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Abstract. We study rotational hypersurfaces with constant Gauss-Kronecker curvature. We solve the
ODE for the generating curves of such hypersurfaces and analyze several geometric properties of such
hypersurfaces. In particular, we discover a class of non-compact rotational hypersurfaces with constant
and negative Gauss-Kronecker curvature and finite volume, which can be seen as the higher-dimensional
generalization of the pseudo-sphere. Finally we investigate other types of rotational hypersurfaces with
similar curvature constraints, including those with prescribed Gauss-Kronecker curvature.
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1. Introduction

In the field of differential geometry, curvature is the quantity used to measure the extent to which
a geometrical object bends. In the study of submanifold geometry, the principal curvatures describe
how the submanifold bends in each principal directions. The mean curvature is the mean value of all
principal curvatures, while the Gauss-Kronecker curvature is the product of principal curvatures. For
the rest of the paper we will call it Gauss curvature for short. The problems on various restrictions on
those curvatures have a long history. For example, there are already many valuable researches done
on submanifolds with constant mean curvature. For a detailed survey on hypersurfaces in Rn with
constant mean curvature, we refer the readers to [BK17]. In particular we mention a few results in
this direction here. In terms of the rotational surfaces in R3 with constant mean curvature, Delaunay
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has proposed a beautiful classification theorem which indicates that the generating curves of these sur-
faces are formed geometrically by rolling a conic along a straight line without slippage [Del41]. In the
1980s, Wu-Yi Hsiang and Wenci Yu generalized Delaunay’s theorem to rotational hypersurfaces in Rn

[HY81][Hs82]. Recently Antonio Buenoa, Jose A. Galvezb and Pablo Mirac studied the more general
question about rotational hypersurfaces with prescribed mean curvature and obtained Delaunay-type
classification theorems [BGM19].

We also mention some results on general hypersurfaces with constant Gauss curvature. In 1987 Ros
proved that a closed hypersurface embedded into the Euclidean space with constant r-mean curvature
is a round sphere [Ros87][MR91]. Here “r-mean curvature” denotes the r-th symmetric function of the
principal curvatures which covers the notions of mean curvature and Gauss curvature. There are also
results on hypersurfaces with constant or prescribed Gauss curvature in other ambient spaces. See e.g.
[RS94][Wang10].

Our goal in this paper is to study rotational hypersurfaces with constant Gauss curvature in Rn. We
first note that when n = 3, classifying constant curvature surfaces of revolution is a classical problem
and was completely solved long ago. See e.g. Chapter 3-3, Exercise 7 in [Do16]. Our main results can
be summarized in the following theorem:

Theorem 1.1. Let M ⊂ Rn be a rotational hypersurface with constant Gauss curvature K such that its
generating curve γ is a graph over the axis of rotation. Let γ(t) = (ϕ(t), ψ(t)) be a parametrization of
the generating curve, where ϕ(t) is the radius of the meridian (n−1)-sphere, ψ(t) is the height function
and t is the arclength parameter. Then:

(1) When K = 0, M is a circular cone or a circular cylinder;
(2) When K 6= 0, the expression of the inverse function of ϕ is locally given by

t− t0 =

∫ ϕ(t)

ϕ(t0)

± dϕ√
1− (Kϕn−1 − CK)

2
n−1

where the sign of the integrand agrees with the sign of ϕ′, t0 is the initial time, CK is a real
constant. Moreover, ψ is given by

ψ(t) = ψ(t0) +

∫ t

t0

√
1− (ϕ′)2dt.

(3) When K < 0 and CK = −1, the corresponding hypersurface is diffeomorphic to Sn−2× [0,+∞)
and has finite volume. It can be seen as a higher-dimensional generalization of the pseudosphere
in dimension two.

More precise statements are made in Theorem 3.4 and 3.6. The pictures of the generating curves are
displayed in Figures 1 and 2. Our strategy is as follows: in higher dimensions the constant curvature
condition gives us a system of nonlinear ODEs under appropriate paramatrization of the generating
curve. We solve this system of ODEs, and obtain a few geometric properties of the corresponding
hypersurfaces from the expression of the solutions.

This paper is organized as follows: Section 2 is devoted to the formulae of principal curvatures and
Gauss curvature of rotational hypersurfaces. In Section 3 we solve the ODE and thus prove the main
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theorem, and analyze several geometric properties of the resulting hypersurfaces. In Section 4 we study
a few generalized cases besides hypersurfaces with constant Gauss curvature, namely, rotational hyper-
surfaces with constant principal curvature or prescribed Gauss curvature. Lastly in the Appendix, we
give a detailed calculation of the Gauss curvature of rotational hypersurfaces.

Acknowledgement. We would like to thank Robert Bryant for valuable comments on the solution
to the ODEs. We thank Harold Rosenberg for the information on Montiel and Ros’ work on the rigidity
of compact embedded hypersurfaces with constant r-mean curvature. Our gratitude also goes to Ao
Sun and Renato Bettiol, who gave many suggestions on presentation of this paper.

2. Rotational Hypersurfaces and its Curvatures

We set up notations and state the formulae for principal curvatures and Gauss curvature of a rota-
tional hypersurface in Rn. Detailed calculation is provided in the Appendix.

Let x1, x2, · · · , xn denote the standard coordinates of Rn and we assume that xn is the axis of rotation.
Let f : R→ (0,+∞) be a smooth function.

Definition 2.1. A hypersurface M is called a Rotational Hypersurface if it is produced by rotating the
generating curve x1 = f(xn) in the x1xn-plane around the xn axis. It is characterized by the following
equation

f(xn)2 =
n−1∑
i=1

x2i .

Note that f(xn) is the radius of the horizontal subsphere at height xn. Throughout this paper, M
will always denote a rotational hypersurface in Rn unless otherwise stated.

We choose an appropriate parametrization of the generating curve to facilitate the calculation. Let
ϕ(t) denote the radius of the n− 1 dimensional hypersphere and ψ(t) denote the corresponding height.
We choose the parameter t to be the arclength parameter, that is, ϕ′2 + ψ′2 = 1. Under the above
parametrization, the generating curve x1 = f(xn) can be rewritten into (x1, xn) = (ϕ(t), ψ(t)).

We use the hypersphere coordinate (ϕ, θ1, · · · , θn−2) to parametrize the rotational hypersurface. The
position vector field of rotational hypersurface M can be written as

~r(ϕ, θ1, · · · , θn−2) = (ϕ cos θ1 · · · cos θn−2, ϕ cos θ1 · · · cos θn−3 sin θn−2, · · · , ϕ cos θ1 sin θ2, ϕ sin θ1, ψ)

where θ1 ∈ [−π
2
,
π

2
] and θi ∈ [0, 2π] for i = 2, 3, · · · , n− 2. Note that ψ can be expressed in terms of ϕ

since ϕ′2 + ψ′2 = 1.

Under the above parametrization, the principal curvatures and the Gauss curvature of M are given
below:

Theorem 2.2. The principal curvatures k1, · · · , kn−1 of M are given below:

(1) k1 = −ϕ′′

ψ′
;

3
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(2) ki = ψ′

ϕ
for i = 2, 3, · · · , n− 1.

Theorem 2.3. The Gauss curvature K of M is given below:

K = −ϕ
′′ψ′n−3

ϕn−2
(n ≥ 3).

Remark 2.4. Note that rotational hypersurfaces in Rn are invariant under the orthogonal action of
SO(n − 1). In terms of the symmetry group, we can consider hypersurfaces of more general type.
Namely we can consider hypersurfaces invariant under the orthogonal action of SO(p)× SO(q) where
p+ q = n. The parametrization of such hypersurface is given by:

~r(ϕ, α1, · · · , αp−1, β1, · · · , βq−1) =

(ϕ cosα1 · · · cosαp−1, ϕ cosα1 · · · cosαp−2 sinαp−1, · · · , ϕ cosα1 sinα2, ϕ sinα1,

ψ cos β1 · · · cos βq−1, ψ cos β1 · · · cos βq−2 sin βq−1, · · · , ψ cos β1 sin β2, ψ sin β1).

The principal curvatures of such hypersurface are diagonal entries of the following matrix:

(2.1)



−ϕ′′

ψ′
0 · · · · · · 0 0 0

0 ψ′

ϕ
· · · · · · · · · 0 0

...
...

. . .
...

...
... 0

...
... · · · ψ′

ϕ

...
...

...

0
... · · · · · · −ϕ′

ψ

...
...

0 0 · · · · · · · · · . . . 0

0 0 0 · · · · · · 0 −ϕ′

ψ


Here, the matrix has p− 1 eigenvalues equal to ψ′

ϕ
and q − 1 eigenvalues equal to −ϕ′

ψ
.

The Gauss curvature K of such hypersurface is given by:

K = (−1)q
ϕ′′ϕ′q−1ψ′p−2

ϕp−1ψq−1
.

3. Analysis of Rotational Hypersurface with Constant Gauss Curvature

We require the Gauss curvature of rotational hypersurface M to be a constant K. Then the equation
in Theorem 2.3 is transformed into an ODE as below:

(3.1) K = −ϕ
′′ψ′n−3

ϕn−2
= −ϕ

′′(1− ϕ′2)n−3
2

ϕn−2

Here we require that ψ′ ≥ 0, so that the generating curve is a graph over the xn-axis.

4
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3.1. Solutions to the ODE. When K = 0, we get

ϕ′′(1− ϕ′2)
n−3
2 = 0

Obviously, we must have ϕ′′ ≡ 0 or ϕ′ ≡ ±1.
Both yields

(3.2) ϕ(t) = c1t+ c2

Thus we have the following theorem:

Theorem 3.1. A rotational hypersurface with constant Gauss curvature K = 0 is one of the following:

(1) A right straight cylinder in Rn.
(2) A right circular cone in Rn.

Proof. From equation (3.2), we know that the generating curve is a straight line in the case where
K = 0. Consider the equation

ϕ(t) = c1t+ c2
When c1 = 0, ϕ is a constant in which case M is a right straight cylinder. Otherwise, when c1 6= 0, M
is a right circular cone. �

Remark 3.2. In fact, the Gauss curvature of any cylinder or cone is 0.

In the rest of the paper, we will therefore discuss the case where K 6= 0.

We rewrite the ODE in the following form:

(3.3) Kϕn−2 = −ϕ′′(1− ϕ′2)
n−3
2 .

We multiply both sides by ϕ′:

Kϕ′ϕn−2 = −ϕ′ϕ′′(1− ϕ′2)
n−3
2 .

Then integrate both sides and we get:

(3.4) Kϕn−1 = (1− ϕ′2)
n−1
2 + CK

where CK is a constant to be chosen.

Since ϕ is the radius parameter, we only consider the case where ϕ ≥ 0.

First, we notice that the solution ϕ is bounded:

Proposition 3.3. ϕ is a bounded function such that

(1) For K > 0, max{0, CK
K
} ≤ ϕn−1 ≤ CK+1

K
where CK > −1.

(2) For K < 0, max{0, CK+1
K
} ≤ ϕn−1 ≤ CK

K
where CK < 0.

5
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Proof. From equation (3.4), we get

Kϕn−1 − CK = (1− ϕ′2)
n−1
2 .

Clearly, we know that 0 ≤ (1− ϕ′2)n−1
2 ≤ 1.

So, we have

CK ≤ Kϕn−1 ≤ CK + 1.

For K > 0, we further yield
CK
K
≤ ϕn−1 ≤ CK + 1

K
.

Since we only consider the case where ϕ ≥ 0, we have

max{0, CK
K
} ≤ ϕn−1 ≤ CK + 1

K
.

Here, we must have CK > −1 to make sure that CK+1
K

> 0.

Similarly, we can deduce the inequality for K < 0:

max{0, CK + 1

K
} ≤ ϕn−1 ≤ CK

K
.

Here, we must have CK < 0 to make sure that CK
K
> 0.

�

Then, we consider the solution to the ODE when K > 0 and K < 0 respectively.

Theorem 3.4. Suppose K > 0. Let ϕ be a solution to the ODE (3.3), then:

(1) The inverse function of ϕ is given by:

t− t0 =

∫ ϕ(t)

ϕ(t0)

± dϕ√
1− (Kϕn−1 − CK)

2
n−1

where t0 is a fixed initial time.
(2) The solution ϕ can be defined on the interval I = [C ′, C ′ + T ] where C ′ is a real number and

T = T (CK) = 2

∫ (
CK+1

K

) 1
n−1

(
max{0,CK

K
}
) 1
n−1

dϕ√
1− (Kϕn−1 − CK)

2
n−1

and ϕ(C ′) = ϕ(C ′ + T ) = max{0, CK
K
}

1
n−1 .

(3) The sign of the integrand is + for t ∈ [C ′, C ′ + T
2
] and − for t ∈ [C ′ + T

2
, C ′ + T ]. Or the other

way around if the orientation of the generating curve is reversed.

Proof. From equation (3.4), we get:

(3.5) ϕ′ = ±
√

1− (Kϕn−1 − CK)
2

n−1

6
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and

dt = ± dϕ√
1− (Kϕn−1 − CK)

2
n−1

.

Here, the sign of dt agrees with the sign of ϕ′.

Then integrate both sides, and we get

(3.6) t− t0 =

∫ ϕ(t)

ϕ(t0)

± dϕ√
1− (Kϕn−1 − CK)

2
n−1

.

We also note that the solution ϕ is invariant under time translation and reversion, and thus the value
of t0 does not affect the shape of the generating curve.

Now, we should consider the interval of definition for this solution.

From Proposition 3.3, we know that the integrand in (3.6) is bounded from both above and below.
We try to integrate from the lower bound to the upper bound and show that the integral converges,
that is, we claim

(3.7) T ′ =

∫ (
CK+1

K

) 1
n−1

(
max{0,CK

K
}
) 1
n−1

dϕ√
1− (Kϕn−1 − CK)

2
n−1

< +∞.

To prove the claim, we only need to check the singularity point when ϕ reaches
(
CK+1
K

)
. Let

A =
(
CK+1
K

) 1
n−1 6= 0, and the Taylor expansion of the integrand as ϕ− A→ 0 is given below:

T ′ =

∫ A

(
max{0,CK

K
}
) 1
n−1

√
2AK(ϕ− A)−

1
2 +O((ϕ− A)−1)dϕ.

Since the order of the main term of the integrand in terms of (ϕ− A) is greater than −1, the claim is
clearly true.

Thus the solution ϕ(t) can be defined on a time interval of length T ′, say [t0, t0 + T ′]. Without
loss of generality, we may assume that ϕ(t) is increasing on [t0, t0 + T ′], that is, the sign of the inte-
grand in (3.6) is positive. In this way ϕ(t) reaches its minimum at t = t0 and its maximum at t = t0+T ′.

Now we extend the solution ϕ(t) to the interval [t0, t0 + 2T ′] by reflection. Namely we define
ϕ(t) = ϕ(2t0 + 2T ′− t). Since the equation (3.3) is invariant under time translation and reversion, this
extension of ϕ is a solution to the equation. By checking that the (2n + 1)st order derivatives of ϕ at
t = t0 + T ′ equal zero, we know that the left derivatives and right derivatives of ϕ agree at t = t0 + T ′.
Therefore, we know that ϕ(t) is smooth for t ∈ [t0, t0 + 2T ′]. Here, the expression of the derivatives are
shown in Proposition 3.8.

7
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Thus we obtain a solution ϕ on [t0, t0 + T ] satisfying all the desired properties, where

(3.8) T = 2T ′ = 2

∫ (
CK+1

K

) 1
n−1

(
max{0,CK

K
}
) 1
n−1

dϕ√
1− (Kϕn−1 − CK)

2
n−1

.

�

Remark 3.5. When CK = 0, the solution becomes ϕ(t) = cos(
√
Kt−θ0)√
K

. In this case, M is the round

sphere of constant Gauss curvature K.

Recall that ϕ′2 + ψ′2 = 1, by equation (3.4) we have

ψ(t) = ψ(t0) +

∫ t

t0

√
1− ϕ′(s)2ds = ψ(t0) +

∫ t

t0

(
Kϕ(s)n−1 − CK

) 1
n−1 ds.

Thus using the parametrization (ϕ(t), ψ(t)) of the generating curve, we draw the pictures of the
generating curves using Mathematica. Figures 1(a) and 1(b) show the generating curves for K = 1,
CK = −0.5 and K = 1, CK = 2 respectively.

0.2 0.4 0.6 0.8
φ(t)

-1.5

-1.0

-0.5

0.5

1.0

1.5

ψ(t)

(a) K = 1, CK = −0.5

0.2 0.4 0.6 0.8 1.0 1.2 1.4
φ(t)

-0.3

-0.2

-0.1

0.1

0.2

0.3

ψ(t)

(b) K = 1, CK = 2

Figure 1

Similarly, we can describe the solution for K < 0 as below.

Theorem 3.6. Suppose K < 0. Let ϕ be a solution to the ODE (3.3), then:

(1) The inverse function of ϕ is given by:

t− t0 =

∫ ϕ(t)

ϕ(t0)

± dϕ√
1− (Kϕn−1 − CK)

2
n−1

where t0 is a fixed initial time .
8
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(2) When CK 6= −1, ϕ can be defined on [C ′, C ′ + T ] ∪ [D′ − T,D′], where C ′, D′ are two real

numbers such that ϕ(C ′) = ϕ(D′) = (CK
K

)
1

n−1 where

D′ − C ′ = 2

∫ (
CK
K

) 1
n−1

(
CK+1

K

) 1
n−1

dϕ√
1− (Kϕn−1 − CK)

2
n−1

,

and

T = T (CK) =

∫ (
CK
K

) 1
n−1

(
max{0,CK+1

K
}
) 1
n−1

dϕ√
1− (Kϕn−1 − CK)

2
n−1

.

In this case, the sign of the integrand is − in the interval [C ′, C ′ + T ] and + in the interval
[D′ − T,D′]. Or the other way around if the orientation of the generating curve is reversed.

(3) When CK = −1, we fix the sign of the integrand to be positive. Under this convention, the
interval of definition of the solution to (3.3) extends to −∞. In particular, the corresponding
hypersurface is non-compact and unbounded in the xn-direction.

Proof. Similar to Theorem 3.4, we can derive the inverse function of ϕ below:

t− t0 =

∫ ϕ(t)

ϕ(t0)

± dϕ√
1− (Kϕn−1 − CK)

2
n−1

.

When CK 6= −1, we also claim

T =

∫ (
CK
K

) 1
n−1

(
CK+1

K

) 1
n−1

dϕ√
1− (Kϕn−1 − CK)

2
n−1

< +∞.

To prove the claim, we similarly let A =
(
CK+1
K

) 1
n−1 6= 0. Then, the Taylor expansion of the integrand

as ϕ− A→ 0 is given by:

T =

∫ (
CK
K

) 1
n−1

A

√
−2AK(ϕ− A)−

1
2 +O((ϕ− A)−1)dϕ.

Clearly, the integral converges since the order of the integrand’s main term is greater than −1.

Thus by the same reflection argument as in the proof of Theorem 3.4, we can show that ϕ can be
extended to a smooth solution defined on [t0, t0 + 2T ] where T is the above integral and t0 can be any
real number. Moreover, we can prescribe its monotonicity by fixing the orientation of the generating
curve. However, in this way ϕ can be negative somewhere. After deleting the interval on which ϕ is
negative, we obtain the desired form of the domain of definition of ϕ.

Finally, when CK = −1, we need to prove that the integral in (3.6) diverges, namely

T =

∫ (−1
K )

1
n−1

0

dϕ√
1− (Kϕn−1 + 1)

2
n−1

= +∞.

9
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Thus the interval of definition of ϕ can extend to −∞.

We consider the behavior of the integrand when

ϕ→
(
CK + 1

K

) 1
n−1

= 0.

Let x = Kϕn−1 where x < 0. Then let

f(x) = 1− (x+ 1)
2

n−1 .

After expanding f(x) at x = 0 with Taylor Series, we get

f(x) = 1− (1 +
2

n− 1
x+O(x2)) = − 2

n− 1
x+O(x2).

Then we can rewrite the integrand as:

(3.9)
1√

1− (Kϕn−1 − CK)
2

n−1

=
1√
f(x)

=
1√

− 2
n−1x+O(x2)

.

Clearly, we know that the order of the integrand in terms of ϕ is equal to the order of its main term,
namely 1−n

2
because x = Kϕn−1.

When n > 3, we know that the order of the integrand is less than −1, which implies that the integral
diverges when

ϕ→ 0.

�

Remark 3.7. The hypersurface corresponding to CK = −1 in the above theorem can be seen as a higher-
dimensional generalization of the pseudo-sphere in dimension two. Our results do not contradict Ros’
theorem in [Ros87] since the hypersurfaces in our theorem have non-empty boundary.

Using Mathematica, we draw the generating curves for K < 0. Figure 2(a) depicts the generating
curve of the non-compact hypersurface corresponding to CK = −1, while Figures 2(b) and 2(c) show
the generating curves for K = −1, CK = −0.5 and K = −1, CK = −2.

0.2 0.4 0.6 0.8 1.0

2

4

6

8

(a) K = −1, CK = −1

0.2 0.4 0.6 0.8
φ(t)

-2

-1

1

2

ψ(t)

(b) K = −1, CK = −0.5

0.2 0.4 0.6 0.8 1.0 1.2
φ(t)

-0.6

-0.4

-0.2

0.2

0.4

0.6

ψ(t)

(c) K = −1, CK = −2

Figure 2
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Proposition 3.8. The series expansion of ϕ(t) near ϕ(t0) = ϕmax when K > 0 is given by

ϕ(t) =

(
CK + 1

K

) 1
n−1

{
1− K

2

(
CK + 1

K

)n−3
n−1

(t− t0)2

−K
2

24

(
CK + 1

K

) 2(n−3)
n−1

[
(n− 3)(CK + 1)

K
− (n− 2)

]
(t− t0)4 − · · ·

}
.

(3.10)

Proof. By equation (3.5), we know that the first order derivative of ϕ near its maximum is zero. Then,
we can further compute its second order derivative as:

ϕ′′(t0) = −(Kϕn−1 − CK)
3−n
n−1 ·Kϕn−2 = −K

(
CK + 1

K

)n−2
n−1

.

Similarly, we can compute its 4th order derivative, and so on. Notice that the sign of these derivatives
are negative near ϕmax, we can get the series shown above by using Taylor expansion.

�

Proposition 3.9. The series expansion of ϕ(t) near ϕ(t0) = ϕmin when K < 0 and CK < −1 is given
by

ϕ(t) =

(
CK + 1

K

) 1
n−1

{
1 +

K

2

(
CK + 1

K

)n−3
n−1

(t− t0)2

+
K2

24

(
CK + 1

K

) 2(n−3)
n−1

[
(n− 3)(CK + 1)

K
− (n− 2)

]
(t− t0)4 + · · ·

}
.

(3.11)

Proof. Similar to Proposition 3.8, we can compute the 2kth order derivatives near the minimum ϕ(t0) =

(CK+1
K

)
1

n−1 .
�

Proposition 3.10. Up to time translation, the series expansion of ϕ(t) for K < 0 and CK = −1 in
Theorem 3.6 near −∞ is given by

ϕ(t) = f(n)|t|
2

3−n + g(n)|t|
2n
3−n +O(|t|

4n−2
3−n ).

Here, f, g are given by

f(n) =

(
1

AB

) 2
3−n

and

g(n) =
C

B
· 2

3− n

(
1

AB

) 2n
3−n

where A =
√

n−1
2

,B = 2
3−n |K|

− 1
2 , and C = n−3

2(n2−1) |K|
1
2 .
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Proof. By expanding the integrand in Theorem 3.6, we get

t =

√
n− 1

2

∫
|K|−

1
2ϕ

1−n
2 + |K|

1
2
n− 3

4(n− 1)
ϕ
n−1
2 +O(ϕ

3n−3
2 )dϕ

=

√
n− 1

2
· [ 2

3− n
|K|−

1
2ϕ

3−n
2 +

n− 3

2(n2 − 1)
|K|

1
2ϕ

n+1
2 +O(ϕ

3n−1
2 )].

Note that the integral in the first line gives us an undetermined constant. Up to a translation of t, we

can take that constant to be 0. Let A =
√

n−1
2

,B = 2
3−n |K|

− 1
2 , and C = n−3

2(n2−1) |K|
1
2 , we can compute

that

ϕ(t) = f(n)|t|
2

3−n + g(n)|t|
2n
3−n +O(|t|

4n−2
3−n ).

�

3.2. Geometric properties of the hypersurfaces of infinite interval of definition. For the
hypersurface described in Theorem 3.6 when CK = −1, we have shown that its “surface area” and
“volume” of the region enclosed by the hypersurface are indeed finite.

Lemma 3.11. The volume of an n-dimensional round ball of radius r is given below [Ph17]:

Vn(r) =
π
n
2

Γ(n
2

+ 1)
· rn.

Lemma 3.12. The surface area of an n-dimensional hypersphere of radius r is given below:

Sn(r) =
2π

n
2

Γ(n
2
)
· rn−1.

Proof. From

Vn(r) =

∫ r

0

Sn(x)dx.

We know that

Sn(r) =
dVn(r)

Sn(r)
=

2π
n
2

Γ(n
2
)
· rn−1.

�

With the above conclusions, we can compute the volume and surface area of the hypersurface in
Theorem 3.6 of infinite interval of definition.

Theorem 3.13. The surface area of the hypersurface in Theorem 3.6 when CK = −1 is finite. More-
over, the volume of the region enclosed by the hypersurface and the horizontal disk at the end of the
hypersurface is also finite.
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Proof. Based on the formula of n−1 dimensional hypersphere’s surface area in Lemma 3.12, the surface
area of the rotational hypersurface is

S = 2

∫ t0

−∞

2π
n−1
2

Γ(n−1
2

)
· ϕn−2dψ.

Here, t = t0 is the point where ϕ(t) reaches its maximum. Without loss of generality, we can let
t0 = 0 since ϕ(t) has translation invariance, namely

S = 2

∫ 0

−∞

2π
n−1
2

Γ(n−1
2

)
· ϕn−2dψ.

From Theorem 3.6, we know that ϕ′ → 0 as t→ −∞, which also implies ψ′ → 1 since ϕ′2 + ψ′2 = 1.

So, we know that as t→ −∞,
dψ

dt
→ 1.

Consider

S(t) = 2

∫ 0

t

2π
n−1
2

Γ(n−1
2

)
· ϕn−2dψ.

Let ord(S) be the order of S(t) in terms of |t|, namely S(t) = O(|t|ord(S)).

From Theorem 3.6, we know that the order of the integral in equation (3.6) is 1−n
2

, which indicates

that the order of |t| in terms of ϕ is 3−n
2

. Therefore, the order of ϕ in terms of |t| is 2
3−n .

Then, we get

(3.12) ord(S) =
2

3− n
· (n− 2) + 1 =

n− 1

3− n
.

Since n > 3, we know that

n− 1

3− n
= −1 +

2

3− n
< −1.

Therefore, the surface area of this rotational hypersurface over the infinite interval of definition is
finite.

Similarly, we can derive the expression of the volume of the enclosed region by using Lemma 3.11:

V = 2

∫ 0

−∞

π
n−1
2

Γ(n−1
2

+ 1)
· ϕn−1dt.

Consider

V (t) = 2

∫ 0

t

π
n−1
2

Γ(n−1
2

+ 1)
· ϕn−1dt.
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Then we get

(3.13) ord(V ) =
2

3− n
· (n− 1) + 1 =

n+ 1

3− n
.

When n > 3, we know that

n+ 1

3− n
= −1 +

4

3− n
< −1.

Clearly, it indicates that the integral converge as t→ −∞, and the volume the hypersurface is also
finite. �

Remark 3.14. We also compute the approximate value of the volume of the enclosed region and the
surface area of this hypersurface when n = 4 and K = 1 by Mathematica, which are 1.82 and 19.74
respectively.

3.3. A Comparison Theorem. From equation (3.6), we know that the value of ϕ(t) for a given value
of t is dependent on the Gauss curvature K. When the Gauss Curvature is a constant K, let ϕK denote
the solution to equation (3.6) describe in Theorem 3.4 or Theorem 3.6 and ψK denote the correspond-
ing height function. We would like to study the behavior of the solution ϕK when K changes. In the
following theorem, we show that for K > 0, the value of ϕK at a fixed height ψK = y decreases as K
increases if the maximum of ϕK is fixed. Geometrically the generating curve drops faster to the axis
of rotation for greater positive Gauss curvature.

Theorem 3.15. Take a, b ∈ R and a > b > 0. Assume that both ϕa and ϕb obtain the same maximum
at t = t0, namely ϕa(t0) = ϕb(t0) = ϕmax = C. We also assume that on a small interval D = [t0, t0+δ],
both ϕa and ϕb are monotonically decreasing, and ψa and ψb are increasing. Then ∀y ∈ ψa(D)∪ψb(D),
we get

ϕa(ψ
−1
a (y)) ≤ ϕb(ψ

−1
b (y)).

Proof. From Theorem 3.3, we get

Cn−1 = ϕn−1max =
CK + 1

K
.
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Recall that ϕ′2 + ψ′2 = 1 and the expression of ϕ′ in (3.5), we get

ψK(t) =

∫ t

t0

√
1− ϕ′2Kdt

=

∫ ϕK(t)

ϕK(t0)

√
1− (1− (Kϕn−1K − CK)

2
n−1 )√

1− (Kϕn−1K − CK)
2

n−1

dϕK

=

∫ ϕK(t)

ϕK(t0)

1√
1

(Kϕn−1
K −CK)

2
n−1

dϕK

=

∫ ϕK(t)

ϕK(t0)

1√
1

(Kϕn−1
K −(Cn−1K−1)

2
n−1 )

dϕK

=

∫ ϕK(t)

ϕK(t0)

√
Kϕn−1K − (Cn−1K − 1)

2
n−1dϕK .

Thus, we have

(3.14) y = ψK(ψ−1K (y)) =

∫ ϕK(ψ−1
K (y))

ϕK(t0)

√
Kϕn−1K − (Cn−1K − 1)

2
n−1dϕK .

Obviously, we know that the integeand f(K) =

√
Kϕn−1K − (Cn−1K − 1)

2
n−1 increases as |K| in-

creases.

Therefore, for a fixed maximum ϕa(t0) = ϕb(t0) = C and negative ϕ′, we must have ϕa(ψ
−1
a (y)) ≤

ϕb(ψ
−1
b (y)) to make sure that the left side of equation (3.14) remains the same.

�

Similarly, we propose a parallel theorem for K < 0.

Theorem 3.16. Take a, b ∈ R and 0 > a > b. Assume that both ϕa and ϕb obtain the same minimum
at t = t0, namely ϕa(t0) = ϕb(t0) = ϕmin = C.We also assume that on a small interval D = [t0, t0 + δ],
both ϕa and ϕb are monotonically increasing, and ψa and ψb are increasing. Then ∀y ∈ ψa(D)∪ψb(D),
we get

ϕa(ψ
−1
a (y)) ≤ ϕb(ψ

−1
b (y)).

Proof. First consider the case where C = ϕmin 6= 0.
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Similar to Theorem 3.15, we get

ψK(t) =

∫ t

t0

√
1− ϕ′2Kdt

=

∫ ϕK(t)

ϕK(t0)

1√
1

(Kϕn−1
K −CK)

2
n−1

dϕK

=

∫ ϕK(t)

ϕK(t0)

1√
1

(Kϕn−1
K −(Cn−1K−1))

2
n−1

dϕK

=

∫ ϕK(t)

ϕK(t0)

√
Kϕn−1K − (Cn−1K − 1)

2
n−1dϕK .

Thus, we have

(3.15) y = ψK(ψ−1K (y)) =

∫ ϕK(ψ−1
K (y))

ϕK(t0)

√
Kϕn−1K − (Cn−1K − 1)

2
n−1dϕK .

From Theorem 3.15, we know that the integrand

√
Kϕn−1K − (Cn−1K − 1)

2
n−1 increases as |K| in-

crease.

Therefore, for a fixed minimum ϕa(t0) = ϕb(t0) = C and positive ϕ′, we must have ϕa(ψ
−1
a (y)) ≤

ϕb(ψ
−1
b (y)) to make sure that the left side of equation (3.15) remains the same.

When C = ϕmin = 0, then CK will be a constant that is independent of K. In this case, the proof is
exactly the same.

�

4. Generalized Cases

In this section, we will discuss some generalized cases in terms of the rotational hypersurfaces. In-
stead of considering constant Gauss curvature, we can let one of the principal curvatures be constant
and analyze the corresponding hypersurfaces. Moreover, we also study certain cases when the Gauss
curvature is a prescribed non-constant function.

4.1. Rotational Hypersurfaces with One of Principal Curvatures being Constant. From the-
orem 2.2, we know that the principal curvatures of rotational hypersurfaces have at most two distinct
values. By letting them be constant separately, we obtain the following statements.

Theorem 4.1. A rotational hypersurface with at least one principal curvature being constant must be
a round sphere in Rn.
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Proof. Recall from Theorem 2.2 that the two values of principal curvatures are k1 = −ϕ′′

ψ′
, k2 = ψ′

ϕ
. First

consider the case

k1 = −ϕ
′′

ψ′
= C.

Let ϕ′ = f . From ψ′ =
√

1− ϕ′2, we get

(4.1)
df√

1− f 2
= −Cdt.

Integrate both sides, and we yield

f(t) = sin(−Ct+ t0).

Finally, we must have

(4.2) ϕ(t) =
1

C
cos(t0 − Ct),

which obviously corresponds to a round sphere in Rn.

Then consider the case

k2 =
ψ′

ϕ
=

√
1− ϕ′2
ϕ

= C ′.

Similarly, we can get the solution

(4.3) ϕ(t) =
1

C ′
sin(C ′t+ t0),

which also corresponds to a round sphere in Rn.
�

4.2. Rotational Hypersurface of Prescribed Gauss Curvature. In this section, we aim to find
more rotational hypersurfaces satisfying the ODE in (3.1) when K is replaced by a prescribed function
K(t). In one of our main theorem 3.6, we have already found non-compact rotational hypersurfaces
with negative constant Gauss curvature. Naturally, we strive to further discover non-compact hyper-
surfaces with positive or non-negative Gauss curvature.

First, we claim that there exists a complete non-compact rotational hypersurface whose Gauss cur-
vature K(t) is non-negative and positive somewhere. For this we take Kε(t) to be 0 on (−∞,−1] and
1 on (−ε, 0]. On (−1,−ε], Kε(t) is a smooth and monotone-increasing function connecting 0 to 1. For
the equation

Kε(t) = −ϕ
′′(1− ϕ′2)n−3

2

ϕn−2
,

we choose appropriate initial condition such that the solution ϕ is a positive constant on (−∞,−1], i.e.,
the corresponding hypersurface is a cylinder when t < −1. We adjust the value of ε so that the solution
ϕ(t) reaches its maximum at t = 0 and ϕ′(0) = 0. Then we take the reflection of the corresponding
hypersurface across the hyperplane xn = ψ(0) and get a smooth hypersurface M whose Gauss curvature
is the even extension of Kε(t). M is isometric to cylinders when |t| > 1, and its Gauss curvature is
non-negative and supported in [−1, 1]. Thus M is an instance of our claim.
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In addition, we can also consider other general cases when K(t) is a smooth function. For rotational
surfaces M ⊂ R3, we find examples of non-compact hypersurfaces with positive Gauss Curvature, and
give a brief asymptotic analysis of the corresponding function ϕ(t).

Take n = 3 in equation (3.1), we get

(4.4) K(t) = −ϕ
′′

ϕ
.

Since we only consider the case where ϕ is positive, we can let

ϕ(t) = e
∫ t
c0
f(s)ds

.

Then, the above equation is equivalent to the Riccati Equation:

(4.5) f 2(t) + f ′(t) = −K(t).

Here, we consider a non-constant positive power function K(t) = −at−2 where a < 0. Let z(t) =
f(t)t, and we yield

(4.6) z′ =
a+ z − z2

t
,

and thus
dz

z2 − z − a
= −dt

t
.

We consider the following three cases corresponding to the values of a.

• Case 1: −1
4
< a < 0.

In this case we know that z2 − z − a can be factorized into(
z − 1 +

√
4a+ 1

2

)(
z − 1−

√
4a+ 1

2

)
.

Integrate both sides, and we get

z(t) =
D

1− t−D
+ C

where D =
√

4a+ 1, 0 < D < 1 and C is a constant dependent on the value of a.
Therefore, we get

(4.7) ϕ(t) = e
∫ t
c0

D

s(1−s−D)
ds
.

From the above expression of the solution ϕ, we see that ϕ(t) is defined on [c0,+∞), which means
that the corresponding rotational hypersurface is non-compact. Now we study the asymptotic
behavior of ϕ(t) as t→ +∞. We have

ϕ(t) = O(et
D

).
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• Case 2: a = −1
4
.

In this case we have
dz

(z − 1
2
)2

= −dt
t
.

Integrate both sides and we get

(4.8) ϕ(t) = e
∫ t
c0

ds
s ln s = eln(ln t)+C = A ln t.

Again, ϕ is defined up to +∞ and thus the corresponding hypersurface is non-compact. Clearly,
we have

ϕ = O(ln t).

• Case 3: a < −1
4
.

In this case we get

(4.9)
A−1d(

z− 1
2

A
)

1 + (
z− 1

2

A
)2

= −dt
t

where A =
√
−a− 1

4
.

Integrate both sides, and we get

(4.10) ϕ(t) = e
∫ t
c0

A tan(− ln s)
s

ds
= eA ln | cos(ln t)|+C = B| cos(ln t)|.

Note that in this case, ϕ can only be defined on a finite interval since tan has singularities.
Moreover, ϕ is oscillating between −B and B within the finite interval.

Remark 4.2. In fact, for K(t) = atn, equation (4.5) is solvable when n = 0,−2, −4k
2k±1 for k ∈ Z+

(Liouville, 1841).

5. Appendix

In the Appendix we provide essential definitions and notations about the Gauss curvature of hyper-
surfaces in Rn and carry out the calculation. All concepts and notations are defined in the Euclidean
Space Rn.

A hypersurface M is a codimension 1 submanifold of Rn. Let U be a domain in Rn−1 and

~r : U →M ⊂ Rn, ~r = ~r(x1, x2, · · · , xn−1)

be a local coordinate chart of M . We call ~r the position vector field of M in Rn.

The tangent vectors of M are

∂~r

∂x1
,
∂~r

∂x2
, · · · , ∂~r

∂xn−1
.

The vector ~n of length 1 that is perpendicular to all tangent vectors of M is the unit normal vector
of M .
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Definition 5.1. (First Fundamental Form) Denote the first order derivatives by ~ri = ∂~r
∂xi

. The first
fundamental form of M is given below:

I =


~r1 · ~r1 ~r1 · ~r2 · · · ~r1 · ~rn−1
~r2 · ~r1 ~r2 · ~r2 · · · ~r2 · ~rn−1

...
...

. . .
...

~rn−1 · ~r1 ~rn−1 · ~r2 · · · ~rn−1 · ~rn−1


Definition 5.2. (Second Fundamental Form) Denote the second order derivatives by ~ri,j = ∂2~r

∂xi∂xj
. The

second fundamental form of M is given below:

II =


~r1,1 · ~n ~r1,2 · ~n · · · ~r1,n−1 · ~n
~r2,1 · ~n ~r2,2 · ~n · · · ~r2,n−1 · ~n

...
...

. . .
...

~rn−1,1 · ~n ~rn−1,2 · ~n · · · ~rn−1,n−1 · ~n

 .
Definition 5.3. (Principal Curvature) Let matrix A = −II · I−1 where I−1 denotes the inverse matrix
of I. The n− 1 eigenvalues of matrix A are the principal curvatures of M .

Definition 5.4. (Gauss Curvature) The product of the n−1 principal curvatures is the Gauss Curvature
of M . Clearly, the product of a matrix’s eigenvalues equal to its determinant. So, the Gauss Curvature

K = −det(II)

det(I)
.

Recall that in Section 2 we used the following hypersphere coordinate to parametrize a rotational
hypersurface M :

~r(ϕ, θ1, · · · , θn−2) =(ϕ cos θ1 · · · cos θn−2, ϕ cos θ1 · · · cos θn−3 sin θn−2, · · · , ϕ cos θ1 sin θ2, ϕ sin θ1, ψ).

Under the above parametrization, we can compute the tangent vectors, unit normal vector, first
fundamental form, second fundamental form, principal curvatures, and Gauss curvature of M as below.

Proposition 5.5. Let ~rϕ = ∂~r
∂ϕ

and ~ri = ∂~r
∂θi

. The tangent vectors of M are given below:

~rϕ =(cos θ1 cos θ2 · · · cos θn−2, cos θ1 · · · cos θn−3 sin θn−3, · · · , cos θ1 sin θ2, sin θ1,
ψ′

ϕ′
),

~r1 =(−ϕ sin θ1 cos θ2 · · · cos θn−2,−ϕ sin θ1 cos θ2 · · · cos θn−3 sin θn−2, · · · ,−ϕ sin θ1 sin θ2, ϕ cos θ1, 0),

~r2 =(−ϕ cos θ1 sin θ2 cos θ3 · · · cos θn−2,−ϕ cos θ1 sin θ2 cos θ3 · · · cos θn−3 sin θn−2, · · · ,−ϕ cos θ1 cos θ2, 0, 0),

· · ·
~rn−2 = (−ϕ cos θ1 cos θ2 · · · cos θn−3 sin θn−2, ϕ cos θ1 cos θ2 · · · cos θn−3 cos θn−2, 0, · · · , 0).

Proof. Notice that ∂ψ
∂ϕ

=
∂ψ
v
∂ϕ
v

= ψ′

ϕ′
, we can derive the tangent vectors by computing the first partial

derivatives of the position vector field ~r(ϕ, θ1, · · · , θn−2) with respect to θ1, θ2, · · · , θn−2 respectively. �
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Proposition 5.6. The Unit Normal Vector of M is given below:

~n = ψ′(cos θ1 cos θ2 · · · cos θn−2, cos θ1 · · · cos θn−3 sin θn−2, · · · , cos θ1 sin θ2, sin θ1,−
ϕ′

ψ′
).

Proof. We only need to show that ~n · ~rϕ = 0 and ~n · ~ri = 0 for i = 1, · · · , n− 2 .
Let xa,b denote the value of the bth coordinate of ~ra.
First consider the value of ~n · ~rϕ:

~n · ~rϕ =ψ′(
n−1∑
i=1

(xϕ,i)
2 +

ψ′

ϕ′
· (−ϕ

′

ψ′
))

=ψ′[(cos θ1 cos θ2 · · · cos θn−2)
2 + (cos θ1 · · · cos θn−3 sin θn−2)

2 + · · ·+ (cos θ1 sin θ2)
2 + sin θ21 − 1]

=ψ′[(cos θ1 · · · cos θn−3)
2 + (cos θ1 · · · cos θn−4 sin θn−3)

2 + · · ·+ (cos θ1 sin θ2)
2 + sin θ21 − 1]

=ψ′[sin θ21 + cos θ21 − 1]

=0.

From the above equation, we get

(5.1)
k∑
i=1

(xϕ,i)
2 = (cos θ1 cos θ2 · · · cos θn−k−1)

2.

Notice that:

(1) xi,j = −ϕ tan θi · xψ,j for j = 1, 2, · · · , n− i− 1;
(2) xi,j = ϕ cot θi · xψ,j for j = n− i;
(3) xi,j = 0 for j > n− i;
(4) The first n-1 coordinates of ~n and ~rϕ are identical.

We get:

~n · ~ri = ψ′(
n−i−1∑
j=1

xi,j · xϕ,j + xi,n−i · xϕ,n−i)

= ψ′(−ϕ tan θi

n−i−1∑
j=1

(xψ,j)
2 + ϕ cot θi(cos θ1 · · · cos θi−1 sin θi)

2)

= ψ′(−ϕ tan θi(cos θ1 · · · cos θi)
2 + ϕ cot θi(cos θ1 · · · cos θi−1 sin θi)

2) = 0.

Moreover, it is clear that

|~n| = ψ′

√
1 + (−ϕ

′

ψ′
)2 =

√
ϕ′2 + ψ′2 = 1.

Therefore, ~n is indeed the Unit Normal Vector of M .
�
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Proposition 5.7. The First Fundamental Form of M is a diagonal matrix in the form below:

I =


|~rϕ|2 · · · 0 0

... |~r1|2 · · · 0

0
...

. . .
...

0 0 · · · |~rn−2|2

 .
Proof. From Proposition 5.6, we know that

~rϕ · ~ri = ψ′−1 · ~n · ~ri = 0.

So it remains to be shown that

~ri · ~rj = 0(i 6= j).

Assume that i > j. From Proposition 5.1 we get

~ri · ~rj =
n−i−1∑
k=1

xi,k · xj,k + xi,n−i · xj,n−i

= ϕ2 tan θi tan θj

n−i−1∑
k=1

(xψ,i)
2 − ϕ2 cot θi tan θj(cos θ1 · · · cos θi−1 sin θi)

2

= ϕ2 tan θj[tan θi(cos θ1 · · · cos θi)
2 − cot θi(cos θ1 · · · cos θi−1 sin θi)

2]

= 0.

The above equation indicates that I is a diagonal matrix as stated in the theorem.
�

Proposition 5.8. Let ~rx,y denotes ∂2~r
∂x∂y

where θi is replaced by i. The Second Fundamental Form of

M is another diagonal matrix in the form below:

II =


~rϕ,ϕ · ~n · · · 0 0

... ~r1,1 · ~n · · · 0

0
...

. . .
...

0 0 · · · ~rn−2,n−2 · ~n

 .
Proof. From Proposition 5.5 and the labels in Proposition 5.6, we can further derive the second deriva-
tives as below:

(1) ~rϕ,ϕ = (0, 0, · · · , 0,− ϕ′′

ϕ′3ψ′
);

(2) ~ri,i = (−ϕxϕ,1, −ϕxϕ,2, · · · , −ϕxϕ,n−i, 0, · · · , 0);
(3) ~rϕ,i = ~ri,ϕ = (− tan θi · xϕ,1, − tan θi · xϕ,2, · · · , − tan θi · xϕ,n−i−1, cot θi · xϕ,n−i, 0, · · · , 0);
(4) ~ri,j = ~rj,i = (ϕ tan θi tan θj· xϕ,1, ϕ tan θi tan θj· xϕ,2, · · · , ϕ tan θi tan θj· xϕ,n−i−1, −ϕ cot θi tan θj,

0, · · · , 0) for i > j.
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So, we only need to prove the inner product of ~n and the derivatices in (3) and (4) is 0.
From Proposition 5.1, we get

~rϕ,i · ~n = ψ′[− tan θi

n−i−1∑
k=1

x2ϕ,k + cot θix
2
ϕ,n−i]

= ψ′[− tan θi(cos θ1 · · · cos θi)
2 + cot θi(cos θ1 · · · cos θi−1 sin θi)

2]

= 0,

and

~ri,j · ~n = ψ′[ϕ tan θi tan θj

n−i−1∑
k=1

x2ϕ,k + cot θi tan θjx
2
ϕ,n−i]

= ψ′ϕ tan θj[tan θi(cos θ1 · · · cos θi)
2 − cot θi(cos θ1 · · · cos θi−1 sin θi)

2]

= 0.

The above computation indicates that II is a diagonal matrix in the proposed form. �

Theorem 5.9. The principal curvature of M is given below:

(1) k1 = −ϕ′′

ψ′
;

(2) ki = ψ′

ϕ
for i = 2, 3, · · · , n− 1.

Proof. From Proposition 5.1, we can compute the entries in I as below:

(1) |~rϕ|2 = 1 + ψ′

ϕ′
= 1

ϕ′2

(2) |~ri|2 = ϕ2
∏i−1

a=1 cos θ2a (Assume that cos θ0 = 1)

Similarly, we can compute the elements in II as below:

(1) ~rϕ,ϕ · ~n = ϕ′′

ϕ′2ψ′

(2) ~ri,i · ~n = −ϕψ′
∏i−1

a=1 cos θ2a (Assume that cos θ0 = 1)

Then,

A = −II · I−1

=


− ϕ′′

ϕ′2ψ′
· · · 0 0

... ϕ · · · 0

0
...

. . .
...

0 0 · · · ϕ
∏i−1

1 cos θ2i

 ·

ϕ′2 · · · 0 0
... 1

ϕ2 · · · 0

0
...

. . .
...

0 0 · · · 1

ϕ2
∏i−1

1 cos θ2i



=


−ϕ′′

ψ′
· · · 0 0

... ψ′

ϕ
· · · 0

0
...

. . .
...

0 0 · · · ψ′

ϕ
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Clearly, the principal curvatures are diagonal entries. �

Theorem 5.10. The Gauss curvature of M is given below:

K = −ϕ
′′ψ′n−3

ϕn−2
(n ≥ 3).

Proof. The Gauss curvature is equal to the product of the principal curvatures by definition:

K =
n−1∏
i=1

ki = −ϕ
′′

ψ′
· (ψ

′

ϕ
)n−2 = −ϕ

′′ψ′n−3

ϕn−2
.

�

Now, we have derived the expression of the Gauss curvature of M under the ϕ and ψ parametrization.
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