五种蝴蝶鳞片空气动力学、结构色和疏水性的探究

摘要

本课题主要以柑橘凤蝶、白斑赭弄蝶、碧凤蝶、菜粉蝶、绿带翠凤蝶等五种 蝴蝶作为观察样本,探究蝴蝶鳞片的空气动力学、结构色和疏水性方面的特性。 首先将蝶翼使用原创的"五分法"进行区域划分,先后使用 XTL-165 体式镜、EX30 光学显微镜、基恩士超景深三维显微系统、扫描式电子显微镜(SEM)分别对蝴 蝶鳞片进行观察,记录蝴蝶鳞片放大 400 倍、700 倍、2500 倍和 20000 倍后的微 纳米级形态特征及分布规律。通过观察发现蝴蝶鳞片的呈现"瓦片式"分布,鳞 片有脊线、脊刺、栅格、锯齿状结构等多种微观构造,鳞片的分布规律与翅翼颜 色深浅、翅翼的不同区块具有一定相关性。其次,基于观察到的鳞片的构造特征, 通过查阅文献、走访空气动力学专家、模拟计算等途径,使用空气动力学原理分 析、流体力学(CFD)模拟计算验证等方法、发现鳞片的微观构造与飞行中的升 力和阻力密切相关,模拟实验中显示单个鳞片、五个鳞片叠加两种不同情况下, 鳞片的角度的变换,可以影响蝴蝶飞行的机动性,而鳞片的"瓦片式"排列,有 助于提升升力系数,同时降低阻力系数。再次,本课题还针对蝴蝶翅膀的疏水性 和结构色原理进行了探究。通过疏水性测试验证了蝴蝶翅膀的疏水性优于荷叶等 其它几种实验样本。通过结构色实验,证实了鳞片的微观结构可让蝴蝶在不同角 度、光线下呈现不同深浅的颜色。与此同时,在观察过程中偶然发现了鳞片"重 叠呈色"的现象, 及两个不同颜色的鳞片上下叠加,呈现出一种全新的颜色, 日呈色规律不符合光学原理或美术中混合配色的原理,为蝴蝶结构色的成因增加 余新的内容。

关键词:

蝴蝶鳞片; 空气动力学; 结构色; 疏水性; 锯齿结构

技术路线

笌	51章 绪论5
	1.1 引言
	1.2 蝴蝶鳞片的研究现状及分析 5
	1.3 研究目的及意义7
笌	§2章 材料与方法7
	2.1 研究对象7 🔨
	2.1.1 蝴蝶鳞片的概念 72 🛇
	2.1.2 本课题主要研究对象
	2.2 研究仪器及软件
	2.2.1 研究仪器8
	2.2.2 软件及技术委托方9
	2.3 蝴蝶鳞片形态结构的研究 9
	2.3.1 鳞片的形态11
	2.3.2 鳞片的结构11
	2.3.3
	2.3.4 SD 建侯13 9 4 蝴雌銤出的空气动力受研室 15
	2. 车蝴蝶鹀/1的工气幼/J于明儿····································
	2.4.2 鳞片的空气动力学原理分析 19
	2.4.3 二维蝴蝶飞行的流体力学(CFD)模拟
	2.5 蝴蝶翅膀的结构色实验
	2.6 疏水性实验
笌	53章 结果
	3.1 空气动力学原理分析结果33
	3.1.1 鳞片的瓦片式排列的优势 33
	3.1.2 鳞片微观构造的优势33
	3.1.3 鳞片角度变化对升力阻力的影响
	3.2 结构色实验结果 33
	3.3 疏水性实验结果
笌	54章 讨论
-	4.1 鳞片锯齿的数量与飞行速度是否相关 34
Ó	4.2 结构色还有哪些未被发现的机理 34
	4.3 蝴蝶鳞片的形态与疏水性之间的关系
芽	第5章 结论
	5.1 空气动力学研究结论34
	5.2 结构色的原理研究结论 35
	5.3 鳞片的疏水性研究结论 35
笌	第6章 创新与展望35
	6.1 创新点
	6.1.1 方法创新 35

目 录

6.1.2 观察到结构色呈色的另一方式	35
6.2展望	36
第7章 收获与体会	36
第8章 致谢	37
第9章 参考文献	38
附件:	40

.4

第1章 绪论

1.1 引言

蝴蝶在昆虫界被誉为"会飞的花朵",很多蝴蝶不仅有绚丽多彩的颜色,还 具有卓越的扑翼式飞行能力,据悉飞的最快的弄蝶每小时可以飞行 32 千米,实 力不可小觑。2017 年夏天,我在野外捕捉蝴蝶进行观察,在放飞后发现手上沾了 许多蝴蝶鳞粉,这引起了我的好奇,鳞粉到底有什么用?蝴蝶美丽的颜色是鳞粉 带来的吗?鳞粉具体是怎样的构造,会有助于蝴蝶的飞行吗?带着这些问题,我 开始研究蝴蝶鳞片。

在家中用光学显微镜对蝴蝶翅膀进行观察时,可以看到:每个鳞片末端都有 1到7个左右的锯齿形结构,鳞片如同一片"树叶"插在翅膜上,表面有很多几 乎平行的脊线,每条脊线上还有类似于"刺"的构造,我称之为"脊刺",除此 之外鳞片上还有很多孔洞,是类似栅格的微型立体结构。通过到国家图书馆查阅 相关资料后了解到,关于蝴蝶鳞片的微观构造的深入研究并不是很丰富,其中"锯 齿结构"在某些国外文献中被称之为"牙状结构"或"角状结构",但未查询到 关于"锯齿结构"有什么用途的研究结果。同时,也未能查询到更多关于鳞片构 造与飞行、习性之间的相关性的深入研究。根据生物界进化的规律、动物的自适 应性的原理,蝴蝶鳞片的构造理论上应当与蝴蝶的飞行、习性密切相关,无论是 在日常飞行中、还是远渡重洋的迁徙中,蝴蝶势必以最省力的方式节省体力的消 耗,那么鳞片究竟是不是真的发挥了"节能提速"的功能呢?鳞片独特的微观构 造究竟发挥了怎样的作用呢,这引发了我很大的兴趣,也是本课题发起的原因。

1.2 蝴蝶鳞片的研究现状及分析

近些年来,人们通过对蝴蝶鳞片的研究,将蝴蝶鳞片的作用主要归纳为呈色、防水、逃生和求偶四个方面。

在自然界中几乎所有的飞行生物都无一例外的采用了扑翼飞行方式,蝴蝶更 是其中的代表性生物。前人对于昆虫的扑翼式飞行有一定的研究,苗沐霖^[6]在他 的研究中也提到,扑翼飞行起飞时的高升力和推动力主要来自于翅膀推动空气的 反作用力。昆虫类翅膀的结构和运动方式可以产生有效的高升力和推动力,对扑

5

翼飞行原理的研究有助于对微型飞行器的设计和开发。美国乔治亚理工学院的 "Entomopter" 微型扑翼飞行器、荷兰 Delft 大学的"Delfly" 微型扑翼飞行 器和 以色列航空工业公司的"机械蝴蝶"等,都是模仿生物界的扑翼特性而设 计的轻型扑翼飞行器。 微型扑翼飞行器(Flapping-wing micro aerial vehicles)具有体积小、重量轻、隐身性好等优点,被广泛使用到军用和民用领 域。

1973 年, Weis-Fogh 提出了"Clap and Fling"机构,并于 1977 年在 Nature 上正式发表,他的研究表明:昆虫在翅膀每一次下拍前,两翅先在背部"合拢" (clap),然后快速"打开"(fling),如图 59 所示。这种机制是瞬时产生高升力 的,与鸟类通过振动翅膀来产生升力的原理截然不同。更加重要的是,当两翅面 打开到一定程度时,翅面会彻底分开,接着分别继续作平动。这一点在我对蝴蝶 的观察中,也有所验证,如图 60。Weis-Fogh 得出的结论是:昆虫产生高升力主 要是 Clap-Fling 机制。孙茂等人^[7]在研究蝴蝶飞行的气动力特性时发现,蝴蝶 主要用"阻力原理"做拍动飞行,即平衡身体重量的举力和客服身体阻力的推力 均主要由翅膀的阻力提供。

蝴蝶美丽的颜色来源于结构色和化学色,结构色主要与蝴蝶鳞片精巧的微观 构造相关,关于结构色的呈色原理国内外均有不少学者进行了深入研究。在自然 界中,结构色(structural colour),又称物理色(physical color),是一种 由光的波长引发的光泽、通常是由于昆虫身上的鳞片、极薄的蜡层、刻点或沟缝 等细微机构,使广播发生折射、漫反射、衍射或者干涉而产生的。2009年有刘凌 云、郑光美教授^[2]编纂的《普通动物学》中提到蝴蝶具有两对膜质翅,覆盖有鳞 片和毛,多彩的鳞片构成了翅面美丽的花纹和线纹。鳞片不仅带给蝴蝶斑斓的颜 色,同时也兼备了很好的防水功能。在雨季,人们会在雨中发现依旧翩翩起舞的 蝴蝶,也有一些学者对于蝴蝶翅膀的疏水性展开了研究。

Wagner^[16]等人选取了 97 种昆虫,对它们翅膀上的微观结构与水(液体)的 润湿性进行研究,对其翅膀表面用高倍的 SEM 观察。文中还分析了与润湿性有关 的 "SM 指数"(SM Index)(它的值是翅膀表面积与身体质量的商),其值在 2.42[~]57.0之间。SM 指数与"自清洁"效应有关,这意味着在生物分类学中长有

6

"大翅膀"的蜉蝣目、蜻蛉目、蚊蛉亚目和鳞翅目等昆虫有高的"SM"指数,有 很好的不润湿性能。

总的来说,基于微纳米级别的鳞片空气动力学研究还有待丰富,尚存一些更 加具体和深入的问题需要探究;而对于蝴蝶鳞片的结构色研究较为丰富,且有大 量的研究详细解析了鳞片的微观构造与光波之间的作用原理;蝴蝶翅膀的疏水性 能与其它材质的对比性研究也可以继续拓展。

1.3 研究目的及意义

本课题的研究旨在借鉴前人研究的成果基础上,立足于蝴蝶鳞片的微纳米级 层面,从形态学观察入手,运用空气动力学、流体力学模拟、结构色实验和疏水 性实验等几个方面,对蝴蝶鳞片在飞行的空气动力学原理、结构色呈色以及疏水 性方面进行深入探究,特别是鳞片精巧的微观构造对于升力、阻力的影响,以及 飞行中鳞片的角度在流体力学方面的特性,是本文探究的重点,希望可以对蝴蝶 鳞片的研究起到补充的作用,同时也希望能够对未来仿生学的应用提供一些新的 视角。

2.1 研究对象

2.1.1 蝴蝶鳞片的概念

蝴蝶的鳞片类似于瓦片排列在翅膜上,排列规律具有高度周期性,每层鳞片 略有重叠,在高倍显微镜下观察,每一鳞片的基部有一小柄,嵌入到翅膀的凹窝 里面。用手触摸蝴蝶翅膀的表面,可以感觉到有一层细细滑滑的粉末状物质,这 就是它的鳞片。对于蝴蝶来说,这层鳞片具有保护作用,鳞片容易脱落,当遇到 危险,如撞上蜘蛛网时,这些粉末会大量地脱落,将蛛丝上的黏液裹住,就可以 逃脱了。另外据资料介绍,雄性蝴蝶身上还具有"香鳞",可以起到吸引雌性蝴 蝶进行交配的作用。

2.1.2 本课题主要研究对象

本课题将柑橘凤蝶(Papilio xuthus)、白斑赭弄蝶(Ochlodes subhyalina (Bremer et Grey))、绿带翠凤蝶((Papilio maackii)、碧凤蝶(Achillidesbianor Cramer)和菜粉蝶(Pieris rapae (L.))作为主要研究对象。

- 柑橘凤蝶,凤蝶科,凤蝶属的蝴蝶,体、翅的颜色随季节不同而变化,翅上 的花纹黄绿色或黄白色,栖息于公园、林地、居民小区等十分常见。
- 绿带翠凤蝶、碧凤蝶均归为凤蝶科凤蝶属,两种蝴蝶均有绿色或蓝色的闪亮 • 鳞片,是研究结构色的代表性常见品种。
- 菜粉蝶,别名菜白蝶,为我国分布最普遍的蝶类。
- 白斑赭弄蝶,弄蝶科,赭弄蝶属,小型,褐色,以飞行速度较其他蝴蝶更快 20150 著称。

2.2 研究仪器及软件

2.2.1 研究仪器

仪器名称	规格	生产厂家
BELONA 1000 倍专业生物显微镜	BL-EX30	贝朗科技
Phenix 体视显微镜	XTL-165-VT	江西凤凰
基恩士超景深三维显微系统	VHX-1000C	基恩士 (中国)
FEI Quanta 200 扫描电子显微镜	Quanta 200	赛默飞
在能 5D 单反照相机	5D	Canon
MACR0100 微距镜头	MACR0100	Canon
Apple 笔记本电脑	MacBook Pro	苹果公司
Apple 平板电脑	iPad	苹果公司
影拓绘图板	Intuos5	Wacom 公司
帆船牌载玻片	7101	泰州昊康
帆船牌盖玻片	多规格	泰州昊康
联泰 3D 打印机	SLA800	万万智能
标本盒	42cm*55cm	华宇科普

星中使用的仪器明细 表1 本课题研究过

.2.2 软件及技术委托方	SC	
自制显微镜手机支架	-	自制
泡沫板	_	不详
载玻片收纳盒	_	不详
硫酸纸	_	不详
速干胶水	_	不详
捕虫网	_	不详
镊子		不详
蝴蝶羽化网笼	中号	不详
昆虫针	3号	台湾 TDK
微量移液管	20m1-1 µ 1	不详

表 2 本课题研究过程中使用的软件及技术委托

软件名称 C C L	技术委托方
3D max 应用软件	北京美瞬 3D 打印
CFD 流体力学模拟软件	某军空气动力研究所
Photoshop 制图	自用
Application 显微摄影软件	自用

2.3 蝴蝶鳞片形态结构的研究

本课题中的柑橘凤蝶为自行孵化,尽可能确保样本翅翼完整无损,孵化过程如图1所示。

图1 自行孵化蝴蝶

本课题中为快速获取和表达鳞片的形态特征,采用"五分法"对蝴蝶翅面进 行了划分,具体的方法是以翅膀基部为圆心,向外缘以扇形的扩展方式,将每个 翅片分为基区、内中区、外中区、外区、外缘等五个区域(图2)。将蝴蝶翅膀的 各区域取约 3*3mm 大小、整片蝴蝶翅膀做成显微装片,依次使用 70 倍、400 倍显 微镜、扫描式电子显微镜 (SEM),对白斑赭弄蝶和柑橘凤蝶的前翅、后翅的正 反面的鳞片进行观察,并将鳞片的形态绘制,记录数据和拍照(图3)。

图 3 将蝴蝶翅膀制作成显微装片

2.3.1 鳞片的形态

通过观察看到,三种凤蝶、菜粉蝶的鳞片形态大体相近,大体可分为两种, 一种较宽、较短,另一种则较窄长;白斑赭弄蝶的鳞片形态多达五种,且形态各 异,其中翅膀正面的鳞片包含了全部五种形态,而反面只包括了 3 种形态的鳞 片,如图 4 所示。这与《中国蝶类志》([M].郑州:河南科学技术出版社,1999 年 出 6 月版. P22)上介绍的蝴蝶鳞片的常见基本形态相吻合。

在体视镜和超景深显微系统中看到,蝴蝶鳞片的分布并非在一个平面上,而 是基本分为基层和表层两个层次(国际上有些学者也称之为:地层和盖层),有 些部位甚至看上去为多层,每一层像瓦片一样重叠覆盖(图 5)。

图 4 (a, b) 凤蝶、菜粉蝶与白斑赭弄蝶的鳞片形态对比(手绘)

图 5 100 倍 (左) 和 700 倍 (只有) 超景深三维显微镜下的柑橘凤蝶外缘、中区的鳞片排列

2.3.2 鳞片的结构

为进一步观察鳞片的微观结构,同时也受到客观条件所限,本课题使用扫描 式电子显微镜(SEM)仅对柑橘凤蝶和绿带翠凤蝶进行了观察和拍摄记录。分别 以700倍、1384倍、2500倍和 20000倍的放大倍数进行了观测、记录数据和拍 照(图 6、图 7)。

经过对鳞片放大 1384 倍后,选取某个单独鳞片的视野下观察,可以看到蝴 蝶鳞片是依靠最下端的小柄插在翅膜上,且与翅面行成一定的角度,形成层叠覆 盖的瓦片式排列;同时每个鳞片的"外缘"都有锯齿状的结构,锯齿数量根据鳞 片生长的部位、蝴蝶的品种有所差别;在放大 2500 倍后,可以清晰看到鳞片表 面有多条平行的脊线,脊线之间为凹陷的"脊沟"。

当放大到 20000 倍时,可以进一步观察到在"脊沟"中布满了立体的孔洞, 类似栅格状的结构,有些区域的孔洞是镂空的,有些区域则并非是镂空的,且不 同种类的蝴蝶,孔洞的形态也有所区别;特别是,其中有一些区域的鳞片的脊线 上还会布满顺向生长的"刺"装结构,由于未能在前人研究中见到相关这个结构 的介绍,因此笔者将之暂时称之为"脊刺";此外,还观察到反光鳞片与不反光 鳞片的结构也存在明显差异,即:反光鳞片没有孔洞结构。

图 6 柑橘凤蝶前翅基部在电镜下 1384 倍、20000 倍的照片

图 7 (a, b) 20000 倍镜下绿带翠凤蝶的反光鳞片 (a) 和不反光鳞片 (b) 的结构比较

2.3.3 鳞片的分布规律

为了进一步明确鳞片、鳞片的一些特征性构造的分布规律,本课题针对由翅脉自然分隔成的翅室,逐个翅室进行采样式观察,并将每个采样点的鳞片的形态 手绘出来,统计每个翅室中近端(靠近基部的一端)和远端(靠近外缘的一端)的鳞片形态、鳞片上的锯齿数量,遇到不同颜色的鳞片,即便是在同一采样区域内,也分别单独记录不同颜色鳞片的形态和锯齿数量。

白斑赭弄蝶的前翅、后翅正反面采样点标注如下图(图8),前翅正面共计 22个采样观察点,反面有18个采样观察点,后翅的正面、反面分别确定20个 和27个采样观察,观察拍摄的照片详见附件中图51-54,照片的编号对应采样 点的编号。

柑橘凤蝶(*Papilio xuthus*)的前翅、后翅正反面采样点标注如下图(图 13), 前翅的正反面分别有 28 和 36 个采样观察点,后翅的正反面分别为 35 和 36 个 采样观察点。观察拍摄的照片详见附件中图 55-58,照片的编号对应采样点的编 号。

图 13 (a,b) 柑橘凤蝶前翅正面、反面的鳞片采样点,(c,d) 柑橘凤蝶后翅正面、反面的鳞片采样点

通过五分法观察白斑赭弄蝶鳞片的锯齿结构,发现其翅膀主要由棕色和浅黄 色鳞片组成构成;同一翅室的鳞片的锯齿数量不是单一的,会在某个数值范围之 内变化。基部的鳞片的锯齿状结构的锯齿数量较多,呈放射状向外缘方向逐渐递 减,其中前翅正面最为明显,如图 14 所示。而后翅正面、前后翅反面的鳞片的 锯齿结构,也在趋势上符合上述规律。外缘处单个鳞片面积明显增大,且锯齿数 量突然增多;斑点处的鳞片形态、锯齿结构没有明显差异。对比深色鳞片和浅色 鳞片的形态发现,深色鳞片的锯齿数量明显多于浅色鳞片,仅在后翅正面出现了 相反的情况,即:浅色鳞片的锯齿数量多于深色鳞片,浅色鳞片仅限于翅膀的几 处斑点区域。相关统计数据图表详见附件中图 59-62。

图 14 白斑赭弄蝶前翅鳞片的锯齿数量分布示意图

同理用五分法观察柑橘凤蝶发现,其鳞片分布比较平均,无论是鳞片的形态、大小以及锯齿数量,都趋于平均分配,总体分布规律相比白斑赭弄蝶要更加单一。深色鳞片的锯齿数量略多于浅色鳞片,具体数据图表详见附件图 63-74。

2.3.4 3D 建模

为了直观的观察和研究蝴蝶鳞片的构造,本研究通过 3D 建模和打印技术, 将柑橘凤蝶前中区的一个单独鳞片和局部一片鳞片制作了放大模型,通过 3D 模型,更加便于更加直观理解鳞片构造的特点,以及其诸多方面的原理。(图 15)

图 15 (a, b,) 将蝴蝶鳞片的微观结构进行 3D 建模

2.4 蝴蝶鳞片的空气动力学研究

蝴蝶鳞片的构造在飞行中起到怎样的作用呢?如何从空气动力学的角度去 解释呢?基于本文中提到的实验观察和作者所掌握的有限的空气动力学知识,本 文对蝴蝶鳞片的空气动力学原理做了一定的分析,并且为了进一步论证,在空气 动力研究所团队的帮助下,对蝴蝶鳞片的流体力学进行了2维模拟运算,在一定 程度上解释了鳞片的构造、角度与升力和阻力之间的特性关系。

2.4.1 蝴蝶的飞行特性

首先,根据国际上对于飞行速度的定义,蝴蝶的飞行属于低速飞行(马赫数 M<0.5),且蝴蝶的翅膀拍动频率并不高,甚至还会在一定条件下有短暂的滑翔,

也就是说,粘性力在蝴蝶的飞行中起到关键性的作用。另外,我还需要明确层流、 紊流、分界层和分离点的概念。自然界中流体的流动形式有层流和紊流(又称湍 流)之分。层流指的是流体在流动过程中层与层之间无任何能量的传递;紊流指 的是流体在流动过程中,层与层之间有着质量与动量的传递(图 16)。

图 16 层流、紊流的示意图(仿@中国汽研汽车风洞技术 绘制)

当流体流过物体的时候,由于流体本身的粘性,靠近物体表面的流体的速度 为零,而离开物体表面一定距离的流体的速度则不受粘性影响,此处的流动可以 按照无粘来处理。在物面和可以按无粘处理的流体之间的这一部分流体就是边界 层。边界层内的空气在沿翼面流动的过程中,其速度一方面受摩擦影响要不断减 小,另一方面还会受到沿途压力变化的影响。在顺压梯度段,边界层底层的空气 在顺压的作用下加速,但由于摩擦力的影响,速度增加不多。在逆压梯度段,边 界层底层的空气则受到摩擦力和逆压的双重阻碍作用,减速很快,至流到某一点 时(图17中的S点),非常贴近翼面的一层空气流速减小为零。过S点再往后, 边界层底层的空气在逆压的作用下开始从后往前倒流。倒流而上的空气与顺流而

下的空气相遇,使边界层空气堆积拱起而脱离翼面,并被主流卷走产生大量旋涡。 这样,边界层气流不能紧贴翼面流动,发生了边界层分离(也称为气流分离)。边 界层气流开始离开翼面的 S 点称为分离点。分离点的位置及涡流区的大小与气流 与翼面的相对位置关系有关。

式中:

ν──截面的平均速度:

L——流场的特征长度:

 ρ, μ —流体的运动粘度

雷诺数较小时,粘滞力对流场的影响大于惯性,流场中流速的扰动会因粘滞力而 衰减,流体流动稳定,为层流;反之,若雷诺数较大时,惯性对流场的影响大于 粘滞力,流体流动较不稳定,流速的微小变化容易发展、增强,形成紊乱、不规 则的紊流流场。几种典型雷诺数:普通的航空飞机:5 000 000;小型无人机:400 000;海鸥:100 000;滑翔蝴蝶:7000。各个阶段的雷诺数产生的气流效果如下图 所示(图18)。根据雷诺数的分阶,可以判断蝴蝶在飞行中,气流效果可以参考 图中第四种情况(150<*Re*<3.5*10⁵)。

1973 年, Weis-Fogh 提出了"Clap and Fling"机构,昆虫在翅膀每一次下 拍前, 两翅先在背部"合拢"(clap),然后快速"打开"(fling),如图 19 所 示。这种机制是瞬时产生高升力的,与鸟类通过振动翅膀来产生升力的原理截然 不同。更加重要的是,当两翅面打开到一定程度时,翅面会彻底分开,接着分别 继续作平动。Weis-Fogh 得出的结论是:昆虫产生高升力主要是 Clap-Fling 机 制。

图 19 Clap-Fling 机制 (仿雷亚超 手绘)

根据孙茂等人对黑框蓝闪蝶(Morpho peleides (Kollar, 1850))飞行的气动力特性进行了研究,研究表明:蝴蝶在拍翅飞行时主要依靠的是"阻力原

理",由翅膀运动产生的阻力来提供平衡身体重力的升力,并且克服身体的阻力产生推力。

2.4.2 鳞片的空气动力学原理分析

首先,针对单个蝴蝶鳞片的构造特征,在20000倍的电镜下可以看到,鳞片的表面有许多平行的脊线,在脊线上还有延翼展方向生长的"刺"状结构,有的鳞片还会有栅格状的结构,脊线、"刺"状结构、横线的密度也各不相同。鳞片上的脊线类似于风洞试验中的"人工绊线",起到了"让层流变紊流"的作用, 使得分界层的气流分离点向后推移,能量消耗减少,尽可能的减少蝴蝶飞行的阻力,以及提升升力的作用(图 20)。此外,在电镜下还可以看到脊线之间还存在一些"孔洞",这些孔洞同样可以对气流产生扰动作用,让紊流更加复杂。在科学界,由于紊流的原理相对复杂很多,因此还有一些细节有待深入研究。

图 20 脊刺和脊线使层流变紊流的原理

使用扫描式电子显微镜(SEM)将蝴蝶鳞片放大1384倍,可以更加清晰的 看到蝴蝶鳞片的完整构造和镶嵌方式,其中值得关注的是,鳞片囊在翅膜上的 开口是有一定角度的,这使每个鳞片与翅膜之间会自然行成一定的夹角,两层 鳞片呈"瓦片式覆盖"的时候,鳞片之间会存在一定的间隙和角度。基于上面 对层流、紊流、分界层和分离点的理解,就可以知道,位于蝴蝶翅膀表面的气 流的分界层,在产生分离的时候,会增加气流流动的阻力。假如分界层的分离 点位于翼面上,则蝴蝶将失速。所以,根据阻力原理和 Clap-Fling 机制,在 粘性力主导的情况下,气流的分离点越靠后,则分界层内的气流速度下降的越 慢,保持并提高升力。 其次,当多鳞片组合叠加的时候,由于每个鳞片均与翅面有一定的角度(θ 角),如图 21 所示,在蝴蝶翅膀的表面形成了不光滑、有层次的"瓦片式"表 面。一方面在飞行过程中,当气流经过翼面时,遇到"瓦片式"的结构,层流在 "瓦片"的表面形成了阶梯式的"接力"传递,保持层流状态,推迟分离点。另 一方面通过高速摄影中可以看到蝴蝶飞行中,除了上下拍打翅膀以外,翅膀还有 适度的扭转动作,那么当蝴蝶上下拍打翅膀的时候,翅膀周边会形成涡流,可以 认为其翅膀周围的流场为充分发展的紊流。在这样综合的层流、紊流共同交互的 "流场"作用下,蝴蝶巧妙的运用了延缓分离、阻力机制、涡流增压的原理,保 持向前飞行的动以及向上的升力,并同时减少了阻力。

此外,白斑赭弄蝶翅膀外缘部分的鳞片形态,与其它位置的鳞片的差别非常 大,外缘鳞片呈现"细长的铲状",鳞片的长度甚至是普通鳞片的 2-3 倍,锯齿 数量明显增多,鳞片间相互覆盖、交叠的层次比较少,如图 22。

图 22 左侧为外缘鳞片,右侧为普通鳞片

根据老鹰翅膀 "翼尖"羽毛的空气动力学原理,科学家们研发了飞机的翼 尖小翼,翼尖小翼就好比一堵墙,可以重新调整翼尖绕流,减弱翼尖涡。它的出 现首先可以减小飞机尾流,降低对后方飞机的干扰。其次可以减少飞行阻力,增 加机翼上下表面的压力差,提高飞机爬升性能。类比推测,白斑赭弄蝶的外缘"细 铲状"鳞片在外形上类似老鹰的翼尖,推测应该也同样发挥了减小翼尖涡流的能 量,为保持升力具有一定积极的作用,如图 23。

图 23 老鹰的翼尖为灵感设计了飞机的网格式翼尖小翼

2.4.3 二维蝴蝶飞行的流体力学(CFD)模拟

在某空气动力研究所的帮助下,本课题完成了基于二维蝴蝶飞行的流体力学 (CFD)模拟。通过使用流体力学模拟软件,对单个和五个叠加的蝴蝶鳞片的二 维简化模型进行了 CFD 计算,分析研究其升力和阻力特性。图 24 给出了单个和 叠加后的蝴蝶鳞片示意图。经过抽象简化,获得单个和 5 个叠加的蝴蝶鳞片计算 数模,见图 25。

图 24 单个和叠加蝴蝶鳞片示意图

图 25 单个和多个鳞片叠加数模

蝴蝶鳞片外形采用三维设计软件生成高质量的外形数模,以弄蝶为模拟对象, 计算其在 32km/h (弄蝶的速度)的水平自由来流下的升力和阻力特性。计算网格 采用非结构和三棱柱混合网格。非结构网格具有模拟复杂外形能力强,生成周期 短的特点。为了较好的处理粘性问题,在非结构网格的基础上,采用非结构混合 网格技术。即在附面层区域贴体生成能用于粘性计算的三棱柱网格,然后在外侧 空间生成四面体网格,局部区域采用金字塔网格过度。并在靠近物面处对网格进 行整体加密处理。图 26、27 给出了单个和多个叠加的蝴蝶鳞片计算的计算网格。

采用三维笛卡尔坐标系下的纳维-斯托克斯(Navier-Stokes)方程:

$$\begin{split} &\frac{D_u}{D_t} = X - \frac{1}{\rho} \frac{\partial p}{\partial x} + \frac{1}{\rho} \frac{\partial}{\partial x} \left[\eta \left(2 \frac{\partial u}{\partial x} - \frac{2}{3} \nabla \mathbf{v} \right) \right] \\ &+ \frac{1}{\rho} \frac{\partial}{\partial y} \left[\eta \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \right] + \frac{1}{\rho} \frac{\partial}{\partial z} \left[\eta \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right) \right] \\ &\frac{D_v}{D_t} = Y - \frac{1}{\rho} \frac{\partial p}{\partial y} + \frac{1}{\rho} \frac{\partial}{\partial y} \left[\eta \left(2 \frac{\partial u}{\partial y} - \frac{2}{3} \nabla \mathbf{v} \right) \right] \\ &+ \frac{1}{\rho} \frac{\partial}{\partial z} \left[\eta \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right) \right] + \frac{1}{\rho} \frac{\partial}{\partial x} \left[\eta \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \right] \\ &\frac{Dw}{D_t} = Z - \frac{1}{\rho} \frac{\partial p}{\partial z} + \frac{1}{\rho} \frac{\partial}{\partial z} \left[\eta \left(2 \frac{\partial w}{\partial z} - \frac{2}{3} \nabla \mathbf{v} \right) \right] \\ &+ \frac{1}{\rho} \frac{\partial}{\partial x} \left[\eta \left(\frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \right) \right] + \frac{1}{\rho} \frac{\partial}{\partial y} \left[\eta \left(\frac{\partial w}{\partial z} + \frac{\partial w}{\partial y} \right) \right] \end{split}$$

式中u、v、ω 分别为速度 v 在 x、y、z 方向的分量; X、Y、Z 分别为外部作用于 单位质量流体的体积力沿 x、y、z 方向的分量; p 为压力; ρ 为密度; η 为动力

 $\frac{D}{Dt} = \frac{\partial}{\partial t} + u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} + \omega \frac{\partial}{\partial z} , \quad \text{$\underline{x} + \underline{t} + \underline{b} \\ \text{$\underline{y} + \underline{b} \\ \underline{b} \\ \text{$\underline{y} + \underline{b} \\ \underline{b$

空间离散格式:

采用有限体积方法进行离散。离散格式有中心差分格式,迎风格式等。本文 采用目前较多的迎风格式,利用迎风格式将对流通量进行离散处理,而粘性通量 通过中心差分进行离散。

隐式时间离散:

采用时间推进法数值求解 Navier-Stokes 方程。时间离散方法采用隐式方程,其优点是具有天生的稳定性。在实际计算中,时间步长可以取较长值,从而提高总体计算效率,但缺点是内存占用较大。目前计算机性能显著提高,内存已经不再是 CFD 计算的主要限制因素。

紊流模型:

采用由 Menter 提出的 SST k-ω 模型。SST k-ω 模型是一个典型的两方程 紊流模型。核心思想是近壁面利用 k-ω 模型的鲁棒性,以捕捉到粘性底层的流 动。而在主流区域利用 k-epsilon 模型又可以避免 k-ω 模型对入口紊流参数过 于敏感的劣势。相比于一方程模型如 S-A 模型和其他两方程模型,更适合航空领 域中有较大分离的数值模拟,非常适合靶机计算。 边界条件:

边界条件包括物面条件和远程边界条件。其中物面条件采用无滑移条件。

单个鳞片的气动特性:

首先模拟运算单个鳞片的情况。CFD 计算迎角范围 0°,自由来流速度 30km/h (弄蝶的飞行速度),参考长度为蝴蝶鳞片长度,蝴蝶鳞片偏角 θ 为 2°到 18°, 间隔 2°。

图 28 单个蝴蝶鳞片的升力和阻力系数随偏角 θ 的变化

3

图 28 给出了单个蝴蝶鳞片的升力和阻力系数随偏角 θ 的变化曲线。其中可 以看到,当偏角 θ 在 0°到 5°之间时,呈现正向升力,但升力系数整体呈下降 趋势; 当偏角 θ 为 5°时,正向升力为 0,当 θ 大于 5°时反向升力系数升高。与 此同时,阻力系数呈现非常平缓的上升趋势。具体数据为:单个蝴蝶鳞片的升力 系数随着偏角 θ 的增加,从 0.26 呈线性的减小到-1.13。单个蝴蝶鳞片的阻力系 数随着偏角 θ 的增加,从 0.129 呈线性的增加到 0.274。

图 29 给出了单个蝴蝶鳞片的升阻比(升阻比=升力/阻方)随偏角 θ 的变化 曲线。单个蝴蝶鳞片的升阻比随着偏角 θ 的增加,从2 逐渐变化到-4。

图 30 到图 38 给出了单个蝴蝶鳞片对流场压力影响云图。随着蝴蝶鳞片偏 角 θ 的增加, 蝶鳞片在前端压力增加, 后端压力减小, 使得前后压差增加, 导致 阻力增大; 同时导致蝴蝶鳞片所在的上表面总压力增大, 下表面压力下降, 产生 向下的升力。由此可见, 鳞片角度不同, 升力可以随时被改变, 也就是说如果蝴 蝶在飞行中, 可以通过随时调整鳞片的角度, 来改变升力的情况, 这样或许可以 使蝴蝶飞行中的机动性得到提升, 进而使得生活中的蝴蝶在飞行中特别灵活、可 以随时转向。

结论:从单个鳞片的角度来看,随着鳞片与翅膜之间的偏角度数增大,升力 系数呈现下降的趋势,并在 5°为一个分界点,0°到 5°之间为正向升力,5° 以上为反向升力逐渐提升,同时阻力缓慢提升。升力随着鳞片角度不同发生方向 反向现象,这或许就是蝴蝶低速飞行时机动性高的原因。

25

图 36 单个蝴蝶鳞片偏角 θ =14°的压力云图

图 37

单个蝴蝶鳞片偏角θ=18°的压力云图 图 38

五个蝴蝶鳞片叠加气动特性

流体力学(CFD)模拟计算迎角范围 0°,自由来流速度 30km/h(以弄蝶的 飞行速度为参考),参考长度为蝴蝶鳞片长度,蝴蝶鳞片偏角θ为4°、6°、 10°、14°和18%

图 39 给出了五个蝴蝶鳞片叠加的升力和阻力系数随偏角 θ 的变化曲线。五 个蝴蝶鳞片叠加的升力系数随着偏角 θ 的增加,从 0.15 减小到-0.41。五个蝴蝶 鳞片叠加的阻力系数随着偏角 θ 的增加,从 0.23 呈线性的增加到 0.32。其中, 偏角 θ 在 6°时为分界点,0°到 6°为正向升力,成逐渐下降趋势,6°以上变 为反向升力,并继续成下降趋势;阻力系数在偏角 θ 为 0°到 8°之间几乎变化 很小,8°以上阻力系数开始比较明显的增加。

图 40 给出了五个蝴蝶鳞片叠加的升阻比随偏角θ的变化曲线。五个蝴蝶鳞 片叠加的升阻比随着偏角θ的增加,从0.66逐渐变化到-1.3。

图 41 到图 45 给出了五个蝴蝶鳞片叠加对流场压力影响云图。随着蝴蝶鳞片 偏角θ的增加,蝴蝶鳞片在前端压力增加,后端压力减小,使得前后压差增加,

导致阻力增大;同时导致蝴蝶鳞片所在的上表面总压力增大,下表面压力下降, 产生向下的升力。

结论 1: 从五个鳞片组合叠加的角度来看,随着鳞片与翅膜之间的偏角度数 增大,升力系数呈现下降的趋势,并在 6°为一个分界点,0°到 6°之间为正向 升力,6°以上为反向升力逐渐提升,同时阻力缓慢提升。升力随着鳞片角度不 同发生方向反向现象。

结论 2: 五个鳞片组合叠加与单个鳞片的情况相比,鳞片组合可以使正向升力系数下降为零的情况有所推迟,而阻力上升的速度更加平缓,从这一点可以推测鳞片组合叠加可以延缓正向升力的下降,同时也延缓阻力的上升。

图 40 五个蝴蝶鳞片叠加的升力和阻力系数随偏角 θ 的变化

上面通过 CFD 计算研究了单个和 5 个叠加的蝴蝶鳞片的气动特性,结算结 果表明:蝴蝶鳞片的偏角对气动特性影响较大,蝴蝶鳞片偏角增大将增加飞行 阻力,并能够将升力改变方向。同时鳞片组合叠加相比单个鳞片而言,组合鳞 片可以让正向升力衰减的更慢,对阻力上升也有明显延缓作用。

2.5 蝴蝶翅膀的结构色实验

对于有些蝴蝶翅膀(例如闪蝶)从不同角度观察,会看到不同的颜色,这是 因为它们翅膀的特殊结构造成的,因有些蝴蝶翅膀上的鳞片表面凹凸不平,会对 照射在它们上面的光发生复杂的反射、折射、干涉、衍射等,从而吸收了一部分 的光,而人们看到的仅仅是反射回来的一部分光,这反射回来的一部分的光是什 么颜色人们看到的就是什么颜色,教科书上称之为"结构色",即是因为翅膀结 构而形成的颜色。为证实这点,本课题设计了结构色实验:把闪蝶的翅膀固定在 一个平板上,用相机镜头以90度、75度、60度、45度、30度,从五个不同角 度进行拍摄,得到了不同结果,如图 46 所示。随着角度的梯次变化,肉眼可以 观察到闪蝶翅膀颜色不断在变深,从最初的亮蓝色,逐渐变为墨蓝色,如图 47。

图 47 闪蝶先后变换五次角度后呈现的结构色变化

在观察绿带翠凤蝶鳞片的过程中,偶然发现了一个奇特的现象,即:两片重 叠的鳞片呈现出了令人意想不到的颜色,在一片橘红色的鳞片和一片黑灰色的鳞 片重叠之处呈现出了鲜艳的绿色(如图 48)!这是完全违背传统美术配色规律的。我通过仔细寻找,发现这个现象极难出现,只有在闪光鳞片和不闪光鳞片重 叠时才会出现这种情况,且必须是闪光鳞片在上、不闪光鳞片在下,这一发现为 蝴蝶的结构色形成原理又增加了一条新内容。

2.6 疏水性实验

在雨季,很多人都曾看到过蝴蝶可以在雨中照常飞行,这说明蝴蝶翅膀具有 不错的防水性能,为了测试蝴蝶翅膀的疏水性,本课题设计了疏水性实验,实验 方法为:以几种不同质地的材料为样本,依次把水珠滴每个材料上面,使用显微 镜头从侧面拍摄水珠的形状,测量水珠长短轴的数值,再用短轴 y 除以长轴 x, 得出水珠的长轴短轴比,根据数值来比较蝴蝶翅膀与其它材料之间的疏水性差异, 如图 49 所示。

图 49 水珠测量示意图。疏水性计算方法(相对性):短轴(Y)/长轴(X)

为从侧面拍摄水珠在各种材料表面上的形态,需要对体视镜做一番改进, 首先把它呈 90 度放倒,然后用铜片制作一个弯折成 90 度的观测台,固定在体 视镜的观察平台上,把需要观察材料平放在 90 度的观测台上,用微量移液枪滴 上一个小水珠(4µ1),最后从侧面拍摄水珠的形态。从六种不同材料上水滴 的形状可看出,柑橘凤蝶、菜粉蝶及荷叶上的水滴形状几近正圆形,说明它们 的疏水性非常好,以短轴(垂直)的值除以长轴(水平)的值的得数可以看 出,三种蝴蝶的疏水性比荷叶还要突出,而保鲜膜和罐头盒内面远远不及蝴蝶 翅膀的疏水性强,如图 50 所示。

7

疏水性实验 (数值排列位置与上面照片相同)						
名称	柑橘凤蝶	菜粉蝶	白斑赭弄 蝶	荷叶	保鲜膜	罐头内部
长短轴 比值	0.93	0.84	0.83	0.80	0. 41	0.24

图 50 疏水性实验数据

第3章 结果

本文通过对蝴蝶鳞片微观构造的观察,详细解析了鳞片形态以及与鳞片形态 相关的空气动力学原理,并对鳞片的流体力学进行了模拟计算。本课题针对对蝴 蝶鳞片的整体形态、鳞片锯齿结构等分布规律特征,进行了观察和统计,并通过 结构色实验、疏水性实验等方式,结合来自国外的鲨鱼鳞片研究,对蝴蝶鳞片的 结构、形态、作用、特性、呈色原理进行了探究。

3.1 空气动力学原理分析结果

3.1.1 鳞片的瓦片式排列的优势

鳞片相互叠加形成的瓦片状结构,让层流呈现梯次"接力"式传递,对推迟分 离点具有直接作用,以此降低飞行阻力,提升升力,减少飞行中的能量消耗。

3.1.2 鳞片微观构造的优势

单个鳞片表面的孔洞、脊线等微观结构,不仅大大降低了蝴蝶的体重,同时使 鳞片不是光滑的表面,造成人工"绊线"的效果,致使气流通过时从层流变为 紊流,推迟了分离点,起到降低阻力、减少能量消耗的作用。

3.1.3 鳞片角度变化对升力阻力的影响

从单个鳞片的角度来看,随着鳞片与翅膜之间的偏角度数增太,升力系数呈现 下降的趋势,并在5°形成一个分界点,0°到5°之间为正向升力,5°以上反 向升力逐渐提升,同时阻力缓慢提升。升力随着鳞片角度不同发生方向反向现 象,这或许就是蝴蝶低速飞行时机动性高的原因。从五个鳞片组合叠加的角度 来看,随着鳞片与翅膜之间的偏角度数增大,升力系数呈现下降的趋势,并在 6°为一个分界点,0°到6°之间为正向升力,6°以上为反向升力逐渐提升, 同时阻力缓慢提升。升力随着鳞片角度不同发生方向反向现象。五个鳞片组合 叠加与单个鳞片的情况相比,鳞片组合可以使正向升力系数下降为零的情况有 所推迟,而阻力上升的速度更加平缓,从这一点可以推测鳞片组合叠加可以延 缓正向升力的下降,同时也延缓阻力的上升。

3.2 结构色实验结果

当蝴蝶鳞片两个不同颜色的反光鳞片和不反光鳞片重叠在一起时,由于微观结构的原因,会导致重叠后的颜色并不符合光的过滤和混合原理,也不符合美术上的配色原理,这是我的偶然新发现,给蝴蝶的结构色成因又增加了一条可靠的依据,我将其命名为"重叠结构色"。

3.3 疏水性实验结果

蝴蝶的疏水性明显高于荷叶、保鲜膜和金属罐头盒内侧,其中在三种蝴蝶的对 比中,柑橘凤蝶的疏水性最好。

第4章 讨论

4.1 鳞片锯齿的数量与飞行速度是否相关

本课题中的弄蝶被公认为是世界上飞行速度最快的蝴蝶,据悉最快速度可达 到每小时 32 公里(20 哩)。本次研究中观察到白斑赭弄蝶相比柑橘凤蝶的锯齿 数量明显要多,分布也存在特有的规律,那么锯齿结构与蝴蝶的飞行效率是否有 直接的关系,这是不是就是弄蝶飞的最快的原因呢,还有待进一步考证。

4.2 结构色还有哪些未被发现的机理

虽然说结构色的机理已经非常明确,但结构带来的颜色变化规律是非常多 样化的,这与不同的结构、结构之间的相互作用息息相关。在前述结构色的实 验中,既看到单个鳞片凭借自身结构而产生的色彩,同时也看到了"重叠结构 色",那么结构色的产生是否还有不被熟悉的机理,还有待进一步探究。

4.3 蝴蝶鳞片的形态与疏水性之间的关系

通过本课题中的疏水性实验看到,柑橘凤蝶相比白斑赭凤蝶的疏水性更强,这是不是由于柑橘凤蝶具有相对更加单一、稳定的鳞片形态和分布规律造成的呢?这个问题还可以继续探究、

「第5章 结论

5.1 空气动力学研究结论

本课题立足于蝴蝶鳞片的微纳米级层面,从蝴蝶鳞片的形态、结构和分布 规律着手,在比较深入的观测鳞片的细微构造的基础上,结合借鉴前人研究成 果,分别单针对个鳞片的微观构造、多个鳞片的组合叠加效果,运用空气动力 学原理,尝试探究了蝴蝶鳞片构造与飞行中的升力、阻力之间的关系,并推导 出相应的结论,即:鳞片的脊线、孔洞、脊刺等构造,在空气动力学的原理 上,对于降阻、提高升力应当具有正面作用,有可能的确是蝴蝶在进化过程中 自我优化的产物。同时为了进一步验证鳞片的瓦片式排列对于飞行也具有不可 磨灭的作用,本课题通过流体力学模拟计算的方式,以二维的飞行模拟方式, 模拟计算出单个鳞片、五个鳞片组合后的流场分析,并进一步得到模拟运算的 结论,即:当鳞片角度发生变化,可以直接影响升力、阻力系数的变化。 结构色实验和疏水性实验等几个方面,对蝴蝶鳞片在飞行的空气动力学原理、 结构色呈色以及疏水性方面进行深入探究,特别是鳞片精巧的微观构造对于升 力、阻力的影响,以及飞行中鳞片的角度在流体力学方面的特性,是本文探究 的重点,希望可以对蝴蝶鳞片的研究起到补充的作用,同时也希望能够对未来 仿生学的应用提供一些新的视角。

5.2 结构色的原理研究结论

本课题中用自行设计的结构色实验方法,用比较便捷直观的方式,再次验证了结构色的呈色原理,当闪蝶的翅膀有梯次的变换角度之时,肉眼可见颜色逐步加深。同时,在实验中发现了结构色鳞片重叠的"重叠结构色"原理,当一个闪光鳞片(在上)与非闪光鳞片(在下)重叠在一起时,重叠部分可以出现一个全新的颜色,且该颜色并不遵循既往的混色原理。

5.3 鳞片的疏水性研究结论

蝴蝶翅膀可以防水已经是公认的事实,但其防水的性能与其它防水材料相比究 竟孰高孰低,是本课题关注的重点。通过疏水性实验,与其它几种材料的疏水 性进行了直观的比较,蝴蝶翅膀的疏水性居然超过荷叶、塑料保鲜膜和罐头盒 内壁,这将为更加准确的定义蝴蝶翅膀的疏水性能补充了一些新内容。

第6章 创新与展望

6.1 创新点

6.1.1 方法创新

在前人关于蝴蝶飞行的空气动力学研究多数立足于宏观层面,特别是对于扑 翼式飞行的研究可以说浩如烟海,但未能找到从微观层面、细微构造去解析的文 献。本课题立足于鳞片的微观构造,结合空气动力学、流体力学模拟运算,从更 细微的形态层面来探究,试图更加深入的解析蝴蝶飞行的空气动力学原理,这在 已经查询到的资料中尚未见到同等深度的研究。

6.1.2 观察到结构色呈色的另一方式

前人对于蝴蝶的结构色的研究不胜枚举,绝大多数立足于单个鳞片的微观 构造所带来的光学效应,这依然是非常公认的结构色成因。但是基于两个鳞片 重叠后,"重叠结构"带来的结构色,未能查询到相关报道。在本课题中对于 "重叠结构色"的发现对于蝴蝶结构色的呈色原理,有可能是一个新的视角。

6.2展望

 6.2.1 蝴蝶鳞片的微观结构以及其在空气动力学上的特性,可以作为飞行器, 特别是扑翼机优化和改进的重要参考依据。

6.2.2 蝴蝶鳞片的两种结构色呈色原理,可以用于纺织布料、化妆品、建筑涂料及国防军事伪装色等设计。

6.2.3 蝴蝶鳞片的锯齿结构还可作为食品外包装的研发参考,为社会提供既有 柔韧性,同时很方便被打开的食品包装。

6.2.4 利用蝴蝶鳞片的疏水性优势,可用于防水材料的研发,比如航空航天领 域飞行器的表面材料,大型建筑表面(如国家歌剧院、水立方)的自清洁,旅 游、探险户外用品等。

第7章 收获与体会

通过近两年来对于蝴蝶鳞片的研究,在过程中遇到的最多次的是取样的困 难,经常受限于实验仪器、微观样本的不可控性,使得某些研究难以更加深入 和清晰,比如蝴蝶鳞片的横截面的截取,就曾经是一个无从下手的问题。其次 蝴蝶飞行过程中的复杂动作,很难原原本本的真实还原到流体力学的模拟运 以致于未能操作风洞实验,而对于 CFD 模拟运算也提出 算、或者风洞实验中, 了很高的要求---不仅需要升为三维建模,并且还需要针对飞行中翅膀的扭 转、前后翅的分离与合并、上下拍打的速度等一系列复杂因素,进行全方位的 网格设计,并经过极其复杂的大型运算,一个空气动力专业团队日以继夜的连 续作战才有可能可以做得出来,对于我来说难度实在不可想象。除此之外,对 予空气动力学知识的缺失,对于昆虫飞行原理了解还很有限,也是我研究本课 题过程中越来越掣肘的问题,研究鳞片的对于飞行的作用,势必离不开空气动 力学作为基础和实践理论,然而我在研究本课题之前对这一块的了解为零,在 本课题进行过程中,为了能顺利继续推进课题,我不得不通过上网搜索各种入 门级资料,了解各种空气动力学的基本概念和名词,同时拜访多位专家请教一 些很基础的问题,即便是获得了很多人的帮助和指导,但由于空气动力学是一

36

门非常专业和高端的综合学科,对于我这个初中生来说依然是举步维艰。在本 次课题的研究过程中,我深深体验到了科学研究的艰辛,以及哪怕是一门深入 去研究一个领域,也需要跨学科探索的能力。

在分析鳞片的瓦片式排列的空气动力学原理时,面对复杂的多鳞片构造, 我带着一知半解的理解,绘制气流的模拟图,但是很不幸的是我的理解与真实 情况是全然相反的,当我很兴奋的拿着自己画的模拟图给老师看的时候,老师 一句话就点醒了我:如果气流是这样流动的话,蝴蝶就失速了,就掉下去了, 还有一次,在用显微镜观察鳞片的阶段,制作显微装片是观察的第一步,我需 要用棉签将鳞粉刮到载玻片上,由于一直操作多只蝴蝶,做好了装片马上开始 观察、记录,不知不觉几个小时就过去了,由于密切接触鳞粉时间太久,引发 我的鼻子严重过敏,开始不停打喷嚏,致于必须停下手中的事情,一连打了几 十个喷嚏,眼睛四周和鼻子全部肿起来,本来就很宝贵的做课题时间,就这样 自白的被过敏性鼻炎给耽搁了。

这两年中,由于技术受限、知识版块缺失,有很多次感觉走入了迷茫的死 胡同,不知道该如何进行下去,但又不甘心就此退回,因为心中总是想去验证 自己的猜想、去发现自己未知的奥秘、也是这份执拗,让我在一次次碰壁的时 候,会"绝处逢生"般的找到非常"隐蔽"的通向未来的门。因此,我越来越 坚信,科学研究没有真正的死胡同,只要不放弃总会找到突破的方法,死胡同 往往在人们的心里,放弃了也就前功尽弃了。此外我还懂得了一个非常重要的 道理,科学世界非常奇妙,谁都可以去探索,科学家可以,我也可以,但是我 和科学家之间的差别在于,我尚需脚踏实地的将基础知识体系构建起来,自己 有意识的训练自己的科学意识,打开眼界和心胸,仰望星空的同时,要脚踏实 地,为未来攀登更高的科学高峰而踏踏实实的努力!

第8章 致谢

在两年的研究过程中,要感谢多位老师对我的大力支持、不吝赐教。首先 感谢我的辅导老师陈宏程老师,几年来是陈老师一步步把我带上科学之路,从 只会捉虫、玩虫升级变化成正规的研究昆虫。此外要感谢袁峰老师、姚军老 师,他们在我需要帮助的时候,总是第一时间无条件的帮助我,为我找实验室 做电镜观察,为我讲解昆虫的权威资讯,教我如何查询国内外的资料;还要感 谢乔文军老师几年来一直给我的研究提供高屋建瓴的意见,引导我从简单的形 态学,走向实验、走向跨学科的研究;此外在本次研究的空气动力学方面,我 无比幸运的得到了我国知名空气动力学专家同济大学单希壮教授、北航张霄教 授的指导,是他们将我从对空气动力学理解为零,开始有了一些极其粗浅的认 知。我还要感谢北京自然博物馆的夏晓飞老师,在夏老师的帮助下我完成了人 生中第一次电镜观察,第一次看到了被放大两万倍的蝴蝶鳞片,探索的大门从 那一刻被开启。最后,感谢某军空气动力研究所的张鹏叔叔、航天工程大学激 光推进及其应用国家重点实验室祝超老师,是他们帮助我完成了本课题流体力 学模拟运算,用高端的软件运算让小小的蝴蝶鳞片的"气场"得以展现。

第9章 参考文献

[1]彩万志,庞雄飞,花保祯,梁广文,宋敦伦等.普通昆虫学[M].北京:中国农 业大学出版社,2011.45-54.

[2]刘凌云,郑光美.普通动物学[M].北京. 高等教育出版社, 2009(4).268

[3] P. J. Gullan. P. S. Cranston, 昆虫学概论[M]. 彩万志, 花保桢, 宋敦伦, 梁广 文, 沈佐锐译. 北京:中国农业大学出版社, 2009. 19-29.

[4]周尧等.中国蝶类志[M]、郑州:河南科学技术出版社,1999.14-27.

[5] 佐贺正汎等. 日本昆蟲圖鑑[M]. 日本: 东京北隆馆, 1958. 429-431.

[6] 苗沐霖. 扑翼飞行原理探索[J]. 北京: 科教导刊·电子版, 2016(15).

[7]孙茂,黄华.微型飞行器的仿生力学_蝴蝶飞行的气动力特性[J].北京航空航天大学学报,2006,32(10):1146~1151

[8] 宋威,蒋增辉,贾区耀. 细长锥边界层绊线转捩风洞自由飞试验 [J].力 学学报,2016,1

[9]武春生.中国动物志:凤蝶科。北京:科学出版社,2001

[10] 左德参. 仿生微型飞行器若干关键问题的研究[D]. 上海交通大学, 2007

[11]孙茂. 昆虫飞行的高升力机理[J]. 力学进展, 2002, 32(3):425~434

[12]朱保利. 多自由度扑翼微型飞行器设计研究[D]. 南京航空航天大学, 2007

[13] 雷亚超. 仿蝴蝶微型扑翼机飞行原理及扑翼机构的研究[J]. 《中国学位论文全 文数据库》, 2013

[14] 邱兆美,韩志武.蝴蝶鳞片微观结构与模型分析[J].农业机械学报,2009,11:193~196

[15] 刘沛清. 飞行奥秘与空气动力学原理.

https://m.sohu.com/a/227025801_465937/?pvid=000115_3w_a&from=singleme ssage&isappinstalled=0

[16]T. Wagner, C. Neinhuis, W. Barthlott. Wettability and contaminability of insect wings as a function of their surface sculptures[J]. Acta Zoologica (Stockholm), 1996, 77 (3):213-225

[17]Dudley R. Biomechanics of flight in neotropical butterflies: morphometrics and kinematics[J]. J. Ex p.Biol., 1990, 150: 37^{53.} [18]Radwanul Hasan Siddique 等. Colour formation on the wings of the butterfly *Hypolimnas salmacis* by scale stacking [EB/OL].

https://www.nature.com/articles/srep36204,2016

0205

[19] Andrew K. Davis , Jean Chi, Catherine Bradley, Sonia Altizer. The Redder the Better: Wing Color Predicts Flight Performance in Monarch Butterflies[EB/OL].

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.004 1323, 2012

[20]August G. Domel 等. Shark skin-inspired designs that improve aerodynamic performance[J].Joural of The Royal Sciety Interface, 2018.15(139).

图 51 白斑赭弄蝶前翅正面鳞片形态拍摄

图 53 白斑赭弄蝶后翅正面鳞片形态拍摄

图 54 白斑赭弄蝶后翅反面鳞片形态拍摄

图 55 柑橘凤蝶前翅正面鳞片形态拍摄

图 56 柑橘凤蝶前翅反面鳞片形态拍摄

图 57 柑橘凤蝶后翅正面鳞片形态拍摄

图 58 柑橘凤蝶后翅正面鳞片形态拍摄

图 61 白斑赭弄蝶后翅正面鳞片的锯齿结构数量分布

图 64 (b) 白斑赭弄蝶前翅反面鳞片的锯齿结构数量分布

图 67 白斑赭弄蝶前翅正面深色、浅色鳞片的锯齿数量比较

图 70 白斑赭弄蝶后翅反面深色、浅色鳞片的锯齿数量比较

图 73 柑橘凤蝶后翅正面鳞片的锯齿结构数量分布

