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ABSTRACT. We study rotational hypersurfaces with constant Gauss-Kronecker curvaturey We solve the
ODE for the generating curves of such hypersurfaces and analyze several geometri¢“properties of such
hypersurfaces. In particular, we discover a class of non-compact rotational hypersurfaces with constant
and negative Gauss-Kronecker curvature and finite volume, which can be seen as'the higher-dimensional
generalization of the pseudo-sphere. Finally we investigate other types of rotational hypersurfaces with
similar curvature constraints, including those with prescribed Gauss-Kroneeker curvature.
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1. INTRODUCTION

In the field of differential geometry, curvature is the quantity used to measure the extent to which
a geometrical object bends. In the study of submanifold geometry, the principal curvatures describe
how the submanifold bends in each principal directions. The mean curvature is the mean value of all
principal curvatures, while the Gauss-Kronecker curvature is the product of principal curvatures. For
the rest of the paper we will call it Gauss curvature for short. The problems on various restrictions on
those curvatures have a long history. For example, there are already many valuable researches done
on submanifolds with constant mean curvature. For a detailed survey on hypersurfaces in R™ with
constant mean curvature, we refer the readers to [BK17]. In particular we mention a few results in
this direction here. In terms of the rotational surfaces in R? with constant mean curvature, Delaunay
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has proposed a beautiful classification theorem which indicates that the generating curves of these sur-
faces are formed geometrically by rolling a conic along a straight line without slippage [Del41]. In the
1980s, Wu-Yi Hsiang and Wenci Yu generalized Delaunay’s theorem to rotational hypersurfaces in R”
[HY81][Hs82]. Recently Antonio Buenoa, Jose A. Galvezb and Pablo Mirac studied the more general
question about rotational hypersurfaces with prescribed mean curvature and obtained Delaunay-type
classification theorems [BGM19].

We also mention some results on general hypersurfaces with constant Gauss curvature. In, 1987 Ros
proved that a closed hypersurface embedded into the Euclidean space with constant r-mean’curvature
is a round sphere [Ros87][MR91]. Here “r-mean curvature” denotes the r-th symmetrie function of the
principal curvatures which covers the notions of mean curvature and Gauss curvature. There are also

results on hypersurfaces with constant or prescribed Gauss curvature in other ambient spaces. See e.g.
[RS94][Wang10].

Our goal in this paper is to study rotational hypersurfaces with constant, Gauss curvature in R™. We
first note that when n = 3, classifying constant curvature surfaces of-reyolution is a classical problem
and was completely solved long ago. See e.g. Chapter 3-3, Exer¢ise.7+in [Dol6]. Our main results can
be summarized in the following theorem:

Theorem 1.1. Let M C R" be a rotational hypersurface with.constant Gauss curvature K such that its
generating curve vy is a graph over the axis of rotation. Let.y(t) = (¢(t),v(t)) be a parametrization of
the generating curve, where o(t) is the radius of the meridian (n—1)-sphere, 1(t) is the height function
and t is the arclength parameter. Then:

(1) When K =0, M is a circular cone on a~circular cylinder;
(2) When K # 0, the expression of the ipuerse function of ¢ is locally given by

o (t) d
bty 2 / n 1
#(to) \/1 _ (Kgo”_l _ CK)%

where the sign of the integrand agrees with the sign of @', to is the initial time, Ck is a real
constant. Moreover, 1) is,given by

Y(t) = ¥(to) + /tt V1= (¢)2dt.

(3) When K(<.0 and Cx = —1, the corresponding hypersurface is diffeomorphic to S™~% x [0, +00)
and has finite volume. It can be seen as a higher-dimensional generalization of the pseudosphere
n dimension two.

More'precise statements are made in Theorem 3.4 and 3.6. The pictures of the generating curves are
displayed in Figures 1 and 2. Our strategy is as follows: in higher dimensions the constant curvature
condition gives us a system of nonlinear ODEs under appropriate paramatrization of the generating
curve. We solve this system of ODEs, and obtain a few geometric properties of the corresponding
hypersurfaces from the expression of the solutions.

This paper is organized as follows: Section 2 is devoted to the formulae of principal curvatures and

Gauss curvature of rotational hypersurfaces. In Section 3 we solve the ODE and thus prove the main
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theorem, and analyze several geometric properties of the resulting hypersurfaces. In Section 4 we study
a few generalized cases besides hypersurfaces with constant Gauss curvature, namely, rotational hyper-
surfaces with constant principal curvature or prescribed Gauss curvature. Lastly in the Appendix, we
give a detailed calculation of the Gauss curvature of rotational hypersurfaces.

Acknowledgement. We would like to thank Robert Bryant for valuable comments on the solution
to the ODEs. We thank Harold Rosenberg for the information on Montiel and Ros’ work on thexigidity
of compact embedded hypersurfaces with constant r-mean curvature. Our gratitude also goes to Ao
Sun and Renato Bettiol, who gave many suggestions on presentation of this paper.

2. ROTATIONAL HYPERSURFACES AND ITS CURVATURES

We set up notations and state the formulae for principal curvatures and Ganiss curvature of a rota-
tional hypersurface in R". Detailed calculation is provided in the Appendix.

Let xq, xo, - -+ , z,, denote the standard coordinates of R” and we assume.that z,, is the axis of rotation.
Let f:R — (0,400) be a smooth function.

Definition 2.1. A hypersurface M is called a Rotational Hypersurface if it is produced by rotating the
generating curve 1 = f(z,) in the xix,-plane around the x,;-axis. It is characterized by the following
equation

Note that f(x,) is the radius of the horigontal subsphere at height x,,. Throughout this paper, M
will always denote a rotational hypersurface in R™ unless otherwise stated.

We choose an appropriate parametrization of the generating curve to facilitate the calculation. Let
©(t) denote the radius of then'— lidimensional hypersphere and 1 (t) denote the corresponding height.
We choose the parameter ¢ to be the arclength parameter, that is, ©? 4+ ¢ = 1. Under the above
parametrization, the gederating curve z; = f(z,) can be rewritten into (zq,x,) = (¢(t),¥(t)).

We use the hypersphere coordinate (¢, 0y, -+ ,0,_2) to parametrize the rotational hypersurface. The
position vector field,of rotational hypersurface M can be written as

(0,01, - 4, Oh_2) = (pcosby -+ cosb, o, pcosby---cosb, ssinb, o, -, pcosbsinby, psinby, )
where 0] & [—g, g] and 0; € [0,27] for i = 2,3,--- ;n —2. Note that ¢ can be expressed in terms of ¢
since @+ Y = 1.

Under the above parametrization, the principal curvatures and the Gauss curvature of M are given
below:

Theorem 2.2. The principal curvatures ki,--- ,k,_1 of M are given below:
_ ¢
(1) kl - o'



(2) ki:%fori:2,3,--- n—1.

Theorem 2.3. The Gauss curvature K of M is given below:

SOme_S
g0n—2
Remark 2.4. Note that rotational hypersurfaces in R™ are invariant under the orthogonal action of
SO(n — 1). In terms of the symmetry group, we can consider hypersurfaces of more general type.
Namely we can consider hypersurfaces invariant under the orthogonal action of SO(p)*x.SO(q) where
p + q = n. The parametrization of such hypersurface is given by:

K= (n > 3).

T(Q0,0Q,"' 705]2—17B17”' 7ﬁq—1) -
(pcosay -+ COSQp_1,PCOSAY - -+ COS Qo SIN 1, - -+, (P COS Qysityy, Y sin ay,

Y cos By -+ - cos By_1,1 cos Py - - - €os fy_asin fy_1, - -+ , 1 cosysin B, 1 sin ).

The principal curvatures of such hypersurface are diagonal entries.of the following matrix:

—£ 0 0 0N"0
0o ¥ 0 0
®
: : 0
P’ :
(2.1) £ i
0 4N\ _%
0 0 N o .0
0 00 - e 0 _%_

Here, the matrix has p — 1 eigénvalues equal to % and g — 1 eigenvalues equal to —%.

The Gauss curvature K of such hypersurface is given by:

K (_1)q(p//(p/q—1w/p—2
pp=iepa=t

3. ANATYSIS OF ROTATIONAL HYPERSURFACE WITH CONSTANT GAUSS CURVATURE

We réquire’the Gauss curvature of rotational hypersurface M to be a constant K. Then the equation
in Theorem 2.3 is transformed into an ODE as below:

gDllwln—ii B 90,/(1 _ (p/Z)"T*?’

Span - S07172

Here we require that ¢’ > 0, so that the generating curve is a graph over the x,-axis.

(3.1) K=
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3.1. Solutions to the ODE. When K = 0, we get

90//(1 . S0/2)’”“7*3 —0
Obviously, we must have " =0 or ¢’ = +1.
Both yields

(3.2) o(t) = 1t + o
Thus we have the following theorem:

Theorem 3.1. A rotational hypersurface with constant Gauss curvature K = 0 is one~of the following:
(1) A right straight cylinder in R™.
(2) A right circular cone in R™.

Proof. From equation (3.2), we know that the generating curve is a straight/line in the case where

K = 0. Consider the equation

o(t) =it + o
When ¢; = 0, ¢ is a constant in which case M is a right straight cylinder. Otherwise, when ¢; # 0, M
is a right circular cone. O

Remark 3.2. In fact, the Gauss curvature of any cylinder ‘er ‘cone is 0.

In the rest of the paper, we will therefore discuss the case where K # 0.

We rewrite the ODE in the following form:
. n=3
(3.3) EgOr="—¢"(1 - %)= .

We multiply both sides by, ¢!:

n—3

Ktp'g&”_z — _90/(10//(1 o 90,2) 7

Then integrate both sides and we get:
(3.4) K" = (1-¢%)"% +Cx

where Ck s 'a constant to be chosen.
Sinee @ is the radius parameter, we only consider the case where ¢ > 0.

First, we notice that the solution ¢ is bounded:
Proposition 3.3. ¢ is a bounded function such that

(1) For K >0, max{0, &} < "t < C6tl yhere O > —1.

2) For K < 0, max{0, Gkl <l < Sk where Cr <0.
K ¥ K
5



Proof. From equation (3.4), we get
K(pnfl O = (1 o 90/2)%1.
Clearly, we know that 0 < (1 — ¢2)"2 < 1.

So, we have

For K > 0, we further yield

Since we only consider the case where ¢ > 0, we have

C Ck +1
max{0, ?K} <Pl < KK+ .

Here, we must have C'x > —1 to make sure that % > 0.

Similarly, we can deduce the inequality for K < 0:

Ckg+1
K

Here, we must have C'x < 0 to make sure that 07;( > 0,

O
=3

max{0, <AL

Then, we consider the solution to the ODEwwhen K > 0 and K < 0 respectively.

Theorem 3.4. Suppose K > 0. Let pzbeé ‘a solution to the ODE (3.3), then:
(1) The inverse function of ¢ is-given by:
dy
2
ot — Cg)nt

©(t)
t— 1ty = / +
v (to) \/1 _ (K

where ty is a fived wnitial time.
(2) The solution ¢ ‘can be defined on the interval I = [C',C" + T| where C" is a real number and

1
Cg+1\n—1
K

de

T =T(Ck) =2 N
(0.5 ™" 1~ (Ko — Gy

and p(C") = p(C" +T) = max{0, %}ﬁ
(3) The sign of the integrand is + for t € [C',C" + L] and — fort € [C"+ L,C"+T]. Or the other
way around if the orientation of the generating curve is reversed.

Proof. From equation (3.4), we get:

2
1

(3.5) B R
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and
d
dt = + L4 _.
¢1—U@W4—C&Fj

Here, the sign of dt agrees with the sign of /.
Then integrate both sides, and we get

@(t) d
(3.6) t—m:/ + Ld _.
o(to) \/1 _ (Kgpn—l _ CK)ﬁ

We also note that the solution ¢ is invariant under time translation and reversion, and thus the value
of ty does not affect the shape of the generating curve.

Now, we should consider the interval of definition for this solution.

From Proposition 3.3, we know that the integrand in (3.6),is bounded from both above and below.
We try to integrate from the lower bound to the upper boundsand show that the integral converges,
that is, we claim

Ci+1 ﬁ
(3.7) T = (55) d¢ < +00.
(max{OC—K )ﬁ — 2
K \/1—(K(pn 1—CK)n—l

To prove the claim, we only need to check)the singularity point when ¢ reaches (%) Let

_1
A= (%) n=1 2 (), and the Taylor expansion of the integrand as ¢ — A — 0 is given below:

A

1#:4 L VRAR (9 — A+ O((p — A) M.

max{0, K1) "

Since the order of the main term of the integrand in terms of (¢ — A) is greater than —1, the claim is
clearly true.

Thus the solution ¢(¢) can be defined on a time interval of length 7", say [to,to + T"]. Without
loss of generality, we may assume that ¢(t) is increasing on [tg,to + T"], that is, the sign of the inte-
grand in (8.6) ispositive. In this way ¢(t) reaches its minimum at ¢ = ¢, and its maximum at ¢ = to+7".

Now |we extend the solution ¢(t) to the interval [to,to + 277] by reflection. Namely we define
©(t) = p(2ty+ 271" —t). Since the equation (3.3) is invariant under time translation and reversion, this
extension of ¢ is a solution to the equation. By checking that the (2n + 1)** order derivatives of ¢ at
t =ty + T’ equal zero, we know that the left derivatives and right derivatives of ¢ agree at t = tq+ T".
Therefore, we know that (t) is smooth for ¢ € [t, ¢y + 27"]. Here, the expression of the derivatives are
shown in Proposition 3.8.



Thus we obtain a solution ¢ on [t,tg + T satisfying all the desired properties, where

1
Cr+1\n=T
K

dy
1 .
nwx{O,CTK})”‘_I \/1 _ (Kgon—l _ CK)%

(3.8) T=2T = 2/(

g

Remark 3.5. When Ck = 0, the solution becomes ¢(t) = COS(\F%%). In this case, M gs, the round

sphere of constant Gauss curvature K.

Recall that ¢ + "2 = 1, by equation (3.4) we have

t t 1
U(t) =d(to) + / V1= ¢(s)2ds = ¥(to) + / (Kp(s)" S<Ck)" ds.
to to
Thus using the parametrization (p(t),1(t)) of the generating curve, we draw the pictures of the
generating curves using Mathematica. Figures 1(a) and 1(b),show /the generating curves for K = 1,
Cx =—0.5and K =1, Ck = 2 respectively.

0.3
0.2

0.1

-0.11

-0.2

FIGURE 1

Similarly, we, can describe the solution for K < 0 as below.

Theorem 3.6. Suppose K < 0. Let ¢ be a solution to the ODE (3.3), then:
(1) 'The inverse function of ¢ is given by:

»(t) d
bty = / + 14
w(to) \/1 _ (K(pn—l _ CK)%

where ty is a fized initial time .




(2) When Cx # —1, ¢ can be defined on [C',C" + T U [D' — T, D’], where C', D' are two real

numbers such that o(C') = p(D') = (%()ﬁ where

o\ T
D’—C”z?/( ) dy 7

K
Cg+1
K

(o5 \/1 C(Kgn1 — Cg) 7

and

(cTK>m de
r=T@= [ -
(max(0, ) ™ \/ 1 — (K=t = )t

In this case, the sign of the integrand is — in the interval [C',C" + T). and + in the interval
[D' —T,D'|. Or the other way around if the orientation of the generating curve is reversed.

(8) When Cx = —1, we fiz the sign of the integrand to be positive. rUnder this convention, the
interval of definition of the solution to (3.3) extends to —oo.. In particular, the corresponding
hypersurface is non-compact and unbounded in the x,-direction.

Proof. Similar to Theorem 3.4, we can derive the inverse functionof) ¢ below:

@(t) d
t—ty = / + L .
¢(to) \/1 — (K@l — C’K)%

When Ck # —1, we also claim

Cg \ neT
T:/< ) de < +00.

K
Cg+1
K

()T \/1 L (Kpn-1 — Og)oT

Cr+1

e )ﬁ = (0. Then, the Taylor expansion of the integrand

To prove the claim, we similarly let A = (
as ¢ — A — 0 is given by:

1
CK)n—

TZKY

Clearly, the integral converges since the order of the integrand’s main term is greater than —1.

V24K (p — A)72 + O((p — A)V)dyp.

Thus by the same reflection argument as in the proof of Theorem 3.4, we can show that ¢ can be
extended to _a smooth solution defined on [ty, to + 27| where T' is the above integral and ¢, can be any
real number, JMoreover, we can prescribe its monotonicity by fixing the orientation of the generating
curves However, in this way ¢ can be negative somewhere. After deleting the interval on which ¢ is
negatives we obtain the desired form of the domain of definition of .

Finally, when Cx = —1, we need to prove that the integral in (3.6) diverges, namely

1
—1>nTI

Cf
0 \/1 _ (Kg&n_l + 1)ﬁ
9




Thus the interval of definition of ¢ can extend to —oo.

We consider the behavior of the integrand when

CK+1 ﬁ
— = 0.
o= (%)

Let 2 = K" ! where z < 0. Then let
f@)=1—(z+ )",
After expanding f(z) at x = 0 with Taylor Series, we get

flz)=1—(1+ v+ 0(2).

2 oy
n_1x+0(x ) = —

Then we can rewrite the integrand as:
1

1 1 |
\/1 — (Kn1 _CK)% - V(@) \/—%x%—O(ﬁ)

Clearly, we know that the order of the integrand in terms of‘y is‘equal to the order of its main term,
namely 15" because z = K" 1.

(3.9)

When n > 3, we know that the order of the integrand'isless than —1, which implies that the integral
diverges when
© —-0.

O
Remark 3.7. The hypersurface correspondingte’C'y = —1 in the above theorem can be seen as a higher-

dimensional generalization of the pseude-sphere in dimension two. Our results do not contradict Ros’
theorem in [Ros87] since the hypersurfaces in our theorem have non-empty boundary.

Using Mathematica, we draw’the generating curves for K < 0. Figure 2(a) depicts the generating
curve of the non-compact hypersurface corresponding to Cx = —1, while Figures 2(b) and 2(c) show
the generating curves for K = —1, Cx = —0.5 and K = -1, Cx = —2.

w(t) w(t)

0.2 04 0.6 0.8 [ 0.2 04 0.6 0.8 10 1.2
-f -0.2p

F ys
,2\ f
[ o6l

(a) K= —1, OK =-1 (b) K= —1, CK =-0.5 (C) K= —1, CK =-2

FIGURE 2
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Proposition 3.8. The series expansion of p(t) near ¢(to) = Qmaer when K >0 is given by

(Cx 1\ K (Ci+1)"1 )

2
_52 Ck+1
24 K

(= 3)(Cr + 1)
n—1 n — K _'_ 4
—(n=2)|(t—ty)" —--- .
B n=2)] - 10) }
Proof. By equation (3.5), we know that the first order derivative of ¢ near its maximum-sizero. Then,
we can further compute its second order derivative as:

(3.10)

—n 1 %
¢ (to) = — (K" = Co)nt - K" = =K (OKK+ ) .

Similarly, we can compute its 4" order derivative, and so on. Notice.that the sign of these derivatives
are negative near ¢,,.,, we can get the series shown above by using Taylor expansion.

0
Proposition 3.9. The series expansion of ¢(t) near o(to) = Pmin when K <0 and Cx < —1 is given
by
1 n=3
Cx+1\"1 K (Cg+ F\ue T 9
t) = 14+ — t—t
o= () {-+2( L0 )
(3.11)

s (%)” [<n_3>fK+1>_(n_2)] (t—t0)4+~~}.

Proof. Similar to Proposition 3.8, we.can’compute the 2k order derivatives near the minimum o(ty) =

(%)ﬁ_
O
Proposition 3.10. Upcto time translation, the series expansion of p(t) for K < 0 and Cx = —1 in

Theorem 3.6 near —oo is given by

4n—2

(1) = F()[t|F7 + g(n)|t]F=5 + O(Jt| 5.

Here, f,g are given by

and

n— _1 n— 1
where A= /"5 B = g2 |K|"2, and C = 3755 | K|>.
11



Proof. By expanding the integrand in Theorem 3.6, we get

n—1 1 1-n 1 n—3 n—1 3n—3
t = Kl 2072 Kl2z2— 02 +0 2 )d
VT IR K = 0
n—1 2 1 3-n n—3 1 n+l 3n—1

= K202 + — K202 +0(0w 2 ).

2 [3 __nw ‘ ¢) _F 2(”2 __1>| ’ ¢) %_ (g) )}
Note that the integral in the first line gives us an undetermined constant. Up to a translationwef ¢, we
can take that constant to be 0. Let A = /2% B = 3_%|K|_%, and C' = 2(22—_3’1)|K|%, we can compute
that

4n—2

p(t) = F()[t]5 + g(n)]t]==5 + Ot 3=).

g

3.2. Geometric properties of the hypersurfaces of infinite interval of definition. For the
hypersurface described in Theorem 3.6 when C'x = —1, we have shownthat its “surface area” and
“volume” of the region enclosed by the hypersurface are indeed finite.

Lemma 3.11. The volume of an n-dimensional round ball ¢f wadius r is given below [Ph17]:

AN,
Vn(r)—mw .

Lemma 3.12. The surface area of an n-dimensional hypersphere of radius r is given below:

Proof. From

We know that

g

Withi.the above conclusions, we can compute the volume and surface area of the hypersurface in
Theorem 3.6 of infinite interval of definition.

Theorem 3.13. The surface area of the hypersurface in Theorem 3.6 when Cx = —1 is finite. More-
over, the volume of the region enclosed by the hypersurface and the horizontal disk at the end of the

hypersurface is also finite.
12



Proof. Based on the formula of n—1 dimensional hypersphere’s surface area in Lemma 3.12, the surface
area of the rotational hypersurface is

to otz
8:2/) ——— " 2dy.
—00 F(Tl)

Here, t = t; is the point where ¢(t) reaches its maximum. Without loss of generality, we can let
to = 0 since @(t) has translation invariance, namely

n—1

0 on3
522/@ —— " Pdy.
—0o0 F(Tl)

From Theorem 3.6, we know that ¢’ — 0 as t — —oo, which also implies ¢’ — 1 since ©? +"* = 1.

So, we know that as t — —oo,

Consider

Let ord(S) be the order of S(t) in terms of |t|, namely~S(t) = O([t|o4)).

From Theorem 3.6, we know that the order of th€\integral in equation (3.6) is I_T”, which indicates

that the order of |¢| in terms of ¢ is 252 Therefore, the order of ¢ in terms of |t] is 3.

Then, we get
(3.12) AS) -2 (n—2)+1-""1
i or =2 - (n— =
3—n 3—n
Since n > 3, we know that
n—1
=-1 < -1
3—n +3—n

Therefore, -the surface area of this rotational hypersurface over the infinite interval of definition is
finite.

Similaxly, we can derive the expression of the volume of the enclosed region by using Lemma 3.11:
0 n—1
T 2
V:2/ — "t
(1) Y

Consider



Then we get

2 n+1
3.13 d(V) = (n—=1)+1= .
(313) ord(V) = == (n—1)+1= 2"
When n > 3, we know that
n+1
=-1 —1.
3—n +3—n<

Clearly, it indicates that the integral converge as t — —oo, and the volume the hypersurface is also
finite. ]

Remark 3.14. We also compute the approximate value of the wolume of the enclosed region and the
surface area of this hypersurface when n = 4 and K = 1 by Mathematica, which are 1.82 and 19.74
respectively.

3.3. A Comparison Theorem. From equation,(3.6), we know that the value of p(t) for a given value
of t is dependent on the Gauss curvature K. When the Gauss Curvature is a constant K, let ¢ denote
the solution to equation (3.6) describe in, Theorem 3.4 or Theorem 3.6 and ¥ denote the correspond-
ing height function. We would like to study the behavior of the solution ¢ when K changes. In the
following theorem, we show that for<& > 0, the value of ¢ at a fixed height 1) = y decreases as K
increases if the maximum of @y is.fixed. Geometrically the generating curve drops faster to the axis
of rotation for greater positive Gatiss curvature.

Theorem 3.15. Takea,b € R and a > b > 0. Assume that both ¢, and @, obtain the same mazximum
at t = to, namely @q(to) = ¢u(to) = Omaz = C. We also assume that on a small interval D = [to, to+ 0],
both p, and @, are.monotonically decreasing, and 1, and vy, are increasing. Then Yy € 1,(D) Uy (D),
we get

0a(y ' (y) < ety (y)).

Proof. From Theorem 3.3, we get

n—1 _  n—1 __
C - cpma:v -



Recall that ¢ + 92 =1 and the expression of ¢’ in (3.5), we get

t
:/ \/1— pRdt
to

o0 /1 (1= (K = Co) )
px (to) \/1 — (Kspn—l — Ck)n1

<PK(t)

dok
K
(Kep —CK)" I

vK(t)
/ \/ dor

K(,pK —(Cn—1K— 1)" T)

e (t)
:/ \/K<P — (C" K — T
Thus, we have
1 d)K ) N
(3.14) y =k (g (y) = / \/ Kt — (Cr1K — 1)7Tdg.
K (to)
Obviously, we know that the integeand™f (% \/ Koy — (C 1K — 1)n I increases as |K| in-

creases.

Therefore, for a fixed maximum, py#(to) = vu(to) = C and negative ¢’, we must have o, (¢, (y)) <
©u(, ' (y)) to make sure that.the left side of equation (3.14) remains the same.

O
Similarly, we proposera parallel theorem for K < 0.
Theorem 3.16. Tuke a,b € R and 0 > a > b. Assume that both v, and ¢, obtain the same minimum

at t = to, namely p.(to) = pp(to) = @min = C. We also assume that on a small interval D = [to, to + 6],

both g \and @y, are monotonically increasing, and v, and ¥, are increasing. Then Yy € 1,(D) Uy (D),
we get

vty (1) < @ty (1))
Proof. First consider the case where C' = ¢,,;,, # 0.
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Similar to Theorem 3.15, we get

/ /2 dt

-
KapK —(Cn—1K—1))n—

/ (C” LK — 1)" 1d90K
K (to)

Thus, we have

K dJK (v)) 2
(3.15) y = b (Vg (y)) = / N VEG (Ol — 1) di.

From Theorem 3.15, we know that the integrand \/ Kpv ' — (Cr1K — 1)% increases as | K| in-
crease.

Therefore, for a fixed minimum @, (ty) = @plty) = C and positive ¢, we must have ¢,(¢; " (y)) <
©p(1, '(y)) to make sure that the left side of<equation (3.15) remains the same.

When C' = ¢,,;, = 0, then Cx will bea eonstant that is independent of K. In this case, the proof is
exactly the same.
O

4. GENERALIZED CASES

In this section, we will discuss some generalized cases in terms of the rotational hypersurfaces. In-
stead of considering constant Gauss curvature, we can let one of the principal curvatures be constant
and analyze the €orresponding hypersurfaces. Moreover, we also study certain cases when the Gauss
curvature is ‘a prescribed non-constant function.

4.1. Rotational Hypersurfaces with One of Principal Curvatures being Constant. From the-
orem 2.2, we know that the principal curvatures of rotational hypersurfaces have at most two distinct
values. By letting them be constant separately, we obtain the following statements.

Theorem 4.1. A rotational hypersurface with at least one principal curvature being constant must be

a round sphere in R™.
16



Proof. Recall from Theorem 2.2 that the two values of principal curvatures are k; = —i—,/l, ko = %. First
consider the case

Let o' = f. From ¢/ = /1 — ¢/2, we get
(4.1)

Integrate both sides, and we yield
f(t) =sin(—=Ct + tg).

Finally, we must have

(4.2) o(t) = écos(to — Ct),

which obviously corresponds to a round sphere in R”.

Then consider the case

Similarly, we can get the solution

(4.3) o(t) = é sin(Gt + to),

which also corresponds to a round sphere in/R”,
O

4.2. Rotational Hypersurface of Preseribed Gauss Curvature. In this section, we aim to find
more rotational hypersurfaces satisfying the ODE in (3.1) when K is replaced by a prescribed function
K(t). In one of our main theorem 8.6, we have already found non-compact rotational hypersurfaces
with negative constant Gauss ¢urvature. Naturally, we strive to further discover non-compact hyper-
surfaces with positive or non-negative Gauss curvature.

First, we claim that there exists a complete non-compact rotational hypersurface whose Gauss cur-
vature K (t) is non-negative and positive somewhere. For this we take K (t) to be 0 on (—oo, —1] and
1 on (—¢,0]. Onl(=1,—¢|, K(t) is a smooth and monotone-increasing function connecting 0 to 1. For
the equation

"1 — 2 "T*?’
K= -EUE)
we choose appropriate initial condition such that the solution ¢ is a positive constant on (—oo, —1], i.e.,
the corresponding hypersurface is a cylinder when ¢t < —1. We adjust the value of € so that the solution
©(t) reaches its maximum at ¢ = 0 and ¢'(0) = 0. Then we take the reflection of the corresponding
hypersurface across the hyperplane z,, = ¥(0) and get a smooth hypersurface M whose Gauss curvature
is the even extension of K (t). M is isometric to cylinders when [t| > 1, and its Gauss curvature is
non-negative and supported in [—1, 1]. Thus M is an instance of our claim.

17



In addition, we can also consider other general cases when K (t) is a smooth function. For rotational
surfaces M C R?, we find examples of non-compact hypersurfaces with positive Gauss Curvature, and
give a brief asymptotic analysis of the corresponding function ¢(t).

Take n = 3 in equation (3.1), we get
(4.4) K(t) = -2

Since we only consider the case where ¢ is positive, we can let

t
o(t) = oleg F(8)ds

Then, the above equation is equivalent to the Riccati Equation:

(4.5) PO+ [ =-K(@).
Here, we consider a non-constant positive power function K () = ~a#"% where a < 0. Let 2(t) =
f(®)t, and we yield

a+z— 2?
4.6 =217
( ) z t Y

and thus
dz dt

2 —zLla" t
We consider the following three cases correspending to the values of a.

e Case 1: —%<a<0.
In this case we know that z2 — 2~ aycan be factorized into

1+ vda+1 1—+V4a+1
Z2aNs———— | |lz———mmM@ | .
2 2
Integrate both sides, and we get
D
t) =
20 =1">

where D/=+/4a+ 1, 0 < D <1 and C is a constant dependent on the value of a.
Therefore, we get

+C

(4.7) o(t) = o A%

From the above expression of the solution ¢, we see that ¢(t) is defined on [cg, +00), which means
that the corresponding rotational hypersurface is non-compact. Now we study the asymptotic
behavior of ¢(t) as t — +00. We have

18



e Case 2: a = —}l.
In this case we have

dz  dt
-2 i
Integrate both sides and we get
(4.8) p(t) = eleo w5 = MINDHC — A1,

Again, ¢ is defined up to +o0o and thus the corresponding hypersurface is non-compact. Clearly,
we have

¢ = O(Int).

e Case 3: a < —}l.
In this case we get

1 +( A2 )2
where A = /—a — %.
Integrate both sides, and we get
Atan(—1Ins)
(4.10) o(t) = eleo TS _ o Aln(GoslOl+C B|cos(Int)].

Note that in this case, ¢ can only be defined on a finite interval since tan has singularities.
Moreover, ¢ is oscillating between — B and B within the finite interval.

Remark 4.2. In fact, for K(t) = at"s equation (4.5) is solvable when n = 0,—2,% for k € Z*
(Liouville, 1841).

5. APPENDIX

In the Appendix we provide essential definitions and notations about the Gauss curvature of hyper-
surfaces in R" and carty‘out the calculation. All concepts and notations are defined in the Euclidean
Space R"™.

A hypersurface M is a codimension 1 submanifold of R". Let U be a domain in R"~! and
r:U— M C Rn, ’F:F(l'l,xg,"' ,:L’n,l)
be a focal. coordinate chart of M. We call 7 the position vector field of M in R™.
The tangent vectors of M are
or or or
8331 7 85627 ’ (3&:,1,1 ’

The vector 7 of length 1 that is perpendicular to all tangent vectors of M is the unit normal vector
of M.
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Definition 5.1. (First Fundamental Form) Denote the first order derivatives by 7; = %. The first

fundamental form of M is given below:

- T -To T Tp—1

re-T1 To - To T Tp—1
I =

Th—1T1 Tph—1-T2 -+ Th—1'Tp-1

Definition 5.2. (Second Fundamental Form) Denote the second order derivatives by 7; ;.= af;zj . The
second fundamental form of M is given below:

Fii-n  Ti2-7 Fin—1-1
I 4,1.'77 o1 Ton—1°1
Fn—l,l -1 Fn—1,2 ETRREE Fn—l,n—l -1
Definition 5.3. (Principal Curvature) Let matrix A = —IT- 17! whete T~ denotes the inverse matrix

of I. The n — 1 eigenvalues of matrix A are the principal curvaturesiof M.

Definition 5.4. (Gauss Curvature) The product of the n—I"principal curvatures is the Gauss Curvature
of M. Clearly, the product of a matrix’s eigenvalues equahto its determinant. So, the Gauss Curvature

det(I7)
T odet(D)

Recall that in Section 2 we used thedfollowing hypersphere coordinate to parametrize a rotational
hypersurface M:

(@, 01, ,0,_2) =(pcosb-- €080, o, pcosby---cosb, 3sinb, o - pcosbsinby, psinby, ).
Under the above parametrization, we can compute the tangent vectors, unit normal vector, first

fundamental form, second,fundamental form, principal curvatures, and Gauss curvature of M as below.

Proposition 5.5. Let 7, = S_Z and 7; = g_(Z' The tangent vectors of M are given below:

/

7y =(cos 0y cosby - - - cosb,_s,co86; - --cosb,_zsinb, s, -, cosb sinby,sin by, E),

71 =(—sin# cosbs - --cosb, o, —psinb cosby - --cosb, _3sinb, o, —psinb; sinby, pcosby,0),

75 =(—tpicos 1 sin Oy cos O3 - - - cos O, _o, —p cos by sin By cos s - - - cos B,,_3sin b, o, , —pcosb; cosbs,0,0),
Tnoo = (—pcosbcosby---cosb, ssinb, o, pcosbt cosby---cosb, 3cosb, o,0,---,0).

&k |2

Proof. Notice that g—:ﬁ = = %:, we can derive the tangent vectors by computing the first partial
derivatives of the position vector field (¢, 01, ,0,_2) with respect to 61,0y, -+ , 0,5 respectively. [
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Proposition 5.6. The Unit Normal Vector of M is given below:

/

i = 1'(cos 0y cos By - - - co8 0, _o,c0801 - - cosb,_38in6, o, cosbsinby,sin by, _J)

Proof. We only need to show that -7, =0and -7, =0for¢=1,--- ,n—2.
Let z,; denote the value of the b" coordinate of 7.
First consider the value of 7 - 7,

n—1 / /
i1 =0 (i + 5 ()
i=1

=)'[(cos 0y cos By - - - cos O,_3)? + (cos By - - - cos O, _38in0,,_3)* 4 - - - + (cos by siti fy)? + sin 7 — 1]
=1)'[(cos b - - - cos O,,_3) + (cos Oy - - - cos B, _gsinb,,_3)? + - - - + (cos O1.8inbs)* + sin 7 — 1]
=1'[sin 6% + cos 67 — 1]
=0.

From the above equation, we get

k
(5.1) 2:(:%7@-)2 = (cos 0 cos flg = wcos 0, _j_1)%

i=1

Notice that:

(1) 2;; = —ptanb; - xy; for j = 1,2, o+ i — 1;
(2) x;; = pcotb; - xy; for j =n —;
(3) x;; =0for j >n —i;
(4) The first n-1 coordinates of 7 and 7, are identical.
We get
n=i—1
-7 =Y Z Tij* T+ Tin—i* Ton—i)
j=1
n—i—1
="' (—ptanb; Z (24.5)* + pcot Bi(cos by - - - cos 01 sin ;)?)
j=1

= 1)'(—ptan B;(cos by - - - cos Qi)Q + @ cot ;(cos By - - - cos B;_ sin 91-)2) = 0.

Moreover, it is clear that
- ¢
17| =’y |1+ (__¢’>2 =2 +yY? =1

Therefore, 77 is indeed the Unit Normal Vector of M.
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Proposition 5.7. The First Fundamental Form of M s a diagonal matriz in the form below:

7o 0 0
I . ‘Flp 0
0
0 0 |7 _2|?

Proof. From Proposition 5.6, we know that
ﬁp-ﬁ:w’_l-ﬁ-ﬁzo.
So it remains to be shown that
ri 7 =00 # Jj).

Assume that ¢ > j. From Proposition 5.1 we get

n—i—1
i Ty = Z Tik " Tjk + Tin—i® Tjn—i
k=1
n—i—1
= ¢® tan §; tan 0 Z (xw)2 — % eotd; tan 6;(cosb - --cosb;_qsin 0;)
k=1
= p’tan 6;[tan 6;(cos 0; - - »cos 0; Y — cot 0;(cos By - - - cos 0;_1 sin 6;)?]
= 0.

The above equation indicates that [ isva’diagonal matrix as stated in the theorem.
O

Proposition 5.8. Let 7, denotés aiz/ where 0; is replaced by i. The Second Fundamental Form of

M is another diagonal matriz in-the form below:

ool e 0 0
[ : Fli-it - 0

0

0 0 o Topo-

Proof~Frem Proposition 5.5 and the labels in Proposition 5.6, we can further derive the second deriva-
tives as/below:

1

(1) 7?%90 = (070’ -, 0, _ﬁ);

(2) Fi,i = (_Spmcp,b —PLp2, *, TPLon—is Oa e 70)7
(3) Tpi =Tip = (—tanb, - x,1, —tanb; - vy0, --+, —tanb; - Ty p_i—1, cot; - xy i, 0,---,0);
(4) 7 =75, = (ptanb; tanb;- x, 1, tanb; tanb;- x,o, -+, @tanb;tanb;- x,,_;_1, —pcotb; tand,,

T
0,---,0) for i > j.
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So, we only need to prove the inner product of 77 and the derivatices in (3) and (4) is 0.
From Proposition 5.1, we get

n—i—1
Tpi -1 =1'[—tanb; Z xik + cot Qixim_i]
k=1
= /[~ tan 0;(cos 0 - - - cos 0;)* + cot B;(cos Oy - - - cos B;_1 sin 0;)?]
=0,
and
n—i—1
71 =Y [ptan b, tan 6, Z xik + cot 0; tan Hjxivn_i]
k=1
= 9’ tan b;[tan 0;(cos b; - - - cos 0;)? — cot 0;(cos 0y - - - cos@;~1sin 6;)?]

= 0.
The above computation indicates that I7 is a diagonal matrix in the<proposed form.

Theorem 5.9. The principal curvature of M is given below:
_ .
(]) kl - /wl )
(2) k; = %foriz?,?),--- .n—1.

Proof. From Proposition 5.1, we can compute the entriesin [ as below:

W) FR=1+% =4

(2) |72 = @? [T} cos 02 (Assume that cosfy = 1)
Similarly, we can compute the elements in, [ as below:

5 /1

(1) F%@'":W ‘
(2) 7rg -l = —py [/} cos? (Assume that cosfy = 1)

Then,
A=—I1-T7*
r " /2
- 80/2¢l 0 O ('0 ) O 0
_ : ® 0 o2 0
0 . : 0 :
i— 1
0 0 4 Hl ' cos 912 0 0 02 [T, cos 62
[_¢”
o 0 0
. w_/ 0
— ©
0 :
0 0 ¢
L ©
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Clearly, the principal curvatures are diagonal entries. O
Theorem 5.10. The Gauss curvature of M is given below:
gpuwlnfB

Son—2
Proof. The Gauss curvature is equal to the product of the principal curvatures by definition:

K =— (n > 3).

n—1 " ! ",,m—3
H " U s ©"P
Pl Yo @

g

Now, we have derived the expression of the Gauss curvature of M under the ¢ and v parametrization.
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