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Abstract

Crowd counting and mobility tracking supply valuable insights into
public safety, event organization, and urban planning, in a time when
the COVID-19 pandemic renders the demand for a reliable and privacy-
preserving crowd tracking system even more exigent. In this paper, we
develop a scalable Internet-of-Things sensor network that captures IEEE
802.11n Wi-Fi probe requests, a proven indicator of crowd activity. We
then propose a data processing framework utilizing Google’s Transformer
architecture with multi-headed attention to generate forecasts on upcom-
ing mobility patterns. Conducting comprehensive experiments using self-
collected and public data sets, our model supports a large forecast horizon
and outperforms existing models by a wide margin.

Keywords: crowd counting, mobility, IoT sensor, Wi-Fi probe request, deep
learning, time series forecasting, multi-headed attention, universal transformer,
urban planning
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1 Introduction

Overcrowding is a prevalent issue in a modern-day society where populations are
highly concentrated – busy streets of urban areas, college campuses, shopping
malls – presenting serious challenges in management and planning to admin-
istrators, and, in the meantime, compromising the convenience and safety of
people traveling in or occupying such spaces. A well-designed crowd counting
and mobility tracking system alleviates this pressure and provides insights on
an administrative level, which could benefit public safety, event organization,
urban planning, etc.

In light of the COVID-19 pandemic, the demand for a reliable crowd counting
system has come into prominence when coincided with social distancing proto-
cols that diminish the capacity of many public spaces and creates uncertainty
in pedestrian traffic, businesses and schools struggle in their reopening and dis-
ease control efforts. Accurate forecasting of crowd mobility bears even more
significance as administrators can take preventive measures to limit, divert, or
redirect upcoming traffic flows.

Figure 1: Crowd counting with CNN (Convoluted Neural Network) [1]

Conventionally, crowd counting is achieved through video cameras and image
recognition a methodology with inherent shortcomings, which is the case demon-
strated in Figure 1. However, many would resent deploying security cameras on
a large scale as they undermine personal privacy, and the limited range indoors
mandates that more cameras are installed to cover a specific area. Environmen-
tal conditions such as low-light and, for outdoor usage, unexpected weather all
impact the performance and accuracy of vision-based systems. Image recogni-
tion and the computing resource thereof needed, combined with expensive video
cameras, portray it as a costly and unsuitable solution for many use cases.

The challenge remains for constructing a reliable crowd counting system as
several factors could potentially undermine the usability of such systems de-
veloped, including accuracy, coverage, cost, and privacy preservation. Whereas
researchers have explored thoroughly video cameras and image recognition (e.g.
[21], [11], [12], [1]), fewer have explored utilizing radio signals to determine
crowd density.

The widespread and amplitude of commodity Wi-Fi devices elevates the
usefulness of Wi-Fi traffic to a new level. With few exceptions where mobile
devices are prohibited, almost all pedestrians now carry IEEE 802.11n Wi-
Fi-capable devices such as their smartphones and tablets. Devices broadcasts
probe requests to gather information on available access points nearby [5]. Probe
requests could serve as an indicative metric of crowd activity at a given location.
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Wi-Fi-based crowd counting addresses the limitations of vision-based sys-
tems, as the typical coverage ranges from 20 to 50 meters [14]. Wi-Fi bases sys-
tems can efficiently determine individuals’ presence through counting the MAC
(media access control) addresses embedded in the probe request. To address
the population without smartphones, the count can simply be extrapolated by
a scalar to fit the actual circumstance. The sensors cost less to manufacture
and operate in all weather and lighting conditions.

Crowd monitoring alone could render little assistance without a robust fore-
casting system that can inform administrators of upcoming dynamics. Previ-
ously, researchers have experimented with RNNs (Recurrent Neural Networks)
[18], [13]. However, these models have inherent drawbacks – they struggle to
capture long-range context dependencies, encounter issues like gradient vanish-
ing and explosion while training, and are unable to process input in parallel,
areas in which the Transformer shines.

The counter these aforementioned shortcomings and problems, we propose
an interconnected network of sensors, built upon the Raspberry Pi platform.
To approximate the crowd size and yield meaningful data, sensors need to be
non-intrusive yet highly precise. We then develop an API server that sup-
ports distributed computing to collect and process input data from the sensors.
Finally, we construct a model based on Google’s Transformer architecture, out-
lined in Attention is All You Need [16]. First, we test the model on data sets
self-collected on the campus of Phillips Exeter Academy, and then compare our
model with existing LSTM based models using a publicly available data set.
We study the results of these experiments and demonstrate the efficacy of the
model.

The main contributions of our work can be summarized as:

1. We design a scaleable and affordable IoT sensor network especially fit for
usages on campuses and urban areas;

2. We propose a server framework that efficiently processes millions of input
from the sensor network;

3. The Transformer-based model we constructed yields higher accuracy and
better performance than existing LSTM models.

The following sections are organized as such: Section 2 examines the previous
work in the two fields of interest – crowd counting methodologies and time series
forecasting with machine learning, Section 3 details our design of different part of
the system, Section 5 puts the system to test in real-world settings and examines
the results in detail, Section 6 concludes the paper and discusses prospective
studies that can be conducted in this direction.
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2 Related Works

2.1 Crowd Counting

2.1.1 Vision-Based Crowd Counting

Driven by big data and machine learning, a variety of crowd counting techniques
have drawn attention from researchers and industry practitioners. Researchers
have long delved into the possibility of using camera vision to calculate crowd
counts, and while many techniques rely on face recognition of individuals and
aggregating that result [14], Mikel Rodriguez et al. was among the first to pro-
pose associate density information with individual positions in the image [9].
Lokesh Boominathan, Srinivas S S Kruthiventi, and R. Venkatesh Babu em-
ployed a combination of deep and shallow CNN to capture body and facial
features in combination with low-level features of blobs and clusters [1]. Al-
though this research betters the performance of the image recognition model,
other weaknesses of this method have yet to be challenged.

2.1.2 Wi-Fi Based Crowd Counting

As researchers explore other methodologies in crowd counting, Wei Xi et al. were
among the first to investigate 802.11n Wi-Fi CSI (channel state information) by
the rationale that CSI is highly sensitive to disruptions in the environment [20].
The investigation was furthered by Simone Di Domenico et al., who analyzed
the shape of the Doppler spectrum. Han Zou et al. optimized this approach by
selecting the most representative feature of CSI and applying a kernel transfer
learning kernel learning to adjust for the environmental and temporal discrep-
ancies [22]. However, two sensors are required to be placed on two opposite
ends to capture the activity in an allocated space in the approach with CSI,
and experiments with groups larger than a dozen people have yet to be seen.
Furthermore, CSI is highly dependent on the placement of the sensors, and
change in the layout of the space could require re-fitting the data.

Wi-Fi probe requests came into spotlight with the work of J. Scheuner et al.
and E. Vattapparamban et al. Probe requests are much less sensitive to alter-
ations in the environment, expanding the coverage as a single sensor, equipped
with a high-gain antenna, could capture signals within a large radius. Though
probe requests cannot capture detailed activities and body gestures as CSI
could, they are perfectly adequate for gathering crowd sizes. Processing probe
requests is less strenuous compared to that of CSI as the unique MAC addresses
can be aggregated to the sum of people.

2.2 Multivariate Time Series Forecasting

Many sequence DNN (Deep Neural Networks) models strive to tackle the chal-
lenge of time series forecasting, in which the input of a model is a time-dependent
sequence and so is the output. Although NLP (Natural Language Processing)
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models enjoyed massive success in recent years, there have been incremental ad-
vancements in multivariate time series forecasting even though the two problems
share many commonalities.

2.2.1 Recurrent Neural Network

Figure 2: Typical RNN Cell [15]

RNN is apt to process sequential data like
(
x1, . . . , xn

)
where t is the time

step index and xt ∈ Rd. A typical RNN cell, whose structure once unrolled
resembles that of lists and sequences, is shown in Figure 2. The RNN cell takes
xt as an input, and the output ht is calculated from the input xt and the previous
hidden state. The cell runs the same function recurrently for every element in
the list, allowing information from previous time steps to pass through.

2.2.2 Long-short Term Memory

Figure 3: LSTM Cell [15]

When training recurrently over long sequences, typical RNN experiences gra-
dient explosion and gradient vanishing, which LSTM mediates [6]. In contrast
to a typical RNN cell, an LSTM cell has three cell gates that allow it to selec-
tively add and remove information from the cell state, as illustrated in Figure
3.

Nonetheless, while addressing some deficiencies on long-range dependencies,
LSTM still has its limitations. The hidden state of a time step strongly in-
fluences only the following few time steps, resulting in a challenge to capture
temporal dependencies, which is critical in time series forecasting. For instance,
the crowd count from 24 hours ago might be just as indicative of as that of the
last hour. Due to the nature of LSTM as a Recurrent Neural Network, data is
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passed in sequentially, and the next time step could only be calculated from the
hidden state of the previous one, rendering parallelism an impossible task.

2.2.3 Transformer

Breaking these constraints of LSTM, Ashish Vaswani et al. proposed a new
architecture in deep learning, namely Transformer, which features an encoder-
decoder structure and two attention mechanisms: self-attention and encoder-
decoder attention. Since it processes all time steps in parallel, Transformer out-
performs LSTM in long-range context dependencies while drastically improving
the efficiency.

3 Sensor Network Architecture

Figure 4: System Architecture

As illustrated in Figure 4, the infrastructure of the system includes three
main components: the IoT sensor network, an API server that collects and pro-
cesses the data, and a Transformer-based neural network that generates forecasts
of upcoming traffic dynamics.
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Figure 5: Structure of the Probe Request Frame [5]

3.1 Crowd Counting with IoT Sensors

3.1.1 Preliminaries: Wi-Fi Probe Request

Under the 802.11n protocol, Wi-Fi devices send out probe requests to gain in-
formation on available wireless networks nearby.[5] Probe requests are broadcast
at various frequencies that are dependent on the operating system of the device.
On average, smartphones send out 55 probe requests per minute and 2000 per
hour in an experimental study conducted in 2015 [4].

Wi-Fi 802.11n, a standard that the smartphones use, operates on 2.4GHz
with 14 channels. [5] The wireless module is set to monitor mode, and our
software processes the probe requests it receives. Due to limitations of available
hardware, the wireless module can only listen to one channel at a time, so we
iterate all of the channels on a Weighted Round Robin basis, during which
the most active channels are prioritized. We extract the mac address and signal
strength from a probe request, whose structure is shown in Figure 5, and upload
the data collected periodically.

To exclude stationary Wi-Fi devices located near the sensor, devices that
are always present over an extended period will be excluded from calculations.

3.1.2 Hardware Architecture

Figure 6: A Sensor Node Prototype

The IoT network consists of an array of sensor nodes, each has capabilities
to monitor the traffic in the region where it is placed. To ensure expandability
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and robustness, the sensor should run on a network operating system equipped
with a runtime environment, such as Linux distributions, for our self-developed
software. To monitor nearby Wi-Fi traffic, the sensor should be able to interact
with a Wi-Fi module that supports 802.11n monitor mode. [19].

We select Raspberry Pi Model 3 A+ [2] as the microprocessor of the sensor
node, as it features a 64-bit SoC (System on a Chip) processor operating at
1.4GHz, 512 megabytes of RAM, and built-in Wi-Fi to report data to the server.
Enclosed in a custom 3D-printed case, the Raspberry Pi communicates with an
external Wi-Fi module through standard USB protocol. The Wi-Fi module
is connected to a high-gain omnidirectional antenna to increase the effective
range. An optional cellular module can be connected to the Raspberry Pi to
allow communication in the absence of Wi-Fi coverage.

3.1.3 Software Architecture

The sensor node software is responsible for capturing data from the external
antenna and upload the data to the server through either Wi-Fi or cellular
network. Kali Linux[7] is selected as the operating system, for it provides driver
support for packet capturing.

Written in Java, the sensor node software listens exclusively to probe re-
quests and demonstrated predictable behavior and performance across differ-
ent devices and environments. The sensor nodes communicate with the API
server through two secured channels: MQTT over UDP and HTTP 1.2 with
TLS encryption. The sensor defaults to using TLS and falls back to MQTT, a
lightweight publish-subscribe protocol suitable for transmission over less ideal
network environments, reporting its operational status as well as locally hashed
mac addresses.

3.2 Data Collection and Processing

The API server is run on a cloud server to collect and process the data it receives
from the sensor network. Integrated with a web user interface, the API server
is written in php using the framework Laravel [8] to allow easy configuration
for administrators. MySQL provides high-performance database service to the
API server.

The API server computes crowd sizes and upcoming mobility patterns and
records the data into the database and sends information to mobile applications
where users can view real-time traffic and forecasts.

4 Mobility Forecasting with Transformer-Based
Model

4.1 Data Pre-processing

Raw sensor data is processed per the following procedures.
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1. Probe requests with a locally administered MAC address are removed
as smart devices sometimes randomize their MAC addresses to protect
privacy.

2. Devices located outside of the sensor bounding box is eliminated. The
distance of a device from the sensor is calculated using the signal strength
of the probe request using Free-Space Path Loss, defined as

FSPL(dB) = 20log10(d) + 20log10(f) + C (1)

where d is distance and f is frequency.

3. Stationary devices at the location that are not smartphones, laptops, or
other portable electronics, are filtered out.

4. The raw data entries are grouped by an interval of 5 minutes and ag-
gregated into the total number of unique MAC addresses, effectively the
number of Wi-Fi devices, during that interval.

5. Then we generate the Data Sets 1 to 4 listed in Table 1 for training and
testing using a sliding window of a fixed lookback period and a forecast
horizon.

4.2 Transformer-Based Model

Illustrated in Figure 8, our Transformer-based crowd forecasting model retains
the origin encoder-decoder design in Figure 7. Originally designed for NLP, we
tailor the Transformer model to fit our specific use case.

4.2.1 Encoder

The encoder accepts a sequence
(
xt−(L−1), . . . , xt

)
where xt ∈ Rd, in which

d is the number of features and L represents the lookback period on historic
data. The periodicity of the sequence is extracted in the One hot encoding
before the sequence is fed into a trainable Embedding Layer that formulates a
representation of the time step in a global scope. Positional encoding is added
for the Transformer cell to learn temporal features and dependencies within
the sequence. A typical Transformer encoder block then accepts the processed
sequence and passes it through multi-headed self-attention and a feed-forward
network to the decoder block.

4.2.2 Decoder

Similarly, the decoding side accepts a sequence
(
xt, . . . , xt+(H−1)

)
where xt ∈

Rd, in which H represents the forecast horizon. The sequence serves as input
for the decoder and is processed the same as it was for the encoder. The
decoder has a similar design to the encoder with two attention mechanisms
– self-attention and encoder-decoder attention. The self-attention mechanism
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Figure 7: The Original Transformer Architexture

Figure 8: Our Transformer-Based Model

works similarly to that of the encoder, and the encoder-decoder attention block
takes the concatenated input from both the encoder block and the decoder

12
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input. The decoder runs on an auto-regressive basis, which means for time step
t the decoder takes the generated output of yt−1 as input.

4.3 Maintaining Sequence Order

4.3.1 Sequence-wide Positional Encoding

The attention mechanism considers each time step as equal if without positional
encoding, and the time-dependent information would be lost as a result. In
Attention is All You Need, Ashish Vaswani et al. ensured that the network
captures the time dependency by adding alternating sine and cosine functions
to the input of both the encoder and the decoder. The period of the sine and
cosine function increases from 2π to 10000pi as the dimension increases, allowing
the network to study the position of a time step across the whole sequence, as
shown in equations 2 and 3 [16].

PE(pos,2i) = sin(pos/100002i/dmodel) (2)

PE(pos,2i+i) = cos(pos/100002i/dmodel) (3)

4.3.2 Capturing Periodicity with One hot Encoding

The Transformer model can keep track of long-range context dependency but
grapples with the periodicity of the input sequence. For many cases in crowd
forecasting, crowd mobility has explicit patterns in regard to the time of day,
the day of the week, and whether its a weekday or a weekend. More variables,
including class schedule and weather information, could be passed in as a state or
condition that is present periodically. Thus, we add a layer of one hot encoding
on top of the embedding layer to extract this periodicity.

5 Experiments and Results

In this section, we conduct experiments to test our model and evaluate its
performance by comparing to LSTM models.

5.1 Data Sets

We evaluate our model based on four real-world data sets, including two
self-collected sets on the campus of Phillips Exeter Academy and two public
sets collected in Belgium in the research of Utkarsh Singh et al., as described in
Table 1. With maps available in Appendix I, Data Set 1 and 2 corresponds to
sensor locations S1 and S4 respectively in Figure 16; Data Set 3 corresponds to
sensor locations S14 to S18 in Figure 17; and Data Set 4 corresponds to sensor
locations S1 to S7 in Figure 18.
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Table 1: Data sets utilized in experiment

Data Set Ref Location Setting

Data Set 1 Self-collected
Downer Family Fitness Center,

Phillips Exeter Academy
Campus

Data Set 2 Self-collected
Passage,

Phillips Exeter Academy
Campus

Data Set 3 [13]
La Bourse de Bruxelles,

Bruxelles, Belgium
Urban

Data Set 4 [13]
Sainte-Catherine,

Bruxelles, Belgium
Urban

It is worth noting the scarcity of publicly available data sets in Wi-Fi crowd
monitoring, as Data Sets 3 and 4 collected in the research of Utkarsh Singh
et al. are the only sets available to the best of our knowledge.

Splitting our data into training and testing sets of different proportionality
based on test scenarios, we first review Data Sets 1 and 2 in a campus setting
and then Data Sets 3 and 4 in a city setting. For the evaluation of Data
Sets 3 to 4, we replicate the input sequence length and horizon of [13] to ensure
comparability, though our model is capable of predicting with much longer input
sequences and horizons larger than that of the experiments of Utkarsh Singh
et al.

5.2 Experimental Details

5.2.1 Training and Hyperparameters

During training with ADAM as our optimizer, teacher-forcing is utilized so that
the ground truth, rather than the generated output from the last time step, is
passed as input to the decoder to improve training speed. We decided against
using dropout layers to prevent over-fitting, as it may hinder the performance
of a model on relatively small data sets. Instead, we employ regularization to
prevent over-fitting.

Through extensive testing, we finalized our model with 4 attention heads
and 6 attention layers. Look-ahead masking is implemented in the decoder self-
attention block to prevent the decoder fitting to future time steps. That is, the
attention relevance scores are set to zero for future time steps, which restricts
the decoder from reading future information to make predictions.

To prevent our model from making predictions solely on a the time basis en-
coded as one hot dimensions, we apply to all attention layers L1 regularization,
expressed as

L1 = (wx+ b− y)2 + λ|w| (4)

where λ is 0.0001, and L2 regularization,

14



20
20

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

es 
Award

L2 = (wx+ b− y)2 + λw2 (5)

where λ is 0.001, adding additional penalty to the loss function.

5.2.2 Metrics

To evaluate the performance of our crowd forecasting model, we select MSE as
our loss function during traning, defined as

MSE =
H−1∑
i=0

(ŷi − yi)2

H
(6)

where ŷ is the ground truth and yi is the predicted crowd size, and evaluate our
model performance using RMSE:

RMSE =

√√√√H−1∑
i=0

(ŷi − yi)2
H

(7)

5.3 Forecasting with Self-Collected Data Sets

We put our model to test using data collected from the sensors. We choose
4 hours as both the lookback length and the forecast horizon from a practical
standpoint.

5.4 Forecasting with Public Data Sets

For Data Set 3 and 4, we train the model on data of the first-three days, and test
the model on five days’ worth of data. For forecast-horizon specific comparisons,
please refer to Appendix C and D.

(a) MSE (y-axis) by Testing Sample Index
(x-axis)

(b) MSE (y-axis) by Forecast Horizon (x-
axis, each step is a 5-min interval)

Figure 9: Data Set 1: MSE
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(a) Crowd Count (b) Ground Truth (Blue) vs Prediction)

Figure 10: Data Set 1: Ground Truth and Prediction

(a) MSE (y-axis) by Testing Sample Index
(x-axis)

(b) MSE (y-axis) by Forecast Horizon (x-
axis, each step is a 5-min interval)

Figure 11: Data Set 2: MSE

(a) Crowd Count (b) Ground Truth (Blue) vs Prediction)

Figure 12: Data Set 2: Ground Truth and Prediction
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(a) Overall RMSE by Testing Sample In-
dex

(b) RMSE during Peak Traffic (10:30 AM
to 4:30 PM)

Figure 13: Data Set 3

(a) Overall RMSE by Testing Sample In-
dex

(b) RMSE during Peak Traffic (4 PM to 8
PM)

Figure 14: Data Set 4

5.5 Results

In this section, we examine the results from our own data sets, and then compare
our model to existing models proposed in the recent research, Crowd forecasting
based on WiFi sensors and LSTM neural networks [13].

Training on data from sensors located on campus for the case of Data Set 1
and 2, Figure 10b and 12b represent the model’s prediction of a 5-minute horizon
and ground truth on testing sets that are shuffled. The results demonstrate our
model’s ability to capture mobility patterns over a long time span.

5.5.1 Comparasion with Existing Models

Utkarsh Singh et al. covered five different LSTM variants, including the Origi-
nal LSTM, Bidirectional LSTM, Encoder-Decoder LSTM, Convolutional Neural
Netowrk LSTM, and Convolutional LSTM, denoted as LSTM, BiLSTM, EDL-
STM, CNNLSTN, ConvLSTM respectively in Table 2, and the authors included
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Model Data Set 3 Data Set 4
Percentage

Improvement
RW [13] 229.40 274.46 -

LSTM [13] 158.49 214.30 26.01
BiLSTM [13] 146.59 223.17 26.61
EDLSTM [13] 149.64 197.44 31.12

CNNLSTM [13] 150.06 206.39 29.26
ConvLSTM [13] 142.68 190.18 33.94

Our Model 96.93 130.24 54.91

Table 2: RMSE Comparison with Existing Models in [13]

a RW (random walk) model as a baseline [13]. We referenced their data in Table
2 to compare with our results.

Prior research generally confirm that LSTM grapples with long-range context
dependencies, and the we are unaware of the performance over longer input
sequences in the work of Utkarsh Singh et al., as the input of the LSTM variants
are crowd counts in the past 60 minutes grouped into 5-minute intervals, and
the forecast horizon is set to 30 minutes, a relatively short period of time for
some practical use cases.

To ensure comparability, we applied the exact same training data, lookback
period, and forecast horizon. For Data Set 3 our model is trained on three days
of data – Dec 25, Dec 26, and Dec 27 – and tested on a set of five days; similarly,
for Data Set 4, our model is trained on data from Dec 01, Dec 10, and Dec 13,
and evaluated on a testing set of five days as well.

As shown in Table 2, our Transformer-based model yields the best result
across the board, observing the exact same training and testing setup. We
significantly lowered RMSE for these two data sets, and leads the next best-
performing model, namely ConvLSTM, by a 20.97% margin compared to base-
line. These results further demonstrate that our model is versatile going from a
campus setting with the maximum amount of traffic being around 100 to busy
urban centers with thousands of people.

6 Conclusion

In this paper, we developed a full-fledged crowd tracking sensor network and
offered a Transformer-based approach to generating upcoming crowd mobility
forecasts. We encoded periodicity into the model using one hot to express the
periodic nature of our data. Tested on self-collected and public data sets, our
model successfully navigates in different contexts, including college campuses
and busy urban centers, for it captures long-range context dependencies in his-
toric data, increasing the forecast horizon and accuracy by a substantial margin.
Comparing our model to other models in a 2020 study [13], we lowered RMSE
by 54.91% compared to the baseline model, and leading ConvLSTM by a wide
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margin of 20.97%.
With our mobile application shown in Appendix A, the sensor network is

now in phased deployment at Phillips Exeter Academy.

6.1 Future Prospects

In our future efforts, we will explore the integration of Transformer with Graph
Convolutional Network that captures the crowd mobility across different loca-
tions, which we were not able to explore due to limitations of available data
sets.
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A GUI and Mobile App

Figure 15: Mobile Application

B Sensor Locations
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Figure 16: Sensor Locations of Data Set 1 and 2
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Figure 17: Sensor locations of Data Set 3 [5]
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Figure 18: Sensor locations of Data Set 4 [5]
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C Data Set 3 Results
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D Data Set 4 Results
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