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ABSTRACT. Let p and ¢ be nonconstant meromorphic functions on C™.
We show that if p and ¢ have the same preimages as one another, count-
ing multiplicities, at each of four nonempty pairwise disjoint subsets
S1,...,54 of C, then p and g have the same preimages as one another at
each of infinitely many subsets of C, and moreover g(p) = g(q) for some
nonconstant rational function g(z) whose degree is bounded interms of
the sizes of the S;’s. This result is new already when m =-1) and it
implies many previous results about the extent to which asmeromorphic
function is determined by its preimages of a few pointstor/a few small
sets, in addition to yielding new consequences such as a ¢lassification of
all possibilities when two of the S;’s have size 1.
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2 KENTA SUZUKI

1. INTRODUCTION

As a consequence of his theory of value distribution of meromorphic func-
tions, Nevanlinna [35] showed that a nonconstant meromorphic function on
the complex plane is uniquely determined by its inverse images at any five
points of the Riemann sphere C,. He also showed that if nonconstant mero-
morphic functions p, g on the complex plane have the same preimages as one
another, counting multiplicities, at each of four points in C,, then there is a
Mobius transformation p such that p = pog. In this paper we develop a new
theory which addresses preimages of sets rather than merely preimages ‘of
points. In case the sets have size 1, our results generalize Nevanlinnals-four-
values theorem and the “counting multiplicities” version of Nevanlinna’s
five-values theorem. We will use the following standard terminology:

Notation. We write M(R) for the set of meromorphic functions on a com-
plex manifold R (which in this paper can always be assumed to be either
C™ or a compact Riemann surface such as the Riemann.sphere C).

Definition 1.1. We say that p, ¢ € M(R) sharée €M asubset S of C, if the
p-preimages of S coincide with the g-preimages’of|S; counting multiplicities.

Definition 1.1 involves the multiplicity ,ofsan element of R under an ele-
ment of M(R). We will recall the definition’of this notion in Section 2. We
note that this and other concepts becomeé simpler in case R has dimension
1, and that all results in this paper are new in the one-dimensional case.

Our first result asserts that i nenconstant p,q € M(C™) share CM four
“essentially different” finite sets,.then there is a nonconstant rational func-
tion g(x) € C(z) such that'gop = g o ¢ and deg(g) is bounded in terms
of the sizes of the shared sets; it follows that p and ¢ share CM (counting
multiplicities) infinitely many finite sets.

Theorem 1.2{ Pjick a positive integer m and nonconstant p,q € M(C™).
Suppose thatpiand q share CM each of n finite subsets S1,...,5, of Cx
for some.n > 4, where no S; is contained in U;x;S;. Then gop = goq for
some nonconstant g € C(x) such that deg(g) < n£3(—2 + >0 118i]), where
in addition if n > 5 then deg(g) < max;|S;|.

Note that if gop = g oq for some g € C(z) \ C then p~t(g () =
g g7 (a)) for each a € Cy, so if a is not a critical value of g(z) then
g () is a set of size deg(g) which is shared CM by p and ¢q. This yields
the following consequence of Theorem 1.2:

Corollary 1.3. If the conditions of Theorem 1.2 hold then p and q share CM
infinitely many pairwise disjoint k-element subsets of Coo for some integer
k with k < 25(=2+ 37" 11S]); moreover, if n > 5 then we may choose
k S maxz\5’1|

Theorem 1.2 is already new when m = 1, where it may be viewed as a
vast generalization of Nevanlinna’s “four values” result and the CM version
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of his “five values” result. For, if p, ¢ share CM five points then Theorem 1.2
implies that gop = goq with deg(g) = 1, so that p = ¢. Likewise if p, ¢ share
CM four points then Theorem 1.2 implies that gop = goq with deg(g) < 2.
If deg(g) = 1 then we again obtain p = ¢. If deg(g) = 2 then g = poz?ov for
some Mobius transformations y, v € C(x), so that 22 ovop = 22ovoq and
thus vop = evoq for some € € {1, —1}, whence p = noq where  := v~oev
is a Mobius transformation. In Section 8 we will show that our results also
imply many other results from the literature, in addition to yielding many
new results when one imposes further hypotheses on the sizes of the shared
sets 5;. Thus, our results provide a new perspective which connects.mamny
old and new results as being consequences of the single general Theorem’1.2.
Theorem 1.2 motivates the following definition:

Definition 1.4. We say that p,q € M(C™) are quasi-equivalent if there
exists a nonconstant g € C(x) such that gop =gogq.

We emphasize that quasi-equivalence is much, more restrictive than alge-
braic dependence. For instance, any two rational*functions p,q € C(x) are
algebraically dependent, but the vast majority.of such p,q are not quasi-
equivalent. Further, as explained before~Corollary 1.3, quasi-equivalence
is more directly related to value-sharinghquestions than algebraic depen-
dence. We have seen hundreds of papers about value-sharing which in-
clude examples showing that their results would not be true with weaker
hypotheses; but we checked thatlall such examples in these papers consist of
quasi-equivalent functionsy so(it is conceivable that the results of the papers
would remain true with weakerhypotheses, once one adds to the conclusion
some pairs of quasi-equivalént functions. More generally, it seems natural
to seek results showing that certain value-sharing hypotheses imply quasi-
equivalence, and eonversely to produce examples of non-quasi-equivalent
functions with interesting value-sharing properties.

Finally, we note that for applications of Theorem 1.2 it is crucial to have
a gooddbound on deg(g), in terms of the sizes of the shared sets. It turns
out that different types of arguments are needed to prove the existence of
gl(z) than to bound its degree.

Example 1.5. Theorem 1.2 cannot be improved to three shared sets, since
for instance p(x) := (e* +2)/(e® +1) does not take the values 1 or 2, so that
p and 2p share CM {oo}, {0}, and {2}, but there is no nonconstant g € C(x)
for which gop = go2p. In this example the meromorphic functions p and 2p
are algebraically dependent; more generally, we will show in Proposition 3.11
that if nonconstant p, ¢ € M(C™) are algebraically dependent and share CM
three disjoint nonempty finite sets then g(p) = ag(q) for some a € C* and
some nonconstant g € C(z). A different type of example is (e?” —1)/(e? —1)
and (e=*" —1)/(e~* —1), which are algebraically independent but share CM

{o0}, {0}, and {1}.
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Many authors have studied pairs of meromorphic functions which share
some sets of prescribed sizes. In order to apply our theory to this type of
question, and also in order to prove the bounds on deg(g) in Theorem 1.2,
we describe the collection of all sets shared CM by any two quasi-equivalent
meromorphic functions p and ¢. A routine set theory exercise shows that if
p and ¢ share two sets S and T, then p and ¢ also share SUT, SNT, and
S\ T. Thus every nonempty finite set which is shared CM by p and ¢ can
be written as the union of minimal shared sets, where we define a minimal
shared set to be a nonempty shared set which does not properly contain
any other nonempty shared set. Moreover, distinct minimal shared sets are
disjoint, and any union of minimal shared sets is again a shared set. /If p
and g are quasi-equivalent then let g(z) be a nonconstant ratiowal function
of the smallest possible degree such that g(p) = g(¢). Let Ay bethe set of
points a in Cy, such that g has the same multiplicity at each” g-preimage
of «; thus, A, includes all points which are not critical ‘walues of g (and
possibly some critical values as well), so that in particular A, includes all
but finitely many points of Coo. For each o € C,, wewrite g1 (a)set for the
set, of distinct g-preimages of a. As explained before Corollary 1.3, the set
971 (@)set is shared CM by p and q whenever, € A,. Conversely, in most
situations the collection of such sets g~A(a9ser-comprises all minimal shared
sets for p and ¢:

Theorem 1.6. For quasi-equivalent pjq € M(C™)\ C, let g(x) € C(z) be
a minimal-degree nonconstant’rational function for which gop = goq, and
define Ay as above. Then one‘gf‘the following occurs:

(1.6.1) The collection of‘all'sets g~ (a)set with o € Ay equals the collection
of all minimal shared sets for p and q.

(1.6.2) For some € Ay, g7 (B)set is the union of two distinct minimal
shared sets,S14S2, and the collection of all minimal shared sets for
p and g, consists of S1, S2, and all sets g1 () ser with o € Ay \ {B}.

In light of Theorems 1.2 and 1.6, in order to describe the possibilities
for p,qS1,.2.,54 where the S;’s are disjoint nonempty finite subsets of
Cs which are shared CM by p,q € M(C™) \ C, there are two remaining
problems:

(1:71) Determine all solutions to gop = gogq in nonconstant p,q € M(C™)
and g € C(x) \ C.

(1.7.2) For each solution (g,p,q) to (1.4.1) in which g has minimal degree
among all solutions to (1.4.1) for the relevant p and ¢, determine
whether (1.6.2) holds.

There are dozens of papers solving (1.4.1) when g, p, q satisfy additional
restrictive properties, for instance [2, 3, 4, 5, 6, 10, 15, 17, 18, 19, 23, 24, 25,
26, 29, 37, 41, 51, 52, 53]. The recent papers [9, 13, 31, 32] went beyond the
cases treated previously, by solving (1.4.1) when any of the following hold:

e the numerator of (g(z) — g(y))/(xz — y) is irreducible
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e g(x) = f(x)" for some positive integer n, where there is a primitive
n-th root of unity ¢ such that f(p(z)) = (f(q(x)) and the numerator
of f(z) — (f(y) is irreducible

e some a € C, has at most two distinct g-preimages.

By using a more detailed version of Theorem 1.6 (namely Theorem 6.7),
we will determine all situations when (1.6.2) holds in each of the above
three cases, yielding Proposition 8.14, Proposition 8.16, and Theorem 8.19,
respectively. An informal conclusion is that (1.6.2) rarely holds, except when
B has very few g-preimages. We note that the proof in case some element has
two preimages ultimately relies on the classification of finite simple groups,
which has not been applied previously to this type of question. (Werthen
use these results to exhibit all nonconstant p,q € M(C™) which share CM
two points and two distinct nonempty finite sets which do not'comtain either
point. The full result is Theorem 8.27; a concise consequence)is as follows.

Theorem 1.8. Suppose distinct nonconstant p,q & M(C") share CM four

disjoint nonempty finite subsets of Cso, of which,at least two have size 1. Let

g(x) be a minimal-degree nonconstant rational fupetion such that gop = goq.

Then there exist Mébius transformations p and v such that o gov is one

of the following:

1) ™(x —1)™ with m,n >0 and m Fn > 3

(2) 2™ withn > 2

(3) Tn(z) with n > 5, where T,,(ces ) = cosnb

(4) (C(—D(@*+1)+2(¢C+1)2)" /2™ with n > 3 and { a primitive n-th
root of unity

5) (v +a— )(2563 —22% 4 o+ 1)(z + 1))3/565 with o® =5

(293—}—11 5a)? (2 +x—1)4/a:5 with o® =5

(2% + 622 +33,— 1)3 /23

(435 +46ahd8x — 1)2 /24

(2% <6z + 1)*/2?

(w+1) (:U+6a+10) /x? with o =3

(22 + 10z + 5)3/2°

(12) (322 + 62 — 1)?/x.

Conversely, for each rational function g(x) in the above list, and any positive
integer m, there exist distinct nonconstant p,q € M(C™) which share four
disjoint nonempty finite subsets of Co, of which at least two have size 1,
where in addition g(x) is a minimal-degree nonconstant rational function
such that gop = gogq.

We now briefly explain how our results relate to previous results in the
literature. Suppose nonconstant p,q € M(C™) share CM the disjoint
nonempty finite subsets Si,...,S5, of Cs, where n > 4. When m = 1,
the possibilities when three S;’s have size 1 were determined in [42], gener-
alizing previous results of [21, 50] when a fourth has size 2. We will give
a very short self-contained proof of this special case of Theorem 1.8 (for
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all m) in Proposition 8.1, in order to illustrate how to apply our results to
specific situations. Likewise, in Proposition 8.8 we give a short proof of the
possibilities when four S;’s have size at most 2; when m = 1, this implies the
combination of Nevanlinna’s four-values result with the results of the papers
[45, 46, 48, 50], which address the cases that the number of one-element S;’s
is 1, 0, 2, 3, respectively. The paper [40] determined the possibilities when
m = 1 and the S;’s have sizes 1,1, 3, 3, which again follows easily from our
methods, and is a special case of the much more difficult Theorem 1.8. The
previous result closest to ours is [21, Thm. 3], which asserts that if m =1
and n > 4 and some S; has size 1 then p and ¢ must be algebraically depen-
dent. Finally, since p := e* and ¢ := —e® share CM each set S =4a&,~a}
with a € C\ {0}, it is not true that if n is big enough and the S;’ have the
same size then p = ¢, contradicting the assertion in [22, XXIIT}:

It would be interesting to seek analogues of our results for shared sets
ignoring multiplicities (IM). Some first steps in this direction are taken in
[44, 47], but the following questions remain open:

Question 1.9. Is there an absolute constant IV se that if nonconstant p, g €
M(C) share IM N disjoint nonempty finite subséts of Co, then gop = gogq
for some g € C(x) \ C?

Question 1.10. If nonconstant p, ¢ € M(€) share IM infinitely many finite
subsets of Co, then must there be some'g’'e C(z) \ C for which gop = goq?

Remark 1.11. Question 1.9 is,open even in the simplest case when p and ¢
are polynomials. Question 1.10,has an affirmative answer in that case, since
p and g only have finitely. many/critical values, so that by repeatedly taking
intersections and set differences of the given shared sets we obtain infinitely
many IM-shared sets, which contain no critical values and hence are shared
CM, whence the coficlusion follows from our results (or in this case from the
easier Lemma 3.9). *Finally, the multivariable analogues of these questions
are also open.

This‘paper is organized as follows. In the next section we list the notation
and terminology we will use. In Section 3 we show that if p,q € M(C™)
share four disjoint finite sets then gop = goq for some nonconstant g € C(x).
Our jproof combines several new ideas with ingredients from Nevanlinna’s
proof of his “four values” theorem, which in turn was based an earlier argu-
ment due to Pélya [38]. Our proof yields no bound on deg(g) in terms of the
sizes of the shared sets, and the next four sections are required to prove such
a bound. In Section 4 we describe the collection of all rational functions g(x)
which satisfy g o p = g o ¢ for prescribed meromorphic functions p,q on an
arbitrary complex manifold R. In Section 5 we prove some useful properties
about multiplicities of preimages of points under a minimal-degree noncon-
stant g(z) € C(x) satisfying g o p = goq. The results in Section 4 and
especially Section 5 are of independent interest; certainly the combination
of Galois-theoretic and topological methods used in these sections is quite
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different from previous work in the subject. In Section 6 we describe the
collection of all sets shared CM by any prescribed p,q € M(C™) for which
gop=goq for some g € C(x) \ C, and prove a refinement of Theorem 1.6.
In Section 7 we combine the results of the previous sections in order to prove
a generalization of Theorem 1.2. Finally, in Section 8 we prove several re-
sults that facilitate applying our results to specific situations, and use these
to classify all possibilities for p,q, S1,...,S54 when certain conditions hold.
This yields simple proofs of many previous results, in addition to several
new results such as a refinement of Theorem 1.8

2. NOTATION AND TERMINOLOGY

In this section we list the notation and terminology used, in, this paper.
These are also defined when first used, but we list them here for ease of
reference.

We first recall the standard definition of multiplicity_of points under a
meromorphic function.

Definition 2.1. Let R be a complex manifoldlet p: R — C be a holo-
morphic function which is not identically zéro, and let o be a point in
Z, = {p € R :p(B) = 0}. Further, let\Oy, be the local ring consisting of
the germs at « of holomorphic funetions) defined on a neighborhood of «,
and let Z be the ideal of O, consistifig, of all elements which vanish on Z,,.
Letting k be the maximal integerfor Which p € 7%, we say that p has a zero
of multiplicity k at o, and writewn,(a) == k. If a € R\ Z, then we define
my(a) == 0.

For any meromorphic function p € M(R) and a point a € R for which
p(a) € C, we may write p— p(a) in a neighborhood of « as the quotient of
two holomorphic functions ¢/r, and the multiplicity of p at « is vp(«a) =
mg(a) — my(c). *Finally, if p(a) = oo then the multiplicity of p at « is
vp(a) = vy /().

o C*:=C\ {0}

o Cy := CU{oo} is the Riemann sphere

¢ M(R) is the set of all meromorphic functions on the complex man-
ifold R

e for p € M(C™)\ C we write £(p) := Cs \ p(C™) for what is some-
times called the set of Picard exceptional values of p; Picard’s little
theorem says |E(p)| < 2

e a multiset (or “set with multiplicities”) is a collection of elements
which need not be distinct

e p~!(a) is the multiset of all preimages of a € C,, under some non-
constant p € M(R), counted with multiplicities

® Syt is the set of distinct elements in the multiset S

e if S is a nonempty finite multiset then gecdmult(S) denotes the great-
est common divisor of the multiplicities of all elements of S
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e if S is a multiset and k is a positive integer then S* denotes the
union of k copies of S

{a*™ b} is the multiset having m copies of a and one copy of b
Gi1(p, q) is defined in Definition 4.1

minimal shared multisets are defined in Definition 6.1

the multisets T,, are defined in Definition 6.3

T, (z) is the degree-n Chebyshev polynomial, namely the unique
polynomial such that 7;,(cos ) = cosnf.

3. FOUR SHARED SETS IMPLIES INFINITELY MANY

Theorem 3.1. If nonconstant p,q € M(C™) share CM each of four-finite
multisets S1,...,S4 of elements of Co, where no S; is contdined in the
union of the other S;’s, then g op = g o q for some nonconstant g € C(x).
Conversely, if p,q € M(C™)\C and g € C(z)\ C satisfy gep)= goq then p
and q share CM each of infinitely many pairwise disjoint k-element subsets
of Cx, where k := deg(g).

The proof of Theorem 3.1 relies on the following several-variable gener-
alization (see [16, Thm. 3.5] or [20, p. 54]) 6f a classical result of Borel
[8]:

Lemma 3.2. For anyn > 0, if r1, ..., are entire functions on C™ which
have no zeroes, and ri + --- 4+ r, =0, then r; = ar; for some i # j and
some a € C*.

We begin by adapting this“result to our setting. It is convenient to use
the language of divisors.

Definition 3.3. For any,complex manifold R, the divisor of a nonconstant
p € M(R) is the formal Z-linear combination of points of R defined as the
sum of the zeroegjof*p minus the sum of the poles of p, where the zeroes
and poles are.counted with multiplicities. If p is introduced as an element
of C(z) then we ¥iew p as an element of M(Cy ) when defining its divisor —
thus, ir this situation we allow co as a possible zero or pole of p, although
we wouldynot allow this if the same function p were instead introduced as
an. element of M(C).

Lemma 3.4. Pick p,q € M(C™)\ C and f;,g9; € C(x) \ C (fori=1,2,3),
and suppose that for each i the divisor of fi(p) equals the divisor of gi(q).
Then there exist integers ni,no,ns which are not all zero and for which
F(p)/G(q) is in C*, where F :=[[o_, fI" and G :=[[._, g/ If in addition
each f; has at least one zero or pole which is not a zero or pole of any other

fj, then F' and G are nonconstant.

Proof. Write h;(z,y) := fi(x)/gi(y) for i = 1,2, 3. Since the field extension
C(z,y)/C has transcendence degree 2, the three elements h; € C(x,y) must
be algebraically dependent. Thus there is a nonzero polynomial P(u,v,w) €
Clu, v, w] such that P(h1,ha, hs) = 0. Writing P(u,v,w) := > ¢y 5 u"v5w’
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where the sum is over a nonempty finite set A of triples (r, s,t) of nonneg-
ative integers, and each ¢, is in C*, it follows that Zcr,s,th}"hghg = 0.
Recall that the h;’s are in C(z,y), and substitute p for = and ¢ for y to
obtain Y ¢, s HI H HY = 0 where H; := hi(p,q) = fi(p)/gi(q). Since f;(p)
and g¢;(q) have the same divisor, their ratio H; has no zeroes or poles. Thus,
for each triple (r,s,t) € A, the function cm’tH{HjHé is entire and has no
zeroes, so by Lemma 3.2 there are two distinct triples (r, s,t) and (17, ¢, 1)
in A for which Hj Hy H: = o HJ H5 HY with a € C*. Writing ny := 7 —1/,
no := s — s, and n3 :=t — t/, it follows that H?:l H!" = a, or equivalently
F(p)/G(q) = a where F :=[[5_, f" and G := [[;_, ¢. Here ny,nasng are
integers which are not all zero.

Now suppose that each f; has at least one zero or pole §; which is not
a zero or pole of any other f;. Since at least one n; is nonzeroy it follows
that the corresponding &; is a zero or pole of F, so that Fis nonconstant.
G(q) = F(p)/« is also nonconstant, so that G is nonconstant as well. O

In order to apply Lemma 3.4 to specific p, ¢ &M (R), we need to exhibit
fi,gi € C(z) for which f;(p) and g;(¢) have the samexdivisor. In our situation,
fi will be a product of integer powers of thesxcharacteristic polynomials of
some shared multisets. By a slight abuse.gfuiotation, if S is a finite multiset
of elements of a complex manifold R thién we also write S for the divisor on
R defined as the formal sum of thé.elemeénts of the multiset S.

Lemma 3.5. Let p and q be nonconstant meromorphic functions on a com-
plex manifold R, and let S1 and.So be disjoint nonempty finite multisets of
elements of Cs such that.psand q share each S; CM. Then there are inte-
gers ni,ng > 0 and a nopconstant h € C(z) such that the divisor of h(z) is
n1S1 — naSy and thesdivisors of h(p) and h(q) are equal.

Proof. First assume that neither S; contains co. Let fi(x) := [[,cgq.(z — @)
be the characteristic polynomial of S;. By hypothesis, the f;’s are noncon-
stant coprime polynomials such that, for each i, f; o p and f; o ¢ have the
same zerges CM. Then h(z) := fi(x)38 72/ fy(2)4°8 /1 is a nonconstant ra-
tional function whose numerator and denominator are monic polynomials
of thessame degree, so that h(co) = 1. Thus the zeroes of h(p) coincide
CM-with the zeroes of fi(p)3°& /2, which coincide CM with the zeroes of
f1(q)4°8 /2 and hence with the zeroes of h(q). Likewise, the poles of h(p)
agree CM with the poles of h(q). Since the zeroes of h consist of |S3| copies
of S1, and the poles of h consist of |S1| copies of Sy, this proves the result
in case neither S; contains oo.

If some S; contains co then let 7' := S; U Sy and let p(z) be a Mdbius
transformation such that p(7") does not contain oo. Then p := pop and
q = puoq share CM each multiset S; := 1(S;), where the S;’s are nonempty
and disjoint but do not contain co. Thus there is a nonconstant he C(x)
such that iAL(ﬁ) and ﬁ((j) have the same divisor, where in addition the divisor
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of h is nlg’I - nggg for some positive integers nq,no. Then h := ho 1 has
divisor n151 — n2Se, and the divisors of h(p) and h(q) are identical. O

With these ingredients in hand, we now prove that if p and ¢ share four
multisets then we obtain a weaker version of our desired functional equation.

Proposition 3.6. For any nonconstant p,q € M(C™), and any pairwise
disjoint nonempty finite multisets Si,...,S4 of elements of Cs such that
p,q share CM each S;, there exist h € C(xz) \ C and v € C* such that
hop=~hoq. Moreover, h can be chosen so that its divisor is a Z-linear
combination of S1, 59,53, S4.

Proof. By Lemma 3.5, for each i = 1,2, 3 there exist a nonconstant h€ C(x)
and positive integers u;, v; such that h;(z) has divisor w;S; —;554 and the
divisors of h;(p) and h;(q) equal one another. By Lemma 344, there are

integers mi,ne,ns which are not all zero and for which ™ "= H?:1 hl' is
nonconstant and h(p) = v - h(q) for some v € C*. (Since.the divisor of h is
E?:l(niuiSi — n;v;Sy), this yields the result. O

Our proof of Theorem 3.1 also uses the following result of Coman and
Poletsky [11, Thm. 5.2]:

Lemma 3.7. If nonconstant p,q € M(€™) are algebraically dependent then
there exist a compact Riemann surface™R of genus 0 or 1, a holomorphic
map r: C™ — R, and po, qo € M(R)such that p=poor and g=qpor.

Remark 3.8. The special caseym = 1 of Lemma 3.7 was proved in [7,
Thm. 1] independently and‘simultaneously to [11].

In order to apply Lemma 3.7 to questions about shared multisets, we first
address shared multisets on a compact Riemann surface.

Lemma 3.9. \Let.R be a compact Riemann surface, and pick po,qo €
M(R)\ C. If Sy, Sy, Ss are disjoint nonempty finite multisets of elements
of CooBLuch that py,qo share CM Sy and S35, and p61(53)set C qO_I(Sg)set,
then gopg = go qo for some nonconstant g € C(x).

Proof.. Write v; == [[,eq,(z — @) and w = Ufegw/vgegvl. Since v; o po
and; o gop have the same zeroes CM, and w(oo) = 1, the functions w o pgy
and w o go have the same divisor. Thus v := w(pg)/w(qo) is a holomorphic
map R — C, which has no zeroes or poles, so compactness of R implies
v € C*. Compactness also implies that each element of S3 has the form
s = po(#) with # € R, and then w(po(f)) = yw(qo(#)) is in yw(S3). Thus
w(S3)set € Yw(S3)set- Since all zeroes and poles of w are in S; U Sa, the
set w(S53)set is contained in C*. Since this set is finite and nonempty, and
is preserved by multiplication by =, it follows that v = 1 for some positive
integer n, so that w” o pg = w™ o qq. [l

We also use the following generalization of Picard’s little theorem:
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Lemma 3.10. If R is a compact Riemann surface and h: C™ — R is a
nonconstant holomorphic map which is not surjective, then there exists a
biholomorphic map R — Cu, and R\ h(C™) has size at most 2.

Proof. For any nonempty finite subset £ of R \ h(C™), write Rp := R\ £.
Then h induces a nonconstant holomorphic map C™ — Ry, so Rg cannot be
hyperbolic (e.g. by [34, Lemma 2.3]). Thus R has genus zero (so R = C)
and & has size at most 2. O

Proof of Theorem 3.1. If gop = g o q then p and ¢ share CM the multiset
So =g }(a) for any o € Co. Plainly |S,| = deg(g) and S, NS =0 when
a # B, and moreover S, is a set whenever « is not one of the finitely many
critical values of g. Thus p and g share CM infinitely many pairwise disjoint
sets, each of which has size deg(g).

Conversely, we now assume that p and ¢ share CM eachyof four pairwise
disjoint finite multisets S, . . ., S4 of elements of C \where in addition no ; is
contained in the union of the other S;’s. Proposition 386 yields h € C(z)\ C
and v € C* such that hop = vh o g, and thus, prand ¢ are algebraically
dependent. By Lemma 3.7, there exist a ¢omipact Riemann surface R, a
holomorphic map 7: C™ — R, and po, do.&M(R) such that p = py o r and
q = qoor. Since p and ¢ are nonconstant, also pg, go,” are nonconstant.
The identity h o p = vh o ¢ now beeounies h opgor = vhoqgor, so that
hopg=~hogqy. Since R is compact,«we can speak of the degrees of py and
qo (i.e., the numbers of preimages of any point, counted with multiplicities),
and the above identity implies deg(h) - deg(pg) = deg(h) - deg(qo), whence
deg(po) = deg(qo)-

For any finite multiset, S of elements of Cs, the multiset p~1(S) is the
union of all r~(a)With a € py*(S). Thus S is shared CM by p and ¢
if and only if the(multiset differences py*(S) \ ¢5'(S) and ¢ '(S) \ py *(S)
each consist‘ofielements of £ := R \ r(C™). Since p,*(S) and ¢; ' (S) have
the same size, and they also have the same size after removing all copies of
elements,of & from both of them, it follows that p;'(S) and ¢; ' (S) contain
the same nmumber of elements of £ (when counted with multiplicities).

We may assume that at most two of the S;’s are shared CM by pg and
4o, since otherwise Lemma 3.9 produces g € C(z) \ C with g opy = g o qo,
whence also g o p = g o q. By relabeling the S;’s if needed, we may assume
that for i € {1,2} we have py*(S;) # qg *(S;), so that py* (S:) \ ¢g*(Si) and
g5 *(Si)\pg 1 (S;) are disjoint nonempty multisets of the same size which each
consist of elements of £. We have |£] < 2 by Lemma 3.10, and also the four
multisets p, 1(S;) are pairwise disjoint, as are the four multisets 9 1(sy).
Thus there are distinct a1, as € £, and positive integers eq, e, such that for
each i € {1,2}

. PEI(Si) \qo_l(Si) consists of e; copies of oy, and
e g1 (Si) \ py ' (S;) consists of e; copies of az_;.
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Since £ = {a1,az} is contained in py ! (S1 U S2) and gy *(S1 U Sa), it follows
that py ' (S;) = qp *(S;) for j € {3,4}. Next, for T := S; U Sy, the multiset
po H(T) is the union of U2 (py *(Si) Ny 1 (S;)) with e1 +eq copies of each a;,
and this union also equals ¢, 1(T). Hence py and ¢gg share CM the disjoint
multisets T, S3, and Sy, so by Lemma 3.9 there exists g € C(z) \ C such
that g o pg = g o qo, whence also gop=gogq. (]

We conclude this section with a variant of Theorem 3.1 addressing al-
gebraically dependent meromorphic functions which share three multiséts:
This result will not be used elsewhere in this paper.

Proposition 3.11. Suppose algebraically dependent p,q € M(C™)NC-share
CM three disjoint nonempty finite multisets S1,5%,53 of elements of Cuo.
Then g(p) = ag(q) for some nonconstant g(x) € C(z) and some, o € C*.

Proof. By Lemma 3.7, we can write p = pgor and q =%gg o r for some
compact Riemann surface R, some holomorphic map.r{ CI""' — R, and some
Posqo € M(R). Writing € := R \ r(C™), put 4; :=¢€ ﬂpal(Si) and B; :=
EN qo_l(Si). For each i € {1,2,3}, one of the follewing holds:

(2) A #0 =B,
(3) Ai=0+# B;

(4) Al 7é @ and Bi 75 @

Since the multisets p, 1(S;) and 9 1(S4) agree except for copies of elements
of A; in py*(S;) and elements of By in gy '(S;), we see that

e if (1) holds then pyL(Si)= ;' (Si)
e if (2) holds then |p§.l(Si)| > |gy ' (S))|
e if (3) holds then Ip; *(Si)| < |gg - (Si)]-
Since |py*(Si)| = dég(po) - |Sil, it follows that

o if (1) holds.then deg(po) = deg(qo)

e if (2) holds then deg(pg) > deg(qo)

e if (3) holds then deg(po) < deg(qo)-
Thus there cannot be 4,j for which two different cases among (1),(2),(3)
hold. “Since |€] < 2 by Lemma 3.10, there is at least one ¢ for which A4;
is“émpty, so that (1) or (3) holds for that ¢; and likewise there is at least
oné j for which B; is empty, so that (1) or (2) holds for that j. Thus
(1) holds for at least one i, and every j satisfies either (1) or (4). Write
fi(z) = [laes,(* — @), and put n; = [S;|. If po H(Si) = q5t(S;) for at
least two i’s, say @ = 1 and ¢ = 2, then for g := (f2)™/(f1)" we see
that g o pg and g o gy have the same divisor, so their ratio is constant by
compactness of R, yielding the desired conclusion. Henceforth assume that
there is exactly one i for which py'(S;) = ¢y (S;). We may assume that (1)
holds for ¢ = 3 but (4) holds for ¢ = 1 and i = 2. Then Ay, By, A2, B2 each
have size 1, and A1 U Ay and By U By are the same two-element set. Here
deg(po) = deg(qo), so that |py ' (Si)| = |y *(Si)| for each i, whence since the
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multisets of elements of Co \ € in py'(S;) and gy *(S;i) coincide, it follows
that the multisets of elements of £ in py ' (S;) and g5 ' (.S;) have the same size.
Since A1NB; = 0, we have A; = By = {1} and As = By = {as}, where, for
i € {1,2} and some positive integer e;, the multisets py ' (S;) \ g5 *(S;) and
a0 1(SZ-) \Po 1(Si) consist of e; copies of «; and e; copies of az_;, respectively.
Putting h := (f1)2(f2)¢", it follows that h(pg) and h(gp) have the same
zeroes CM, so for g := h"™3 /(f3)98(") the functions g(pg) and g(qo) have the
same divisor and hence have constant ratio. Finally, g(x) is nonconstant
since each element of S3 is a pole of g(x). O

4. MINIMAL RELATIONS BETWEEN MEROMORPHIC FUNCTIQNS

Theorem 3.1 yields nonconstant rational functions g(z) such,that g(p) =
9(q), for prescribed p,q € M(C™) \ C satisfying certain-shared-multiset
hypotheses. In this section we describe the collection of all'tational functions
g(x) satisfying g(p) = g(¢q). We also solve the analogous problem for the

equation g(p)/g(q) € C*.

Definition 4.1. For any complex manifold R-and any nonconstant p,q €
M(R), let Gi(p,q) be the set of all g € C(@)\\C such that gop = gog.
When the choices of p and ¢ are clear, we™write G; for Gi(p, q).

Proposition 4.2. Let R be a complex 'manifold, and pick p,q € M(R)\ C.
If Gy is nonempty and g1(x) is a mingmal-degree element of Gy then G =
{dogi:d e C(z)\ C}.

Proof. Let L be the set ofallig(x) € C(x) for which gop = goq. Then
L contains C and is preserved by addition, multiplication, and division by
nonzero elements, so L is a field between C and C(x). Since L # C by
hypothesis, Liiroth’s theorem [39, Thm. 2] implies L = C(h(x)) for some
nonconstant h(z) & L. For any minimal-degree g € Gi, since g1 € L we
have g1 = pdh+or some nonconstant y € C(x). Minimality of deg(g) implies
p(x) is a Mobius transformation, so that L = C(g1(x)), which implies the
conclugion. U

In the applications of our main results in Section 8, we will use an analogue
of Pyoposition 4.2 for the set 2 of g € C(x) such that g(p)/g(¢q) € C*. Our
proof of Proposition 4.2 does not carry over to this situation, since §2 is
not closed under addition. We will circumvent this issue by showing that if
g, h € Q then the field C(g(x), h(x)) equals C(f(z)) for some f € Q. This is
the key to the proof of the next result.

Definition 4.3. For any complex manifold R, and any nonconstant p,q €
M(R), let Ga(p, q) be the set of all g(z) € C(x)\C for which ¢g(p)/g(q) € C*.
When the choices of p and ¢ are clear, we write Ga for Ga(p, q).

Proposition 4.4. Let R be a complex manifold and pick p,q € M(R) \ C.
Suppose Go is nonempty, and let ga(x) be any element of Ga having the
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smallest possible degree. Writing o := g2(p)/g2(q), define

) n if ais a primitive n-th root of unity
' 0 if a is not a root of unity.

Then Gs is the set of nonconstant rational functions of the form (x*u(z®))ogs

with k € Z and v € C(x). Moreover, if h € Gy and B := h(p)/h(q) then the
numerator of h(xz) — Bh(y) is divisible by the numerator of ga(x) — aga(y).

Proof. For any h € Gy, put 8 := h(p)/h(q), and note that a, 8 € C*. Sinee
C(ga2(x), h(x)) is a subfield of C(x) which properly contains C, Liiroth’s the-
orem implies C(ga2(z), h(z)) = C(f(x)) for some nonconstant f(z)€ C(z).
Since C(f(z)) contains both go(x) and h(z), we have go = goo f and)i’ = hof
for some nonconstant g, h € C(x). Since f(x) € C(ga2(x), h(x)), there is a bi-
variate rational functlon H(z,y) € C(x,y) such that H(ga(%),h(z)) = f(x).
Rewriting this as H(g2(f(x )),?L( f(z))) = f(z) shows that, H(g2(z), /f;(x)) =
z. Thus

fop=H(g20p hop)=H(agzoq Bhoq)=H(agro foq,fhofoq).
Let pu(z) := H(ag(z), Bh(x)), so that y € C(®)"and po foq= fop. Then
Gopofoq=gofop=gaep=agoqg=agofoq,
so that ga o u = «gs. Therefore w(®) is a Mobius transformation which
permutes each of the multisets g3~ '(0) and g~ '(c0). These two multisets
are nonempty, finite, and disjoint!” Every M&bius transformation has the
form v~1 0 § o v for Mébius ‘transformations v(z) and (x) where 0(z) is
either vx (with v € C%) orva 1. Since x + 1 only preserves one nonempty
finite subset of C, namely {co}, also =% o (z + 1) o v only preserves one

nonempty finite subset,of Co. Thus p = v~! oyxov for some v € C*. Since
po foqg= fop,itfollows that

Yo fogq=vopofogq=vofop,
so thatwo f € Ga. Since g2 = g2 0 f, minimality of deg(g2) implies deg(g2) =
1, so that¥f = ¢ ! o g9 and thus
hz/f\Lof:/f\Log/\g_loQQ,

Therefore h = d o go with d € C(x).
Conversely, for any nonconstant d € C(x) and any § € C*, put h := dogs.
Then h(p) = Sh(q) if and only if

Bdogsoq=ph(q) =h(p) =dogaop=doagsogq,

or equivalently Sd = d o ax. All solutions to the latter equation were de-
scribed in [1] and [33], yielding the desired description of Gs. For any such
h(zx), since x —y divides the numerator of d(x) — d(y), substituting g2(x) for
x and agz(y) for y shows that the numerator of go(z) — aga(y) divides the
numerator of d(ga2(z)) — d(aga(y)) = h(z) — Bh(y). O
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5. COMPLETE MULTIPLE VALUES OF THE MINIMAL-DEGREE RATIONAL
FUNCTION RELATING p AND q

In this section we prove a result about the multiplicities of points under a

minimal-degree g € G1; this will be used in our proof of Theorem 1.2. Recall
that if S is a multiset then Sge denotes the underlying set, and gedmult(.S)
denotes the greatest common divisor of the multiplicities of all the elements
of S.
Proposition 5.1. For a complex manifold R, and nonconstant p,q € M(R)s
suppose that g(p) = g(q) for some g € C(x) \ C, and choose one such g(x)
of minimal degree. Then there are at most two points a € Cs for=which
gedmult(g~1(a)) > 1.

We will deduce Proposition 5.1 from the following result, “which is of
independent interest.

Proposition 5.2. Pick a nonconstant g € C(x) and (distinct a1, as, a3 €
Co- Suppose that e; := gedmult(g~'(cy)) is at least™2, for each i = 1,2, 3.
Then the triple (e1, ez, e3) is a permutation of am.element of

N :={(2,2,7): r>1}U{(2,3,8): 83 < s <5}
Let  be a permutation of {1,2,3} such thatthetriple N := (ex(1); €x(2), €x(3))
is in N, and let p(z) be the unique Mgbis transformation which maps the
points (1), Qr(2); A3 to 1, 0, dogmespectively. Then pog = fyoh for
some h € C(x), where
(aj’l” + 1)2

Al

f N@M 82)?
(2338 64(z3 —1)3
1 (2% 4 142t +1)3
(2347 T108(2% — 2!
; (20— 22821% + 494210 4 22825 + 1)3
23,8~ —1728(2'1 + 1126 — )5 '
Conversely, for each N € N we have
gedmult(fy'(1)) = N(1)
gedmult(f5'(0)) = N(2)
gedmult(fy' (c0)) = N(3),
and there is a finite set Ty of Mdbius transformations such that

[Ler, (x—v()
where Dy (x) is the denominator exhibited in the definition of fn(z). Fi-
nally, for each v € Ty there is a positive integer k with k < deg(fn) such
that the composition vovo---ov of k copies of v equals x.

fearn =
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Remark 5.3. The rational functions fy(z) in Proposition 5.2 date back
at least to the 19-th century book of Klein [27]. These rational functions
generate the fields of rational functions invariant under the non-cyclic finite
rotation groups of the sphere, namely the groups of rotational symmetries
of the regular dihedron, tetrahedron, octahedron, or icosahedron. Thus the
field extension C(z)/C(fn(x)) is Galois with Galois group D,, A4, Sy or
As according as N is (2,2,7), (2,3,3), (2,3,4), or (2,3,5); moreover, the
elements of the Galois group are the maps = — v(x) with v € Ty. For a
beautiful exposition of this material, see [49].

Proof that Proposition 5.2 implies Proposition 5.1. Let aq, as, ag be distinct
points in Cs, and suppose that each value e; := gedmult(g~' (o)) is greater
than 1. Proposition 5.2 implies that @ o g = fy o h for some Mobius trans-
formation u(z), some N € N, and some h € C(z). Since g¢(p)’= g(q), we
have fn(h(p)) = fn(h(q)), so that [] oz, (h(p) — v(h(g)))== 0, and thus
h(p) = v(h(q)) for some v € Ty. By Proposition~5.2, the order of v(x)
under composition is an integer k£ which is less than"deg(fn). We will give
two different proofs that this information yields“a contradiction, one using
Galois theory and one from first principles.

We first give the algebraic proof. The function o: C(z) — C(x) defined
by o(u(x)) := u(v(x)) is an order-k automorphism of the field C(z). Writing
L for the set of elements of C(z) fixed by o, Artin’s theorem from Galois
theory [28, Thm. VI.1.8] implies that L is a subfield of C(z) such that
[C(x) : L] = k. Since L propetly~contains C, by Liiroth’s theorem we have
L = C(u(x)) for some nonconstant u(x) € C(x), and it is known that [C(z) :
Clu(z))] = deg(u). Butthen u(h(p)) = u(v(h(a)) = o(u)(h(a)) = u(h(a)),
which contradicts minimality of deg(g) since deg(u o h) = k - deg(h) <
deg(fn) - deg(h) = deg(g)-

We now give the'self-contained proof. If v(co) # oo then the numerator
of the rational|function v(z) — x has degree 2 and hence has a zero in C.
Thus in any case the set S of fixed points of v(x) is nonempty. Let p(z)
be a Mobius transformation such that p(oo) € S and if |[S| > 1 then also
p(0) €8y Then 6 := p~! ov o pis a Mobius transformation having |S| fixed
points and having the same order under composition as does v(z), which
by _Proposition 5.2 is an integer k less than deg(fn). If |S| = 1 then oo
is the unique fixed point of #(x), so that #(x) is a degree-one polynomial
and 6(z) — x is a nonzero constant §, whence #(x) = x + ( has infinite
order under composition, contradiction. Thus |S| > 1, so #(x) fixes 0 and
0o, and hence §(z) = (z for some ( € C*. Plainly the order of 6(z) under
composition is the order of ( under multiplication, so that ( is a primitive
k-th root of unity. Since p~(h(p)) = (p~1(h(q)), it follows that G; contains

z¥ o p~1 o h, contradicting minimality of deg(g). O

We have now reduced the proof of Proposition 5.1 to the proof of Propo-
sition 5.2. Our proof of the latter result uses the following version of the
Hurwitz genus formula for holomorphic maps Coo — Coo:
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Lemma 5.4. Any g € C(x) of degree k > 0 satisfies

2k—2= > (k- g7 (a)se).

acCqo

The Hurwitz formula immediately implies that for any nonconstant ra-
tional function g(x), there cannot be four distinct points o € C for which
|97 (a)set| < deg(g)/2, and hence there cannot be four distinct o € Cop for
which gedmult(g~!(a)) > 1. However, there do exist nonconstant g € C(x)
for which gedmult(g~!(a)) > 1 for three distinct o € Co, and the goal of
Proposition 5.2 is to describe them all. Although the existence of such fune-
tions was known long ago, the classification of them is new, and our-proof
of this classification is rather indirect and unexpected.

Proof of Proposition 5.2. Writing k := deg(g), we have |g~1(a;)set| < k/e,
so Lemma 5.4 implies that
3 X 3 i
22> 3 (kg (a)al) = S (5T,

whence Zg’zl 1/e; > 1. Since the e;’s are integers greater than 1, and since
1=1/341/3+1/3 =1/2+1/44+1/4'=)1/2+ 1/3 + 1/6, it follows
that (e1,e2,e3) is a permutation of an. element of N. Now let m, N, u
be as in the statement of the result. Tt/is easy to check directly that for
v € Cs the multiplicity of fy at v is N (1), N(2), N(3), or 1, according as
fn()is 1, 0, oo, or another vahies Now view fy and g := po g as branched
coverings 5% — S2, and let B(be the set of branch points of g, which includes
the branch points of fx'\, Thenthe branched coverings fy and § become
topological covering maps when we restrict the domain to avoid preimages
of B, yielding finite tepological covering maps 1 : S\ f5'(B) — S%\ B and
¢ : 5?2\ g H(B), 5%\ B. Form the pullback of ¢ along v as usual, yielding
the diagram

T2

X S*\ fy'(B)

| |+

s2\51(B) — 2 52\ B

where X = {(a,b) € (S2\ §71(B)) x (% \ fx'(B)): 6(a) = (1)} and
and 7y are projections on the first and second coordinates, respectively. We
may compactify the topological covering map ¢ om : X — S?\ B (see
e.g. [14, §2]) in order to obtain a branched covering 7 : X — $? which
factors as 1 = g o = fy o3 where 7; is the induced extension of ;. For
each 3 € S2, the multiplicity under g of every point in g=!(3) is divisible
by the multiplicity under fy of every point in f&l(ﬂ), so by elementary
covering space theory it follows that 77 is an unbranched covering. Since S?
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is simply connected, this implies that the restriction of 7 to any connected
component Y of X will be a homeomorphism #;: Y — 82, so if 65 is the
restriction of 773 to Y then g = fyofy0 01_1. Here 65 0 91_1 is a finite-degree
branched covering S? — S2. Of course, any such branched covering induces
a holomorphic function Co, — C.,, which in turn is a rational function
h(z) such that po g = fy o h. Finally, the remaining assertions about the
factorization of fy(x) — fn(y) and the orders of elements of T are easy to
verify directly, given that T is the group (under the operation of functional
composition) generated by the set Uy defined as follows:

U(2,2,7”) = {C:Ee: CT = 17 ec {13 _1}}

[ omij3, TH2
Uiss) = {e / z, ﬁ}
.o x+1
U@3a) = {z:c, p— 1}
G+ 1r+1 »
Uas) = {6z (g;—g2)—1} where {23 €*™/7. O

Remark 5.5. The topological argument in the above proof can be written
in the language of algebraic geometry, by considering the normalizations of
components of the fibered product of the, morphisms P! — P! induced by
fn and pog. We chose topological language since we thought this would
be more familiar to some complex analysts in our audience.

6. MANIMAL SHARED MULTISETS

In this section we provesa generalization of Theorem 1.6, by describing
the collection of all shared multisets for some nonconstant p,q € M(C™),
under the assumption‘that g(p) = g(q) for some nonconstant g € C(x). We
begin by addréssingvthe analogous question for meromorphic functions on
an arbitrary complex manifold.

6.1. Arbitrary complex manifolds.

Definition 6.1. For any complex manifold R and any nonconstant p,q €
MR, a minimal shared multiset for p and ¢ is a nonempty finite multiset
S of elements of C,, such that S is shared CM by p and ¢, but no nonempty
proper sub-multiset of .S is shared CM by p and q.

Lemma 6.2. If S is a finite multiset of elements of Co, then S is shared
CM by p and q if and only if S is the union of finitely many minimal shared
multisets for p and q.

Proof. If S is shared, and T is a minimal shared multiset contained in S,
then S\ T is a shared multiset which is smaller than S, so by induction on
|S| we see that S is a union of minimal shared multisets. Conversely, any
union of shared multisets is itself shared. ]
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In light of the above result, in order to describe all shared multisets for
p and ¢, it suffices to describe the minimal shared multisets. We now intro-
duce a large collection of shared multisets T, in case g(p) = g(q) for some
nonconstant g € C(z). It will turn out that, in many situations, these Ty,
comprise the collection of all minimal shared multisets.

Definition 6.3. Let p and ¢ be nonconstant meromorphic functions on a
complex manifold R, and suppose that the set G; from Definition 4.1 is
nonempty. Let g € G; have the smallest possible degree. For any a € Cx,
let R, be the multiset g~!(a), let gcdmult(R,,) denote the greatest commén
divisor of the multiplicities of the elements of R,,, and let T,, be the multiset
having the same underlying set as R, but in which the multiplicity of each
element is 1/ gcdmult(R,) times the multiplicity of the element\in/ R,,.

Example 6.4. If p = ¢ and ¢ = —e” for R = C then wemay choose g(z) to
be x2, so that Ry = {0,0} has gedmult(Ry) = 2 and thus Ty = {0}; likewise
T = {00}, but for any a ¢ {0,00} we have R, =S58} with 3% = «, so
that gedmult(R,) = 1 and T, = R,.

Lemma 6.5. Let p,q be nonconstant meromorphic functions on a complex
manifold R such that Gi is nonempty. Then)each T, with a € Cy is a
nonempty finite multiset which is shared CM-by p and q, and every minimal
shared multiset is contained in one,of the)multisets T,,. The collection of all
T, ’s depends only on p and q, and not on the choice of a minimal-degree
function in G.

Proof. By taking preimagés of oron both sides of the equation gop = gogq,
we see that p,q share CNM\Ry, 'and hence also T,,. Plainly T}, is nonempty
and finite. By Proposition 4.2, any other choice of g has the form g := pog
for some Mébius transformation p; denoting the corresponding multisets by
fa, it follows that 4, = T\M(a), so that the collection of all T,,’s equals the

collection of‘all fa’s. Finally, the union of the T,’s is C,, so for any minimal
shared multiset 'S there is some « for which S N T, is nonempty; but then
S N T4 18, a shared multiset, so minimality of S implies S NT, = S, whence
S C Ty O

We now show that if R is a compact Riemann surface and G; is nonempty
then the T, comprise all minimal shared multisets for p and q.

Proposition 6.6. If p and q are nonconstant meromorphic functions on a
compact Riemann surface R, and Gy is nonempty, then the minimal shared
multisets for p and q are precisely the multisets T, with a € Co.

Proof. Pick a minimal-degree ¢ € G;, and suppose that some 7, is not
a minimal shared multiset. Since T, is shared CM by p and gq, it is the
union of two or more (not necessarily distinct) minimal shared multisets.
Since gedmult(7y,) = 1, these minimal shared multisets in T;, cannot all be
equal, so T, contains two disjoint minimal shared multisets S; and S;. By



20 KENTA SUZUKI

Lemma 3.5, there are integers ni,ny > 0 and a nonconstant h € C(x) such
that the divisor of h(x) is n151 —n2Ss and the functions h(p) and h(q) have
the same divisor. Then 7 := h(p)/h(q) is in C* since R is compact. For any
B € Cx with 8 # «, the set h(Tp)set is @ nonempty finite subset of C*, and
for any § € Tp there is some € € R such that 6 = g(e), whence ¢’ := p(e) is
an element of T satisfying

h(0") = h(p(e)) = 7 - h(a(€)) = - h(3).
Thus h(Tp)set is preserved by multiplication by v, so v is a root of unity
and hence h"(p) = h"(q) for some positive integer n. By Proposition 4:2
we have h™ = d o g for some d € C(x), so the divisor of A" is a-Z-linear
combination of g~!(a)’s. But this is impossible because the diviser of h"
has positive coefficients at the elements of S; and negative, coefficients at
the elements of So. This contradiction shows that in fact every 7, must be
a minimal shared multiset. U

6.2. Complex m-space. We now prove the following generalization of The-
orem 1.6, which involves both the shared multisets T;, from Definition 6.3
and the set G; from Definition 4.1.

Theorem 6.7. Pick nonconstant p,q @M(€™) for which Gy is nonempty,
and let g(x) be a minimal-degree element of Gi. Then one of the following
0CCUTS:

(6.7.1) The collection of all multisets™T, with o € Co equals the collection
of all minimal shared multisets for p and q.

(6.7.2) For some 3 € Cog, thegmultiset Ty is the union of positive numbers
of copies of each of two distinct minimal shared multisets Sy, So,
and the collectiomof all minimal shared multisets consists of S, Sa,
and all T, awith o« # B. In this case we can write p = pgor and
q = qoo % for some r € M(C™) and some py,qo € C(x) such that
g(po)==.9(qo), and for any such py,qo,r there will be two Picard
exceptional values v, of r, with v € pal(Sl) N qal(S’g) and § €
Py (S2) N gy ' (S1), where in addition for each i = 1,2 the multisets
po_l(Si) and qo_l(Si) coincide except for copies of v and §.

Proof.” Since g(p) = g(q), the functions p and ¢ are algebraically indepen-
dent. By Lemma 3.7, there is a compact Riemann surface R for which
p = po(r) and ¢ = qo(r) for some py,q0 € M(R) and some holomorphic
map r: C"™ — R. Thus for any multiset S of elements of C,, the multiset
p~1(S) is the union of 7~(a) for a € py'(S). Tt follows that p and ¢ share
S CM if and only if the multiset differences A(S) := py*(S) \ g5 *(S) and
B(S) := ¢, 1 (S) \ py ' (S) both consist of elements of the set £ := R\ r(C™),
which has size at most 2 by Lemma 3.10.

Suppose (6.7.1) does not hold, so, by Lemma 6.5, some T}, is not a min-
imal shared multiset. Since gedmult(7,) = 1, it follows that T}, contains
two disjoint minimal shared multisets S; and S2. The identity g(po(r)) =
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9(p) = 9(a) = g(qo(r)) implies that g(po) = g(qo), so in particular deg(po) =
deg(go). Thus py'(S;) and gy '(S;) have the same size, so also A; := A(S;)
and B; := B(S;) have the same size n;. Proposition 6.6 implies that S; is
not shared by pg and ¢qg, so n; > 0. Thus A; contains an element ;. Since
A; consists of elements of £, and |£] < 2, disjointness of the S;’s implies
that A; consists of n; copies of v;. Likewise, since A; and B; are disjoint, B;
must consist of n; copies of v3_;, so (6.7.2) holds. O

Example 6.8. The second possibility in Theorem 6.7 can actually ocGu,
For instance, let k,n be integers with 0 < & < n, put ¢ := e2mi/n and let
p = (¥ + (") /(e®* +1) and ¢ := (p. Then we may choose g :=@?, so
that g~ (1) = {1,¢,¢?,...,¢" 1} is the union of S1 := {¢,¢?,... %Y and
So = {¢FH1, ¢F+2 .. (). Here p has no preimages of 1 or ¢%, so/q has no
preimages of ¢ or ¢**1, whence

P S) =p {G L T = T C = (),
and likewise p~1(Ss) = ¢~ 1(S).

7. BOUNDING THE DEGREE OF A RATIONAL FUNCGTION RELATING P AND ¢q

In this section we use the results of the prewious two sections in order to
bound the degree of a minimal-degree element of G; in terms of the sizes of
shared multisets. The combination ef these bounds with Theorem 3.1 yields
Theorem 1.2.

Theorem 7.1. Pick nonconstant p,qg € M(C™), and let Sy, ..., Sy be finite
multisets of elements of Co tsuch that p,q share CM each S;, where n > 4
and no S; is contained instheyunion of the other S;’s. Then g(p) = g(q) for
some nonconstant g € Cz) such that deg(g) < Lz (=2+ 31" 1|(Si)setl)- If
n > 5 then we can clivose g(x) to have degree at most max;|S;|. Moreover, if
n > 5 and the $;’sare’minimal shared multisets then max;|.S;| is the smallest
degree of ang.monconstant g € C(x) for which g(p) = g(q).

Remark 7.2. In order to obtain the best bound on deg(g) from Theo-
rem T{lNit iS sometimes advantageous to ignore some of the S;’s when ap-
plying the bounds in this result. For instance, if n > 5 then we can choose
g(z). to have degree at most the size of the fifth-smallest S;. Likewise, if
n =/5 and one S; is much larger than the others then the best bound will
come from applying the first bound in Theorem 7.1 to the other four §j’s.
This shows that the first bound is sometimes better than the second bound
when they both apply; conversely, if n > 5 and the S;’s are sets of the same
size then the second bound is better than the first.

Proof. By Theorem 3.1 there is a nonconstant g € C(x) such that g(p) =
9(q). Choose one such g(x) for which k£ := deg(g) is as small as possible.
For each i, let R; be a minimal shared multiset contained in S; \ U;£;S;, so
that the R;’s are pairwise disjoint. Let I be the set of values ¢ for which R;
has the form T,, with o; € Co. Theorem 6.7 implies that |I| > n — 2, and
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in addition if |I| = n — 2 then there is some o € C4 for which T, is the
union of copies of the two multisets R; with i ¢ I. Thus if |I| = n — 2 then
V := g(UL | R;) has size n— 1, and g~!(V) is the union of copies of the R;’s,
so Lemma 5.4 yields

2k 2> (k-9 (@)set])

aeV

= (n— Dk — Y |(Ri)ser
=1

Z (TL — 1)]€ — Z|(Si)set‘>
i=1

whence k < (=2 + 3 [(Si)set]). If [I| = n — 1 then V= g(UicrRy)
has the same size as I, so Lemma 5.4 yields

2k =22 (k=97 (@)set])
acV

= kI = IR

i€l
n
> (n— 1)k Y I(S0)set,
=1

so that again k < Lo (=2 + 574/ (S)set ).

By Proposition 5.1 there aré'atimost two elements i € I for which g~ (a;)
consists of more than oné\copy '0f/R;. Thus if n > 5 then, since |I| > n—2 >
3, there is some i € I for'which g~!(a;) = R;, so that

k= deg(g) =g (ai)] = |Ri| < max({|S;]: 1 <j < n}).

Finally, if n >% then k = |R;| for some i, and every R; is contained in some
g~ (j) and Hence has size at most k, so k = max_, | Rj]. O

8. “CLASSIFICATION RESULTS UNDER ADDITIONAL HYPOTHESES

In this section we apply our results in order to describe all p,q € M(C™)
which share a collection of multisets that satisfy certain types of additional
constraints.

8.1. Three points. We first give a quick proof of the classification of p, ¢
sharing four multisets of which at least three have size 1. Later in this section
we will prove the analogous result in which “three” is replaced by “two”.
Since the proof of the latter result relies on the results of some long and
difficult papers, it seems worthwhile to illustrate the techniques by proving
the present special case.

Proposition 8.1. If distinct p,q € M(C™) \ C share CM three distinct
a1, a9, a3 € Co in addition to a finite nonempty multiset of elements of
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Cwo \ {a1,00,a3}, then p,q satisfy either case 1 of Table 1 (on page 28)
or case 1 or 6 of Table 3, after replacing p and q by pwop and poq for
some Mébius transformation p(z), and possibly interchanging p and q. The
minimal shared multisets for p and q are listed in case 1 of Table 2 or case

1 or 6 of Table 4.

Remark 8.2. In case the S; are sets and m = 1, Proposition 8.1 was proved
in [42], generalizing special cases proved previously in [21, 50].

Proof. By Theorem 3.1, we have gop = gogq for some nonconstant g € C(x)-
Choose g(x) to have minimal degree. Since p # ¢, we have deg(g) >-1. By
Lemma 5.4, at most two points have a unique g-preimage, and=if there
are two then all other points have deg(g) distinct g-preimages™ Thus, by
Theorem 6.7, there are distinct «, 3,7 € C* satisfying one ofithe following:
(1) a, 3 each have a unique g-preimage, and (6.7.2) applies to g~ (v)
(2) « has a unique g-preimage, § has two g-preimagesy and (6.7.2) ap-
plies to g~ 1(p).
Replace g, p, q by pogov™", vop, vogq for suitable M6bius transformations
p and v in order to assume in (1) that g = =¥ andyin (2) that g = 27 (x — 1),
where j, k are positive integers. In (1) we havé\p= (q where ( is a primitive
k-th root of unity, yielding case 6 of Tables3™ In (2), if ged(j, k) = 1 then
(9(x)—g(y))/(x—1y) is irreducible by [4, Prop. 2.4 and Lemma 4.5], yielding
case 1 of Table 1. In (2), if £ := ged(%, k) > 1 then p(x) = (p(y) for some
primitive ¢-th root of unity ¢sand g = zfo f where f(z) := 27/¢(x — 1)*/*.
Then f(z) — (f(y) is irreduciblesby [4, Lemmas 3.1 and 4.5], yielding case
1 of Table 3. U

1

8.2. Points in components of fibered products. One of the main ques-
tions we must address is: for prescribed nonconstant p,q € M(C™) such
that fop = f oy for some f € C(z) \ C, which of the possibilities in
Theorem 6.7cdescribes the minimal shared multisets for p and ¢? In partic-
ular, when does’the unusual case (6.7.2) hold? We now recall some general
lemmags{that_are useful for resolving this.

Definition 8.3. For any f(z) € C(z) \ C and any a € C, we write ef(a)
for the multiplicity of f at «.

We will use the following three well-known results:

Lemma 8.4. Let g,h,po,qo0 € C(x) \ C satisfy gopy = hoqy and deg(g) =
deg(qo), and suppose that the numerator of g(x) — h(y) is irreducible. For
any o, B € Co such that g(a) = h(pB), the intersection pal(a) N qal(ﬁ)
contains precisely m := ged(eg(), en(B)) distinct elements of Co, and the
multiplicities of po and qo at each such element are ep(3)/m and eg(a)/m,
respectively.

Lemma 8.5. Let g,po,q0 € C(z) \ C satisfy g o po = g o qo and deg(py) =
deg(g)—1 but py # qo, and suppose that the numerator of (g(x)—g(y))/(x—y
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is irreducible. For any distinct o, f € Co such that g(a) = g(B), the inter-
section py (@) N gy '(B) contains precisely m = ged(eg(a), eq(B8)) distinct
elements of Co, and the multiplicities of py and qy at each such element
are eq(B)/m and eq(a)/m, respectively.

Lemma 8.6. Let g,po, qo € C(x) \ C satisfy H(po,qo) = 0 where H(z,y) is
an irreducible factor of the numerator of (g(x) — g(y))/(x —y) and the -
degree of H(x,y) is deg(po). For any a,y € Co such that eg(ar) = eqg(y) =1,
there is at most one point § in pal(a) N qo_l(fy), and if such a point § exists
then g(a) = g(v) and o # v and ey, (5) = eqy(9) = 1.

Remark 8.7. Although variants of these results have been used for-over
100 years, the only reference we know which proves a result of sufficient
generality to imply Lemmas 8.4 and 8.5 is [12, Lemma 7.1], avhich actually
addresses the more general setting of fibered productseof(tamely ramified
branched covers of a nonsingular projective curve over»an arbitrary field.
The above three results follow from [12, Lemma 7(1[upen noting that the
map z — (po(2),qo(z)) is the normalization map, for the curve g(x) = h(y),

(9(x) — g(y))/(x —y) =0, or H(x,y) = 0, respectively.

8.3. Four sets of size at most 2. We now use our results to prove a
several-variable generalization of the knewwn classification of p,q € M(C)
sharing four sets of size at most 2:

Proposition 8.8. Let p,q be nonconstant meromorphic functions on C™.
If p,q share CM four pairwise, disjoint nonempty subsets Si,...,S4 of Cx
with |S;| <2 then p = oy, for some Mébius transformation p(x).

Remark 8.9. When mm, = 15 the above result is the combination of Nevan-
linna’s four-values theorem with the results of the papers [45, 46, 48, 50],
which address the Cases that the number of S;’s of size 1 is 1, 0, 2, 3, re-
spectively. Further,the proof in [46] relies on [30], and the result in [48] has
extra hypotheSes besides the sizes of the S;’s, but according to [46] the proof
in [48] dees not require these hypotheses. Proposition 8.8 was conjectured
in [44]; afterspecial cases had been proven in [21, 36, 43, 48, 50].

Proof.”Pick a minimal-degree g(z) € Gy, say with n := deg(g). Note that if
7" ="1 then p = ¢, and if n = 2 then p = p(q) for some M&bius transformation
wu(x) (as we explained after Theorem 1.2). Henceforth assume n > 3. By
Theorem 6.7, at least two S;’s are unions of Tg’s, say S1 and So. If Sy is the
union of more than one T then, since |S1| < 2, Lemma 5.4 implies that each
element of C, \ g(S1) has n distinct g-preimages. Thus |Sa| = n|g(S2)|, so
n < 2, contradiction. Hence S; = T, for some a € C,, and likewise
Sy = Tg. Upon replacing g by vog for a suitable Mobius transformation v(z),
we may assume that &« = 0 and 8 = co. Since S7 and Sy are sets, it follows
from the definition of 7', that the divisor of g is uS7 — vS2 for some positive
integers w and v with u|Si| = n = v|S2|. Writing d := gcd(u,v), since
|Si| < 2 we see that d|S;| = n for at least one i € {1,2}, say for i« = 1. Since
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all zeroes and poles of the rational function g(z) have multiplicity divisible
by d, we have g = h? for some h € C(z), where deg(h) = n/d = |S1| < 2
and S; = h~1(0) and Sy = h~1(00)set. The identity h? o p = h? o ¢ implies
that h op = Ch o q for some ¢ with (¢ = 1, where minimality of deg(g)
implies ( is a primitive d-th root of unity. This yields the desired Mobius
transformation if deg(h) = 1, so we assume deg(h) = 2. Since n > 2 and
n =d - deg(h) = 2d, we must have d > 1. If the numerator of h(x) — Ch(y)
is reducible then each factor H(x,y) of this numerator has xz-degree 1 and
y-degree 1, and some such factor satisfies H(p,q) = 0, so p = u(q) for
some Mobius transformation p(x). Henceforth assume the numerator of
h(z) — Ch(y) is irreducible. Each v € C* has d > 2 distinct preimages
under 2%, and hence has at least d distinct preimages under g, with equality
holding if and only if each d-th root of v has a unique h-preimage. By
Lemma 5.4, at most two values have a unique h-preimage,),so all but at
most one v € C* have more than two g-preimages. Thusy(6.7.2) holds, so
p=poor and ¢ = gy or for some r € M(C™) and.seme pg,qy € C(x),
whence h(pg) = Ch(go). We may choose pg, qo, 7s0 that py has the smallest
possible degree, which in this case is 2 since h(z),= Ch(y) is irreducible and
deg(h) = 2. By Lemma 5.4, exactly two elements of Co, have a unique po-
preimage, which by Lemma 8.5 implies that ‘exactly one element of C,, has
a unique h-preimage and two (h-preimages. Thus if ( = —1 then the two
values with a unique h-preimage aré net'negatives of one another, so that for
any ¢ each multiset Tz with 8 € C* contains at least three distinct elements.
From (6.7.2), it follows that there issome v € C* for which T’ is the union of
copies of S3 and Sy. Uporrreplacing g(x) by g(x)/v, we may assume vy = 1,
so that S3U Sy = Uga_q h51 (B)set. If d > 2 then, since at most two of these
0’s have a unique h-preimage, it follows that 4 > |S3USy| > 2d—2,s0d =3
and two cube roots of\unity have a unique h-preimage. Upon multiplying h
by a suitable cubeToot of unity, we may assume that ¢ and ¢? have unique h-
preimages, so.by Lemma 8.5 each of py ' (h~1(¢)) and gy ' (h~'(¢?)) consists
of two points which each have unequal multiplicities under py and ¢g; thus
all foup<f these points must be Picard exceptional values of r, contradiction.
Hence d =2, so the two values with a unique h-preimage are not negatives
of.one‘another. If an element of {1,—1} has a unique h-preimage then we
get™y contradiction in the same way as above, so assume that h=1({1, —1})
corisists of four distinct elements. By Lemma 8.5, for each a € A := h=1(1)
and each b € B := h™'(—1), both py *(a)Ngy () and py* (b)) Ngy * (a) consist
of a single point. Since |A| = |B| =2 and AU B = S3U Sy, this yields eight
points of py 1(5’3 U Sy) having different images under pg and qp, where at
most two of these points are in py*(S3) N gy ' (S3) and at most two are in
Py "(S1) N gy ' (S4). This leaves at least four points which must be Picard
exceptional values of r, contradiction. O

8.4. Restrictions on  in (6.7.2). We now present three results restricting
the elements 8 that can occur in (6.7.2). These use the set Gi(p,q) from
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Definition 4.1. The goal of these results is to show that, for various choices
of g,p, q, there are only finitely many possibilities for an element (3 in (6.7.2),
so that testing these possibilities becomes a finite problem.

Lemma 8.10. Pick p,q € M(C™)\ C which can be written as p = pgor
and q = qoor with py,qo € C(z) and r € M(C™), and choose py, qo, r which
minimize deg(po). Suppose that Gi := G1(p,q) is nonempty, and let g € G
have minimal degree. If deg(pp) > max(1,deg(g)/2 — 1) and € Cx has
deg(g) distinct g-preimages then g=1(B) is a minimal shared multiset for.p
and q.

Proof. Suppose otherwise. By Theorem 6.7, g~!(3) contains twomifiimal
shared multisets S and So, where in addition p, 1(SZ-) Naqy 1(53_i) eonsists
of copies of a single point for each i € {1,2}. Without loss we'nray assume
that |S1]| < k/2, where k := deg(g). Since 5 has deg(g) distitict \g-preimages,
we have e,(a) = 1 for each o € g71(8). By Lemma 8.65f61 each o € S;
we see that both py'(a) and qo(py'(a)) are sets Of siwe’ deg(pg), and the
latter set does not contain «. Since deg(pg) > k/2 — 1> |S1| — 1, it follows
that qgo(py ' () contains at least deg(pg) — |Spkd™Ll > 0 elements of Sy for
each a € S1. Thus |[S;| = 1 and deg(po) —4Ssb+ 1 = 1, so deg(po) = 1,
contradiction. (]

Lemma 8.11. Pick p,q € M(C™).\ C which can be written as p = ppor
and ¢ = qo o r with po,q0 € C(z)=and r € M(C™), and choose py,qo,r
which minimize deg(pp). Suppose that deg(po) > max(1, (deg(g) — 2)/4)
and G1 := Gi(p,q) is nonemptyy and let g € Gy have minimal degree. If
B € Coo has deg(g) distinctsg=préimages but g~1(B) is not a minimal shared
multiset for p and q then there exist distinct o,y € pal(g_l(ﬁ)) such that

po(a) = qo(7) and po(7) = qo(a).

Proof. Suppose othérwise. By Theorem 6.7, g~1(3) is the union of two
nonempty shared 'sets S; and S, where in addition p; LS8 n 4 L(S5_4)
consists of copies of a single point for each ¢ € {1,2}. Without loss we may
assumecthat |S;| < k/2, where k := deg(g). Since [ has deg(g) distinct
g-preimages, we have e4(a) = 1 for each a € g71(3). By Lemma 8.6, for
each o/c Sy we see that both py () and go(py *(a)) are sets of size deg(po),
andtle latter set does not contain a. We show first that |S;| > 2: for, since
T *= qo(py ' () has size deg(po) > 1 and contains at most one element of So,
it must contain at least one element o’ of Si; since T' does not contain o, we
have o # a, and U := qo(p, (') does not contain either a or o/, but U has
size deg(pg) > 1 and U contains at most one element of Sy, so U contains an
element of Sy distinct from o and o/, whence |S1| > 2. Since go(py ()N Sa
is empty for all but one a € Sp, and has size 1 for the excluded «a, it
follows that go(py *(e)) NSy has size deg(po) for all but one € Sy, and size
deg(po) —1 for the excluded a. Likewise po(qy ' (a’)) NSy has size deg(po) for
all but one o/ € S7, and size deg(pg) — 1 for the excluded o’. Since |S1| > 2,
there is some a € Sy for which both go(py () NSy and po(gy ' (@) N Si
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have size deg(po). By hypothesis, these sets are disjoint from each other and
from {a}, o |S1| > 1+ 2deg(pp), whence deg(g) > 2|S1| > 2 + 4deg(po),
contradiction. O

Remark 8.12. It is straightforward to prove analogues of the previous
lemma with weaker bounds on deg(pg) but more possibilities in the conclu-
sion.

Although the hypotheses of the following result are quite special, they
cover situations arising in the proof of Theorem 8.19.

Lemma 8.13. Pick p,q € M(C™)\ C which can be written as p ="pyor
and g = qo o r with pp,q0 € C(z) and r € M(C™), and choose posqo,r
which minimize deg(po). Suppose that deg(po) = 3 and qo = po S )for some
Moébius transformation u(x) such that o p = x, and supposevin addition
that G1 := Gi1(p,q) is nonempty. Let g € G1 have minimal\degree, and pick
B € Co which has deg(g) distinct g-preimages. If g=1(8), is not a minimal
shared multiset for p and q then deg(g) > 10, and if-deg(g) = 10 then there

are distinct o,y € g71(B) such that qo(py* () Z=.q0(p5 ' (7).

Proof. Since § has k := deg(g) distinct g-preimhages, each a € g~!(3) satis-
fies eg(a) = 1, and g~ 1(B) is a k-element set, By Lemma 8.6, if o € g71(3)
then each of py (), g5 (), qo(pg*(a))y and po(gg () is a 3-element set,
where in addition the latter two sets downot contain «. Moreover, the prop-
erties of pu(x) imply that for 7,6 € g=*(8) we have py'(v) N gy '(8) = 0 if
and only if py*(8) N gyt (y) =M \By Proposition 6.7.2, if g~*(8) is not a
minimal shared multiset for pland ¢ then g=1(3) is the union of two disjoint
minimal shared multisetsySyand’Ss, each of which is in fact a set. We may
assume |S1| < |S2|. By Proposition 6.7.2, there is a unique 6 € S; for which
po(qy 1(6)) N Sy is nonempty, and then py (g9 1(6)) contains two distinct ele-
ments a,v of $1 YAJ¥. Assume k < 10, so that [S;| < 5. Since po(gy ' ())
is a three-element ‘subset of S; \ {a}, it contains at least one element e of
S1\ {a,v,8}. Then po(gy*(€)) is a three-element subset of Sy \ {9, ¢}, so it
contain§ at least one element 7 of S7 \ {a,7,d,€}. Since |S1| < 5, it follows
that S1 ={a,7,6, 6,7} and k > 2|S;| = 10. Hence po(q; '(€)) = {o, 7,7}
and pj(qy ' () = {a,7,¢}, s0 qo(py (@) = {6,6,7} = qo(py ' (7)), as de-
sired. g

8.5. Classifications under irreducibility hypotheses. We now deter-
mine all possibilities for p,q € M(C™) and all of their shared multisets in
two of the main classes of such p,q which satisfy the conditions of Theo-
rem 1.2.

Proposition 8.14. Let g,po,q0 € C(x) \ C satisfy g o po = g o qo and
deg(po) = deg(g) — 1 but pg # qo, and suppose that the numerator of (g(x) —
9(y))/(x — y) is irreducible. Put p := pgor and q := qy o1 for some
r € M(C™)\ C. Then g(x) is a minimal-degree element of G1 for p and q.
Pick 8 € Cx and suppose that T is not a minimal shared multiset for p
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and q. Then Tg contains two minimal shared multisets, each of which has
size 1. Moreover, g,pg, qo, 8, and the set £ of Picard exceptional values of r
appear in Table 1, after we compose with Mébius transformations p, v, p to

replace g, po, qo, 7, 8 by pogov™', vopgop, vogop, P_l or, u(B).

TABLE 1
Case g Po q0 B &
. =1 1
1 x’ (I]}' - 1)k m Po © E 0 {O0,0}
(22 + 2z — 3)? —3a3 x+1
2 0;,—1
T 3+ 1 POy —1 "2 {0: =1}
1 514 3% 2
| @ 10ag )3 | P07 gt TR G A
xd 5
QO:pOO;a/B:OOaS:{O(%O}

Note: j and k are coprime positive integers.

Proof. If g = wo v with u,v € C(z) then the numerator of g(z) — g(y) is
divisible by the numerator”of w(a) — v(y), which in turn is divisible by = —y.
The irreducibility hypethesisithérefore implies that g(z) cannot be written
as the composition of lewer-degree rational functions, so Proposition 4.2
implies g(z) is a minimal-degree element of G;. For § € C, define T with
respect to g(z); and suppose that T is not a minimal shared multiset for p
and ¢. By Preposition 6.7, T is the union of more or more copies of each of
two distinct minimal shared multisets S1 and Sz, where p, LsHn q 1(S5_4)
consistShof one or more copies of a Picard exceptional value «; for r, and
Py 1(8;) and qQ 1(S;) coincide except for copies of oy and ay. For any a € S
afid b € Sy, Lemma 8.5 implies that py'(a) N gy *(b) and py*(b) N gy *(a)
each/contain ged(eg(a), e4(b)) distinct points. Thus ged(egy(a), eq(b)) = 1 and
each S; consists of copies of a single point, which by minimality of S; implies
|Si| = 1. Now the result follows by inspecting the list of possibilities in [13]
(or alternately [31]). The statement of the result takes into account the
possibility of equivalences between different examples caused by composing
with suitable Mobius transformations. (|

Remark 8.15. In light of Theorem 6.7, the minimal shared multisets for p
and ¢ in the three cases in Table 1 are as follows:

Proposition 8.16. Let f,pg,q0 € C(z) \ C satisfy deg(po) = deg(f) and
fopy = C(foqy where ( is a primitive n-th root of unity with n > 1, and
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TABLE 2. Minimal shared multisets for p, ¢ in Table 1

Case | Minimal shared multisets not of the form g~!(«)

1 | {oo}, {0}, {1}, and if j = k =1 then {1/2}
2 | {oo}, {0}, {roots of 2% + 2z — 1/3}
3 | {oo}, {0}, {roots of 2% + 10z + 5}

suppose that the numerator of f(x) — (f(y) is irreducible. Put p :="pp or
and q :=qoor for somer € M(C™)\C. Then g(x) := f(z)" is a nipimal-
degree element of G1 for p and q. Pick 8 € Cy and supposé_that Tg is
not a minimal shared multiset for p and q. Then Tg contains, precisely two
distinct minimal shared multisets S1 and S, at least one®of\which has size 1.
Moreover, f,po,qo, 8 and the set £ of Picard exceptional velues of r appear
in Table 3, after we compose with Mobius transformations v, p, and p = ax®

with € € {1,—1} to replace f,po,qo,r,B,( by porsfov=Y, vopyop, vogyop,
p_1 or, "B, ¢, and also after possibly replacing'po, q0,C by qo, o, 1/¢.



TABLE 3. Solutions where the numerator of f(z) — (f(y) is irreducible

Case f o Qo ¢ & Conditions
1 xl(x—1) o x¥po(xz) | 0 {0,'s0} | 7,k > 0 coprime; 0% # 1
22 +258 0 +1 2 122 ¢
¢-1 e c
2 -1 1,—1
: - T WECa| e
1)2 1 —(s+1)z? 1
5 (x+1)*(x + 65+ 10) (3—21— )z (x + 1) po(;“) & {0, 0} 23
x - —sx+1 x
23+ 622 + 32 — 1 wr?(z +1) —wpo(T) 3
i T 22— 2w+1z—1 @ “ {0,00} wi=lrw
(22 — 62 + 1)? x—1 4
b x 28 o Ll po(z) | —1 {0, 00}
6 z 8 v ||| kez P
2x z?2—1
222 — 1 -1 1
! 5 %2 4 1 2241 {1,00}

0€

DINZNAS VILNAM
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Proof. Since f(p) = (f(q) and the numerator of f(z)— (f(y) is irreducible,
the last assertion in Proposition 4.4 implies that f(x) is a minimal-degree
element of Gy. In light of this, Proposition 4.4 implies that g(x) := f(z)"
is a minimal-degree element of G;. For 8 € C, define T as usual (with
respect to g(x)), and suppose that T is not a minimal shared multiset for p
and ¢. By Proposition 6.7, T is the union of one or more copies of each of
two distinct minimal shared multisets S; and Sy, where py*(S;) Mgy ' (S3—;)
consists of one or more copies of a Picard exceptional value «; for r, and
Py -(Si) and gy '(S;) coincide except for copies of a; and as.

First suppose § € {0,00}. Then for any a € S; and b € Sy we have
f(a) = B = (f(b), so by Lemma 8.4 there are gcd(es(a), er(b)) distinct
points in py Ya)n qQ L(b). Since this multiset consists of copies of & single
point, it follows that gcd(ef(a),ef(b)) = 1 and that eachsof\S; and Sy
consists of copies of a single point, which by minimality of/S; implies S1 =
{a} and Sy = {b}. By inspecting the list in [31] of all f(a) € C(x) with
|f~1(00)set| = 2 for which f(x) = (f(y) defines an ifrediieible curve of genus
0, we find that cases (1)—(5) in Table 3 include /all possibilities.

Henceforth suppose 5 € C*. Then f(S1)U f(:Sg )yconsists of all n-th roots
of /3, so there exist a € S1 and b € Sy with fta)= (f(b). For any such a,b,
by Lemma 8.4 there are ged(ef(a), ef(b))points in py'(a) N gy (b); thus
ged(eg(a),ef(b)) = 1 and f(S1) N(f(Sg) consists of a single point w, where
in addition @ is the unique point in‘f=4() N Sy and b is the unique point in
FHw/¢) N Sy. Writing k := deg(f);We may assume k > 1, since if k = 1
then we obtain case (6) in Table,3!

Now suppose f 1 (w)set"# $a}) Then f~1(w) contains an element of Sa,
so that ¢ f(S2) containg (w, whehce f~1(Cw) is contained in Sp. Continuing
in this way shows that Sp contains f~!(¢*w) for i = 1,2,...,n — 1. Thus
(S1)set = {a}, so minimality of S; implies S; = {a}; also f~1(w/()set = {b}.
Moreover, for.any)e,€ f~'((w) we have ¢ € Sy, and py*(c) N gy *(a) # 0
by Lemma 84; this f~(Cw)set = {c}. By Lemma 8.4, a has a unique po-
preimage, and each point in f~1(w) has at most k/2 distinct po-preimages.
It folloWs frem Lemma 5.4 that |f~(w)set| < 2. Since ef(a) is coprime
to k =,deg(f), and k > 1, we have ef(a) # k, so that f~!(w) contains a
unique element d distinct from a. Thus ef(d) = k—ey(a) is coprime to &, so
1P d)|set = 1, which by Lemma 5.4 implies that every element of Coo\{a, d}
has k distinct pg-preimages. Moreover, the ( f-preimages of (w are a and
d, and the f-preimage of (w is ¢, so since ef(a) and ey(d) are coprime to
k = ef(c) we see that c has precisely two po-preimages, whence k = 2. By
Lemma 5.4, there is a unique v € Coo \ {w/¢} such that |f~1(7)set| = 1, and
Lemma 8.4 implies that that |f~(¢v)set| = 1, since otherwise each element
of f=(¢7) would have a unique po-preimage. Thus v € {0,000}, so since
also Cw has a unique f-preimage, we must have (w = w/{ and hence n = 2,
yielding case 7 in Table 3.
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Finally, suppose that f~!(w)st = {a}. Since ged(ef(a),ef(b)) = 1 and
deg(f) > 1, we must have f~!(w/()set # {b}. Thus upon replacing po, o, ¢
by qo, po, 1/(, we reduce to the previous case. O

Remark 8.17. The minimal shared multisets for p and ¢ in the seven cases
in Table 3 are as follows, where we recall that g = f™ where n > 1 and ( is
a primitive n-th root of unity:

TABLE 4. Minimal shared multisets for p,q in Table 3

Case | Minimal shared multisets not of the form ¢g~!(«)

{oo}, {0}, {1}

{oo}, {0}, /71(0)

{00}, {0}, f7(0)

{oo}, {0}, f71(0)

{oo}, {0}, {roots of 22 — 6z + 1}

{oo}, {0}, {¢, % PR ¢F 2, )

{oo}, {1}, £71(0), {roots. of f(z)" — 1 other than 1}

N | OO s W N

Remark 8.18. For f € C(x))Crand ¢ € C*, write

T 1@ - i) A
Fre(By) = to-tw if¢=1
=y

and let G s ¢ () ' bethe numerator of Fy ¢ (x,y). The papers [13] (for ¢ = 1)
and [32] (for "¢ 1) determine all pairs (f,() for which G ¢(z,y) is irre-
ducible and satisfies G.¢(p, q) = 0 for some p,q € M(C™) \ C. Conversely,
for allssueh prand ¢, the minimal shared multisets for p and ¢ are determined
by the,combination of the results of [13, 32] with Propositions 8.14, 8.16,
and 6.7. We do not state this list here, since it involves many cases; but it
can be read off at once from the results in [13, 32]. Finally, we note that for
any pair (f, () as above, it is a routine exercise to describe all corresponding
P,

8.6. Laurent polynomials. We now treat the case that some point has at
most two g-preimages. This is the most general class of rational functions
g(z) for which the solutions to gop = goq with p, g € M(C™)\ C have been
determined at present, other than the class in Remark 8.18 whose definition
involves an irreducibility hypothesis. We note that, although the previous
results in this section were elementary, the proof of the next result ultimately
relies on the classification of finite simple groups.
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Theorem 8.19. Pick nonconstant p,q € M(C™) such that hop = hogq
for some h € C(z) \ C such that some o € Coo has at most two distinct
h-preimages. Let g(x) be a minimal-degree nonconstant rational function
for which g op = goq, and suppose there is some 3 € C for which Tg is
not a minimal shared multiset for p and q. Then, after replacing the triple
(9,0,9) by (mogov™', vop,voq) for suitable M&bius transformations p
and v, we can write p = pgor and g = qo o r for some py,qo € C(x) and
some r € M(C™) with set of Picard exceptional values £ such that one of
the following occurs:

(1) one of the possibilities in Proposition 8.1/ or Proposition 8.16

(2) one of the possibilities in Table 5, where all minimal shared ultisets
not of the form g~'(c) are presented in Table 6.



TABLE 5. Solutions where some element of C,, has at most two g-preimages

Case g Do q0 B £
2
1 <x4+4x3+2x—%) % — 22+ 2 ) >3 00 {0, 0}
1 3 + 222 + 27 .
2 T 27 {t—1,t+1}
3—s
11 — 2 2

3 (:(:+ 53) (@ + 2 — 1)t vty (3= | {0, 0}

2 5 3-8 3 2 Po® Tor —s—1
4 x 5 T° + vt 0 {_5+27 5 }

s+1 —S
1 3 3 2 )
5 (QZ+S—2)(I’3—CL'2+S+ (IE+1)) 9 (Z’ Hx5 A+ 2 v p003_3 o0 {0070}
6 IL‘5 J}2—|— ($+1) 2z 0 {_17853}
2
-6 1 2
7 Tgom T A(z) pool 1 E
8x x

8 T 1 1 1 {¢F R 1)
9 Cx )|

(2 —y)z(z +7)(z +27)

Here t2 = 3, s =5, A(®) :=

(x+1)(x+2)(x+~v+1)Bx+2y+2)

where v = 62 and #* — 0> +1 =0,

E:={0%—-1,-63< 0%+ 0}, and ¢ = n? where 7 is a primitive 2n-th root of unity with n > 5,
andyif n is odd then 0 < k < "7_3 while if n is even then 0 < k < "7_2.

e

DINZNAS VILNAM
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TABLE 6. Minimal shared multisets for p, g from Table 5

Case Minimal shared multisets not of the form ¢g=!(a)

1
1 {o0}, {0}, {roots of 2t + 423 + 22 — 1}

LAY (5 2

1
{00, 0}, {roots of zt 4+ 423 + 2z — 1}

3 (o0}, {01, {58;117(s;1>*2,<_32_1)*2}

4 {53;11}’{5;17—32—1},{00’0}
5 {oo}, {0}
6 (—s+2), {—32+ 1’ (ti+ll(s+1)’ (—ti—i—i)(s—i—l)}’ (00,0}

7 {00, 0}, {roots of #3451 — 9(z? + 2)}, {7+ 8}, {1*4,7 — 6}

{oo}, {2y U {(¢J R LF9Y2: 1 < j <k}, and either S (if n odd) or
{—2} U S (if n'éven), where S :={¢/ + (T k+1<j < 21}

9 | {ook ™ 7P 0 < < kY (0P 4P R < <n}

Note: ~** indicates k copies of 7; also 6 := 463 — 86

Proof. By Theorem 6.7, we have p = pgor and ¢ = gg o r for some pg, qg €
C(z) and some r € M(C™), and then gopy = g o gp. We may assume
po has the smallest possible degree. Also Tz contains precisely two distinct
minimal shared multisets S; and Ss, where p,*(S;) and g '(S;) coincide
except for elements of the set £ of Picard exceptional values of r, with each
Py H(Si) N gy (S3—;) containing an element of &.

Case 1: First suppose the numerator of (g(x)—g(y))/(x—y) is irreducible.
Then the possibilities are described in Proposition 8.14.

Case 2: Next suppose p(g(x)) = f(z)" for some f(x) € C(x), some
Mobius transformation p(x), and some integer n > 1, where in addition



36 KENTA SUZUKI

there is a primitive n-th root of unity ¢ such that f opy = (f o gy and the
numerator of f(x)—(f(y) is irreducible. Then the possibilities are described
in Proposition 8.16.

Case 3: Now suppose that some point has a unique g-preimage, but
neither of the previous cases applies. After composing with Mdbius trans-
formations as in the conclusion, by [4] we may assume that g(z) = T,,(z/2)
with n > 5, where po(z) = x + 1/x and go(x) = po(¢x) for some primitive
n-th root of unity ¢. Thus pal(SZ-) = anl(Si) for each i.

We must have  # oo, since To, = {00} is a minimal shared multiset:
Since 2g(po(z)) = 2™ + 2™, it follows that py ' (S1) \ ¢y *(S1) consists-of one
or more copies of a single element a € C*, where f = (" + a™")/2:

If 32 # 1 then M := {ay: 4" = 1} is disjoint from N := {1/ ¥°€ M},
and py ' (Ts) = M U N. Since po(N) = po(M) = Tj, each S;thust contain
an element of po(IN), so that R := N Npy 1(81) is a nonempty jproper subset
of N. Since a@ ¢ R, we must have R C qal(S’i), which” equals ¢("'R. But
|C"'R| = |R|, so that R = ('R, contradicting the fact-thiat R is a nonempty
proper subset of V.

Thus we may assume 3% = 1. Here py ! (Ts)sen = {ay: 7" = 1}, so that
E\{a} = {a¢™*} for some integer £ with 0 < @*<"n. Writing A := py ' (S1)set,
we have g5 ' (S1)set = (714, so that A\{S'A = {a} and (T'A\ A = {a(4}.
It follows that A = {a(7: 0 < j < £},)86 |A| = £. Since ppo 2~ = py,
the map = ~ z~! preserves the set™A. Since |Ast| < n, it follows that
a !l = a¢'¢, so that ¢! = ¢o?. If'n is odd then, since g, pg,qo are all
preserved by conjugating by —&,'we may assume 3 = 1, so that o = ¢* with
0 < k < n. After interchangingthe S;’s if needed, we may assume 1 € S, so
that ¢ > k, which together'with the bounds on k£ and ¢ and the congruence
¢ =2k+1 (modn) yields £ = 2k + 1. Thus |A| = ¢ = 2k + 1, so since
|A| < n we get k <An*1)/2. If n is even then let 1 be a fixed square root of
¢ such that n i$ a*primitive 2n-th root of unity. By interchanging the S;’s if
needed, we mayassume |[A| < n/2. Since the triple (g(x), po(x), go(x)) equals
(9(=z), ~po(—x), —qo(—z)), we may replace the S;’s by their negatives if
needed,‘in order to assume that o = 7/ with 0 < j < n. If j is even then
j = 2k,where as above we have ¢ = 2k + 1, so since { = |A| < n/2 we get
k< (n—2)/4. Finally, if j is odd then j = 2k +1 where ¢ = 2k+2 (mod n),
so.that ¢ = 2k + 2 and thus k < (n —4)/4.

Case 4: Henceforth suppose that none of the previous three cases applies.
By [31], after replacing g, po, go by pogov =1, vopg, vogqg for suitable Mobius
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transformations p(z) and v(x), one of the following occurs:

(820) g(z) = (fvz;l)5

(821) g(z) = %o !+ 4xi;2+ 20— 1

(822) g(x) = (22 + 11 — 522(:1:2 et ) P

(8.23) g(z) = (z+s—2)(2(2® - a;) (s + (e + 1) o
(821 9@ =Tnogo where gofx) := v +82;+ 2a(¢ £ 1)

with ¢ a primitive (2n)-th root of unity and m >,3.

If any of (8.20)-(8.23) holds then we determine all+irreducible factors
H(z,y) of the numerator of g(x) — g(y) such that the.nermalization of the
curve H(z,y) = 0 has genus 0 (and hence admits\a parametrization by ratio-
nal functions) and also H(z,y) does not divide the'mumerator of f(x)— f(y)
for any f € C(z) \ C with deg(f) < deg(g). Fereach such H(z,y), we com-
pute po, qo € C(x) such that H(pg, qo) = 0nand deg(po) equals the z-degree
of H(z,y). In each case we find that gg*="po o p for some Mobius transfor-
mation pu(z) satisfying po pu = . (Alse'in each case, either Lemma 8.10 or
Lemma 8.13 implies that § is a critical value of g(z). We then exhaustively
check all nonempty proper submultisets S of T for each critical value 3 of
g(x), in order to determine all.such S which are shared by p and ¢q. We find
that the only possibilitiesiare)thé first six cases in Table 6.

Finally, assume that (8.24) holds. By [31] we may assume that po(z) =
N(x)/D(x) where

N(2) = — (¢ — 1?2 (2? + 2(¢C + 1)? +2¢3 + 2(0))
and

D(z) :==((¢ + 1)(z® +2¢* +2) + (3¢* + 2¢ + 3)x)

(¢ + (C+ D)% +2(¢% + 1))
and“go = po o pr where u(z) := 2(¢%2 + 1)/x. Here p(z) := —(¢% + 1)(z +
2¢)7(x + ¢% + 1) satisfies pgop = po and pop = x = po u, and also the
fourth iterate (o p)°* is x. Let a be the unique element of C,, contained in
Py ' (S1) \ gy ' (S1). Define ag := p(a), az = p(p(az), and ay := p(u(az)).
First suppose a # «; for each i € {2,3,4}. Since po(a2) = po(a), we

have as € py 1 (S1), so since az # a we get az € g5 '(S1). Likewise po(az) =
qo(az), s0 az € py ' (S1), whence also a3 € ¢y ' (S1). Next, po(e) = qo(as),
s0 ay € py t(S1), whence also ay € g5 '(S1). Then

qo(aa) = po(p(a)) = po(p(p(p(as)))) = po(p(p(n(p(p(az2))))))
= po(u(p((p(p(p())))))) = polp o (o p)**(a)) = po(p(a)) = qo(),
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so a € gy *(S1), contradiction.
If o = o; for some i € {2,3,4} then we will exhibit 7, d, e € Co such that

(8.25)  po(a) = po(7); q0(v) = Po(6), q0(5) = po(e), and go(€) = go(a).
In case
(8.26) a ¢ {v,0,€},

it follows that py LS n 9% 1(S1) contains each of v, 4, e, which yields the
contradiction a € g5 *(Sh).
If ap = a then o + 2(¢?2 4+ 1)(a + ¢) = 0. Let v be a root of

G224+ (a+ 422 -+ 2z + (C+ Da+ 20— G452 = ¢+ 2,
put € := —a — 2¢? — 2, and let § € C satisfy
§(1 =€) :=((¢* + Qa+2¢" + ¢ + %)y + (267 + 20)ax
+4¢5 — 2¢* 4+ 8¢3 — 4¢% Al — 2.

These satisfy (8.25). If n > 3 then (8:26) helds, which we already know
is impossible. If n = 3 then a routime eomputation shows that in each
example there is a square root 6 of (.stteh that the S;’s are {463 — 80 + 7}
and {1*4, —4603 + 80 + 7} with € = {6 —1,—-03 — 02 + 0}.
If a3 = a then a2 4+ 2(¢% + (1% 2a/(¢ + 1)) = 0. Let v be a root of
2(¢P = O)/2+ (C Vs 42 20+ 3)z + (P + P+ ¢+ Do
+3¢% =207 + 6C%-2¢ + 3,

put € := ((( +4)a,2¢*> +2)/(¢ — 1), and let § € C satisfy

S(CH+HDCE1)2=~(C+D((CP+ Qo+ 3¢ +()
+2(C+OC+Da+23¢C° = ¢ 4+6¢3 —2¢2+3¢—1).

These satisfy (8.25) and (8.26), which we know is impossible.
Fihally, assume that ay = a. Then o? +2(¢ + ¢ 1) (a+1) = 0. Let 6 be
a root of

2?C 2+ (Ca+ T +2¢7 = C+ 2z + (P + Qa+ 20t = ¢ +4¢% — (+2
put v := —a — 2(¢ + ¢ 1), and let e satisfy

e1-¢0) =0((C+Pa+2¢"+ P+ )
+2(C+ Pa+202¢° -+ 4t -2 +2¢ - 1).

Once again, these satisfy (8.25) and (8.26), which is impossible. O
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8.7. Two points. We now classify the meromorphic p, ¢ which share two
points in addition to two other sets.

Theorem 8.27. Pick distinct nonconstant p,q € M(C™), and suppose that
p and q share CM four disjoint nonempty finite multisets Sy, ...,Sy of ele-
ments of Co, where at least two of the S;’s have size 1. Then, after replacing
p and q by pop and poq for a suitable Mobius transformation pu(x), there
exist g,po,qo € C(x) \ C and r € M(C™) such that p =pyor, g=qoor,
and gopy = goqo, where g,po, qo and the set £ of Picard exceptional valwes
of r are one of the following:

(8.27.1) One of the three cases in Table 1

(8.27.2) One of the seven cases in Table 3, where g = f™ with m ‘being the
multiplicative order of ¢

(8.27.3) Cases 1, 3, or 5 in Table 5

(8.27.4) g(x) = ™ with n > 1, po(x) = x, and qo(x) 2T where { is a
primitive n-th root of unity, and either |E|/< 2or € = {B,~v} with
pr#EA"

(8.27.5) g(x) = Ty(x/2) with n > 5, po(x) = z +1/xz, qo(x) = (x + 1/(Cx)
where € is a primitive n-th root of unity, and & is either {1,1/(} or
{6,1/83} with 6% = ¢ and 6" = 1.

In cases (8.27.1), (8.27.2) and (8.27.3)~the minimal shared multisets for p
and q which do not have the form §_{a)with o € Co are listed in Table 2,
4 or 6, respectively. In case (8.27.4) the only such minimal shared multisets
are {oo} and {0}. In case (8.2%.5) the only such minimal shared multisets
are listed in Table 7.

TABLE 7. Minimal shared multisets for case (8.27.5)

£ | Gondition | Minimal shared multisets not of the form ¢~'(a)
(4 n odd (oo, (2}, {c + e <k P2
meven | (oo}, (21 (=20 {(¢"+ ) k< )
. oo {5+ 5,
{65 2 0{(#+5) 3 <k<n-2 kodd)
meven | foo}, {5+ <}, {05+ 3 <k <01,k odd)
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Proof. By Theorem 3.1, there is some g € C(z) \ C for which gop =
g o q. Choose one such g(z) having the smallest possible degree. If two
points in Co, each have a unique g-preimage then, after replacing g, p, ¢ by
popov—l vop, and v o q for suitable Mbius transformations p(x) and
v(z), we may assume that g(z) = 2™ for some positive integer n, which
yields (8.27.4). Henceforth assume that at most one point in C has a
unique g-preimage. Then Theorem 6.7.2 implies there is some 8 € Co, for
which T} is not a minimal shared multiset for p and ¢. Also Theorem 6.7.2
implies that some o € C, has at most two distinct g-preimages, so the
hypotheses of Theorem 8.19 are satisfied, and the present result follows
from Theorem 8.19. (]
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