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 PM2.5 Density Prediction based on a Two-Stage 

Rolling Forecast Model using LightGBM 

Zihao Liu 

 

ABSTRACT 
 

At present, air pollution is a primary issue of the world. Particularly, PM2.5 pollution can 

cause severe impact on economy and human health, so developing an accurate PM2.5 

prediction model becomes a hot topic. Up to now, researchers had developed PM2.5 forecasting 

methods based on decision tree models, RNN models, and hybrid models. Previous works also 

discovered plentiful features, such as seasonal data and weather forecasting data, that help 

increase the accuracy of PM2.5 prediction. To improve the model accuracy, we developed a 

LightGBM-based PM2.5 prediction model that has two innovations: 1) our model studies how 

special events (e.g. diplomatic visits, sport events, and government meetings) influence PM2.5 

variation. 2) our model adopt the strategy of two-stage rolling forecasting so that it can achieve 

high accuracy without relying on weather forecasting data. 

Keywords: Short-time Fourier transform, LightGBM, PM2.5, Rolling forecast, Time series, 

What-if analysis 

  



20
20

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

Research Report  2020 S.T. Yau High School Science Award 

2 

 

CONTENTS 

I. Introduction .......................................................................................................................... 3 

II. Problem setup ...................................................................................................................... 6 

III. Data set ............................................................................................................................... 7 

A. Data description............................................................................................................. 7 

B. Data exploration ............................................................................................................ 8 

1) Relationship between dew point and humidity ...................................................... 8 

2) Temperature distribution in Beijing ....................................................................... 8 

3) Distribution of PM2.5 in Beijing ........................................................................... 9 

IV. Methods ............................................................................................................................ 10 

A. Data preprocessing ...................................................................................................... 10 

1) Handling redundant attributes .............................................................................. 10 

2) Outlier removal .................................................................................................... 11 

3) Missing values imputation ................................................................................... 11 

4) Processing categorical features ............................................................................ 12 

B. Feature engineering ..................................................................................................... 12 

1) Holiday and special event features ...................................................................... 12 

2) Lagged features and statistical features ............................................................... 13 

3) Frequency-domain features .................................................................................. 13 

4) Features from “tsfresh” package .......................................................................... 15 

C. Forecasting Method ..................................................................................................... 16 

1) Model selection .................................................................................................... 16 

2) Configuration ....................................................................................................... 16 

3) Two-stage Forecasting ......................................................................................... 16 

V. Performance evaluation .................................................................................................... 17 

A. Model comparison ....................................................................................................... 17 

B. What-if analysis ........................................................................................................... 19 

C. Feature importance ...................................................................................................... 20 

VI. Conclusion ........................................................................................................................ 21 

VII. References ....................................................................................................................... 22 

VIII. Acknowledgment .......................................................................................................... 24 

 

  



20
20

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

Research Report  2020 S.T. Yau High School Science Award 

3 

 

I. INTRODUCTION 

Since the writing of Silent Spring in 1962, environmental protection has become a primary 

issues all over the world, especially in developing countries. In particular, PM2.5 pollution is 

one of the environmental issues that have caused severe impact to people's daily life [1]. 

Although PM2.5 can directly cause health problems on the population, it also has impacts on 

economy. In fact, a study conducted by Xie et al. [11] indicates that health and economy issues 

at become substantial when PM2.5 concentrations are high at a provincial level. Specifically, it 

was projected that China will have to spend additional $25.2 billion on health expenditure for 

diseases brought by PM2.5 pollution. However, if PM2.5 is properly manipulated with air 

pollution control technology, by 2030 the number of patients due to PM2.5 will reduce by 75%, 

reducing PM2.5 health expenditure $6.5 billion. Accordingly, it is vital to develop solutions to 

the PM2.5 issues for their severe impacts in health and economy. 

To minimize the damage of PM2.5, researchers in this field have developed various models 

based on the theory of time series to forecast air quality. Currently, most of the proposed models 

either use simple regression models, deep neural networks, or hybrid models that make use of 

both. 

Typical regression models used for PM2.5 prediction include linear regression, decision tree, 

and random forest; but most authors adopt tree-based models to forecast future PM2.5 

concentration. For example, Zhang et al. [2] proposed a LightGBM forecasting model that 

utilized past air quality data recorded by monitoring stations and meteorological data provided 

by weather forecasting. Similarly, Zhang et al. [3] suggested a PM2.5 forecasting model based 

on random forest algorithm. In fact, Lee et al. [4] analyzed the performance on PM2.5 

prediction of all tree-based models such as XGBoost, LightGBM, and random forest and 

obtained promising results, explaining why tree-based prediction models are common in the 

field of PM2.5 forecasting. 

Deep learning models include the traditional feed-forward neural networks, convolutional 

networks, and recurrent neural networks, but most deep-learning-based research done on PM2.5 

forecasting make use of RNN-based networks. For instance, the STE (Spacial-Temporal 

Ensemble) model which makes use of temporal features, proposed by Wang and Song [5] is an 

LSTM-based algorithm. Likewise, Ong et al. [6] proposed an RNN-based PM2.5 quality 

prediction model with improved training methods. Particularly, they developed a new pre-

training method that allows the model to make more accurate predictions. Essentially, 



20
20

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

Research Report  2020 S.T. Yau High School Science Award 

4 

 

researchers tend to use RNN-based networks to develop deep learning PM2.5 prediction 

models. 

Not only did researchers developed model solely based on tree-based models or recurrent 

networks, but also created hybrid models that use both. For instance, Zheng et al. [13] proposed 

a hybrid PM2.5 forecasting model in which a specific mechanism is set up to combine 

predictions made by a linear regression model and a neural network. Similarly, Qi et al. [14] 

proposed a PM2.5 prediction model based on graph convolutional neural networks and LSTM. 

Furthermore, the methods Qi et al. [14] developed are also applicable to the prediction of other 

particles’ densities. Likewise, Zhang et al. [15] proposed a hybrid prediction model that 

combines convolutional networks and recurrent networks. Particularly, Zhang et al. discovered 

that their model produces more accurate results than others when there are large fluctuation of 

values in the data. 

Previous researches done on the field of PM2.5 forecasting have produced plenty of 

discoveries. For example, Zhang et al. [2] enhanced model accuracy by integrating the model 

with data obtained from weather forecasting stations. Likewise, Zhao et al. [7] discovered that 

seasonal data will improve the accuracy of their linear-regression-based PM2.5 prediction 

model. Similarly, Zhang et al. [3] proposed a random-forest-based PM2.5 prediction model that 

can effectively handle large-quantity data. Although these researches have already yielded 

remarkable results, their models require knowing weather forecast data and concentrations of 

pollutants other than PM2.5. In addition, current forecasting models did not take the impact of 

government’s policy on PM2.5 concentration into account. Furthermore, previous works on 

PM2.5 prediction do not perform what-if analysis on their prediction models. As a result, we 

develop solutions to each of these issues. 

In the face of the aforementioned potential improvements, we propose our own PM2.5 

prediction model1. Similar to previous works, our model adopts the LightGBM framework for 

its efficiency and flexibility. [9] In our study, we use the PM2.5 data set published by Liang et 

al. [8] for its granularity: the data set contains hourly records of PM2.5 and other meteorological 

parameters between the year 2010 and 2015. The density of this data set allows us to predict 

PM2.5 concentration in terms of hours. Nevertheless, the attributes in the original data set is 

not sufficient to train a prediction model with high accuracy, so we used a variety of techniques 

to generate more features. To let our model study the relationship between the attributes and 

 
1 The source code of our model is available at https://github.com/TravorLZH/pm25 
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their past states, we generate lagged features for PM2.5 concentrations and meteorological 

parameters. According to Zhang et al. [2], statistical features over rolling window are also 

helpful in PM2.5 prediction, so we generate them as well. In addition to the above time-domain 

features, we generate frequency-domain features via short-time Fourier transform on the time 

domain of the PM2.5 time series so that our model can study the seasonality of PM2.5 

concentration, therefore improving its accuracy in prediction. 

In their feature engineering process, Zhang et al. [2] generate a date-time feature called 

“is_weekend” which denotes whether the day predicted is weekend. This innovation motivates 

us to dig further in date-time feature generation. By tracking the government’s event calendar, 

we are able to study the impacts of government’s policies on PM2.5 since governments always 

make event-specific policies during these special time intervals. In fact, government’s policies 

have substantial impacts on PM2.5 concentrations. For example, in 2013, the Chinese 

government imposes “Air Pollution Prevention and Control Action Plan,” aiming to reduce 

PM2.5 concentrations of China’s major cities by more than 10%, and investigation led by Zhang 

and Di [12] discovers that China’s PM2.5 concentrations decreases substantially during 2013 

and 2017. To track Beijing’s special events, we manually collected date intervals during which 

special events occurred in Beijing from 2010 to 2015 using search engine and created a new 

data set. Not only does this “special event” data set contains the date intervals, but also labels 

the recorded special events by type. Types of recorded special events include celebration of 

special festivals (e.g. 2015 military parade to celebrate the allied victory over fascism), 

diplomatic visits (e.g. Michelle Obama’s visit to China in 2014), and sport events that occurred 

in Beijing. Since governments often made special policies during these events, incorporating 

“special event” features into our data set allows the prediction model to learn how government’s 

policies affect PM2.5 concentration. 

Because our work is independent of weather forecasting, our testing set does not contain 

meteorological features. In order for our model to predict PM2.5 concentration, we use the 

following steps to handle this conflict: first, we use a separate model to predict meteorological 

features in the testing set. Then, we generate statistical and lagged features from the predicted 

meteorological parameters. Lastly, we use the technique of rolling forecasting to predict PM2.5 

concentrations. 

To test the effectiveness of our proposed new features, we perform control experiments. 

Particularly, we train two models: one with the new features and one without. Subsequently, 
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we compare them using evaluation metrics such as mean absolute error, root mean square error, 

and symmetric mean absolute percentage error defined as follows: 

 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑖 − 𝑝𝑖|

𝑁

𝑖=1

 (1) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖 − 𝑝𝑖)2
𝑁

𝑖=1

 (2) 

 

𝑆𝑀𝐴𝑃𝐸 =
1

𝑁
∑

|𝑦𝑖 − 𝑝𝑖|

(|𝑦𝑖| + |𝑝𝑖|)/2

𝑁

𝑖=1

 (3) 

 

To determine how influential governments’ policies are during special event, we evaluate 

the performance of the two models during special event time intervals.  In addition, we perform 

feature importance analysis on the PM2.5 prediction model to determine what features 

contribute most to our forecasting model. 

II. PROBLEM SETUP 

In this study, we aim to create a PM2.5 prediction model that guides local governments to 

make effective policies to improve PM2.5 quality while being independent of weather 

forecasting data. To implement, we develop a PM2.5 prediction model that requires knowledge 

of government’s event calendar. Since governments make policies to control traffic and other 

aspects of a city when the city is holding special events, accessing government’s event calendar 

allows our model to study the impacts of such policies. Not only do governments make special 

policies during special events but also enact policies during holidays, so we also incorporate 

“is_holiday” attribute denote whether the entry was recorded in a holiday. In order for our 

model to predict PM2.5 without weather forecasting data, we adopt the technique of rolling 

forecasting. As shown in Figure 1, our model first predicts meteorological features of one future 

hour, and then predicts PM2.5 concentrations using these predicted values. Subsequently, we 

will compare the prediction results of the control group and the experimental group using 

evaluation metrics such as MAE, RMSE, and SMAPE. 
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Figure 1. Illustration of rolling forecasting 

III. DATA SET 

A. Data description 

 

Figure 2. Correlation matrix of the data set 

In this study of PM2.5 forecasting, we used hourly recorded PM2.5 data provided by Liang 

et al. [8]. According to Table I, the data set contains PM2.5 concentration measured from four 

different stations: Dongsi, Dongsihuan, Nongzhanguan, and U.S. diplomatic post. In addition 

to PM2.5 attributes, the data set also contains several hourly recorded meteorological attributes: 

wind speed, wind direction, precipitation, air pressure, humidity, dew point, and temperature. 
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However, this data set contains redundant attributes, anomalies, and missing values [8]. As a 

result, we perform some preprocessing before conducting further analysis. 

Table I. ATTRIBUTES OF THE ORIGINAL DATA SET 

B. Data exploration 

In truth, data preprocessing described in the next section allows us we can dig deeper into 

our data set since we have eliminated anomalies and imputed missing values. Exploring the 

data set allows us to discover various properties of PM2.5 concentrations and other 

meteorological attributes. 

1) Relationship between dew point and humidity 

In our data set, dew point and relative humidity are stored as DEWP and HUMI, and 

according to Figure 3, distribution of DEWP and HUMI appear to be very similar. In addition, 

correlation analysis in Figure 4 reveals that there is a positive correlation between DEWP and 

HUMI. That is, dew point grows large as relative humidity increases, and dew point becomes 

low as relative humidity decreases. This explains why both dew point and relative humidity are 

often used to reflect the amount of moisture in the atmosphere [10]. 

2) Temperature distribution in Beijing 

The data set we use also contains a complete hourly record of Beijing’s temperatures during 

2010 and 2015. Studying its distribution allows us to discover some weather facts in Beijing. 

According to Figure 3, there are two maxima in the distribution of temperature: one at 

approximately 22 degree Celsius above zero, the other at approximately 3 degree Celsius below 

Classification Attributes Description 

Date-time attributes 
year, month, day, hour The exact time of the data entry 

season Current season 

Meteorological attributes 

HUMI Humidity 

TEMP Temperature 

PRES Atmospheric pressure 

precipitation, Iprec Precipitation 

Iws, cbwd Wind speed and wind direction 

cbwd Wind direction 

PM2.5 concentration values 

PM_Dongsi PM2.5 from Dongsi observatory 

PM_Dongsihuan PM2.5 from Dongsihuan observatory 

PM_Nongzhanguan PM2.5 from Nongzhanguan observatory 

PM_US Post PM2.5 from U.S. diplomatic post 
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zero. Since Beijing in the northern hemisphere, its temperature in summer is greater than that 

in winter. As a result, we conclude that Beijing is very cold in winter while not so hot in 

summer. 

 
Figure 3. Histograms of different meteorological parameters in the imputed data set 

 
Figure 4. Correlation analysis on the imputed data set 

 

3) Distribution of PM2.5 in Beijing 

According to Figure 5, Beijing’s PM2.5 concentrations appear to follow an exponential 

distribution. That is, the frequency of PM2.5 records decrease exponentially as the PM2.5 

values increase. This means that most of the PM2.5 concentrations are low, implying that 

Beijing experiences little PM2.5 pollution most of the time during 2010 and 2015. 
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Figure 5. Distribution of PM2.5 in the imputed data set 

IV. METHODS 

A. Data preprocessing 

In our study, we use regression models to predict future PM2.5 concentrations. Specifically, 

we are using our regression models to predict future PM2.5 values via studying the original 

data set. To make our model efficient, we need to reduce the dimensions of our daa set. In order 

for our model to make more accurate predictions, we need to ensure our data set does not 

contain any anomalous or erroneous values. In this section, we scrutinize the data set provided 

by Liang et al. [8] and develop our own solutions to reduce data dimensions, process outliers, 

and impute missing entries. 

1) Handling redundant attributes 

According to Figure 2, “Iprec” and “precipitation” attributes are very similar. In fact, we 

perform a more definitive comparison, realizing that more than 95% values of “Iprec” and 

“precipitation” are identical. As a result, we detach “Iprec” column from the data set. Figure 1 

also implies that the correlations among PM2.5 values measured from different stations are 

highly similar to each other, so we decide to keep only one PM2.5 record. By the analysis in 

Figure 6, we decide to preserve the U.S. diplomatic post’s version of the PM2.5 record since 

its data are the more complete than those of other observatories. 
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Figure 6. Completeness of PM2.5 data 

 

2) Outlier removal 

The data set also contains anomalies. For example, we discovered that the data set contains 

precipitation record of 999990 millimeters, which is certainly impossible to achieve. As a result, 

we set up a scheme to identify anomalous values. Similar to Zhang et al. [2], we regard PM2.5 

data values greater than 500 ug/m3, precipitation values exceeding 400 millimeters, wind 

speed that tops 500 m/s, and air pressures that go beyond 2000 kPa as anomalies. After 

identifying these anomalies, we replace them with NAN and refill them using imputation 

techniques. 

3) Missing values imputation 

 
Figure 7. Percentage of missing values in each attribute 

Not only does the data set we use encompass anomalies, but also missing values [8]. 

According to Figure 7, the number of missing values differ among each attribute, so we need 

to impute them separately. Since missing values are distributed randomly in the data set, we 

adopt different methods to handle them. Common methods for imputation include Next 

Observation Carry Backward (NOCF), Last Observation Carry Forward (LOCF), and linear 

interpolation [16]. Specifically, We use NOCF to impute missing values occurring at the 
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beginning of the data set’s record. For missing values at the tail of the record, LOCF is applied. 

At last, we handle missing values in between data entries with linear interpolation. 

4) Processing categorical features 

Not only does our data set contain numerical features but also categorical features. That is, 

some attributes of our data set can only have discrete values instead of continuous real numbers. 

For instance, date-time features can only have integer values. Although these categorical 

features can only be integers, they can be easily integrated into our regression model since 

integers are also numbers. However, the data set also contains categorical features that are not 

integers. For instance, wind direction attribute “cbwd” only stores string values (namely, NE 

for northeastern wind, SE for southeastern wind, etc.). As a solution, we map these string values 

to distinct integers so that wind directions can be integrated into our prediction model. 

B. Feature engineering 

Liang et al. [8] have shown that PM2.5 concentrations are highly related to meteorological 

parameters, which motivates us to use meteorological parameters as one of the input variables 

for our PM2.5 prediction model. However, only using these attributes cannot produce high-

accuracy prediction , and our means to improve model accuracy is to perform feature 

engineering. Time series itself can tell many information beyond the data values themselves. 

To study the relationship between PM2.5 concentrations and special occasions such as 

government meeting, holidays, diplomatic visits, and sport events, we generate additional date-

time features with the help of external tools. To study the relationship between time series and 

itself, we extract lagged features and statistical features using sliding window mechanism. To 

study the seasonality of time series, we generate frequency-domain features via short-time 

Fourier transform. All features generated in our feature engineering process are listed in Table 

III. 

1) Holiday and special event features 

One main goal of our work is to study the influence of government’s policies on PM2.5 

concentration curve, and our means to investigate it is by creating date-time features. Motivated 

by Zhang et al.’s “is_weekend” features [2], we generate “is_holiday” attribute via using the 

external package “chinese-calendar”2 so that our model can study the correlation between 

PM2.5 concentrations and holiday. In addition, we manually collected time intervals during 

which special events such as government meeting, sport events, and diplomatic visits occurred 

 

2 It’s an open source project at https://github.com/LKI/chinese-calendar 

https://github.com/LKI/chinese-calendar
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in Beijing during 2010 and 2015 from year tables provided by Baidu Baike. An excerpt of these 

collected events is available in Table II. To integrate this special event data set into our feature 

data set, we create a Boolean column named “is_special_event” to denote whether the specific 

hour falls within any of the special event intervals of our special event data set. 

Table II. SELECTED SAMPLES FROM SPECIAL EVENT DATA SET 

Category Event description Starting date Ending date 

meeting First meeting of 12th National People’s Congress Mar 5, 2013 Mar 20, 2013 

visit South Korea’s President Lee Myung-bak visits China Jan 9, 2012 Jan 11, 2012 

sport Opening of 2010 Chinese Football Association Super League Mar 27, 2010 Mar 28, 2010 

meeting Second round of Sino-US military and economic dialogue May 24, 2010 May 25, 2015 

2) Lagged features and statistical features 

Not only do we integrate features from external sources into our data set but also decompose 

the original data attributes to obtain new features. Correlation analysis in Figure 4 reveals that 

time series in our data set are not completely independent of each other, and auto-correlation 

analysis in Figure 8 shows that time series are not independent of themselves either. To let our 

model study this relationship, we generate lag features with a period of 48 hours. Zhang et al. 

[2] shows that statistical features are helpful in PM2.5 forecasting, so we also generate statistical 

parameters such as mean, minimum, and maximum over lagged features. 

 
Figure 8. Partial Auto-correlation analysis on the data set 

3) Frequency-domain features 

Time series varies with seasonality. A prediction model that understands the seasonality of 

PM2.5 time series may produce more accurate results than a model that does not study PM2.5’s 

seasonality, and one way to extract seasonality of a time series is to analyze its spectrum. That 

is, we perform short-time Fourier transform on PM2.5 time series and incorporate the generated 
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coefficients into each data entry. According to Figure 9, Fourier coefficients of PM2.5 time 

series decay as the frequency increases, indicating that Fourier coefficients at high frequencies 

contain less useful information than those at low frequencies. As a result, we truncate the 

spectrum and only store Fourier coefficients of frequencies less than or equal to 0.02 units into 

our data set. 

 
Figure 9. Spectral analysis on PM2.5 time series 

Table III. LIST OF NEWLY GENERATED FEATURES 

Category Feature Description 

Date-time features 

is_holiday Whether the entry is recorded during a 

holiday 

is_special_event Whether Beijing held special events 

Lagged features {}_1, {}_2, {}_3 ... {}_48 Lagged meteorological and PM2.5 features 

with a size of 48 hours. 

Statistical features {}_mean, {}_min, {}_max Local mean, minimum, and maximum on 

lagged features 

Frequency-domain features stft_1, stft_2, stft_3 ... stft_134 Truncated spectrum of PM2.5 time series 
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Figure 10. PM2.5 prediction from decision tree Figure 11. PM2.5 prediction from LightGBM 

4) Features from “tsfresh” package 

In addition to the aforementioned features, we also considered incorporating features 

generated by a feature extraction package named “tsfresh.” According to Christ et al. [17], this 

package extracts features from the data set using scalable hypothesis test. That is, a concrete 

mathematical method is used to determine whether a specific feature is relevant to (i.e. helpful 

for creating prediction on) the specified target variable. Examples of extractable features 

include lagged features, and wavelet features [18].  In our case, “tsfresh” extracts 122 relevant 

features for PM2.5 prediction. However, principal component analysis on these newly 

generated features reveals that the dimensions of “tsfresh” features can be virtually be reduced 

into 13. By analyzing the these 13 principal components, we discovered that they are highly 

related to features that are already in our data set. For instance, as shown in Figure 12, the 

largest principal component is almost identical to PM2.5 concentration trend. Therefore, we 

choose not to incorporate “tsfresh” features into our project. 

 

Figure 12. Selection of normalized PM2.5 curve and normalized PC1 curve 
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C. Forecasting Method 

1) Model selection 

Introduced by Ke et al. [9], LightGBM is a machine learning model based on gradient-

boosting decision tree (GBDT) and XGBoost. Compared to traditional regression models such 

as decision tree, LightGBM is more efficient in training, especially when the amount and 

dimensions of the data are large. In fact, as shown in Figure 10 and Figure 11, LightGBM 

produces better prediction when the data contains many fluctuations. As a result, we decide to 

build our prediction model using LightGBM as the basis for its efficiency and accuracy. 

2) Configuration 

To test whether rolling forecast helps the model provide more accurate PM2.5 prediction, 

we set up a baseline group that does not use rolling forecast. Instead, the baseline group uses 

data set features of the current day to predict PM2.5 on the next day. To verify how government 

policies affect the PM2.5 curve, we perform comparison on the control group and the 

experimental group. As shown in Table IV, the only difference between the control and 

experimental models is that the experimental group inputs holiday and special event features 

whereas the control group does not. 

Table IV. CONFIGURATION OF THE EXPERIMENT 

Model Input features 

LightGBM without rolling forecast (baseline) Features from original data set, lagged features, and 

statistical features. No rolling forecast 

LightGBM (control) Features from original data set, lagged features, and 

statistical features 

LightGBM+holiday and special event (experimental) Features from original data set, lagged features, statistical 

features, and holiday and special event features 

 

3) Two-stage Forecasting 

For each model in our experiment, the same process is followed so that the only differences 

between the models are in the input features and whether using rolling forecast. To effectively 

verify the impact of government policies, we decide to let the control model predict PM2.5 

values between Aug 20, 2015 and Sept 10, 2015. Because our study is independent of weather 

forecasting data, the prediction model itself needs to forecast meteorological parameters before 

predicting PM2.5 concentration values. Hence, a two-stage rolling forecast process is 

developed for the model to make predictions: 

1. The model learns the training set containing the observed data and generated features 

2. As illustrated in Figure 13, the model first predicts meteorological features, then 

generate lagged features and statistical features, and, at last predicts PM2.5, and this 
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process is executed for 24 times so that the hourly PM2.5 concentrations of the next 

day is predicted. 

3. After one day, the model generates features from actual observation of meteorological 

features and PM2.5 data during the day and store them into the data set. 

4. Retrain the model with the updated training set so that it becomes ready to predict 

PM2.5 of another new day. 

 
Figure 13. Procedure for PM2.5 prediction 

V. PERFORMANCE EVALUATION 

After performing a series of experiments, we obtain three arrays of PM2.5 prediction: one 

from the baseline group that does not use rolling forecasting, one from the control group, and 

the other from the experimental group that incorporates holidays and special event features. As 

shown in Figure 14, the control group is already able to make such an accurate prediction 

compared to the PM2.5 values actually recorded from the observatory, implying that the 

performance of our groups in the experiments cannot be solely determined by the visualizations. 

Consequently, we compare them using the evaluation metrics mentioned above in Eq. (1), (2), 

and (3). 

A. Model comparison 

In the study, we compare our prediction models with the LightGBM proposed by Zhang et 

al. [2] that uses weather forecasting data as inputs in addition to lagged features and statistical 

features. Although Zhang et al. used a different data set and configuration in their research. The 

comparison is still helpful on measuring how rolling forecast improves model accuracy. As 

Table V suggests, although incorporating weather forecasting indeed helps improve the 

accuracy of model prediction, the rolling-forecasting-based model we proposed yields 

substantially better results. In spite of the fact that the MAE scores worsens when comparing 

the baseline group and the control group, differences in RMSE and SMAPE scores between the 

baseline group and the control group reveals are substantially greater than those between Zhang 

et al.’s models. This phenomenon indicates that it is possible to make more substantial 
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improvements on model accuracy without learning the weather forecasting data. In our case, 

we use rolling forecasting to fill in meteorological parameters and eventually achieve a more 

accurate prediction. Also illustrated in Table V is that the experimental group makes 

substantially more accurate PM2.5 prediction than does the control group. To determine how a 

change in government’s event calendar, we perform what-if analysis on the experimental group. 

 
Figure 14. Comparison between the true PM2.5 values and the models’ predictions 

Table V. COMPARISON AMONG THE MODELS 

Model MAE RMSE SMAPE 

LightGBM without rolling forecast (baseline) 12.9255 18.1800 0.5695 

LightGBM (control) 13.2621 17.1323 0.5453 

LightGBM + holidays and special events (experimental) 11.7570 15.2813 0.4994 

Zhang et al.’s model [2] 26.4359 32.8711 0.4229 

Zhang et al.’s model without weather forecast [2] 26.6824 33.8922 0.4298 

 

  

Figure 15. PM2.5 prediction during April 1, 2015 

and April 5, 2015 

Figure 16. PM2.5 prediction during June 1, 2015 

and June 5, 2015 
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B. What-if analysis 

The term “what-if analysis” originally refers to detecting the impact of changing the cell 

values in a data sheet. In our study, we change the special event attribute to determine to which 

degree government event calendar assists PM2.5 prediction. In particular, we decide to compare 

the prediction results during two events: The IAAF World Championships BEIJING 2015 

during Aug 22, 2015 and Aug 30, 2015 and Military parade celebrating the 70th anniversary of 

victory over fascism from Aug 27, 2015 to Sept 3, 2015. As specified in Table VI, we let the 

aforementioned experimental model predict PM2.5 using an altered testing set that sets the 

special event flag to zero so that we can monitor how sensitive the model is to the nuance in 

government’s event calendar. 

Table VI. CONFIGURATION FOR WHAT-IF ANALYSIS 

Model Testing set setup 

LightGBM + holidays and special events (normal) Unchanged 

LightGBM + holidays and special events (what-if) All “is_special_event” are set to 0 (i.e. no special event occuring) 

 

 

Figure 17. PM2.5 predictions during special events 
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According to Figure 17, the predicted curve of the control group and that of the experimental 

group completely overlap each other. Furthermore, as suggested in Table VII, although the 

scores of the normal group are slightly lower than those of the what-if group during each special 

event interval, these differences are still not sufficient for us to deduce the impact of 

government’s policies on PM2.5. Therefore, the holiday and special event features did little in 

changing the model’s performance. Further analysis in the next section offers a more detailed 

explanation. 

Table VII. MODEL COMPARISON DURING SPECIAL EVENTS 

Model MAE RMSE SMAPE 

IAAF World Championships BEIJING 2015 

LightGBM + holidays and special events (normal) 47.6043 55.3941 0.6930 

LightGBM + holidays and special events (what-if) 47.6710 55.4920 0.6940 

Military parade celebrating the 70th anniversary of victory over fascism 

LightGBM + holidays and special events (normal) 81.5279 103.6433 0.8684 

LightGBM + holidays and special events (what-if) 81.5623 103.6565 0.8688 

C. Feature importance 

One benefit brought by LightGBM other than efficiency and accuracy is that it allows users 

to study how much a specific feature of the data set contributes to the model prediction, and 

this functionality allows us to explain why there were only tiny differences in accuracy between 

our control group and experimental group. 

 

Figure 18. Feature importance plot 

As shown in Figure 18, the key features that guide our LightGBM model to predict PM2.5 

concentrations are lagged features and statistical features. This implies that nudges in holiday 

and special event features causes only little change in the prediction, which also means that 

lagged features and statistical features already compile sufficient information used for model 
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prediction. Accordingly, using lagged features and statistical features alone can be already 

satisfactory to create accurate PM2.5 prediction models. 

VI. CONCLUSION 

In our study, we propose a LightGBM model to produce PM2.5 prediction by processing 

high-dimensional data set. Specifically, we remove redundant attributes, filter out outliers, and 

impute missing values on this original data set created by Liang et al. [8]. Subsequently, we 

perform feature engineering on the preprocessed data set. For instance, we generate holiday and 

special event features using external packages and data sets to study how government policies 

impact PM2.5. In addition, we generate lagged features and statistical features using the sliding 

window principle.  Furthermore, we generate frequency-domain features of the PM2.5 in order 

for the model to study the spectral characteristics of PM2.5 density values. 

Following the feature integration, we conduct experiments on the model to testify the 

usefulness of holiday and special event features. Because our model does not use weather 

forecasting data, we adopt the two-stage rolling forecasting strategy to predict meteorological 

features and PM2.5 values. Additionally, for each 24 hours, we retrain our models with newly 

observed features to prevent the model’s prediction from deviating too much from the true 

PM2.5 curve. 

After experimentation, we perform comparison among previous models and those we 

propose. An overview in evaluation metrics reveals that rolling forecast brings more substantial 

improvement to the prediction accuracy of the model than using weather forecasting data. A 

comparison between the control group and the experimental group in the overall testing set and 

special event intervals shows that holiday and special event features improves the model 

accuracy. Nevertheless, altering special event features in the testing set did not cause changes 

in predictions. In fact, this phenomenon is answered by the feature importance analysis. As 

LightGBM model’s functionality suggests, what contribute to the most to the PM2.5 prediction 

are lagged features and statistical features, meaning that changes in holiday and special event 

features will not modify the overall trend of the model prediction. 

Although holiday and special event features in our study are unable to allow the prediction 

model to study the impact of government’s policies on PM2.5 variation, the rolling forecasting 

technique put forward in this research creates a substantial improvement on the model accuracy, 

thus can be useful for future research in the field of PM2.5 prediction. 
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