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On Matching in Two-sided Infinite Markets

Yunseo Choi

Abstract. Matching is a branch of economic theory that has seen real-life applications in
the assignment of doctors to medical residencies, students to schools, and cadets to branches
of military services. Although standard matching models are finite, economic theorists often
lean on infinite market models as approximations of large market behaviors. While matehing
in finite markets has been studied extensively, the study of infinite matching models\is'rela-
tively new. In this paper, we lift a number of classic results for one-to-one matching markets,
such as group strategy proofness, comparative statics, and respect for unambiguous improve-
ments, to infinite markets via the compactness theorem of propositional legic. In addition,
we show that two versions of the lattice structure of finite markets earry over to infinite
markets. At the same time, we prove that other results, such as weak«Pareto optimality and
strong stability property, do not hold in infinite markets. These results give us a clearer sense
about which matching results are the most canonical.

Keywords: Market Design, Matching, Infinite Markets

Contents
1__Introduction| 3
2__Nuts and Bolts| 5
2.1  Marriage Model| . . . . AW o 5
[2.2  Logical Frame for Analyzing the Marriage Modell . . . . . . . ... ... .. 6
REe Ti7a6 Tnfnite Markets 8
[3.1 Group Strategyproofness| . . . . . . . . . ... 8
[3.2  Entry Comparative Statics| . . . . . . . . . .. ... oL 9
[3.3  Unambiguous Improvement| . . . . . . ... ... ... ... ... 11
[3.4 Impact of Preference Extensions| . . . . . . . . . . ... ... 12
3.5 Lattice Theorem| . . . . . . . . . . . . . . . .. 13
[4 Properties that Do Not extend| 14
41\ Fone Wolf Theorem|. . . . . . . . . . . . 14
(4.2 " Weak Pareto Optimality] . . . . . . . . ... ... ... ... ... 15
15~ Conclusion| 18
6 Acknowledgments| 19
|A_Proofs omitted from the main text] 22



(B Conway Lattice| 28

[C Decomposition Lemmal 29
ID_Hatfield-Kominers Latticel 31
[EE Strong Stability Property| 2’%2



1 Introduction

Given a set of men and women and their preferences in the opposite gender,E] how do
we form pairs such that no agent has the incentive to rematch? This question was originally
proposed and answered by Gale and Shapley [I] in 1962; since then, the solutions to the
variants of the question have been applied to medical residency matching [2], school ehoice
[3], and the assignment of cadets to military branches [4]. Gale and Shapley sought a one-
to-one stable matching, i.e., a set of pairings in which (1) all men and women find their
partners acceptable and (2) no man/woman pair prefers each other to their assigned partners.
By a process called deferred acceptance algorithm, Gale and Shapley showed that a stable
matching exists for any finite set of men and women and their preferences. The algorithm

can be described as follows:

1. Each man proposes to his most preferred woman. Each woman selects her most pre-

ferred man out of those that proposed:toher and holds him; the rest are rejected.

2. Each man that was rejected moves ‘down his list of preferences and proposes to his
next preferred woman. Each\woman selects her most preferred man among those that

proposed to her, including the man that she held from the previous iteration.
3. Step 2 repeats uhtil no men are available to propose.

Gale and Shapley [I] showed that the matching obtained at the termination of the al-
gorithm is §table. For example, consider the economy displayed in Figure [I} Following the
steps_of, the algorithm, we have that (mi,w;) and (mg,ws) be matched. Casework shows
that the matching is stable. In addition, Gale and Shapley showed that each man weakly
prefers his match under the deferred acceptance algorithm compared to any other woman

that he could have been matched to in another stable matching. Additional properties of

IThe set up of the model is outdated in today’s standards. However, the marriage model has traditionally
been the stand-in problem for matchings in which every agent is matched across sides.



myiwy = wy = 0wy imy = mg = my >0
Mot wy = wy >0 wy:my > mg >0
mg : wy > ()

Figure 1: Example of a marriage market with three men, m;, mo, and ms and two women, w;
and ws. Preferences are as denoted where () represents the option to remain unmatched. Underlined
partners indicate matches obtained at the termination of the deferred acceptance algorithm [

the man-optimal stable matching are known: first, that the man-optimal stable matching is
group strategyproof [5]—mno set of agents can be strictly better off by reporting.false prefer-
ences. Second, the man-optimal stable matching satisfies natural entry comparative statics
(see, e.g., [0, [7])—adding new women to the market leaves every man weakly better off.
Lastly, the man-optimal stable matching respects unambiguous improvement [8]—when a
man’s ranking in all the women’s preference list improves; then his outcome improves as
well.

A key to Gale and Shapley’s algorithm [I] is the finiteness of the market, which ensures
that the algorithm terminates. In the real waorldy no matter how large a set of men and
women is, it is at most finite. Therefore, we’don’t lose generality by assuming that our
set of agents is finite. However, finiteé_models may fail to fully capture the story of large
markets. In particular, the dependénee on the finiteness may make us prone to small frictions,
perturbations, and arbitraryinput data [9]. Moreover, infinite models are understood to be
better representations of\large finite markets than large finite models, as they allow us to
study limit behaviors and to approximate large market behaviors.

The pioneering work in infinite matching models has been completed by Fleiner [10],
Azevedo and Leshno [11], Zanardo [12], Jagadeesan [13], and Gonczarowski et al. [9]. Notably,
Fleiner|gave the first existence proof of stable matchings in infinite markets. Azevedo and
Leshno [I1] introduced an analog of infinite matching models with a continuum of agents.
Zanardo and Jagadeesan, respectively, introduced infinite variants of the deferred acceptance

algorithm in countably infinite and locally finite markets. Gonczarowski et al., via logical



compactness, proved the existence of man-optimal stable matchings in infinite markets. In
addition, they showed that the man-optimal stable matching mechanism in infinite markets
is individual strategyproof.

This paper is structured as follows. In Section 2, we introduce the marriage model and
the logical framework for analyzing the marriage model. In Section 3, we show via the gom-
pactness theorem of propositional logic that the man-optimal stable matching mechanisi in
infinite markets, like in finite markets, is group strategyproof, satisfies natural>entry com-
parative statics, respects unambiguous improvement, and respects preferenee extensions. In
addition, we show that infinite markets carry over the lattice structuzes of finite markets. In
Section 4, we prove the failure of weak Pareto optimality and strong stability property in
infinite markets. In Section 5, we discuss our results. Section.6"is acknowledgments. Proofs
omitted from the main text are presented in Section A«of the appendix; further results are

presented in Sections B through E.

2 Nuts and Bolts

2.1 Marriage Model

In this subsection, we introduce the infinite marriage model, generalizing the model pro-
posed by Gale and-Shapley [I]. Suppose that we are given an economy I consisting of agents:
(potentially infinite) sets of men M and women W. We say that [ is finite if the number of
agents is finite and that it is infinite otherwise. We refer to P as the agents’ collective set of
prefefénces and use =; to denote the relative preference ordering of ¢ € I where () represents
the'option to remain unmatched. While |M| and |W| can in principle be uncountably infi-
nite, we assume that each agent prefers being matched to countably many agents over (). A

matching p : [ — I U {0} is defined as follows: for each m € M and each w € W,



1. u(m) e MU{0}, p(w) € WU{D}, and
2. pu(m) = w if and only if u(w) = m.
In particular, a matching is stable if it is
1. individually rational, i.e., for any agent i € I, (i) »=; () and

2. unblocked, i.e., there exists no man m € M and woman w € W such that w™=,, u(m)

and m >, p(w).

An agent is an achievable partner of an agent if there is a stable.matching in which
the two are matched. In both finite [I] and infinite [9] markets, there always exists a stable
matching in which every man is matched to his most preferred achievable partner. Such a
matching is denoted as py; and is called the man-optimalystable matching. py is defined in
a similar fashion.

When comparing two stable matchings g and«’ under the same set of M, W, and P, we
say that p =y p' (respectively, »,,) if forevery man m € M, u(m) =, 1/(m) (respectively,

=m)- b =w i and p =y p' are definedi€imilarly.

2.2 Logical Framecfor Analyzing the Marriage Model

In this subsection, we establish the preliminaries on the logical frame for analyzing the
marriage model, swhich will transform the conditions of matching into logical statements.
A formula 1S a boolean statement that can be defined inductively from an atomic boolean
statemment,’¢. The inductive construction of a formula is as follows: if ¢ and 1 are formulae,
then.so are =g, ¢ V b, ¢ A1), ¢ — 1, and ¢ <> Y| A well-formed formula can be arbitrar-

ily long; however, it has to be finite in length. The compactness theorem of propositional

2Here, we use the standard notations: — for not, V for or, A for and, — for implies, «+ for if and only if.



logic [14] states that an infinite set of individually finite logical formulae can be satisfied
concurrently if and only if any finite subset of the infinite set of formulae can be.

In the rest of this section, we establish the set of formulae ® as illustrated in Gonczarowski
et al. [9] that characterizes stable matchings. We first introduce matched[m,w|, which is
TRUE when m and w are matched and FALSE otherwise. Then, for every pair of men and
women (m,w) and a woman w'(# w), we introduce the following formula:

matched|m, w] — —matched|[m, w’] € ®,
which ensures that every man is matched to at most one woman. Similarly,-for every pair of
men and women (m,w) and a man m/(# m), we introduce the following)formula:
matched[m, w] — —matched[m’, w] €°®,
which ensures that every woman is matched to at most dne-inan. In addition, we add the
following formula for any pair (m, w) such that at least.one finds the other incompatible:
—matched|[m, w] '€ @,
which guarantees that no incompatible man“and /woman are matched. Lastly, the following
formula guarantees that the matching is,unblocked. For every pair of man and woman (m, w)
in which both of them find each othernaccéptable, let wy, . .., w, denote the finite set of women
that m prefers over w, and let mqy... my denote the finite set of men that w prefers over m.
We include the following fermula:

—matched[m, w| = matched[m, w;] V matched|m, ws] V ... V matched|m, w/]

Vmatched[my, w]| V matched[my, w] V ...V matched[my, w] € ®,
which guarantees that if m and w are not matched, then at least one of m or w is matched to
an agent.that they find more preferable to w or m, respectively. This, in turn, means that no
unmatched (m,w) prefer each other to their respective partners. The length of the formula
is finite as each agent only finds countably infinite or finitely many agents acceptable.
By construction, any matching satisfying all the formulae in ® is a matching that is

individually rational and block-free, and thus stable. Using ® and additional formulae, we



can show the existence of certain stable matchings via appeal to the results of finite markets.

3 Generalizations to Infinite Markets

In this section, we use logical compactness to lift a number of classical results of matching
from finite to infinite markets. Notably, we will show that the man-optimal stable matching
mechanism is group strategyproof (Theorem , satisfies natural entry compatative statics
(Theorem [3.5]), respects unambiguous improvement (Theorem [3.7)), and respects preference
extensions (Theorem . Before proceeding to prove these results, wé prove the following

lemma that lets us project the stable matchings of infinite mazkets to finite markets.

Lemma 3.1. Let i be a stable matching in I, and let M' and W' be finite subsets of M and
W. Take the finite economy I' consisting of M', W', u(M"*), and u(W'). Then, u is a stable

matching in I'.

As p is individually rational and block-free/in I, we check that u is stable in I’ as well.

3.1 Group Strategyproofness

We extend the group stratégyproofness of stable matching mechanisms of finite markets to
infinite markets. Group Strategyproofness states that no set of agents can be strictly better
off by reporting(false preferences. Group strategyproofness is important for the design of
stable matehing_mechanisms in practice, as it reduces the agents’ incentives to gain from
the system in ways that distort the outcome. In finite markets, the statement of group

strategyproofness [5, [7] is formalized as follows:

Theorem 3.2 (G. Demange et al. [15], Hatfield-Kojima [7]). In a finite, one-to-one matching
market, no agents I can manipulate their choices to produce a stable matching that is strictly

preferable for all agents in I compared to some stable matching under true preferences.



A special case of Theorem is indwvidual strategyproofnes, which states that a market
is strategyproof against an individual manipulating his or her preferences. Individual strate-
gyproofness was proven to hold in infinite markets by Gonczarowski et al. [9]. Here, we show

that group strategyproofness holds in infinite markets.

Theorem 3.3. In a (potentially infinite), one-to-one matching market, no finite set of agents
I can manipulate their choices to produce a stable matching that is strictly preferable for all

agents in I compared to some stable matching under their true preferences.

We generalize the proof of Gonczarowski [9] using logical compactness. The key divergence

is that we use a different formula to characterize improvements.

Remark. The conclusion of Theorem does not hold when |I | is infinite; this is a direct
consequence of our Theorem [4.4] which shows the failure ’of the weak Pareto optimality in

infinite markets.

3.2 Entry Comparative Statics

The next result in finite marketsito'be generalized is the entry comparative statics, which
states that when new women ‘enter the economy and each man updates their preferences
accordingly, the outcome for“every man under the man-optimal stable matching weakly im-
proves. This result helps us understand how match outcomes change as market participation

changes over time. The formalized statement in the finite market [0, [16] is as follows:

Theorem\ 3.4 (Kelso-Crawford [6], Gale-Sotomayor [10]). In a finite, one-to-one market,
if @ hew’ set of women W enters, then the outcome of every man in the man-optimal stable

mechanism weakly improves.

An isomorphic model to the market before the entrance of W assumes that those women

are present, but that they find no man acceptable [I7]. In this model, the women in W are

9



not matched as if they are absent, because they find no one acceptable. Thus, we may assume
that the men in this model rank all women, including the ones in W. When the women of W
moves () down their preferences and report their true preferences, the model is isomorphic
to when W enters the market. Notice that the men’s preferences do not change. With this

in mind, we generalize Theorem [3.4] to infinite markets.

Theorem 3.5. In a (potentially infinite), one-to-one market, if a new (potentiallydnfinite)
set of women W enters, then the outcome of every man in the man-optimal stable mechanism

weakly improves.

Proof. We say that M is the set of men that gets matched to some,woman in the man-
optimal matching prior to the update, which we call jp;. We-want to show that when W
enters, then each man in m € M gets matched to a woman at/least as preferable as pips(m).

We introduce a new set of formulae ®’ that containall the formulae in ®, and in addition,
the following formulae for each m € M:

Vs o g (myMMatched [m, w, (1)
which ensures that each m € M is matehed to a woman at least as preferable as g ().
The length of Eq. is finite as mucan ‘each only prefer finitely many woman over gy, (m).

Now, take a finite set of foxmulae from ®’ and the resulting finite economy I’ consisting
of M, W', yupns(M"), jups(W')Jand W, where M’ and W' are the finite sets of men and women
mentioned in ourAinite set of formulae. Now, we will show that the man-optimal stable
matching in I’ after’ W enters, which we denote as j),, satisfies our finite set of formulae.
Since we already know that such a matching is stable, we only need to show that the matching
satisfies Eq. for all men in M’ N M. Now, we know from Lemma that p,s is a stable
matehing in I’ before the entrance of W. Therefore, the man-optimal stable matching in I’
before the entrance of W should match each m € M’ N M to a woman at least as preferable
as pipr(m). Note that the entrance of W creates the same effect in I’ as it does in I: the

preference list of the women in W changes from ) to their true preferences. Now, because

10



I’ is a finite economy, by Theorem [3.4] 1}, is weakly preferable to the man-optimal stable
matching before the entrance of W for all the men in I’. We have already established that
before W’s entrance, the man-optimal stable matching matches every man in m € M’ N M
to a woman at least as preferable as piy,(m). Therefore, under py,, each m € M'nN M should
be matched with a woman at least as preferable as pp(m) as well. From here, we conclude
that such a matching satisfies Eq. —and thus, fully satisfies our finite set of formaulae.
Logical compactness states that if there is a model that satisfies any finite set of formulae,

then there is a model that satisfies every formula in our infinite set; hence,'we are done. [

3.3 Unambiguous Improvement

We say that the rankings of a man unambiguously improve when in each woman’s pref-
erences, his rankings weakly improve while leaving the relative rankings of the others static.
The next result that we extend from finite markéts is that the man-optimal stable match-
ing mechanism respects unambiguous improvemient: when the rankings of a particular man
unambiguously improve, then his outcomeyunder the man-optimal stable matching weakly
improves. In practice, the respect of nnambiguous improvement means that agents have the

incentive to improve their rankings. The statement in finite markets [8] is as follows.

Theorem 3.6 (Balinski=Sonmez, [§]). In a finite, one-to-one market, the man-optimal stable
mechanism respects unambiguous improvement. That is, if m unambiguously improves in the

preferences of W7, then his matching under py weakly tmproves.
We, generalize Theorem to infinite markets via logical compactness.

Theorem 3.7. In a (potentially infinite), one-to-one market, the man-optimal stable mech-
anism respects unambiguous improvement. That is, if m unambiguously improves in the

preferences of W, then his matching under py; weakly improves.

11



Like the proofs of Theorem and Theorem [3.5] we project the man-optimal stable
matchings before and after the unambiguous improvement of 7 into a finite market and

conclude by invoking the result of the finite market.

3.4 Impact of Preference Extensions

The next result to be lifted from finite to infinite markets explains how outcomes‘ehange if
men become less selective. Before stating and proving the statement, we establish Lemma[3.8]
originally established by Knuth in finite markets [I8]. We note here that higargument directly

generalizes to infinite markets as it relies solely on the stability of u/and '

Lemma 3.8. In a (potentially infinite), one-to-one marketif . and 1/ are two stable match-

ings, then we have that p =y p' if and only if (' =y .
The statement on the impacts of preference extension in finite markets is [16] as follows:

Theorem 3.9 (Gale and Sotomayor [16]). Tn a finite, one-to-one market, suppose that the
men extend their list of preferences to 2. such that they each add (a potentially empty set of )
additional women to the end ofitheir list of acceptable women. Let jipr and fij;, denote the
man and woman-optimal stableynatchings under P. Then, we have that

s = v fkad (Comsequently, fing =w piar by Lemmal3.8) and

Awiew pw (consequently, fiw = fw by Lemma@ under P.

To generalize Theorem to infinite markets, we use logical compactness.

Theorem 3.10. In a (potentially infinite), one-to-one market, suppose that the men extend
their-list of preferences to P such that they each add (a potentially empty set of ) additional
women to their list of acceptable women such that the newly added women are less preferable

than the women that they initially found acceptable. Let [ips and fi;, denote the man and

12



woman-optimal stable matchings under P. Then, we have that
par = fine (consequently, fuve =w fine by Lemmal3.8) and

fow =w pw (consequently, pw = fow by Lemmal[3.8) under P.

3.5 Lattice Theorem

The last result to be extended is the lattice theorem. For two stable matchings_ gi~and 1/,
let A = p V' such that A(m) = p(m) if p(m) >=n /' (m), and X(m) = p'(m) otherwise.
Similarly, define A= A ' such that each man points to his less preferable partner and each
woman points to her more preferable partner. In finite markets, foristable matchings u and
i, both V' and p A ' are stable matchings. Put it differentdy,\the stable matchings form
a lattice with their join as A and meet as V. Consequently, by repeatedly executing V and
A, the maximal and minimal elements of the lattice can)be found. Conway was the first to

formalize this statement for finite marriage models"{18].

Theorem 3.11 (Conway [I8]). In a finite, one-to-one market, for stable matchings u and
W, pV ' and wA ' oare stable matchings. Consequently, the stable matchings form a lattice

with py and py as the mazimaband minimal elements.

Adachi [19], among othérsyinterpreted Conway’s lattice through the lens of Tarski’s Fixed
Point Theorem [20]. While Conway’s original proof does not generalize to infinite markets,

Adachi’s setup generalizes in our context.

Theorem 3.:12. In a (potentially infinite), one-to-one market, for stable matchings p and
W NVt and A\ ' oare stable matchings. Consequently, the stable matchings form a lattice

with iy and py as the maximal and minimal elements.

3V and A are redefined in this subsection as described. They do not follow the definitions defined in the
context of logic in Section 2.

13



In finite markets, Conway’s proof of the lattice theorem [I8] is a direct consequence of a
decomposition lemma due to Gale and Sotomayor [16]. However, the exact statement of the
decomposition lemma does not hold in infinite markets. But proceeding backward from our

lattice theorem, we prove a relaxed version of the decomposition lemma.

Lemma 3.13. In an infinite, one-to-one market, let p and p' be two stable matchings.
Let M () denote the set of men that prefer their partners under p than u'. Similarly, define
M), W(n), and W (). Then, both n and ' map M (' )U{0} onto W () U{B}. Similarly,
they each map M () U {0} to W(p') U {0}.

Hatfield and Kominers [21] presented an alternative lattice donstruction. In Appendix
D, we introduce the Hatfield-Kominers’ operator and show that their setup generalizes to
infinite markets. Although our results so far relied on the _countability of the preference list

of each agent, we remove this constraint under the infinite Hatfield-Kominers Lattice.

4 Properties that Do 1Vot extend

While the previously mentioned, results on finite markets extend to infinite markets,

others do not. In this sectiony we will characterize such results via counterexamples.

4.1 Lone Wolf Theorem

The question_of whether different stable matching mechanisms yield different sets of men
matched te some woman is crucial when matching doctors to hospitals. As rural hospitals are
less preferable for many doctors, they often faced a shortage of doctors. To assess whether

the/matching mechanism was to blame, the lone wolf theorem was studied.

Theorem 4.1 (McVitie-Wilson [22]). In a finite, one-to-one market, the set of men matched

to some woman s invariant across all stable matchings.

14



Jagadeesan [I3] showed that the lone wolf theorem does not hold in infinite markets.

Theorem 4.2 (Jagadeesan, [13]). In an infinite, one-to-one market, the set of men matched

to some woman may not be invariant across stable matchings.

In Jagadeesan’s construction, only finitely many men were matched in one stable mat¢h=

ing and not in the other. Here, we show that the changeover can in fact be inﬁniteﬁ

Example 4.1. Consider the following infinite market in which the men and” women are
indexed with positive integers. Suppose that for all £ € Z", we have that:

Mok : Wap = 0, Mak_1 : Wop—1 = wi_1 > 0, and

Wy Mogyr = My = 0.

In this economy, under p,;, each man is matched with their top choices, i.e., pp(my) = wy
for all k € Z". uy is individually rational and stablé,as each man receives his top choice,
which ensures no unmatched men and women mutually prefer each other to their assigned
partners. Similarly, under, uy each woman're€eives her top choice, i.e., py (wg) = mog,1 for
all k£ € Z*. Observe that under pyy, all agents are matched. However, under py, only men

of odd indices are matched. Thus, theéychangeover is infinite.

Remark. In the finite market, the lone wolf theorem follows from the decomposition lemma

[16], but in our decomposition lemma, the addition of {(} fails the lone wolf theorem.

4.2 Weak Pareto Optimality

Another classical result for stable matchings in finite markets is the weak Pareto optimal-
itywprinciple [2], which states that no individually rational matching (not necessarily stable)

matches every man to a woman strictly more preferred to their matches under p;.

4While Jagadeesan’s example and Example discuss markets with countably infinite agents, we present
a related counterexample with uncountably many agents in the appendix.
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P(my) = ws, wy P(wy) =0

P(mg) = w3, wy, ws P(wy) =10

P<m3> = %, w3 P(U)g) = Mg, mz,@

P(m4) = We¢, W7, Wg P(U}4) = mhw

P(TI’L5) = We, W7, W, Wog P(w5) = My, M3

P(mg) = wig, we Pawg) = mz, meg, ms, my, ms

P(m7) = w1, wy Powz) = mr, mg, ms, my, ms

P(ms) = Wi, W11, W12, W13 P(ws) = My, My

P(mg) = W10, W11, W12, W13, W14 P(wg) = My, Mg

P(my) = wis, wig P(wig) = mia, miy, Myg, My, Mg, M7, Mg

P(mll) = Wi6, W11 P(wll) = M1z, M11, Mg, My, Mg, M7, Mg

P(mlz) = W17, W12 P(w12) = M2, M11, Mio, My, Mg, M7,Me

P(m13) = W15, W16, W17, W18, W19 P(w13) = Mg, My

P(m14) = Wi5, W16, W17, W18, W19, W20 P(w14) = Mg, Mo

P(m15) = W21, Wis P(w15) = Mg, Mi7, M6, TN 15517114, 113, 11012, 111, Mo
P(m16) = Wa2, Wi P(wlﬁ) = Mg, M7, M1, 11ss 114, 13, 12, 1111, 10
P(m17) = Wa3, W17t P(w17) = Mig, M17,M16, W15, M4, 13, 1112, 11, Mo
P(m18) = W4, W1s P(wls) = Mg, Mi7, Mig, Mis5, M4, 113, 12, 11, 1o

Figure 2: Visualization of the market used in the proof'ef Theorem Underlined agents indicate
matches under p; bolded agents indicate matches under ;. = is replaced with a comma and () at
the end of each preference list is omitted for space:

Theorem 4.3 (Roth, [2]). In a finite;Sone-to-one market, there is no individually rational

matching p such that p >y s’
However, we show that(the conclusion of Theorem does not hold in infinite markets.

Theorem 4.4. [n an infinite, one-to-one market, there may be an individually rational

matching p suchdhat p >y oy

Proof. Consider the following infinite market I where each agent is indexed with a positive

16



integer and T; is the i'" triangular number:

M4k Wr 4k = W = 0 for 0 <k <i—2,

MTtk D Wy = WT, 11 = - = W ykrr = O for i —1 <k <,

for i = 1,wr,qp : 0 for 0 < k <,

for i > 2, wpip:mr_ i9io>=mp 121> ... =mp_, =0 for 0 <k <i—2 and

W4k MTqh—io1 > Mpyh—; = O for i —1 <k <.

Note that because T; 1 —T; = i+1 by the definition of triangular numbers, the preferences
of each agent are well defined. The market can be visualized as in Figure[2

The man-optimal stable matching uj; can be stated as follows:

par(mr i) = wryy for 0 <k <i— 2
prr(Mmrir) = Wy, 1k > 0 for - 1<k < 0.

To show that p,, is man-optimal, we first verify that-it is stable. By checking the prefer-
ences, we see that p,, is individually rational. In addition, p, is block-free, as each woman
gets matched to her top choice man among those that list her in their preferences. Now,
we show that gy, is man-optimal., AsSume the contrary and that u, (# par) instead is

man-optimal. We will show that\u/,jcannot exist through a series of three steps:
L lhy(mz) = wr;
2. pyy(myag) =wrap for 1 <k <i—2;
3. Whr(mar)=wr,  4p41 fori —1 <k <.

If all these steps are true, then py = 'y, a contraction to our assumption. The proofs
for, each/of these claims are attached in Appendix A. Yet, while y5, is man-optimal, it is not
Pareto-optimal. Indeed, the following matching u

M(mTH_k) = W, 1 +k for 0 < k < 1 — 2,

p(mr k) = wry, 4k for i — 1 < k <.
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is individually rational, and each man prefers his match under p than in pp,. O]

Demange et al. [I5] showed linkages between stable matchings and solutions concepts
in cooperative game theory. Our counterexample to the weak Pareto optimality principle
implies additionally that the strong stability property from the finite market does not carry

over to the infinite market. See Appendix E for details.

5 Conclusion

In Section 3, we showed that the man-optimal stable matching~mechanism in infinite
markets, like in finite markets, is group strategyproof (Theorem , satisfies natural entry
comparative statics (Theorem , respects unambiguous ‘improvement (Theorem , and
respects preference extensions (Theorem . In addition; we showed that infinite markets
carry over the Conway [I8] and Hatfield-Kominers+21} lattice structures from finite markets
(Appendix B, C). In Section 4, we proved the failure of weak Pareto optimality (Theorem [4.4])
and strong stability property (Appendix/E) in infinite markets.

Further potential directions of@esearch involve verifying whether Blair’s result holds [23]
in infinite markets. Blair proved that in finite markets, every finite distributive lattice is
equal to the lattice of stableymatchings of some marriage market. Zanardo [12] conjectured
that such a result does not hold true as the number of stable matchings in infinite markets
should be either finite or uncountably infinite. However, beyond this conjecture, Blair’s result
in infinite markéts remains an open problem. Another potential direction of research is to
construct a systemic method that can identify all of the stable matchings in infinite markets,
potentially mimicking the mechanism in finite markets illustrated by Roth and Sotomayor
[2]7 In addition, while most of the discussion in Section 3 of this paper was based on the
assumption that each agent has a countably infinite list of acceptable partners, a potential

future direction is to remove this constraint.
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Appendix

A  Proofs omitted from the main text

Proof of Lemma [3.1]

First, p in I’ is individually rational because for p to have been a stable matching in
the infinite economy, it must have matched each agent to partners they find acéeptable. In
addition, y in I’ must not contain blocking pairs as potential blocking pairs-are only reduced
from the ones in . In other words, if (m,w) form a blocking pair in, F.ander p, then they

must form a blocking pair in I as well.

Proof of Theorem 3.3

Say that [ = {my,ma, ..., mg,wy,ws, ..., wekand that a stable matching under manip-
ulation is pu. We wish to show that if agents-in f report their true preferences, then there is
some stable matching in which at least, oné-agent of I gets matched to an agent at least as
truly preferable as their partners under-i. If under u, an agent i € [ is not matched to a
partner, then our claim holds4rue. Therefore, as we proceed, we say that each agent in [is
matched to a partner in .

We first note that under the manipulation, if each agent in i € I even further manipulates
their preferences to’ju(¢) > @, then p still remain a stable matching. The matching is still
individually rational as the pairings do not change. In addition, the matching remains block
free as\the ‘potential blocks are only reduced from the ones before further manipulation.

Next, we generate the set of formulae ' that contains the following formula in addition

to our usual set ®. That is:

(Vi pn, pu(myymatched[my, w]) V...V (Vi u(my,ymatched[my, w]) )

V (Vi p(wrymatched[m, wi]) V...V (Vins,,, u(wy) Matched[m, wy]) € @,
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which ensures that at least one agent in [ is matched to an agent at least as truly preferable
their partners under p. Note that Eq. is finite because there are only a finite number of
agents that each agent in the finite set I prefers over their matches under pu.

Now, take a finite number of formulae from &', and let M’ W’ u(M'), w(W'), I, and ,u([)
be a finite subset I’ of I where M’ and W' are the set of men and women mentioned insour
finite set of formulae. We will show that the man-optimal stable matching y/, under'true
preferences in I’ satisfies our finite subset of formulae from ®. Notice that as+long as we
have a stable matching, we satisfy all the formulae except for potentially the new addition,
Eq. . To satisfy Eq. 1) , we should show that at least one agent from I is matched with
a partner at least as preferable as their partners under pu.

Notice that the agents in I’ can manipulate their preferences such that p is a stable
matching in this economy. (In particular, each agent e\ can reduce their preferences to
,u(z) >~ () and by Lemma p will be a stable matching of I'.) As I’ is a finite economy, by
Theorem , in uy,, there must be least orfe agent from I that gets matched to a partner
as preferable as their partners under paTherefore, 11y, satisfies all the equations in the finite
set of our formulae. As we have shewn/that there is a model that satisfies any finite set
of formulae in ®’, we know that there is a model satisfying every formula in &’ by logical
compactness. Thus, we haveishown that when each agent i € I reports their true preferences,
at least one agent can be'matched to a partner at least as preferable as their partners post

manipulation as‘wehad sought to prove.

Proof of Theorem [3.7]

Let the women’s preferences after man m unambiguously improves be their updated pref-
erences. Say that p,, is the man-optimal stable matching prior to the update. We want
to show that under updated preferences, m gets man-optimally matched to a woman as

preferable as w. If py (M) = 0, our claim holds. Therefore, we assume that py, (M) = .
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We once again construct a new set of formulae ', which contains our usual formulae ®
and the following:

Vs matched[m, w] € @', (3)
which ensures that m is matched to a woman at least as preferable as w. The formula is
finite as man m can only prefer finitely many women over w.

Let us take a finite set of formula from @’ and let our resulting economy ['“\be M’,
W' pae (M), pp (W), m, and w, where M’ and W’ are the finite set of men’and women
mentioned in our finite set of formulae. We will show that the man-optimalsstable matching
wh, in I' post-update satisfies our finite subset of formula. First note) that since such a
matching is stable, we only need to show that it satisfies E{, . From Lemma (3.1, we
have that ps is a stable matching in I’ prior to the update.£rom here, we deduce that the
man-optimal stable matching in I’ prior to the update.natches m to a woman at least as
preferable as uy (M) = w. Now, note that the unambiguous improvement of 7z in the infinite
economy implies that 7 unambiguously improves in I’ as well because I’ is a subset of [I.
And by Theorem m gets matched 40~a woman at least as preferable as w in p,. Thus,
h, satisfies our finite set of formulae.“Therefore, we have shown that there is a model that
satisfies any finite subset of formula in ®’. Thus, by logical compactness, there exists a model

that satisfies all the formulae in @', which we had sought to prove.

Proof of Theorem [3.10!

We will*fitst show that s =as fins. We will say that M updates their preferences when
they modify their preferences from P to P. Suppose that M is the set of men matched to
some woman under P. To prove our claim, we need to show that under P, every man im € M
gets matched to a woman at least as preferable as fips(m). To force this assertion on top of

our usual set of formulae ®, which alone, guarantees a stable matching, we add the following
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formulae to ® for all men m € M and construct a new set of formulae ®':

Vs o fins () Matched[m, w] € @', (4)
which ensures that each 7 € M is matched to a woman at least as preferable as fonr ().
Each of the formulae added is finite in length, because each man m can only prefer finitely
many woman ahead of fi(m).

Let us take a finite set of formulae from @', and let our finite economy I’ ¢onsist of
M' W' i (M), and fips(W'). We will show that the man-optimal stable matehing after
update py, in I’ will satisfy our subset of formulae from ®’. Note that-because such a
matching is already stable by definition, the only formulae that we should satisfy in addition
are Eq. . In other words, we want to ensure that in the mancoptimal stable matching
of I, every man m € M’ U M is matched to a man at léast.as weakly preferable as their
partners under fiy,. First, by Lemma we know that ‘ip; is a stable matching in I’. By
definition of man-optimal, each man m’ € M’ will beunatched to a man at least weakly more
preferable than fiy/(m’') under the man-optimal stable matching pre-update. Now, say that
each man updates his preferences. Because I’'is a finite economy, by Theorem we know
that the man-optimal stable matchingiinder updated preferences should match each man
with a partner at least weakly moxe preferable than their partners under py,,. In particular,
each man m € M’ N M is matehed to a woman at least as preferable as fip(m). Therefore,
as we found a stable matching that satisfies any finite subset of formulae extracted from @',
by logical compactness, we know that there exists a model that satisfies all of ®’.

We will(now show that jiyy = puw. We will say that M outdates their preferences when
they modify their preferences from P back to P. Suppose that T is the set of women matched
tolsome man under P. To prove our claim, we need to show that under P, every woman
W € W gets matched to a man at least as preferable as py (@). To force this assertion on

top of our usual set of formulae ®, which alone, guarantees a stable matching, we add the
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following formulae for all women w € W to ® and construct a new set of formulae @'
Vins o () Matched[m, w] € @, (5)
which ensures that each w € W is matched to a man at least as preferable as juy (). Each
of the formulae is finite in length, because w can only prefer finitely many men over gy ().
Let us take a finite set of formulae from @', and let our finite economy I’ consist\of
M W' uw (M"), and pw (W') where M’ and W' are the finite set of men and woménmen-
tioned in the finite set of formulae. We will show that the woman-optimal stable,matching
after update in this finite economy puy;, will satisfy our subset of formulae frem ®'. Note that
because such a matching is already stable, the only formulae that we should satisfy in addition
is Eq. . In other words, we want to ensure that uy,,, every womanw € W'U W is matched
to a man at least as weakly preferable as their partners wader” . First, by Lemma 3.1}
we know that uy is a stable matching in I’. By definition, each woman w’ € W’ will be
matched to a man at least as weakly more preferable as her match in the woman-optimal
stable matching in I’ post-update. Now, say“that) each woman outdates her preferences. By
Theorem [3.9, we know that the womansoptimal stable matching under outdated preferences
should match each woman with a partnet) at least as weakly more preferable than the part-
ners under fy,. In particular, eaeh woman w € W' N W is matched to a man at least as
preferable as puw (w). Thereforey as we found a stable matching that satisfies any finite subset
of formulae extracted from &', by logical compactness, we know that there exists a model

that satisfies all ‘of"®’.
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Counterexample to Theorem 4.2 with Uncountably Infinite Agents

Consider the following market in which every man and woman are indexed with a real
number in the interval [0, 1):

1
MLy S WLk = WLyt = O for ke Z", m, :w, =0 forr¢ {(§)k | k € ZT} and

1
Wk T MLy = My = 0 for k€ Z" w, :m, = 0 for r & {(5)’C | ke ZT}.

Consider s and pyy in this economy. Similar to g1y and py in Example [1.1] sy (Tespec-
tively, puy ) matches every man (respectively, woman) to their top choices. These matchings
are individually rational and contain no blocking pairs as every man (respectively, woman)

prefers no one above their partners. Notice that in u,;, every man/is matched to a woman,

while in puy, m1 does not have a partner.
2

Omitted Steps from the Proof of Theorem 4.4
Claim A.1. iy, (mg) = wr,

Assume the contrary and that py,(mr) # wr,. Because we already know that iy, is a
stable matching in I and that miyg “is matched to a woman in gy, it cannot be the case
that iy, (mr,) = 0 by our assumption that y, is man-optimal. Therefore, ), (mr,) = wr,, .
However, if so, wr,,, and{mi i1 create a blocking pair as wr, , prefers mq, ;1 over mg,, and
mr,+i—1 ranks wy,, as his most preferable partner. Thus, our assumption that iy, (mz,) # wr,

cannot be true.
Claim A.2. v, (mr, + k) = wrqp for 1 <k <i—2

We proceed via strong induction on k while allowing ¢ to vary across positive integers
such that £ < i. We let the base case be k = 0, which we know holds true for all ¢ through
Claim For our strong inductive step, we say that for all ¢ < k, p),(mr,4+0) = wr s

for all & < i. Our goal is to show that )y, (mz4k+1) = Wr4k1. Assume the contrary. As
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we know that py, is stable and that py (mr,1x41) = wrykt1, for ), to be man-optimal, it
must be that u),(mz,1k41) = Wy, 4x41. Now, our strong induction hypothesis implies that
par(may,,+e) = wry, 40 for 0 < € < k. Therefore, wr,, ¢ for 0 < ¢ < k is not available
for mr,4i-1, leaving wr,,, 4141 as the top available candidate in mrz,,;_1’s preferences. Also,
under wr,,, 4x41’s preferences, mg, ;-1 is ranked higher than mg, ;. Therefore, mq, ;1 and
wr,,,+k+1 form a blocking pair, meaning that our assumption, iy, (mzn4+r) # W1 445\ cannot

be true. Thus, uy,(mr,.x) = w1 as we had sought.
Claim A.3. py(mr1k) = Wy, ith—2 fori—1<k <4

As mypyp fori — 1 < k < ¢ are matched to some woman(under the stable match-
ing pps, under the supposedly man optimal puy,, these men are matched to some woman
as well. But because we know that Claim and Claim hold true, we know that
W1,y W +1 - - - WT,,  +i—1 are unavailable to mq 4 fori —1 < k < i as they are already
taken. Therefore, the only available woman. fér 7, ;1 is wr, s and the only available
woman for mr,4; is wr,, iy1. Therefore, ph,(mr4r) = wry, 44— for i —1 < k < i as we had

sought to prove.

B Conway Lattice

To interpret Gonway’s Lattice in the context of fixed points, Adachi [19] defined a pre-
matching v = (vir, vw) where vy (m) maps each man m to himself or to a woman and vy (w)
maps eaech woman w to herself or to a man. In Adachi’s words, a matching p is said to define
a prematching v if for all m € M and w € W, vy (m) = p(m) and vy (w) = p(w).

Adachi characterized the stable matchings p to be matchings defined by v that satisfy
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the following

vpr(m) = n:glx{w e W |m =, vw(w)U{m}} (6)

v (w) = Hiax{m €M |m =, vy(m)U{w}} (7)
and showed that the solutions of Eq. @ and Eq. , i.e., the set of stable matchings, form

a complete lattice. Here, we note that Adachi’s setup carries over to infinite markets.

Proof of Theorem [3.12]

The proof follows that of Adachi’s [19] directly. The two instances inwhich Adachi makes
use of the finiteness of the market in his proof is in (1) defining Bq.>(6) and Eq. and
(2) applying Tarski’s Fixed Point Theorem [20]. In both instanees, the preference list of
each agent being countable and having a well-defined most-preferable agent allows for the
equations to be well defined and for the lattice to be.complete. Such results are grounded in
the following idea. Suppose that we have a countably infinite set with well-ordered elements
e; < ey < ... and a clear minimum value“e;.) If we choose a single element from the set
(potentially uncountably) infinitely manyytimes, the minimum element among the chosen is
well defined as choosing elements from the set is equivalent to taking a subset of the original
set after removing duplications. As the original set is countably infinite, well-ordered, and
has a well-defined minimum~element, its subset does have a well-defined minimum element

as well.

C Decomposition Lemma

Statement in Finite Markets

The statement of the decomposition lemma in finite markets was first proposed by Gale

and Sotomayor [16].
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Lemma C.1 (Gale and Sotomayor [16]). In a finite, one-to-one market, let p and 1’ be two
stable matchings. Let M (u) denote the set of men that prefer their partners under p than .
Similarly, define M(p'"), W(n), and W (p'). Then, p and p' both map M (p') onto W(u) and

similarly, M(u) to W(u').

Proof of Lemma [3.13

We first prove the following claim that will help us prove the rest of the result.

Claim C.1. pu(M(pn)) € W(i'). Similarly, we have that p'(M(u')) & W(n), p(W(n)) €
M(p'), and /(W (p')) € M(p).

We show that u(M(p)) € W(u'). The others follow in thessame way. Assume otherwise,
which is that pu(M(u)) € W (). Suppose that m is in M (u). Because m € M (u), p(m) =,
p'(m). Similarly, because we assumed that p(nv) € WApt), m =) 1/ (11(m)). However, this
yields a contradiction as m and u(m) form a blecking pair under p’. Therefore, it must be
the case that u(M(pn)) € W ().

From Claim alone, we knowsthat) u maps M (u) to W(y'). We will now show that
p maps W(u') to M(p) U {0}. Det A = p Vv p/. By Theorem we know that A is a
stable matching. In partictilar; this implies that A(m) = w if and only if A(w) = m. By
the definition of W (y'), for every w € W(y'), AMw) = p(w). Assume that p(w) € M(u).
Then, A(p(w)) = p(u(w)) € W () by Claim [C.1} Therefore, A(u(w)) # w, a contradiction
as Mw) =Cufw). Therefore, p(w) & M(u), and g/ maps M(p) U {0} to W (y'). Likewise,
consideting the pair M (z/) and W (u) (instead of M (p) and W (i) and A = p A 1/ (instead

of W = [iV 1) finishes all directions of the proof.
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D Hatfield-Kominers Lattice

Hatfield and Kominers [21] discussed lattice in the context of finite many-to-one match-
ings, expanding upon the model proposed by Hatfield and Milgrom [24]. Here, we restrict
their model to the setting of one-to-one matching and lift their results to infinite markets:

To define the Hatfield-Kominers lattice in the context of a one-to-one marriage model,
we let X denote the set of every pairing of man and woman (m,w) for m € M and\w € W.
In addition, for any subset of pairs Y C X, we let Y,,, denote set of pairs y € Y that matches
man m with some woman. Y,, can be defined in a similar fashion. For any 'set of pairs Y C X,
we let Cy(Y) = UM Hi?nx{y € Y, }. Putting into words, Cj/(Y") is the set of most preferable
pairs for each ma?leamong those in Y. Cyy is defined in the, same fashion.

The Hatfield-Kominers operator ® in marriage matehing.ean be described as follows:

(XM, XW) = (@ (XY), oy (X)),
where @, (X") = {z € X« 5.€ Cw(XV U {2})}
and @, (X)) = {2z € X'w € Cp( XM U {2})}.
To put it in words, at each iteration ¢f)®, the men and women modify X, and Xy to the
set of each of their most preferablé pairs based on Xy and X, from the previous iteration.
Hatfield and Kominers showéd that at the set of fixed points of ®, i.e., points in which X},
and Xy both remain”fixed after another iteration of ® on them, X, N Xy yields stable
matchings. In addition, they showed that ® forms a lattice when
XM XMYA (XM X)) = (XM U XM XV N X™Y) and
XM XMy voxM XV =d(XMn XM XV UuXMY).

Here{ we note that the same result holds in infinite markets.

Theorem D.1. In a (potentially infinite) market, the fized points under ® correspond to

stable matchings and form a lattice.
Proof. The proof follows the proof given by Hatfield and Kominers directly as (1) ® remains
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well defined and (2) the lattice remains complete as the union and joint of subsets of an

infinite set are subsets of the original set. m

E Strong Stability Property

Another way to view matching is through the lens of cooperative game theory. In.¢ooper-
ative game theory, the core of the game is the set of undominated outcomes. In'the context of
matching, domination can be defined as follows: a matching p/ dominates another matching
1 defined under the same M, W, and P if there exists a finite set of agents I’ € [ such that
for all men m € I’ and all women m € I', p/(m) € I, p/(w) €A yu/(m) =, p(m), and
W (w) =y p(w). It is a classic result by Roth and Sotomayer [2] that the core of the one-to-
one marriage model is the set of stable matchings in finite markets. Such a result comes at a
surprise as the same result does not hold true for many-to-one or many-to-many matchings.
However, it is the case in infinite one-to-one markets that the set of stable matchings remain

as the core of the marriage market.

Theorem E.1. In a (potentially“infinite), one-to-one market, the core of the matchings in

the marriage model is the set of stable matchings.

Proof. The proof follews, thé proof provided by Roth and Sotomayor in finite markets [2]

directly. O]

A natural question that arises from such a result is whether there always exists a stable
matching that dominates p for an unstable individually rational matching p. It turns out
that infinite markets, this is nearly the Case.E] Demange, Gale, and Sotomayor [I5] proved

the'following statement, dubbed as the strong stability property, that formalizes this notion.

®Nearly as the preferences in Theorem are not strict.
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Theorem E.2 (Demange, Gale, and Sotomayor [I5]). In a finite, one-to-one market, if p
is an unstable individually rational matching, then there exists a blocking pair (m,w) and a

stable matching ji such that fi(m) = p(m) and p(w) = p(w).

However, despite that the set of stable matchings remain as the core of the marriage

model in infinite markets, the strong stability property does not hold in infinite markets.

Theorem E.3. In an infinite, one-to-one market, if p is an unstable individually rational

matching, then there need not exist a blocking pair (m,w) and a stable matching fv such that

fi(m) = p(m) and fi(w) = p(w).

Proof. Refer to the example in our proof of Theorem We will show that i, is the only
stable matching in this economy. We first examine that 1), ¢oincides with the woman-optimal
stable matching as in this economy as in s, every woman is matched to their top choice
men among those that list her in his preferences./Therefore, by Theorem [3.12, which states
that the set of stable matchings form a lattice-and that the man-optimal and woman-optimal
stable matchings are the max and min elements of this lattice, we conclude that py; is the
only stable matching in this economy, New, let £ in the statement of Theorem be .
As no man m satisfies fi(m) = par(m) > p(m), Theorem does not hold true in infinite

markets. L

33



	Introduction
	Nuts and Bolts
	Marriage Model
	Logical Frame for Analyzing the Marriage Model

	Generalizations to Infinite Markets
	Group Strategyproofness
	Entry Comparative Statics
	Unambiguous Improvement
	Impact of Preference Extensions
	Lattice Theorem

	Properties that Do Not extend
	Lone Wolf Theorem
	Weak Pareto Optimality

	Conclusion
	Acknowledgments
	Proofs omitted from the main text
	Conway Lattice
	Decomposition Lemma
	Hatfield-Kominers Lattice
	Strong Stability Property



