
20
20

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

1

20
20

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

2

20
20

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

Contents
1 Introduction 4

2 Related Works 5
2.1 Feature-Based SLAM/VO . 5
2.2 Learning-Based Feature . 5

3 Methods 6
3.1 Feature-based SLAM/Structure from Motion . 6

3.1.1 3D rigid-body transformation . 6
3.1.2 Camera projection model . 6
3.1.3 Essential matrix . 7
3.1.4 Fundamental matrix . 8
3.1.5 Computation of fundamental matrix . 8

3.2 SuperGlue . 9
3.2.1 Attentional graph neural network . 9
3.2.2 Optimal matching layer . 10
3.2.3 Loss . 11

4 Experiments and Results 11
4.1 Model and setup . 11

4.1.1 Hyper parameters . 11
4.2 Dataset . 12
4.3 Evaluation Criteria . 13
4.4 Experiment Results . 13
4.5 Comparison . 14

5 Conclusions and future work 16

6 Acknowledgment 18

3

20
20

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

SuperVO : A Monocular Visual Odometry
based on Learned Feature Matching with GNN

Shi Rao
RDFZ Chaoyang Branch School

Abstract

In this paper, we propose a novel Visual Odometry (VO) system using a feature detector and
feature matcher based on neural networks. The networks for feature detectors and descriptors
learning consists of a conventional CNN for feature detection and description, and a graph neural
network (GNN) final feature matching. The learned feature has several advantages over tradi-
tional handcrafted features such as being robust to light variation, scale and etc. By applying
state-of-the-art deep learning-based feature matcher-SuperGlue, we developed a new monocu-
lar VO framework which can exploit the advantages of deep learning-based feature detector and
matcher, which performs better than many other learning-based VO methods.
keywords: Visual SLAM, Visual Odometry, Deep learning-based Feature Detector and De-
scriptor, Graph Neural Network

1 Introduction
Visual Odometry is the problem to localize the agent based on the change in the perspective.

Visual Odometry has many applications such as helping self-driving cars localize in urban envi-
ronments and navigating to the destinations. It helps the user to interact with the virtual objects
and interfaces in Augmented Reality (AR) devices, and assisting autonomous robots finishing their
jobs in various environments. Visual SLAM is very similar to the visual odometry, SLAM is about
localize the agent while building a 3D map of the environment. SLAM is the work that adds re-
construct the 3D environment on top of the visual odometry. In other words, an accurate Visual
Odometry would be the foundation of the SLAM.

There are several methods to solve the visual SLAM and odometry problems. These methods
can mainly be classified into the following categories: Feature-based method [1] [2] [3], direct
methods [4] [5] [6] and more recently, deep learning-based methods [7] [8].

Feature-based SLAM/VO first find interesting points from one image frame. Then a set of fea-
ture descriptors are extracted in order to match with other frames. Once two frames are matching,
one can compute the relative motion and 3D structures. Direct methods, however, do not involve
any feature detection or matching process. Instead, direct methods compute the camera motion
and 3D point clouds’ coordinates with just raw image pixels. Deep learning-based SLAM/VO
is a brand new subject recently emerged. There are three major methods in deep learning-based
SLAM, which are supervised approach, self-supervised approach and hybrid approach (combine
traditional methods and learning-based method). Our method can be viewed as one type of hybrid
methods since we combine traditional VO with the deep learning-based feature.

Researchers have developed many feature detectors and descriptors using traditional methods
such as SIFT (Scale-Invariant Feature Transform)[9], SURF (Speeded up Robust Features) [10]
and ORB (Oriented FAST and Rotated Brief) features[11].

4

20
20

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

SIFT feature is one of the most successful and widely used features. The major components
of SIFT are a gradient-based feature detector and a histogram-based descriptor. Although SIFT is
robust to scale variation, it is slow to compute, especially when the computing power is restricted.
SURF was invented to tackle the computing efficiency problem of SIFT. ORB is a binary feature
which consists of an oriented version of FAST [12] and a rotated version of BRIEF [13] feature.

Feature-based SLAM methods, as mentioned above, has several drawbacks, such as not being
robust to light variation, invariant to scale and rotation. Moreover, 3D reconstructions from many
feature-based SLAM algorithms tend to be too sparse to be applied in real life scenarios, such as
self-driving auto mobiles, robotics and reality.

To overcome those issues, we apply modern deep learning-based feature detector and matcher
to the traditional feature-based SLAM framework.

2 Related Works

2.1 Feature-Based SLAM/VO
Traditional feature-based SLAM such as Mono-SLAM [1], PTAM [2] and ORB-SLAM [3]

estimate camera pose and 3D points’ coordinates-based on the handcrafted features.
Mono-SLAM is one of the very early algorithms to recover the 3D trajectory of a monocular

camera, and it runs in real-time. The main contribution of this work was to introduce an active ap-
proach to mapping and measurement, use of general motion model for smooth camera movement,
solutions for monocular feature initialization and feature orientation estimation.

Parallel Tracking and Mapping for Small AR Workspaces (PTAM) is another feature-based
method. Its main difference with other SLAM algorithm is that it splits tracking and mapping into
two separate tasks. By running the program on a dual-core computer, it can track thousands of
landmarks at framerate. One of the problems of the algorithm is its dependence on corner features.
A rapid movement of the camera could result in a lost of corner feature and tracking failure.

The most wildly used feature-based SLAM is ORB-SLAM. The algorithm uses ORB as feature
detector and descriptors, then apply features for all four stages, including tracking, mapping, relo-
calization, and loop closing. The ORB-SLAM result the state-of-the-art performance when it was
published. One of the improvements could be made about the ORB-SLAM is to make the sparse
map denser.

2.2 Learning-Based Feature
With the rapid development of deep learning, using deep networks to learn feature detectors

and descriptors from the image is becoming more and more popular. Many learning-based features
have numerous advantages over traditional features. As a consequence, we now see a trend that
learning-based feature are replacing traditional features.

LIFT[14] if an algorithm that uses CNN to extract feature points. The algorithm uses three
different networks for the detector, the orientation estimator, and the descriptor. Compare to the
traditional features like SIFT, LIFT could offer more correct matches.

Unlike LIFT, which requires supervision for training, SuperPoint is a self-supervised interest
point detection algorithm. It computes interest points and descriptors in a single network in real-
time and generates more dense correct matches, which is an improvement compare to the LIFT.

SuperGlue is a feature point matching algorithm based on Graph Neural Networks (GNN). It
uses SuperPoint as feature detector and descriptors, and it uses GNN for feature matching. As a
result, the whole detection pipeline has no traditional method involved.

5

20
20

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

3 Methods

3.1 Feature-based SLAM/Structure from Motion
As I mentioned before, traditional feature-based SLAM estimate camera poses and 3D points’

coordinates based on the handcrafted features. Now, this part will have an explanation for the
theory.

3.1.1 3D rigid-body transformation

We will first define a way to describe the transformation of objects in 3D space. We use t for
the translation, R for the rotation, and P for the coordinate after the transformation.

R = RxRyRz =

1 0 0
0 cos (θ) − sin (θ)
0 sin (θ) cos (θ)

 cos (θ) 0 sin (θ)
0 1 0

− sin (θ) 0 cos (θ)

cos (θ) − sin (θ) 0
sin (θ) cos (θ) 0

0 0 1

However, if we just describe the transformation like this, when having multiple translations, the
expression will become too complicated just like this,

P1 = R1P + t1
P2 = R2P1 + t2

P2 = R2 (R1P + t1) + t2 = R2R1P +R2t1 + t2 6= R2R1P + t1 + t2

Thus, we will introduce homogeneous coordinates, so that[
P1

1

]
=

[
R1 t1
0 1

] [
P
1

]

Now the transformation matrix will be denoted as T =

[
R t

0T 1

]
, and we will be able to represent

multiple transformations uniformly. [
P2

1

]
= T2T1

[
P
1

]
3.1.2 Camera projection model

Camera projection is a mapping between 3D coordinate and 2D coordinate. The mapping is
described as:

x = PX

x is the 2D image point, P is the projection matrix, and X is the 3D world point. The point will be
transformed between different coordinate system, first is the world coordinate system, then is the
camera coordinate system, and last is the image coordinate system.

[R, t] transform a point form world coordinate system to camera coordinate system.

X̃C = TX̃W =

[
R t

0T 1

]
X̃W

When using C for the camera’s translation in the world coordinate system, we can getXC = XW−
C. The real translation of the camera with relating to the world coordinate system is represented
with the inverse of T :

T−1 =

[
RT −RT t

0T 1

]

6

20
20

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

For the camera projection, we will use a pinhole model for deriving the projection formula.

xim = KX̃C =

 fx 0 cx 0
0 fy cy 0
0 0 1 0

X
Y
Z
1

K is called the intrinsic camera matrix, which includes the projection mapping and parameters of
the camera, like the focal lens. By combining the 3D transformation with intrinsic matrix, we get:

X̃C = TX̃W =

[
R t
0T 1

]
X̃W (1)

˜xim = KX̃C = K[R | t]X̃W (2)

The matrix [R | t] is called camera extrinsic parameters.

3.1.3 Essential matrix

According to the camera projection model, we can represent the point in two images with:

x̃ = K [I, 0] X̃w

x̃′ = K ′ [R, t] X̃w

in the camera coordinate system, they will be like:

X̃c = [I, 0] X̃w = X̃w

X̃ ′c = [R, t] X̃w = [R, t] X̃c

The essential matrix establishes the relation betweenX ′c andXc, and we want to find that. Take
the t to the outside:

X ′c = RXc + t

Now we take the cross product on both sides, so that

t×X ′c = t×RXc + t× t

Since t× t = 0, so
t×X ′c = t×RXc

[t×]X ′c = [t×]RXc

We will use the same method with X ′c

X ′c
T

[t×]X ′c = X ′c
T

[t×]RXc

Again, since X ′c
T

[t×]X ′c = 0. Thus,

X ′c
T

[t×]RXc = 0

When assuming theK andK ′ are all known and are equals to identity matrix, the equation will
be like:

x̃′
T

[t×]Rx̃ = 0

We define essential matrix E as,
E = [t×]R = t×R

E = [tx]R

7

20
20

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

3.1.4 Fundamental matrix

When deriving the essential matrix, we assumed the K as I , but when the camera is uncali-
brated, K could not be assumed to be I . And now we need to solve that. Since,

x̃ = KXc

x̃′ = K ′X ′c

So,
Xc = K−1x̃

X ′c = K ′−1x̃′

Previously we have:
X ′c

T
[t×]RXc = 0

Now we substitute the X ′c and Xc,(
K ′−1x̃′

)T
[t×]RK−1x̃ = 0

x̃′
T (
K ′−1

)T
[t×]RK−1x̃ = 0

We can now have the fundamental matrix, denoted as F:

F =
(
K ′
−1
)T

[t×]RK−1

Remember that E = [tx]R, so the relationship between F and E appears to be:

F =
(
K ′
−1
)T

EK−1

3.1.5 Computation of fundamental matrix

The ultimate target of the SLAM was to compute a precise fundamental matrix, which could
tell us the translation and the rotation of our camera. We will use an 8-points algorithm to compute
it.

Assuming we have M point correspondences:

{xm, x′m} m = 1, . . . ,M

Each correspondence satisfies:
x̃′

T
Fx̃ = 0

Writing the equation in detail, which is

[
x′m y′m 1

] f1 f2 f3
f4 f5 f6
f7 f8 f9

 xm
ym
1

 = 0

This gives,
xmx

′
mf1 + xmy

′
mf4 + xmf7+

ymx
′
mf2 + ymy

′
mf5 + ymf8+

x′mf3 + y′mf6 + f9 = 0

8

20
20

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

We can notice that each correspondence will give one equation. For m correspondences, we have:

 x1x
′
1 x1y

′
1 x1 y1x

′
1 y1y

′
1 y1 x′1 y′1 1

...
...

...
...

...
...

...
...

...
xMx

′
M xMy

′
M xM yMx

′
M yMy

′
M yM x′M y′M 1

f1
f4
f7
f2
f5
f8
f3
f6
f9

= 0

Represent the equation with simpler form:

Af = 0

For solving f which includes f1 to f9, we need 8 equations rather than 9 since the fundamental
matrix is only up to scale.

After getting 8 correspondences with the feature detector and the feature matcher, we could
find the fundamental matrix with Singular value decomposition (SVD).

A = UΣV T

The f we want is the singular vector corresponding to the smallest singular value of A, and it is
the last column of V .

3.2 SuperGlue
For finding the precise fundamental matrix, we need more accurate correspondences. The

procedure is to detect the key points on two images and then matching the key points. SuperGlue is
a neural network that matches two sets of features by finding correspondences. The network takes
key points and their descriptor as input and output the matching relationship between key points.

The algorithm contains two parts, the attentional graph neural network and the optimal match-
ing layer. The attentional graph neural network encodes the key points and descriptors into a single
vector, and apply the self-attention layer and cross-attention layer multiple times to enforce the
vector f . Then f will be passed into an optimal matching layer, which creates a scored matrix. At
last, the layer will use the Sinkhorn algorithm to calculate the optimal partial assignment.

3.2.1 Attentional graph neural network

key point encoder: The GNN would encode all key points with their descriptor and position.
When combining the position with the descriptor, we can get a better discrepancy among points,
and the position information is useful for the later attention process. For each point xi, we encode
it as:

xi = di + MLPenc (pi)

The MLP stands for Multilayer Perceptron It was used to embed the key point’s position into a
high dimensional vector.

multiplex graph neural network: Consider we have a single complete graph, whose nodes
are keypoints in two images. The graph has two kinds of undirected edges, one is the self edge
Eself , it connects the keypoints inside the image, another is the cross edge Ecross , it connects the
keypoints with keypoints in another image.

9

20
20

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

We use (`)xA
i to represent the element i on the layer ` in the image A. The message mE→i is

the result of the aggregation from all key points including the Eself and Ecross . The residual message
updated for all i in A would be like:

(`+1)xA
i = (`)xA

i + MLP
([

(`)xA
i ‖mE→i

])
The [· | ·] represents the concatenation. A fixed number of layers L with various parameters
are aggregate along the self and cross edges. A similar update could be performed on image B
simultaneously.

The self and cross-attention process is actually simulating the behavior that when human looks
at two images. Self-attention can process the keypoints in one image, and cross-attention will find
similar points in another image.

Attentional Aggregation: One of the innovations of the SuperGlue was to use the attention
mechanism for feature mapping. mE→i is the message that aggregates the message from self and
cross-attention, represented by:

mE→i =
∑

j:(i,j)∈E

αijvj

For each layer l, there are projection parameters, which were learned and shared by all the fea-
ture points. The qi represents feature point i on the image. αij is the weight, get by αij =
Softmaxj

(
q>i kj

)
. As a result, message mE→i is the similarity between two points, the larger the

value the higher the similarity.
After L times of self and cross-attention, we can get the output from GNN. For image A, we

are getting the matching descriptor:

fAi = W · (L)xA
i + b, ∀i ∈ A

3.2.2 Optimal matching layer

The optimal matching layer produces a partial assignment matrix Pb. The basic idea was to cal-
culate a scoring matrix S ∈ RM×N and maximize the score

∑
i,j Si,jPi,j . The score maximizing

was solved by the Sinkhorn algorithm.
Score prediction: Directly calculateM×N matches would have a large amount of calculation.

Thus, the Score would be calculated as:

Si,j =< fAi , f
B
j >,∀(i, j) ∈ A× B

< ·, · > stands for the inner product.
Occlusion and visibility: The SuperGlue has added a dustbins at the last column of the scoring

matrix S, and getting S. The dustbin could filter the wrong matches or the key points with no
matches due to the occlusions on some points which is caused by changes in perspectives.

Si,N+1 = SM+1,j = SM+1,N+1 = z ∈ R

Key points on image A will be assigned to a matching point on image B or the dustbin, and the
dustbin in image A and B have the same numbers of the key points. So, the assignment matrix has
the constraints:

P1N+1 = a and P
>
1M+1 = b

which
a =

[
1>M N

]>
,b =

[
1>N M

]>

10

20
20

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

3.2.3 Loss

The SuperGlue has used supervised training when giving the ground truth of the matching
M = {(i, j)} ⊂ A× B, it minimizes the loss:

Loss =−
∑

(i,j)∈M

logPi,j

−
∑
i∈I

logPi,N+1 −
∑
j∈J

logPM+1,j

Figure 1: A example of SuperGlue matching on KITTI dataset

4 Experiments and Results
In this part, I will introduce the experiment I have done and compared the result with the other

methods.

4.1 Model and setup
The code is based on a repository from GitHub which uses the FAST feature detector and optic-

flow for feature matcher. On top of that, I change the feature detector to SuperPoint and feature
matcher to SuperGlue. The whole procedure looks like this:

The first frame will be read, and the feature points in the image will be detected by the Su-
perPoint. The feature points’ position and their descriptor will be stored. Then the second frame
and all the feature points in the first frame will be sent into SuperGlue, and we can get the feature
points in the second frame, which matches the feature points in the first frame. All the pairs of
feature points will be used to find an essential matrix, and then the pose could be recovered with
the essential matrix we found.

Something that might be confusing is that as I mentioned in 3.1.5, we only need 8 pairs of points
to retain the fundamental matrix, but we are giving far more key points to calculate the fundamen-
tal matrix in practice. That is because I am using the Random Sample Consensus (RANSAC)
algorithm to filter outliers and solving the optimum Fundamental matrix. The RANSAC algo-
rithm would randomly pick 8 pairs of correspondences from all the feature points and compute the
fundamental matrix F . Then, it will pick the points that lie in a range from epipolar constraints.
Represent by:

x̃′
T
Fx̃ ≤ Threshold

By repeating this procedure multiple times, we can choose the F with the maximum inliers as our
optimum fundamental matrix.

4.1.1 Hyper parameters

For the SuperPoint detector and SuperGlue matcher, we have many hyper parameters to adjust.
During the experiment, I found that the matching threshold had a massive effect on the result. The
model tends to have the best result on KITTI when the matching threshold is set between 0.35

11

20
20

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

to 0.40. A threshold above or between this interval will make the odometer perform worse. As
shown in figure 1, the first result is retained when setting the matching threshold to 0.45, and the
second result it retained when setting the matching threshold to 0.35. The first result has a better
predicted trajectory for the blue section, where the second result has an better prediction for the
green section. The environment and the threshold together determine the quality and quantity of
the matches.

Figure 2: The matching threshold’s effect on the predicted trajectory

Although a lower matching threshold could give us more matching points, for the result, our
model did not gain a better prediction on the trajectory. One possible reason is that a lower thresh-
old would give more poor-quality matches, and the fundamental matrix would be less accurate. For
a higher threshold, the matches would be so less and the RANSAC algorithm could not perform
well to give an optimum fundamental matrix. Conclude from the experiment, I eventually set the
matching threshold to 0.40.

There are also other hyper parameters I adjusted for the neural network, but I won’t talk about
them here. If you want to know my choice on other parameters, all of them could be checked in
my source code.

4.2 Dataset
The test was based on the KITTI dataset, which is a dataset used for computer vision bench-

marks. It includes data to evaluate stereo vision, optical flow visual odometry, etc. For the visual
odometry dataset, KITTI provides 20 sequences of images with 10 of them have the ground truth.
The ground truth includes the transformation in three dimensions and the rotation. In the KITTI
dataset all the images were in a driving perspective on the road. The image was collected by a ve-
hicle with a stereo camera, but we can use images from only one camera for our monocular visual
odometry.

For one sequence in the dataset, there were about thousands of images. Our target was to
use the SuperVO to recover the transformation and rotation of the camera from the sequence of
images. The ground truth of the data includes the transformation and rotation in three dimensions
and also a time stamp for comparing the sequence of the frames. As I mentioned before in 3.1.5,
the fundamental matrix we calculated will give us the value of transformation and rotation. We can
directly compare the difference between the ground truth and the result.

12

20
20

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

4.3 Evaluation Criteria
When evaluating the result of visual odometry, one of the criteria we can use is called absolute

trajectory error (ATE). The ATE is the direct difference between the estimated pose and the real
pose, which can very intuitively reflect the accuracy of the algorithm and the global consistency of
the trajectory.

Let’s express all the poses we retained with our visual odometry as

P1, . . . , Pn ∈ SE(3)

And we express the ground truth poses as

Q1, . . . , Qn ∈ SE(3)

The ∆ assigns for the time interval. It should be noted that the estimated pose and ground truth
are usually not in the same coordinate system, so we need to align the two first. We calculate a
conversion matrix S ∈ Sim(3) from the estimated pose to the real pose.

The frame i’s ATE equals to
Fi := Q−1i SPi

Then we can use the root mean square error (RMSE) to count this error. Of course we could even
use the average or median to retain a single value for our ATE. At last, we have our ATE as

RMSE (F1:n,∆) :=

(
1

m

m∑
i=1

‖trans (Fi)‖2
) 1

2

ATE is also called Absolute pose error (ATE), the tools I used later would call ATE as APE,
but they are actually the same.

4.4 Experiment Results
Here are some results on the KITTI dataset. All the data are ensured to use the same parameters

and program, so the result of the model could be evaluated more consistently. The visualization
tool I used is evo[15], which is an open-sourced tool written with Python.

(a) 03 APE (b) 03 Trajectory

13

20
20

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

(c) 08 APE (d) 08 Trajectory

Figure 3: The APE and predicted trajectories

(a) 09 APE (b) 09 Trajectory

The SuperVO tends to have a better result when the trajectory is simple and shorter, but when
dealing with a relatively complex path, SuperVO still shows its robustness as the last image in
Figure 2 shows.

4.5 Comparison
When comparing with other learning-based methods, the SuperVO gets a better average error.

Though it did not win the ORB2 with the traditional method on average error, it did win the ORB2
in sequence 04, 05, 06, 08 and 09. Since the KITTI datasets only offer 11 sequences with ground
truth, we can’t test on more data to compare the ORB2 without SuperVO.

14

20
20

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

00 01 02 03 04 05 06 07 08 09 10 Avg.Err
SuperVO 77.26 58.56 101.52 1.10 0.36 26.9 16.18 21.21 18.57 22.15 9.27 32.15

SFM-Leaner 93.04 85.9 70.37 10.21 2.97 40.56 12.56 21.01 56.15 15.02 24.70 34.21
VISO2 79.24 494.6 70.13 52.36 38.33 66.75 40.72 18.32 61.49 52.62 57.25 53.721

Depth-VO 64.45 203.44 85.13 21.34 3.12 22.15 14.31 15.35 29.53 52.12 24.70 33.22
FAST + LK 146.27 81.68 38.72 1.19 0.26 61.39 14.91 11.00 65.25 48.97 10.54 43.65

ORB2 40.65 502.2 47.82 0.94 1.30 29.95 40.82 16.04 43.09 38.77 5.42 26.48

Table 1: The comparison with other method’s ATE, part of the data came from [16]

FAST+LK is another traditional algorithm. It does not use keypoints’ descriptors to do the
matching. It uses another kind of algorithms called optic-flow. Lucas–Kanade (LK) is one of
the optic-flow algorithm. The optical flow method uses the changes in the time domain of the
pixels in the image sequence and the correlation between adjacent frames to find the corresponding
relationship between the previous frame and the current frame, thereby calculating the movement
of objects between adjacent frames A method of information. The FAST+LK methods will use the
FAST to detect the position of key pixels and then use LK to find those pixels’ position in the next
frame and solve the fundamental matrix. Here are some of the comparisons between FAST+LK
and SuperVO. The SuperVO’s results are on the left-side, FAST+LK’s results are on the right-side.

(c) 00 by SuperVO (d) 00 by FAST+LK

15

20
20

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

(e) 05 by SuperVO (f) 05 by FAST+LK

(g) 08 by SuperVO (h) 08 by FAST+LK

Figure 4: The trajectory predicted by SuperVO and FAST+LK

5 Conclusions and future work
In conclusion, the SuperVO shows its ability to predict the complex trajectory when comparing

with other learning-based VO methods and the FAST+LK methods. By introducing the learning
features, the SuperVO could have better robustness when facing a change in environment lighting,
which is one of the weaknesses of the traditional feature detecting and optic-flow. The SuperVO
has proved the advantages when brought the learning-based algorithm to the Visual Odometry.

The main problem of the SuperVO is the over concentrate on the relative transformation be-
tween two frames. One of the reasons that ORB methods could perform better then SuperVO in
some sequences is its ability to attract key frames. By introducing key frames, ORB could avoid
the noise brought by the slight change between two frames and recover the trajectory on a larger
perspective. I believe that after adding the key frame mechanism, the SuperVO could achieve an
even better result.

16

20
20

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

Also, I expect that the self-attention layer in the SuperGlue could have a connection with the
recovery of the fundamental matrix since the Visual Odometry has an assumption on the static
environment. I believe the self-attention used in the SuperGlue could solve the problem of getting
the wrong trajectory when there are moving objects in surroundings by filter the key points that
have relative movements.

References
[1] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse. MonoSLAM: Real-time Single Cam-

era SLAM. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6):1052–
1067, 2007. 4, 5

[2] G. Klein and D. Murray. Parallel Tracking and Mapping for Small AR Workspaces. In IEEE
and ACM International Symposium on Mixed and Augmented Reality (ISMAR), 2007. 4, 5

[3] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos. ORB-SLAM: A versatile and accurate
monocular slam system. IEEE Transactions on Robotics, 31(5):1147–1163, 2015. 4, 5

[4] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. DTAM: Dense tracking and mapping
in real-time. In ICCV, 2011. 4

[5] J. Engel, T. Schops, and D. Cremers. LSD-SLAM: Large-scale direct monocular slam. In
ECCV, 2014. 4

[6] J. Engel, V. Koltun, and D. Cremers. Direct sparse odometry. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 40(3):611–625, 2018. 4

[7] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe. Unsupervised learning of depth and ego-
motion from video. In CVPR, 2017. 4

[8] Nan Yang, Rui Wang, Jorg Stuckler, and Daniel Cremers. Deep virtual stereo odometry:
Leveraging deep depth prediction for monocular direct sparse odometry. In ECCV, 2018. 4

[9] David G. Lowe. Distinctive image features from scale-invariant keypoints. In International
Journal of Computer Vision, 2004. 4

[10] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features authors.
In ECCV, 2006. 4

[11] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An efficient alterna-
tive to sift or surf. In ICCV, 2011. 4

[12] Edward Rosten and Tom Drummond. Machine learning for high-speed corner detection. In
ECCV, 2006. 5

[13] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. Brief: Binary robust
independent elementary features. In ECCV, 2006. 5

[14] Kwang Moo Yi, Eduard Trulls, Vincent Lepetit, and Pascal Fua. Lift: Learned invariant
feature transform. In ECCV, 2016. 5

[15] Michael Grupp. evo: Python package for the evaluation of odometry and slam. https:
//github.com/MichaelGrupp/evo, 2017. 13

17

https://github.com/MichaelGrupp/evo
https://github.com/MichaelGrupp/evo

20
20

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

[16] Huangying Zhan, Chamara Saroj Weerasekera, Jiawang Bian, and Ian Reid. Visual Odometry
Revisited: What Should Be Learnt? arXiv e-prints, page arXiv:1909.09803, September 2019.
15

[17] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Super-
Glue: Learning feature matching with graph neural networks. In CVPR, 2020. 18

6 Acknowledgment
I would like to acknowledge all the people who had helped me with my project, especially to the

Magic-Leap team. Their work in the CVPR 2020, [17] ”SuperGlue: Learning Feature Matching
with Graph Neural Networks”, gives me the idea to use the GNN matching for a visual odometry
system. The result of the SuperGlue was fantastic, and I was amazed by the result when using the
SuperGlue matching for fundamental matrix recovery. Besides, thanks to my friend Er Hu, who
told me that the SuperGlue’s ability in giving high-quality matching key points. My research has
used a lot of resources on the GitHub. I really appreciate their contribution to the community. I will
keep studying hard and become one of the members to provide high-quality open-source projects.

I would like to thank to my parent, when I have trouble with a lack of computing power, it is
my father who borrowed an RTX2080Ti from his colleague. My teacher Dongxu Sun is the person
who had offered me a lot of advice when writing the paper.

This research was absolutely tough for me, and I really spent a lot of time on it. The paper was
just finished on the last day. Once again, thanks to all my friends and teachers and to all the people
who had helped me.

18

	Introduction
	Related Works
	Feature-Based SLAM/VO
	Learning-Based Feature

	Methods
	Feature-based SLAM/Structure from Motion
	3D rigid-body transformation
	Camera projection model
	Essential matrix
	Fundamental matrix
	Computation of fundamental matrix

	SuperGlue
	Attentional graph neural network
	Optimal matching layer
	Loss

	Experiments and Results
	Model and setup
	Hyper parameters

	Dataset
	Evaluation Criteria
	Experiment Results
	Comparison

	Conclusions and future work
	Acknowledgment

