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Multi-Scale Adaptive Fusion Network for Skin Cancer 
Recognition 

Abstract 

Skin cancer is a very common cancer in today's society. The incidence of skin cancer covers all age 

groups. The diagnosis process of skin cancer is very complicated, requiring doctors to observe and judge 

first, and then perform a biopsy under a microscope. Therefore, more accurate skin disease classification 

algorithms will provide great help for the timely diagnosis of skin cancer. Existing skin cancer 

recognition methods directly borrow from natural image recognition models, and do not consider the 

scale variability and sample imbalance of skin cancer images, so the recognition accuracy is limited. To 

solve this problem, a multi-scale adaptive fusion network (MSAF-Net) is proposed for skin cancer 

recognition. The main novelty of the MSAF-Net is the consideration of the scale variability and sample 

imbalance of medical images. Specifically, the revised VGG16 model is exploited to learn multi-scale 

features, and the designed multi-scale fusion step is used to adaptively fuse them, so as to obtain 

discriminant line features containing multi-scale information, avoiding the impact of scale variability on 

recognition accuracy influences. In addition, a weighted loss function is designed for solving the 

problem of sample category imbalance by reducing the weight of simple samples. Based on the 

disclosed skin lesion image HAM10000 challenge dataset, this paper adds a class of normal skin images 

and constructs a HAM10000+ dataset to verify the proposed MSAF-Net method. Experimental results 

on the  HAM10000+ dataset show that the MSAF-Net can effectively learn multi-scale information and 

solve the problem of unbalanced samples of medical images, thereby further improving the accuracy of 

skin cancer recognition. 
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1. Introduction  

As the largest organ in human body, the skin plays important roles in protecting people from injury, 

infection, and sunlight. Skin cancer is the most common cancer nowadays, globally accounting for 40% 

of cancer cases [3], [10]. Exposure to ultraviolet (UV) radiation may lead to the skin cancer of 

melanoma [7]. External stimulation, in addition to the above-mentioned ultraviolet radiation, also 

includes other skin injuries and repeated mechanical stimulation, so in the palm, soles of the feet, 

mucous membranes, nails and other areas often subject to friction accounted for 60% to 75% of the 

disease site [21]. Basal-cell etc. are the popular skin cancers [8]. Exposure to sunlight will increase risk 

for all three types of cancer [9]. Compared to non-melanoma skin cancer, which is more easily treated, 

melanoma tends to be more malignant and its incidence is increasing as well [5]. Most common 

diagnosis includes biopsy and histopathological examination [11]. Early detection could ensure higher 

survival rate [12]. However, relying on the naked eye to detect and diagnose tumors is subjective, and 

the reproducibility of diagnosis results is not ideal. Although skin mirror serves as a possible solution, 

the complexity of the skin mirror image itself, such as blurred skin boundary, in-group variation and 

intergroup similarity, present great technical challenges to melanoma detection [16]. For physicians, who 

also have the ability to diagnose, the diagnosis results of the same case are subjectively different and the 

reproducible effect is not ideal. The complexity of the skin mirror picture itself, the characteristics of 

small gap between classes and large gap between classes, make diagnosis prone to omission and 

misdiagnosis, resulting in the overall accuracy rate is not high enough [23].  
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Existing methods can be divided into two categories: 1) skin cancer recognition methods on the basis of 

hand-crafted features, and 2) skin cancer recognition methods on the basis of deep learning features. The 

former methods use traditional classifier, such as SVM and KNN to categorize via color, texture, and 

other features. For example, Codella et al. proposed a method that integrates sparse coding and CNN for 

skin cancer skin cancer recognition. Deep learning is mainly by designing a CNN to study features of 

skin cancer and categorize. All these findings lay solid foundation for later improvements in recognition. 

Automatic diagnosis and diagnosis technology not only helps patient complete health checks more 

quickly, but also helps medical image technicians and doctors reduce manual analysis time, improve 

work efficiency, and reduce the likelihood of misdiagnosis. However, although the accuracy of many of 

these methods is comparable to dermatologists and some even outperform them, some considerations 

still remain.  

These methods have prompted the development of the skin cancer recognition. However, they directly 

borrow from natural image recognition models, and do not consider the scale variability and sample 

imbalance of skin cancer images, so the recognition accuracy is limited. In addition, these hand-crafted-

based methods involve complex and cumbersome processes, have low generalization capabilities, and 

are not very applicable in clinical practice. Unlike methods that rely on artificial functions, in the past 

few years, CNN have had significant advantages in image recognition tasks [13]. Its superiority is the 

ability for automatically learning high-level features for various tasks [15]. In reality, medical images 

contain plenty of information about anatomical structure and pathology, so a CNN specially designed for 

medical images is needed. Moreover, there is no specific solution for disproportionate samples of 

different categories. 

To solve the above problems, a multi-scale adaptive fusion network (MSAF-Net) is proposed for skin 



20
20

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

cancer recognition. Specifically, the proposed MSAF-Net can be divided into three steps: 1) multi-scale 

feature extraction, 2) multi-scale feature fusion, and 3) skin cancer recognition. First, we revised the 

original VGG16 model to learn multi-scale features from pooling1, pooling2, pooling3, pooling4, and 

conv5-3 layers. The learned multi-scale features contain different information with multiple receptive 

fields. Second, we combine the characteristics of multi-scale features by a scale-by-scale fusion. This 

step can adaptively integrate different information based on the designed reduction-attention module and 

densely connected module. Third, as for the fused feature, the dense connected layer is adopted to 

further learn the discriminative representation and infer the corresponding semantic label. In addition, to 

solve the problem of sample category imbalance, a weighted loss function is designed. Under the 

constraint of the designed weighted loss function, the whole network is well trained. 

Overall, our contributions in this study involve four aspects:  

1) We proposed a new skin cancer recognition framework, named multi-scale adaptive fusion network 

(MSAF-Net) for skin cancer diagnosis and improved the classification accuracy to nearly 98%.  

2) Multi-scale features are learned to solve the scale variability problem of skin cancer images, so as to 

integrate different information with multiple receptive fields. 

3) To solve the problem of imbalanced and insufficient samples in medical images, we proposed a new 

weighted loss function.   

4) An amplified HAM10000+ dataset is developed for training the proposed MSAF-Net to distinguish 

between normal skin and skin cancer images. 

This paper is arranged as follows. Section 2 describes related works of previous researchers in this area. 
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Section 3 discusses the method we proposed. Section 4 shows the experiments and result. In section 5, 

the conclusion is presented. 

2. Related Works 

In the past several years, many skin cancer recognition methods have been proposed. These methods can 

be classified into two main categories based on their characteristics. 1)  skin cancer recognition methods 

on the basis of handcrafted features and 2) skin cancer recognition methods on the basis of deep learning 

features. 

2.1. Skin Cancer Recognition Based on Handcrafted Features 

Early attempts were made to use manual features to categorize skin cancer. As early as 2001, Ganster 

applied a supervised method for the recognition of skin cancer images. The main steps are to recognize 

the skin cancer image based on the combination of color and gradient features, where the specificity and 

sensitivity of the final recognition results are 84% and 77%, respectively. Later, Radu et al. used fractal 

and texture as features to analyze and discriminate between genign and maglignant tumors [36]. Besides, 

Machine learning is also applied to improve skin cancer recognition. Common machine learning 

algorithms have also made various attempts on this problem, such as SVM [17], KNN [18] or the 

integration of multiple algorithms. Besides, Celebi and others used a threshold-based segmentation 

method to split the skin loss area and then used a support vector machine to classify images that 

extracted color, texture, and shape features [23]. Sumithra's tissue segmentation of the skin mirror image 

was identified using KNN and SVM, resulting in an F-measure value of 0.61[24]. Codella et al. 

proposed a to integrates SVM and sparse coding for the skin cancer recognition [25]. Prachya et al. 

designed a segmentation scheme based on combination of snake model and SVM, and applied SVM in 

finding an appropriate initial curve and parameters for snake algorithm [32]. Ritesh et al. used 
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normalized symmetrical GLCM to acquire texture features based on vector machine as a model for skin 

cancer classification [35]. 

2.2. Skin Cancer Recognition Based on Deep Learning Features 

Recently, some researchers also hope to apply the level of learning ability of CNN to improve the 

recognition ability of skin cancer. Krizhevsky et al. used convolutional neural networks to classify big 

data (1.2 million images) in 1,000 images and develop a new technology (AlexNet) with the best results 

[31]. Li Huang et al. proposed to classify melanoma and non-melanoma by mainly extracting local 

convolution features from the deep residual network to form more complex expressions, using key 

factors that may affect the performance, including image preprocessing, data enhancement, and network 

architecture [20]. The Deepmole model proposed by Pomponiu et al. uses the idea of knowledge 

migration: train the DNN network with natural images, and then classify the network as a feature 

extractor, which solves the problem of a smaller sample image [27]. Kawahara et al. used AlexNet-based 

full-volume neural networks (FCNs) to classify ten categories of dermatological images using multi-

scale features of non-skin mirror melanoma images [28]. Hashebe Younis et al. adjusted MobileNet for 

training the skin cancer recognition model [29]. Ahmet et al. used deep learning architectures for the 

skin cancer recognition task, and obtained 84.09% and 87.42% accuracy rate respectively [34]. Pooyan 

et al. exploited the GAN model to generate unseen skin cancer images for training the skin cancer 

recognition model, which enhanced accuracy for 18% [35]. Brij et al. used the Deep Residual learning 

model with three parametric layers to detect skin cancer and achieved an accuracy of 77% on the ISIC 

[37]. 

3. Proposed Method 

The purpose of this study is to solve the problems of scale variation and sample imbalance in medical 



20
20

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

images and to realize accurate recognition of various skin cancer images. Multi-scale adaptive fusion 

network is proposed for skin cancer recognition. As depicted in Figure 1, the MSAF-Net has four 

aspects. Data preprocessing, multi-scale feature extraction, multi-scale feature fusion, and skin cancer 

recognition. The rest of this chapter details these four aspects and introduces the optimization process 

for the entire model. 

  

Figure 1. The framework of the MSAF-Net. First, multi-scale features are learned from the revised VGG16. Second, a 

densely connected module is devised to adaptively fuse multi-scale features scale-by-scale. Finally, the fused features are 

exploited to predict the semantic category of the input skin cancer image. The proposed method is trained with a designed 

weighted loss in an end-to-end manner. 

3.1. Data Preprocessing 

In order to obtain efficient training data, we have done two preprocessing operations: 1) image scale 

normalization, 2) data enhancement. 

3.1.1. Image Scale Normalization 

In order to train the proposed MSAF-Net for skin cancer recognition, the input size needs to be 
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uniformed. As a result, the image size is normalized. Traditional image normalization methods, such as 

bilinear interpolation, are with the following disadvantage. When the aspect ratio of the target image and 

original image are different, these methods will deform the image, and the useful information of the 

image will be greatly compressed. The deformation and compression of the detailed features of the 

target will affect the classification accuracy. 

To solve it, this article adopts an image scale normalization method. This method makes   different 

copies for each image with a different aspect ratio, where each copy is a part of the image, which owns 

the same aspect ratio with the original sin cancer image. The specific steps are: 

1) Obtain the width   (pixels) and height   (pixels) of the input image, and calculate the aspect 

ratio of the input image: 

 .           (1) 

2) Get the width   and height   of the target image Calculate the aspect ratio of the target image: 

 .           (2) 

3) If  , the size of the image is interpolated directly using the nearest neighbor interpolation 

method; otherwise, proceed to steps 4)-6). 

4) Calculate the short and long sides of the input image: 

 ,         (3) 

 .         (4) 

5) Take   as a measure and intercept   segments of length   in the long side   with step as 

the unit: 
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 .        (5) 

The image whose length and width are both   is intercepted, so that the input image is converted into 

N images with an aspect ratio equal to the target image aspect ratio  . 

6) The image obtained above is transformed into equal proportions and normalized to a target image of 

the same size. 

The target image size in this paper is set as   pixels, step length is set as 

  and  . The normalization effect of flower images whose aspect ratio is not 

equal to the target aspect ratio. The images generated after scale normalization in this way retain a 

common aspect ratio, which can avoid the phenomenon of image distortion. 

3.1.2. Data Enhancement 

The limited amount of data restricts the training of neural networks. In order to enrich the amount of 

data and avoid over-fitting, this article mainly uses histogram equalization, rotation, and scaling to 

enhance the dataset. Since skin cancer images do not have rotation invariance, we need to pay attention 

when using image rotation to enhance the dataset, and only rotate in a small range. 

Directly using the network model to classify skin cancer images can get better results. However, to 

further improve the generalization ability in the case of a small network and a small amount of target 

data, this paper adopts the idea of transfer learning through skin cancer. The global feature of the 

direction field of the image is pre-trained for classification, and then the network model is fine-tuned 

with the skin cancer image. The direction field is both a global and a basic feature, which can accurately 

reflect the characteristics of skin cancer. Most skin cancer classification and recognition algorithms use 
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the direction field as the research basis. There are many methods for obtaining the direction field of skin 

cancer, and the classical method based on gradient estimation is the most used and effective. Although 

more new methods have appeared one after another, the tests on CNN have confirmed that the model 

performance based on gradient estimation method is better. The method can be divided into three steps: 

obtaining Gaussian smoothing, gradient calculation, and direction field estimation. First, given a 

Gaussian filter, perform Gaussian smoothing on the original image to get the smoothing result  , 

namely: 

 ,        (6) 

where   is the standard deviation,   is the location of pixels. Then, we adopt the Sobel operator to 

compute the gradient of the image in different directions, namely: 

 ,         (7) 

 ,         (8) 

where   and   are the gradient in different directions. Finally, estimate the image orientation field as 

follows: 

 ,          (9) 

where   is a very small constant. This article hopes to reduce the manual operation process of the image 

as much as possible, and the obtained direction field picture is a vector direction field picture. After 

obtaining the direction field map, first perform micro-rotation enhancement processing to obtain a large 
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dataset; then input the network for pre-training to obtain the final pre-trained network model. 

3.2. Multi-Scale Feature Extraction 
In this paper, we revise the VGG16 for learning multi-scale features [40]. The VGG16 model includes 

the different functional layers [38], [39]. Among them, the convolutional layer plays a very important 

role, through the realization of local perception and parameter sharing. The convolution kernel is the 

core of the convolution layer. Based on it, the shape of the same object located at different positions in 

the image can be extracted, which can reduce the dimensionality. In the pooling layer, a pooling filter is 

used. The last is the dense connected layer, which functions as a classifier. Since the data to be classified 

this time is different from the original VGG16 classification data, the parameters of the dense connected 

layer are erased, and the last three layers are determined by retraining. Layer parameter information to 

achieve the classification goal. 

Transfer learning shows that using the similarity between data, tasks or models, the model learned in the 

previous field is appropriately transferred to the target task, making the model more personalized and the 

task more concise. The simplest migration method in deep network migration learning is fine-tuning, 

that is, adjusting the trained network model for the tasks of this article. The advantages of fine-tuning are 

obvious. First, it reduces time consumption to a large extent. Second, the model is pre-trained on a huge 

dataset and has stronger robustness and generalization capabilities. Using existing big data and 

optimizing model training target data to get better results is a process of transfer learning. 

This paper uses initialize our network by the weights of the VGG16 model, and fine-tune the model to 

learn the extraction of specific features of medical images through a small amount of skin cancer 

images. Specifically, we improve VGG16 to extract features of multiple scales, because VGG16 can 
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extract various visual features elegantly, simply and effectively. The original VGG16 convolutional 

neural network model consists of 19 layers. The size of the input image is  , the size of the 

initial convolution kernel is  , the stride size is 1, the effective padding size is 1, and the pooling 

layer pooling uses  maximum pooling function max pooling method. The process of convolution in 

the model is: first use two convolution processing of 64 convolution kernels, then perform a pooling 

layer pooling, after completion, pass through the convolution of 128 convolution kernels twice, and use 

one pooling Layer pooling, after three convolutions of 256 convolution kernels, a pooling layer pooling 

is used, and finally after three 512 convolution kernels convolutions are repeated twice, a pooling layer 

pooling is performed. After the convolutional layer is processed, it is the three-time fully connected 

layer. At this time, the parameters that need to be processed in the network have been reduced a lot [5]. 

However, the classification speed of traditional VGG16 is still slow, and the accuracy of recognition 

needs to be improved. In this article, we have improved the original VGG16 network. We neglect the FC 

layer in the original model, and use the output of the pooling layer of the first four convolution blocks 

and the output of the third convolution layer of the last convolution block as the multi-scale convolution 

features. 

As shown in Figure 1, suppose   denotes the input skin cancer image. The input and output of m-th 

convolutional layer are    and  , respectively. Let   and  denote the weight and deviation term 

of the convolutional kernel. Then, the operation in each layer is written as: 

 ,        (10) 

where   stands for convolution operation.   stands for rectified linear unit activation function, 

which can be represented as: 

224 224 3× ×

3 3 3× ×

2 2×
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 .         (11) 

In addition, there is a maximum pooling layer behind each convolution block. We obtained five different 

scale features. These features will be sent to the multi-scale feature fusion step for further processing, so 

as to obtain discriminative medical image-specific features for skin cancer recognition. 

3.3. Multi-Scale Feature Fusion 
The starting point of the method in this paper is that multi-scale features can capture receptive fields of 

different sizes, so as to perform good information extraction on lesions of different sizes and achieve 

better recognition performance. Therefore, for this purpose, we designed a multi-scale feature fusion 

step, including reduction-attention module and adaptive fusion module. The former is used to alleviate 

the problem of dimensional disasters, and the latter is used to fuse multi-scale features adaptively. We 

will introduce these two parts in detail below. 

  

Figure 2. The proposed reduction-attention module. 

3.3.1 Reduction-Attention Module 

The earliest CNN essentially belongs to a network with spatial attention. Hence, it applies a uniform 

weight to each channel, resulting in only learning the local connection mode. Recent work has proved 

that the information in each channel is various [41]. Therefore, it is necessary for us to assign weights 

( ) max(0, )ReLU x x=
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that match the amount of information of each channel. Based on the SE network [42], we designed a 

new reduction-attention module, which assign each channel different weight by learning the channel 

descriptors. Besides, in order to alleviate the problem of dimensionality disaster in learning, our 

reduction-attention module also includes an adaptive dimensionality reduction architecture.  

As shown in Figure 2, first, we use a   convolution operation to reduce the dimensionality of the 

original input feature  . Meanwhile, after the operation of the   convolutional layer, the 

interaction of different channels is further enhanced. Then, a channel descriptor is obtained by 

compressing the information in each channel. Second, the obtained channel descriptor are transformed 

as channel weights  . To this end, we need to capture the correlation between 

each channel and learn the non-mutual relationship between them. The   term in   is represented 

as: 

 ,      (12) 

where   represents the spatial response of   at  . 

Finally, the channel-weighted features can be expressed as: 

 ,      (13) 

where   stands for reduction-attention operation,   stands for Hadamard product,   stands for the 

operation of expanding the vector into a 3-D matrix, and   stands for the weight matrix. 

To demonstrate the effectiveness of the reduction-attention module, a comparative experiment is 

conducted (see Table 2). 
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3.3.2 Adaptive Fusion Module 

As depicted in Figure 2, inspired by the DenseNet [43], the adaptive fusion module is proposed. First, 

we obtain 5-scale features   from the multi-scale feature extraction step. In this adaptive 

fusion module, we obtain the final fusion feature   through the concatenation manner in different scale. 

Specifically, in order to learn  , we first reduce the number of channels of features   and 

  through the designed reduction-attention module. Then, the multi-scale features other than   are 

gradually up-sampled by deconvolution operation. Finally,   and other up-sampling features are 

adaptively fused to obtain the final fusion feature  . Assuming there are J branches in total, the process 

of obtaining fusion features through densely connected modules is expressed by: 

 ,      (14) 

where   and   represent the cascade of deconvolution and reduction-attention operation, and 

the superscript represents the number of the operation.   indicates the activation characteristics of   

after  .   represents the activation characteristics of   after  .   represents the 

connection weight. It should be noted that  , . 

To demonstrate the effectiveness of the adaptive fusion module, a comparative experiment is conducted 

(see Table 2). 
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3.4. Skin Cancer Recognition 

After obtaining the multi-scale fusion feature through the above steps, we adjust its spatial dimension to 

1 through global average pooling, which is converted into a feature vector. Then, it is input into 3 FC 

layers for the skin cancer recognition. Specifically, the neuron number of the FC layers are 1024, 1024, 

and 8, respectively. 

  

Figure 3. The data distribution in HAM10000+ dataset. 

Considering that skin cancer data has serious imbalance in sample categories, as shown in Figure 3, we 

must solve this problem to improve recognition performance. Traditionally, the cross-entropy loss is 

utilized to train the CNN model. The formula of the cross-entropy loss can be represented as follows: 

 ,         (15) 1

log( )
K

CE k k
k

L y p
=

= −∑
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where K represents the total number of categories,   represents the probability distribution of the true 

label, and   represents the predicted probability distribution. As shown in the following formula, when 

k belongs to the real label,  ; otherwise,  . 

 .         (16) 

To solve the problem of unbalanced sample categories in the skin cancer recognition, we designed a 

weight loss function. Our weight loss function loss aims to solve the problem of sample category 

imbalance by reducing the weight of simple samples. The contribution to the loss is decided by the 

number of each class. The few classes of samples are more focused. Specifically, we introduce a 

weighting factor  , where the weighting parameter   is adjustable. The designed weight 

loss is written as follows: 

 ,        (17) 

where the weight parameter   is used to control the weight reduction rate of simple samples. In 

particular, when  ,   is equal to  . The importance of the weighting factor   increases 

with  . The loss function has two important characteristics: 1) When a sample is classified falsely, the 

weighting factor is nearly to 1. Then, the loss can not be affected. 2) When it increases to 1, the 

weighting factor is nearly to 0, and the loss of properly classified samples is improved. In general, the 

weighted loss function is to use a more appropriate function to count the contribution of samples that are 

difficult to classify and easy to classify to the total loss, increase the contribution of the easily classified 

skin cancer image to the total loss, and reduce the number of comparisons. The contribution of other 
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skin disease images that are large, but easy to align to the total loss. We use the weighted loss of   

in our experiment, which greatly improves the accuracy of skin cancer recognition. 

To demonstrate the effectiveness of the designed weighted loss, we conducted a comparative 

experiment, and the experimental results are seen in Table 2. 

3.5. Optimization Strategy 

Based on the weighted loss, the proposed MSAF-Net can be optimized as follows. The parameters of the 

revised VGG16 is initialized by the VGG16 model. The other parameters are randomly initialized from 

the truncated_normal distribution. During each training epoch, the optimization process is composed of 

five main steps. First, the training skin cancer images are input into the multi-scale feature extraction 

step to obtain multi-scale feature, which contain different information with multiple receptive fields. 

Second, the extracted multi-scale features are used as the input of the multi-scale feature fusion step to 

adaptively fuse them. The fused feature integrates different information and is more discriminative. 

Third, the semantic label of the input skin cancer image is predicted. Fourth, calculate the weighted loss 

based on the predicted semantic label and true semantic label according to Eq. 3. Finally, update all the 

parameters by minimizing the weighted loss. When a fixed iterative epoch is reached, the training phase 

process is terminated. Then, all the parameters are used to predict the semantic label of each testing skin 

cancer images. The detailed information about the optimization process of the MSAF-Net can be seen in 

Algorithm 1. 

2γ =
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4. Experiments and Results 

This section introduced the dataset, evaluation metrics, training details, and experimental results in 

details. 

4.1. Dataset 

Algorithm 1 The proposed MSAF-Net

Input:

Output:

Initialization:

The weights of the revised VGG16 are initialized from the original VGG16 model, and other 

weights are initialized from the truncated_normal distribution.

Repeat:

Until: A fixed iterative epoch E.

Return: All the to-be-learned parameters and the predicted semantic label  .{ }
1

Tte
t t
p

ʹ

ʹ ʹ=

1: Calculate multiscale features   by forward propagation of the revised VGG16 model 

according Eq. 1; 

2: Fuse multi-scale features using the densely connected module according to Eq. 2; 

3: Predict the semantic label of the input skin cancer image; 

4: Calculate the weighted loss according to Eq. 3; 

5: Update all the parameters using the SGD-Prop.  

jF

All the to-be-learned parameters of the proposed method; 

The predicted semantic label  .{ }
1

Tte
t t
p

ʹ

ʹ ʹ=

Training connection   of the skin cancer images and the corresponding true 

semantic label; 

Testing connection   of the skin cancer images; 

Learning rate lr and iterative epoch E.

{ }
1

= ,
t

Ttr tr tr
t t

D I y
=

{ }
1

=
Tte te

t t
D I

ʹ

ʹ ʹ=
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Based on the released skin lesion image HAM10000 challenge dataset, this article adds a class of normal 

skin images and creates a HAM10000+ dataset to verify the method. The HAM10000 dataset is the 

world's most widely released dermal replication image dataset. The dataset contains 10015 skin cancer 

images. In this article, we downloaded 838 images of normal skin tissues including moles through a 

search engine, and trained the model to distinguish normal skin images from skin cancer. Therefore, the 

HAM10000+ dataset contains 7 types of skin cancer and normal skin tissue types, a total of 8 categories: 

photokeratosis and intraepithelial carcinoma (akiec), benign. Corneal lysis (bkl), basal cell carcinoma 

(bcc), dermatofibroma (df), vascular skin disease (vasc), melanoma (Nv), melanoma (mel), and health 

(heal). In this article, we randomly select 80% as the training set, and 20% as the testing set. Figure 4 

shows some of the HAM10000+ dataset. 

  

Figure 4. Some cases of the HAM10000+ dataset. 

4.2. Evaluation Metrics 

The evaluation metrics we use are accuracy, sensitivity, specificity, and confusion matrix, which are 

commonly adopted in image classification. To evaluate the classification quality of a classifier, four 

basic metrics, including TP, TN, FP, and FN, are calculated. Based on the four basic metrics, accuracy 

can be computed as (TP + TN) / (TP + TN + FP + FN), which means total correctly classified samples 
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divided to total samples. Sensitivity can be computed by TP / (TP + FN). This means that the number of 

passing generals is fixed, and the number of regular samples is the same as the number of regular 

samples. Speciality can be computed by TN / (TN + FP) calculation. This means that the number of 

available data that can be used for passing is fixed, and that the number of data is the same as the 

number of data that can be used. The confusion matrix demonstrates confusions and error in different 

classes by counting the total number of correct and incorrect classification images of each type. 

4.3. Implementation Details 

The detailed settings in the proposed MSAF-Net are introduced as follows. The learning rate is 0.005. 

For every 1000 iterations, the learning rate is divided by 10. The momentum and weight decay 

parameters in the training phase are 0.0002 and 0.8, respectively. The batch size is 64. The iteration 

period E is set to 4000. The parameters of the revised VGG16 are initialized by the pre-trained VGG16 

model. Other parameters are randomly initialized from the truncated_normal distribution. All 

experiments are performed on a PC with TITAN X GPU equipped with tensorflow. 

4.4. Results and Discussion 

In this section, we will introduce the experimental results and conduct some analysis. Specifically, the 

experimental results are presented in three aspects: 1) model convergence, 2) comparison with other 

methods, and 3) analysis of important factors. The details are given as follows. 

4.4.1 Model Convergence 

To verify the convergence of the MSAF-Net, we recorded the loss changes and accuracy changes of the 

model during the training process. Figure 5 shows the changing curve of training loss, which reveals the 

proposed MSAF-Net can converge quickly, approximately at 3500 iterations. Meanwhile, Figure 5 

shows the changing curve of training accuracy. From the figure, we can also find the proposed MSAF-



20
20

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

Net can converge quickly. In the end, the training accuracy is converge at 98.5%. In summary, we can 

conclude that our model can converge quickly. 

  

Figure 4. The changing curve of training loss. 

  

Figure 5. The changing curve of training accuracy. 
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4.4.2 Comparison with Other Methods 

To prove the superiority of the proposed MSAF-Net, we report the comparison results. The comparison 

methods can be divided into two categories: 1) skin cancer recognition methods on the basis of 

handcrafted features, and 2) skin cancer recognition methods on the basis of deep learning features. The 

former methods include CTS [23], snake+SVM [32], and GLCM [35] methods. The latter methods 

include local-CNN [20], transfer-CNN [26], full-volume-CNN [27], MobileNet [29], ResNet-101 [33], 

Inception-v3 [33], and GAN [34] methods. The CTS method uses a threshold-based segmentation 

method to segment the skin loss area, and then uses SVM to classify the image. The snake+SVM 

method was designed as a segmentation scheme based on combination of snake model and SVM, and 

applied SVM in finding an appropriate initial curve and parameters for snake algorithm. The GLCM 

method adopted normalized symmetrical GLCM to learn texture features based on vector machine as a 

model for skin cancer classification. The local-CNN method extracted local convolution features from 

the deep residual network for the skin cancer recognition. The transfer-CNN method used the idea of 

knowledge migration to train the DNN network for the skin cancer recognition. The full-volume-CNN 

method used AlexNet-based full-volume neural networks to classify non-skin mirror melanoma images. 

The MobileNet method was trained over the HAM1000 skin lesion dataset. The ResNet-101 and 

Inception-v3 methods are trained for the skin cancer recognition task. The GAN method produced 

unseen skin cancer images for training the skin cancer recognition model. The quantitative result is 

reported in Table 1. The qualitative result is shown in Figure 6.  

Table 1. The quantitative result compared with other methods. 

Method Sen(%) Spec(%) ACC(%)

CTS 31.10 92.75 79.53

snake+SVM 31.23 92.41 80.06

GLCM 32.34 93.39 81.11

local-CNN 54.37 89.56 86.52

transfer-CNN 56.88 90.87 85.86

full-volume-CNN 57.18 91.85 88.37

MobileNet 61.87 94.82 92.63
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Figure 6. The qualitative result compared with other methods. 

From Table 1 and Figure 6, we can apparently notice that the proposed MSAF-Net outperform other 

methods on all of the evaluation metrics, which indicates the multi-scale features and weighted loss is 

effective for improve the performance of skin cancer recognition. Meanwhile, it can be observed that 

compared with the skin cancer recognition methods on the basis of handcrafted features, the MSAF-Net 

improves about 16% in accuracy, which indicates that deep convolution features have more powerful 

expressive power than low-level manual feature descriptors. In addition, Figure 7 shows the confusion 

matrix of MSAF-Net for skin cancer recognition. It is obviously that the proposed method achieves 

considerable results, especially for the recognition of nv, heal, and vasc classes. 

ResNet-101 62.41 94.16 94.29

Inception-v3 63.83 94.15 93.13

GAN 65.16 95.52 95.26

MSAF-Net 69.32 98.56 97.46
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Figure 7. The confusion matrix of the proposed method for skin cancer recognition. 
4.4.3 Analysis of Important Factors 

In order to demonstrate the importance of the designed reduction-attention module, densely connected 

module, and weighted loss, we conduct three variations of the proposed method. Specifically, the 

reduction-attention module is omitted to prove its importance (O-RA). The densely connected module is 

replaced with concatenation operation to testify its effectiveness (O-DC). The weighted loss is replaced 

with cross entropy loss to testify its effectiveness (O-WL). The results are reported in Table 2. 

Table 1. The quantitative result compared with other methods. 

Method Sen(%) Spec(%) ACC(%)

O-RA 60.37 84.51 80.25

O-DC 58.31 83.49 78.22

O-WL 64.43 91.57 90.40

MSAF-Net 69.32 98.56 97.46
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From the observation to Table 2, we can find the proposed surpass other variations to a great extent. The 

accuracy improves from 80.25% to 97.46% when the reduction-attention module is adopted. The 

accuracy improves from 78.22% to 97.46% when the densely connected module is applied. The 

accuracy improves from 90.46% to 97.46% when the weighted loss is adopted. They demonstrated the 

effectiveness of the designed reduction-attention module, densely connected module, and weighted loss, 

respectively. 

5. Conclusions 

In this research, we propose a multi-scale adaptive fusion network for skin cancer recognition. The 

network solves the problem of scale variability in medical images by learning multi-scale features, and 

solves the problem of sample imbalance in medical images by designing a weighted loss function. 

Through these two improvements, the proposed model greatly improves the accuracy of skin cancer 

recognition. Through experiments on the amplified HAM10000+ dataset, the experimental results on the 

amplified HAM10000+ dataset show that the method can effectively learn multi-scale information, 

solve the problem of unbalanced medical image samples, and further improve the accuracy of skin 

cancer recognition. 
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