∞}, {0}, {1}

2 {∞}, {0}, f−1(0)

3 {∞}, {0}, f−1(0)

4 {∞}, {0}, f−1(0)

5 {∞}, {0}, {roots of x2 − 6x+ 1}

6 {∞}, {0}, {ζ, ζ2, . . . , ζk}, {ζk+1, ζk+2, . . . , ζn}

7 {∞}, {1}, f−1(0), {roots of f(x)n − 1 other than 1}

Remark 8.18. For f ∈ C(x) \ C and ζ ∈ C∗, write

Ff,ζ(x, y) :=

{
f(x)− ζf(y) if ζ 6= 1
f(x)−f(y)

x−y , if ζ = 1

and let Gf,ζ(x, y) be the numerator of Ff,ζ(x, y). The papers [13] (for ζ = 1)
and [32] (for ζ 6= 1) determine all pairs (f, ζ) for which Gf,ζ(x, y) is irre-
ducible and satisfies Gf,ζ(p, q) = 0 for some p, q ∈ M(Cm) \ C. Conversely,
for all such p and q, the minimal shared multisets for p and q are determined
by the combination of the results of [13, 32] with Propositions 8.14, 8.16,
and 6.7. We do not state this list here, since it involves many cases; but it
can be read off at once from the results in [13, 32]. Finally, we note that for
any pair (f, ζ) as above, it is a routine exercise to describe all corresponding
p, q.

8.6. Laurent polynomials. We now treat the case that some point has at
most two g-preimages. This is the most general class of rational functions
g(x) for which the solutions to g ◦p = g ◦q with p, q ∈M(Cm)\C have been
determined at present, other than the class in Remark 8.18 whose definition
involves an irreducibility hypothesis. We note that, although the previous
results in this section were elementary, the proof of the next result ultimately
relies on the classification of finite simple groups.
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Theorem 8.19. Pick nonconstant p, q ∈ M(Cm) such that h ◦ p = h ◦ q
for some h ∈ C(x) \ C such that some α ∈ C∞ has at most two distinct
h-preimages. Let g(x) be a minimal-degree nonconstant rational function
for which g ◦ p = g ◦ q, and suppose there is some β ∈ C∞ for which Tβ is
not a minimal shared multiset for p and q. Then, after replacing the triple
(g, p, q) by (µ ◦ g ◦ ν−1, ν ◦ p, ν ◦ q) for suitable Möbius transformations µ
and ν, we can write p = p0 ◦ r and q = q0 ◦ r for some p0, q0 ∈ C(x) and
some r ∈ M(Cm) with set of Picard exceptional values E such that one of
the following occurs:

(1) one of the possibilities in Proposition 8.14 or Proposition 8.16
(2) one of the possibilities in Table 5, where all minimal shared multisets

not of the form g−1(α) are presented in Table 6.
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3
4

K
E
N
T
A

S
U
Z
U
K
I

Table 5. Solutions where some element of C∞ has at most two g-preimages

Case g p0 q0 β E

1
(
x4 + 4x3 + 2x− 1

4

)2
x4

x2 − 2x+ 2

x3 + 2x2 + 2x
p0 ◦

2

x

∞ {∞, 0}

2 27 {t− 1, t+ 1}

3
(
x+

11− 5s

2

)2
(x2 + x− 1)4

x5

x2 + x+
3− s

2
−3− s

2
x3 + x2 − x

p0 ◦
3− s

2x

∞ {∞, 0}

4 0
{
−s+ 2,

−s− 1

2

}
5 (x+ s− 2)

(
x3 − x2 +

s+ 1

2
(x+ 1)

)3
x5

s+ 1

2

(
x3 + x2 +

3− s
2

x
)

x2 +
3− s

2
(x+ 1)

p0 ◦
3− s

2x

∞ {∞, 0}

6 0
{
−1,

s− 3

2

}
7 T3 ◦

x2 − 6x+ 1

8x
A(x) p0 ◦

2γ

x
1 E

8
Tn(x) ◦ x

2
x+

1

x
ζx+

1

ζx

1 {ζk, ζ−k−1}

9 −1 {η2k+1, η−2k−3}

Here t2 = 3, s2 = 5, A(x) :=
(2− γ)x(x+ γ)(x+ 2γ)

(x+ 1)(x+ 2)(x+ γ + 1)(3x+ 2γ + 2)
where γ = θ2 and θ4 − θ2 + 1 = 0,

E := {θ3 − 1, −θ3 − θ2 + θ}, and ζ = η2 where η is a primitive 2n-th root of unity with n ≥ 5,
and if n is odd then 0 ≤ k ≤ n−3

2 while if n is even then 0 ≤ k ≤ n−2
4 .
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Table 6. Minimal shared multisets for p, q from Table 5

Case Minimal shared multisets not of the form g−1(α)

1 {∞}, {0},
{

roots of x4 + 4x3 + 2x− 1

4

}

2

{3t− 5

2

}
,
{( t− 1

2

)∗3
,
(−t− 1

2

)∗3
,
−3t− 5

2

}
,

{∞, 0},
{

roots of x4 + 4x3 + 2x− 1

4

}
3 {∞}, {0},

{5s− 11

2
,
(s− 1

2

)∗2
,
(−s− 1

2

)∗2}
4

{5s− 11

2

}
,
{s− 1

2
,
−s− 1

2

}
, {∞, 0}

5 {∞}, {0}

6 {−s+ 2},
{−s+ 1

2
,
(ti+ 1)(s+ 1)

4
,
(−ti+ 1)(s+ 1)

4

}
, {∞, 0}

7 {∞, 0}, {roots of x3 + 1− 9(x2 + x)}, {7 + δ}, {1∗4, 7− δ}

8
{∞}, {2} ∪ {(ζj + ζ−j)∗2 : 1 ≤ j ≤ k}, and either S (if n odd) or

{−2} ∪ S2 (if n even), where S := {ζj + ζ−j : k + 1 ≤ j ≤ n−1
2 }

9 {∞}, {η2j+1 + η−2j−1 : 0 ≤ j ≤ k}, {η2j+1 + η−2j−1 : k < j < n}

Note: γ∗k indicates k copies of γ; also δ := 4θ3 − 8θ

Proof. By Theorem 6.7, we have p = p0 ◦ r and q = q0 ◦ r for some p0, q0 ∈
C(x) and some r ∈ M(Cm), and then g ◦ p0 = g ◦ q0. We may assume
p0 has the smallest possible degree. Also Tβ contains precisely two distinct

minimal shared multisets S1 and S2, where p−10 (Si) and q−10 (Si) coincide
except for elements of the set E of Picard exceptional values of r, with each
p−10 (Si) ∩ q−10 (S3−i) containing an element of E .

Case 1: First suppose the numerator of (g(x)−g(y))/(x−y) is irreducible.
Then the possibilities are described in Proposition 8.14.

Case 2: Next suppose µ(g(x)) = f(x)n for some f(x) ∈ C(x), some
Möbius transformation µ(x), and some integer n > 1, where in addition
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there is a primitive n-th root of unity ζ such that f ◦ p0 = ζf ◦ q0 and the
numerator of f(x)−ζf(y) is irreducible. Then the possibilities are described
in Proposition 8.16.

Case 3: Now suppose that some point has a unique g-preimage, but
neither of the previous cases applies. After composing with Möbius trans-
formations as in the conclusion, by [4] we may assume that g(x) = Tn(x/2)
with n ≥ 5, where p0(x) = x + 1/x and q0(x) = p0(ζx) for some primitive
n-th root of unity ζ. Thus p−10 (Si) = ζq−10 (Si) for each i.

We must have β 6= ∞, since T∞ = {∞} is a minimal shared multiset.
Since 2g(p0(x)) = xn +x−n, it follows that p−10 (S1) \ q−10 (S1) consists of one
or more copies of a single element α ∈ C∗, where β = (αn + α−n)/2.

If β2 6= 1 then M := {αγ : γn = 1} is disjoint from N := {1/γ : γ ∈ M},
and p−10 (Tβ) = M ∪ N . Since p0(N) = p0(M) = Tβ, each Si must contain

an element of p0(N), so that R := N ∩ p−10 (S1) is a nonempty proper subset

of N . Since α /∈ R, we must have R ⊆ q−10 (Si), which equals ζ−1R. But
|ζ−1R| = |R|, so that R = ζ−1R, contradicting the fact that R is a nonempty
proper subset of N .

Thus we may assume β2 = 1. Here p−10 (Tβ)set = {αγ : γn = 1}, so that

E\{α} = {αζ−`} for some integer ` with 0 < ` < n. Writing A := p−10 (S1)set,

we have q−10 (S1)set = ζ−1A, so that A\ζ−1A = {α} and ζ−1A\A = {αζ−`}.
It follows that A = {αζ−j : 0 ≤ j < `}, so |A| = `. Since p0 ◦ x−1 = p0,
the map x 7→ x−1 preserves the set A. Since |Aset| < n, it follows that
α−1 = αζ1−`, so that ζ` = ζα2. If n is odd then, since g, p0, q0 are all
preserved by conjugating by −x, we may assume β = 1, so that α = ζk with
0 ≤ k < n. After interchanging the Si’s if needed, we may assume 1 ∈ S1, so
that ` > k, which together with the bounds on k and ` and the congruence
` ≡ 2k + 1 (mod n) yields ` = 2k + 1. Thus |A| = ` = 2k + 1, so since
|A| < n we get k < (n−1)/2. If n is even then let η be a fixed square root of
ζ such that η is a primitive 2n-th root of unity. By interchanging the Si’s if
needed, we may assume |A| ≤ n/2. Since the triple (g(x), p0(x), q0(x)) equals
(g(−x), −p0(−x), −q0(−x)), we may replace the Si’s by their negatives if
needed, in order to assume that α = ηj with 0 ≤ j < n. If j is even then
j = 2k where as above we have ` = 2k + 1, so since ` = |A| ≤ n/2 we get
k ≤ (n−2)/4. Finally, if j is odd then j = 2k+1 where ` ≡ 2k+2 (mod n),
so that ` = 2k + 2 and thus k ≤ (n− 4)/4.

Case 4: Henceforth suppose that none of the previous three cases applies.
By [31], after replacing g, p0, q0 by µ◦g◦ν−1, ν◦p0, ν◦q0 for suitable Möbius
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transformations µ(x) and ν(x), one of the following occurs:

g(x) =
(x2 + 1)3

x2
(8.20)

g(x) = x2 ◦
x4 + 4x3 + 2x− 1

4

x2
(8.21)

g(x) =
(2x+ 11− 5s)2(x2 + x− 1)4

x5
where s2 = 5(8.22)

g(x) =
(x+ s− 2)

(
2(x3 − x2) + (s+ 1)(x+ 1)

)3
x5

where s2 = 5(8.23)

g(x) = Tn ◦ g0 where g0(x) :=
(ζ − 1)2(x2 + 1) + 2x(ζ + 1)2

8ζx

with ζ a primitive (2n)-th root of unity and n ≥ 3.

(8.24)

If any of (8.20)–(8.23) holds then we determine all irreducible factors
H(x, y) of the numerator of g(x)− g(y) such that the normalization of the
curve H(x, y) = 0 has genus 0 (and hence admits a parametrization by ratio-
nal functions) and also H(x, y) does not divide the numerator of f(x)−f(y)
for any f ∈ C(x) \C with deg(f) < deg(g). For each such H(x, y), we com-
pute p0, q0 ∈ C(x) such that H(p0, q0) = 0 and deg(p0) equals the x-degree
of H(x, y). In each case we find that q0 = p0 ◦ µ for some Möbius transfor-
mation µ(x) satisfying µ ◦ µ = x. Also in each case, either Lemma 8.10 or
Lemma 8.13 implies that β is a critical value of g(x). We then exhaustively
check all nonempty proper submultisets S of Tβ for each critical value β of
g(x), in order to determine all such S which are shared by p and q. We find
that the only possibilities are the first six cases in Table 6.

Finally, assume that (8.24) holds. By [31] we may assume that p0(x) =
N(x)/D(x) where

N(x) := −(ζ − 1)2x
(
x2 + x(ζ + 1)2 + 2ζ3 + 2ζ)

)
and

D(x) :=
(
(ζ + 1)(x2 + 2ζ2 + 2) + (3ζ2 + 2ζ + 3)x

)
·
(
ζx2 + (ζ + 1)2x+ 2(ζ2 + 1)

)
and q0 = p0 ◦ µ where µ(x) := 2(ζ2 + 1)/x. Here ρ(x) := −(ζ2 + 1)(x +
2ζ)/(x + ζ2 + 1) satisfies p0 ◦ ρ = p0 and ρ ◦ ρ = x = µ ◦ µ, and also the
fourth iterate (µ◦ρ)◦4 is x. Let α be the unique element of C∞ contained in
p−10 (S1) \ q−10 (S1). Define α2 := ρ(α), α3 := ρ(µ(α2), and α4 := ρ(µ(α3)).

First suppose α 6= αi for each i ∈ {2, 3, 4}. Since p0(α2) = p0(α), we
have α2 ∈ p−10 (S1), so since α2 6= α we get α2 ∈ q−10 (S1). Likewise p0(α3) =

q0(α2), so α3 ∈ p−10 (S1), whence also α3 ∈ q−10 (S1). Next, p0(α4) = q0(α3),

so α4 ∈ p−10 (S1), whence also α4 ∈ q−10 (S1). Then

q0(α4) = p0(µ(α4)) = p0(µ(ρ(µ(α3)))) = p0(µ(ρ(µ(ρ(µ(α2))))))

= p0(µ(ρ(µ(ρ(µ(ρ(α))))))) = p0(ρ ◦ (µ ◦ ρ)◦3(α)) = p0(µ(α)) = q0(α),
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so α ∈ q−10 (S1), contradiction.
If α = αi for some i ∈ {2, 3, 4} then we will exhibit γ, δ, ε ∈ C∞ such that

(8.25) p0(α) = p0(γ), q0(γ) = p0(δ), q0(δ) = p0(ε), and q0(ε) = q0(α).

In case

(8.26) α /∈ {γ, δ, ε},

it follows that p−10 (S1) ∩ q−10 (S1) contains each of γ, δ, ε, which yields the

contradiction α ∈ q−10 (S1).
If α2 = α then α2 + 2(ζ2 + 1)(α+ ζ) = 0. Let γ be a root of

ζ3x2/2 + (α+ ζ4 + 2ζ2 − ζ + 2)x+ (ζ2 + 1)α+ 2ζ4 − ζ3 + 4ζ2 − ζ + 2,

put ε := −α− 2ζ2 − 2, and let δ ∈ C satisfy

δ(1− ζ) :=((ζ2 + ζ)α+ 2ζ4 + ζ3 + ζ2)γ + (2ζ3 + 2ζ)α

+ 4ζ5 − 2ζ4 + 8ζ3 − 4ζ2 + 4ζ − 2.

These satisfy (8.25). If n > 3 then (8.26) holds, which we already know
is impossible. If n = 3 then a routine computation shows that in each
example there is a square root θ of ζ such that the Si’s are {4θ3 − 8θ + 7}
and {1∗4,−4θ3 + 8θ + 7} with E = {θ3 − 1,−θ3 − θ2 + θ}.

If α3 = α then α2 + 2(ζ2 + 1)(1 + 2α/(ζ + 1)) = 0. Let γ be a root of

x2(ζ3 − ζ)/2 + ((ζ + 1)α+ ζ4 + 2ζ2 − 2ζ + 3)x+ (ζ3 + ζ2 + ζ + 1)α

+ 3ζ4 − 2ζ3 + 6ζ2 − 2ζ + 3,

put ε := ((ζ + 1)α+ 2ζ2 + 2)/(ζ − 1), and let δ ∈ C satisfy

δ(ζ + 1)(ζ − 1)2 = γ(ζ + 1)
(
(ζ2 + ζ)α+ 3ζ3 + ζ

)
+ 2(ζ3 + ζ)(ζ + 1)α+ 2(3ζ5 − ζ4 + 6ζ3 − 2ζ2 + 3ζ − 1).

These satisfy (8.25) and (8.26), which we know is impossible.
Finally, assume that α4 = α. Then α2 + 2(ζ + ζ−1)(α+ 1) = 0. Let δ be

a root of

x2ζ3/2 + (ζα+ ζ4 + 2ζ2 − ζ + 2)x+ (ζ3 + ζ)α+ 2ζ4 − ζ3 + 4ζ2 − ζ + 2

put γ := −α− 2(ζ + ζ−1), and let ε satisfy

ε(1− ζ) = δ
(
(ζ3 + ζ2)α+ 2ζ4 + ζ3 + ζ2

)
+ 2(ζ4 + ζ2)α+ 2(2ζ5 − ζ4 + 4ζ3 − 2ζ2 + 2ζ − 1).

Once again, these satisfy (8.25) and (8.26), which is impossible. �
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8.7. Two points. We now classify the meromorphic p, q which share two
points in addition to two other sets.

Theorem 8.27. Pick distinct nonconstant p, q ∈M(Cm), and suppose that
p and q share CM four disjoint nonempty finite multisets S1, . . . , S4 of ele-
ments of C∞, where at least two of the Si’s have size 1. Then, after replacing
p and q by µ ◦ p and µ ◦ q for a suitable Möbius transformation µ(x), there
exist g, p0, q0 ∈ C(x) \ C and r ∈ M(Cm) such that p = p0 ◦ r, q = q0 ◦ r,
and g ◦ p0 = g ◦ q0, where g, p0, q0 and the set E of Picard exceptional values
of r are one of the following:

(8.27.1) One of the three cases in Table 1
(8.27.2) One of the seven cases in Table 3, where g = fn with n being the

multiplicative order of ζ
(8.27.3) Cases 1, 3, or 5 in Table 5
(8.27.4) g(x) = xn with n > 1, p0(x) = x, and q0(x) = ζx where ζ is a

primitive n-th root of unity, and either |E| < 2 or E = {β, γ} with
βn 6= γn

(8.27.5) g(x) = Tn(x/2) with n ≥ 5, p0(x) = x + 1/x, q0(x) = ζx + 1/(ζx)
where ζ is a primitive n-th root of unity, and E is either {1, 1/ζ} or
{δ, 1/δ3} with δ2 = ζ and δn = −1.

In cases (8.27.1), (8.27.2) and (8.27.3) the minimal shared multisets for p
and q which do not have the form g−1(α) with α ∈ C∞ are listed in Table 2,
4 or 6, respectively. In case (8.27.4) the only such minimal shared multisets
are {∞} and {0}. In case (8.27.5) the only such minimal shared multisets
are listed in Table 7.

Table 7. Minimal shared multisets for case (8.27.5)

E Condition Minimal shared multisets not of the form g−1(α)

{
1,

1

ζ

} n odd {∞}, {2},
{
ζk +

1

ζk
: 1 ≤ k ≤ n− 1

2

}
n even {∞}, {2}, {−2} ∪

{(
ζk +

1

ζk

)∗2
: 1 ≤ k ≤ n− 2

2

}

{
δ,

1

δ3

} n odd
{∞},

{
δ +

1

δ

}
,

{−2} ∪
{(
δk +

1

δk

)∗2
: 3 ≤ k ≤ n− 2, k odd

}
n even {∞},

{
δ +

1

δ

}
,
{
δk +

1

δk
: 3 ≤ k ≤ n− 1, k odd

}
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Proof. By Theorem 3.1, there is some g ∈ C(x) \ C for which g ◦ p =
g ◦ q. Choose one such g(x) having the smallest possible degree. If two
points in C∞ each have a unique g-preimage then, after replacing g, p, q by
µ ◦ p ◦ ν−1, ν ◦ p, and ν ◦ q for suitable Möbius transformations µ(x) and
ν(x), we may assume that g(x) = xn for some positive integer n, which
yields (8.27.4). Henceforth assume that at most one point in C∞ has a
unique g-preimage. Then Theorem 6.7.2 implies there is some β ∈ C∞ for
which Tβ is not a minimal shared multiset for p and q. Also Theorem 6.7.2
implies that some α ∈ C∞ has at most two distinct g-preimages, so the
hypotheses of Theorem 8.19 are satisfied, and the present result follows
from Theorem 8.19. �



20
20

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

es 
Award

MEROMORPHIC FUNCTIONS SHARING SEVERAL SETS 41

References
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