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Abstract—Currently, GAN-based face-swapping methods pose
a threat to cybersecurity in fraud, fake news, or explicit content
generation. We propose a novel evasion adversarial attacking
method to perturb images with imperceptible noise that greatly
alter face-swapping results on trained models. This method builds
on existing iterative fast gradient sign methods such as Momen-
tum Iterative Fast Gradient Sign Method and Nesterov Iterative
Fast Gradient Sign Method, and applies them on deepfake attacks
to achieve image tamper security. Because current state-of-the-
art deepfake evasion attacks use only vanilla FGSM methods to
generate attack examples, we greatly improve on such methods.
Our proposed method outperforms current state-of-the-art ad-
versarial attack methods in both white-box and black-box settings
in image classification networks and achieves higher output
dissimilarity and higher input similarity in image translation
networks. Using our proposed method on face-swapping deep
neural networks result in poorly generated outputs, proving our
efficacy at attacking deepfakes and face-swapping. Our work
mainly accomplishes two goals: developing an iterative method
that outperforms state-of-the-art methods in adversarial attacks
in classification and achieving more effective results in deepfake
attacks. This shows potential in AI cybersecurity applications.

Index Terms—AI Security, Adversarial Attacks, Deepfake,
Image Translations, Generative Adversarial Networks, Face-
Swap

I. INTRODUCTION

The recent ubiquity of CNN based models has resulted in
an upsurge of convolution-based deep learning models [4][5].
These models can be used in both image classification and
image generation. GANs, for example, use convolution layers
to generate realistic images [6], which can generate faces and
other objects [7].These generational methods led to the cre-
ation of GANs that can change the facial expressions of a face,
add non-existing accessories or hair [2], or swap faces from
human to human [8]. Many such methods are in widespread
industrial applications, such as TikTok and Snapchat [9][10].
With the ease of using face-swapping methods growing, there
comes a risk of generating images with malicious intent or
explicit applications [11]. These methods of changing faces
on videos have been coined “deepfakes [2],” often with a
negative implication. One example may be swapping faces of
celebrities on porn stars [11], or creating fake news, photos,
or committing fraud [12]. This negative use led to deepfake
prevention and detection being a recent boon [13]. One way
of countering deepfakes is the use of deepfake detection,
often used in videos and images to spot machine-generated

Fig. 1: Top row: an adversarial example crafted by the pro-
posed Adam iterative fast gradient sign method (AI-FGSM) on
Inception v3 [1] model. Middle row: an adversarial example
crafted by the proposed AI-FGSM on StarGAN deepfake
model [2]. Bottom row: two adversarial images crafted by
AI-FGSM on face-swap GAN [3].

specific small differences in deepfake images compared to
normal images [14][15]. However, because these methods may
rely on imperceptible imperfections or features, they may be
unreliable when facing applications they were not trained for,
or under compression, which is common in social media apps
[16]. Another problem may be that detecting the image’s false-
hood after it has been used may not lessen as much damage as
preventing it from the source. Additionally, deepfake models
may adopt adversarial training to avoid detection attacks [17].
Thus, another approach for attack may be to alter the training
data of face-swap algorithms, namely “poisoning” attacks,
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making them unable to converge, and thus producing low-
quality results [18]. However, attackers may not be able to
get full access to the models’ training data or obtain weights
of a model before it is trained. It also suffers from training
data that may be variable and changing. One other method
may be adding imperceptible perturbations on the input data
of face-swap algorithms [19], which would alter output of such
algorithms. This would be the same way adversarial attacks
may fool image classifiers, even without altering training data.
Such methods, such as FGSM, or Fast Gradient Sign Method,
could potentially expose model vulnerabilities by maximizing
loss on a single image [20]. Potentially, this may be used
in profile pictures or social media images, which would then
make them tamper-resistant.

Our work focuses on this method of deepfake prevention. In
our first part of our essay, we primarily focus on achieving bet-
ter results than state-of-the-art methods in classical adversarial
attack situations, namely, image classification models. Then,
in our second part, we focus on using our novel method on
deepfake attacks, namely faceswap [8] and StarGAN [21].

In our first part, we show that in image classification attacks,
we perform better than baselines and current methods in
both white-box and black-box models, and in both singular
model attacks and in ensemble attacks. To specify, current
adversarial attacks focus on two major fields of attack, white-
box attacks and black-box attacks. Under the white-box model,
the network’s parameters are known to us, so we can calculate
gradients in relation to the input image. This gradient would
then be the basis of the FGSM algorithm [22], which would
be able to perturb the image to maximize loss. On the other
hand, the black-box scenario assumes the attacker can only
access the input and result, but not parameters or construction
of the model. The effectiveness of a white-box surrogate
on a black-box target is a huge problem to be solved. The
baseline solutions of FGSM and I-FGSM have a major trade-
off between the effectiveness of the two scenarios. Among
the two, iterative approaches of the FGSM algorithm or I-
FGSM often score better in white-box models, but often
fail to generalize in black-box models [23]. This is because
transferability in adversarial attacks relies on different models
making similar decision boundaries around pixels, so gradients
on pixels that maximize loss may be transferred [23][24].
Iterative designs may maximize the loss of one model; it may
not be so much as using the information on the actual pixels
as taking information from the surrogate. They may fall into
poor local maxima, which decreases transferability [25]. To
counter or lessen the problems with baseline attacks, many
current state-of-the-art methods utilize optimization, ensemble
attacks [26], and data augmentation [27] [28] algorithms to
lower this trade-off, achieving better results. The momentum
optimizer and the Nesterov optimizer have been used for this
purpose [29] [25], was well Gaussian blurring [19] and image
intensity multiplication [25]. Our novel methods with AdaGrad
[30], RMSProp [31] and Adam [32] effectively implement
adaptive step size to the existing algorithms, ensuring that
large gradients would not result in divergence, while small

gradients would not result in slowing down. It also increases
flexibility in iterative gradient approaches, as previous methods
only maintain static step sizes, which increased the number
of iterations needed for convergence. Our novel methods
also prove effective in increasing transferability in black-box
attacks. We show that the AdaGrad, RMSProp, and Adam
models achieve better scores than previous methods, while also
being able to be combined with image augmentation, image
scaling, and ensemble methods to score better in either attack
scenarios.

In our second part, we show that similar attacks can
be achieved in image translation networks. Though state-of-
the-art image classification attacks are not implemented in
translation attacks, we implement these attacks in comparison
with our attack algorithm. We show that our novel meth-
ods, in general, score better than both baseline methods and
contemporary methods in image translation attacks. We also
show that, in addition to disruption strength, input similarity
is also greater than compared to other methods. This further
proves the efficacy of our method in a wide range of possible
scenarios. We then experiment on autoencoder based networks,
which show that Adam achieves significant disruption ability,
deforming face-swapped faces. The attacked faces appear to
have deformed facial features, as well as paler skin and odd
face positions.

In summary, in our work, we defend against face-swapping
deepfake models using our state-of-the-art adversarial attack
methods, namely AGI-FGSM, RI-FGSM, and AI-FGSM. Our
methods outperform existing methods in image classification
attacks in both white-box and black-box scenarios. We further
implement this algorithm on StarGAN [2] and faceswap GAN
[3], two state-of-the-art image translation networks that trans-
fer facial features and swap faces. We show that we achieve
major disruptions in these two networks. We then conclude
that Adam boosted FGSM is state-of-the-art and can be used
in cybersecurity appliances.

Our major contributions are

• We proposed a state-of-the-art method for adversarial
attacks in classification scenarios.

• This state-of-the-art method can be used in translation
scenarios to form a state-of-the-art deepfake attack.

• This state-of-the-art method can be used in autoencoder
based face-swapping deep learning networks with good
results.

II. PRELIMINARY

A. Notation

Let x be a benign image with the corresponding label ytrue
and a pre-trained classifier f(x) with loss function J . The
purpose of performing an adversarial attack is to perturb x
as xadv so as to maximize the loss function J (xadv, ytrue)
with ||xadv �x||1 6 ✏, where ✏ is the maximum perturbation
allowed.
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B. Attack Methods

Fast Gradient Sign Method (FGSM) [22]. FGSM gen-
erates an adversarial example xadv in one iteration so as to
maximize the loss J(xadv, ytrue) as

xadv = x+ ✏ · sign(rxJ (xadv, ytrue). (1)

Iterative Fast Gradient Sign Method (I-FGSM) [33]
is the iterative version of FGSM. It updates the adversarial
example xadv multiple times as

xadv
0 = x,

xadv
t+1 = Clip✏x{xadv

t + ↵ · sign(rxJ (xadv, ytrue)} (2)

where Clip✏x(·) bounds the adversarial examples within the
maximum perturbation ✏.

Projected Gradient Descent (PGD) [34], instead of pick-
ing x itself, initializes xadv with a random noise within the ✏
bound and update xadv with I-FGSM.

Momentum Iterative Fast Gradient Sign Method (MI-
FGSM) [29] updates the adversarial examples xadv in I-
FGSM, using the update rules in the momentum optimizer.
This leaves the update rules for xadv

t as

gt+1 = µ · gt +
rxJ (xadv

t , ytrue)

krxJ (xadv
t , ytrue)k1

xadv
t+1 = Clip✏x{xadv

t + ↵ · sign(gt+1)} (3)

Nesterov Iterative Fast Gradient Sign Method (NI-FGSM)
[25] optimizes adversarial attacks using Nesterov Accelerated
Gradient (NAG), which is improved version of Momentum
method. It is discovered that NAG can not only stabilize
the update directions of xadv , but also correct the previously
accumulated gradients so as to provide a lookahead property.
The update rule is as follows:

xnes
t = xadv

t + ↵ · µ · gt

gt+1 = µ · gt +
rxJ (xnes

t , ytrue)

krxJ (xnes
t , ytrue)k1

xadv
t+1 = Clip✏x{xadv

t + ↵ · sign(gt+1)} (4)

Diverse Input Method (DIM) [35] performs resizing and
padding for input images to boost up adversarial attacks. DIM
can be seamlessly integrated into any gradient-based methods
mentioned above.

Translation-Invariant Method (TIM) [28] uses a set of
translated images to optimize adversarial attacks with the
gradient being calculated by convolving the gradient with
a pre-defined kernel W . The method is also available for
integration into gradient-based methods, with the following
update rule,

xadv
t+1 = xadv

t + ↵ · sign(W ·rxJ (xadv
t , ytrue). (5)

TIM and DIM can be combined as TI-DIM, a strong black-
box attack method.

Carlini & Wagner Attack (C&W) [36] directly search
for a xadv so as to minimize the distance the between an
adversarial example and its real example by solving:

argmin
xadv

||xadv � x||1 � J(xadv, y) (6)

However, this method lacks transferability in black-box
scenario.

Scale-Invariant Property (SIM) [25] generates adversarial
perturbations based on a set of m scaled copies of the input
image:

argmax
xadv

1

m

mX

i=1

J (Si(x
adv
t ), ytrue), (7)

s.t. ||xadv � x||1 6 ✏,

where Si(x) = x/2i scales the input image x by a factor
of 1/2i.

C. Deepfakes Models

Generative Adversarial Networks (GAN) [37] comprised
most of the current Deepfake models. GAN consists of a
discriminator D and a generator G: the former aims to identify
whether an input image x is fake or not, and the discriminator
to generate a fake image xadv to fool the generator G
into misclassifying xadv as real. Current GANs for deepfake
include pix2pixHD [38], CycleGAN [39], GANimation [40]
and StarGAN [2]. Among these methods, StarGAN generates
images with the highest quality [2]. It can integrate several
datasets with different sets of labels and generate a fake
example with any label in it.

D. Image Translation Disruption on deepfakes

Attempts have been made to disrupt deepfake models pre-
viously [19][41]. Similar to performing adversarial attack, we
need to add a perturbation noise ⌘ to the input image to
generate the disrupted image xadv as

xadv = x+ ⌘. (8)

When fed into the deepfake generator G, y and yadv are
the translated output images with the mappings G(x) and
G(xadv) respectively.

We want to create an adversarial example xadv such that
the alteration by deepfakes can be obvious for human beings,
meaning to maximize the distortion and evaluate perturbation
using the L1, L2 or L1 norm. If applied as I-FGSM, the
update rule for xadv can be formulated as

xadv
t+1 = Clip✏x{xadv

t + ↵ · sign(rxadvL(G(xadv), r))}, (9)

where ↵ is the step size and ✏ is the bound for translation.
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E. Autoencoder-based Faceswap Models

The autoencoder neural network [42][43], in essence, com-
presses and decompresses data using an ”encoder” and a
”decoder”. The encoder takes a high dimensional input x
and makes a low dimensional representation of them, z,
commonly referred to as the latent representation of x. Then,
the decoder takes the latent low dimensional representation of
x, to reconstruct x̂. For encoder � and decoder  we have
equations

z = �(x) (10)

x̂ =  (z) (11)

The loss function then, is to minimize the difference between
x and x̂, which autoencoders often use the mean average error
of all pixels as a loss to minimize. We have equations

�, = argmin
�, 

kX � (� �  )Xk (12)

In the faceswap model, the two decoders for the faces that
need to be swapped share the same encoder, which are then
trained on warped faces of the original. That is, taking the
original face x, the model adds warps to the face to form
x0, which is then fed into the autoencoder product output x̂,
which is then trained to minimize the MAE loss between x
and x̂. Additionally, this model uses PixelShuffle, a method
to increase output resolution [44]. When trained with two
decoders, the two faces will then share a latent representation,
which would then allow the autoencoder to swap faces. When
facing new faces, the warping training essentially allows the
encoder to generalize among more variations of faces, which
would unsure face-swapping ability when taking an untrained
face as an input [8].

F. Metrics

L1 loss and L2 loss (MSE loss). The L1 error metric that
we use measure the mean absolute error between pixels in
the input images K and I [45]. The L2, or mean square error,
metric measures the squared difference between pixel values
of the input images K and I [46]. The two formulas are

L1 =
1

mn

m�1X

i=0

n�1X

j=0

|I(i, j)�K(i, j)| (13)

L2 =
1

mn

m�1X

i=0

n�1X

j=0

[I(i, j)�K(i, j)]2 (14)

For the two equations above, the two images are denoted as
K, and I, a pixel in one images is denoted K(i,j), and the width
and height of the two images are m and n, respectively.

PSNR, Peak Signal-to-Noise Ratio. The PSNR metric [47]
is another per pixel image similarity metric that measures the
ratio between the largest possible value of an image to the
values of a corrupting noise, hence the name, Peak Signal-to-
Noise Ratio. The formula of PSNR is

PSNR = 10 · log10(
MAX2

I

L2
) (15)

The MAX is the largest pixel value of an image, while the
L2 is just the calculated L2 norm. We use a logarithmic scale
because pixels can have a larger dynamic range.

SSIM, Structural Similarity Index Measure. The SSIM
metric [38] in attacks is a perceptual metric that measures the
degradation of an image. It uses perceptual phenomena such
as luminance masking and contrasting masking to compare
images. It uses measures in structural information in an image
to achieve a stronger measurement than mean squared error
or PSNR methods. This is because MSE or PSNR measure
absolute errors and lose structural information. While SSIM
measures local structural information, which is based on the
assumption that closer pixels form stronger dependencies. The
SSIM is calculated by

SSIM(x, y) =
(2µxµy + C1) + (2�xy + C2)

(µ2
x + µ2

y + C1)(�2
x + �2

y + C2)
(16)

which is calculated on various windows of an image. The
equation takes two windows x and y of an image with the
same size of N ⇥N as an input. In it, µx is the average of x
and µy is the average of y. Calculated by

µx =
1

N

NX

i=0

xi (17)

�x and �y are the variance of x and, respectively, calculated
by

�x = (
1

N � 1

NX

i=1

(xi � µx)
2) (18)

�xy is the covariance of x and y, calculated by

�xy =
1

N � 1

NX

i=1

(xi � µx)(yi � µy) (19)

c1 = (k1L)2 c2 = (k2L)2 which is used to stabilize division.
L is the dynamic range of the pixel values, and k1 = 0.01 and
k2 = 0.03 as a default.

III. METHODOLOGY

In this paper, we introduce AdaGrad iterative gradient-
based methods, RMSProp iterative gradient-based meth-
ods and Adam iterative gradient-based methods to generate
adversarial examples for deepfakes, which have seen better
performances in perturbing images in both image classification
attacks and image translation attacks than the standard FGSM
and I-FGSM methods.

We first illustrate how AdaGrad, RMSProp and Adam are
integrated into iterative FGSM respectively. This induces three
attack methods generating adversarial examples satisfying the
L1 bound: AdaGrad iterative fast gradient sign method (AGI-
FGSM), RMSProp iterative gradient sign method (RI-FGSM)
and Adam iterative gradient sign method (AI-FGSM). Then we
integrate them with TI-DIM and SIM to attack an ensemble
of pretrained models with equal ensemble weights. Finally
we extend these methods to yield a broad class of attacks
on deepfakes.
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A. AdaGrad Iterative Fast Gradient Sign Method

AdaGrad [30], or Adaptive Sub-gradient Method, is an
optimizer that reduces the learning rate at every update. This
allows a larger initial learning rate and enable the parameters
to converge more quickly to their optimum. The parameters
update rule of AdaGrad can be formulated as:

st+1 = st +rxJ (✓t) �rxJ (✓t)

✓t+1 = ✓t �
⌘p

st+1 +  
�rxJ (✓t) (20)

where ⌘ is the learning rate and  is a constant that prevents
the learning rate from being divided by 0.

Normal gradient-based iterative attacks (e.g. I-FGSM) are
prone to fall into local maxima, which demonstrates less trans-
ferability than the adversarial examples created by one-step
methods. In contrast to Momentum and Nesterov optimizer,
which stabilize the update direction by accumulating gradients,
AdaGrad uses the accumulated gradients to adjust the step
size. Such adaptive step size property would make the step size
sufficiently large with small gradients so as to produce larger
step sizes, but also sufficiently small with large gradients so
that the it will not diverge. AdaGrad works at its best with
sparse gradients [32].

We integrate AdaGrad into the iterative gradient-based so
as to leverage adaptive step size property of AdaGrad and
construct an adversarial attack method. We refer to it as
AGI-FGSM, namely AdaGrad Iterative Fast Gradient Sign
Method. Specifically, the method divides the step size with
the accumulation of all previous gradients in each iteration.
With s0 being initialized to 0, the update of an adversarial
example xadv follows:

gt = rxJ (xadv
t , ytrue)

st+1 = st + gt � gt,

xadv
t+1 = Clip✏x{xadv

t +
↵p

st+1 +  
� sign(

gt
kgtk1

)}, (21)

where ↵ is the initial step size, ✏ is the maximum perturba-
tion allowed and  is a constant that stabilize prevent ↵ from
being divided by 0.

B. RMSProp Iterative Fast Gradient Method

RMSProp [31] is another optimizer with an adaptive learn-
ing rate. This is an improved version of AdaGrad, in which
st is normalized by a leaky average with hyper-parameter
0 < � < 1:

gt = rxJ (✓t)

st+1 = �st + (1� �)gt � gt,

✓t+1 = ✓t �
⌘p

st +  
�rxJ (✓t) . (22)

In the AdaGrad method, the vector st keeps increasing
without bound, because it sums up all the squares of gradients
at every iteration. This may reduce the step sizes to values

too small to approach to their optimum [31]. RMSProp solves
the problem by applying leaky average to the accumulated
gradients st so that st will not constantly increase and step
sizes will not constantly reduce. In contrast to AdaGrad,
RMSProp works at its best with on-line and non-stationary
objects [32].

To avoid linear convergences of st in AdaGrad attacks,
we also adopted RMSProp into attacks. With s0 also being
initialized to 0, the update of an adversarial example xadv

follows:
gt = rxJ (xadv

t , ytrue)

st+1 = �st + (1� �)gt � gt

xadv
t+1 = Clip✏x{xadv

t +
↵p

st+1 +  
� sign(

gt
kgtk1

)} (23)

where � is the distribution rate of the leaky average, ↵ is the
initial step size, ✏ is the maximum perturbation allowed and
 is a constant that stabilize prevent ↵ from being divided by
0.

C. Adam Iterative Fast Gradient Method

Adam [32] is the current state-of-the-art optimizer, which
combines the advantages of both AdaGrad and RMSProp.
It also adopt adopts momentum with leaky average. The
parameter update rule of Adam can be expressed as:

vt+1 = �1vt + (1� �1)rxJ (✓t),

st+1 = �2st + (1� �2)rxJ (✓t) �rxJ (✓t)

v̂t+1 =
vt+1

1� �t+1
1

,

ŝt+1 =
st+1

1� �t+1
2

,

✓t+1 = ✓t �
⌘p

ŝt+1 +  
� v̂t+1, (24)

where both �1,�2 2 (0, 1) are both constants for leaky
averages, and the suggested choices for them are �1 = 0.9
and �2 = 0.999 [32]. This inevitably decelerates the updates of
parameters ✓t with small iteration epochs, so Eq.(6) normalizes
the two state vectors vt, st to correct such bias.

For the best attack performances towards both simple im-
ages with sparse gradients and videos with non-stationary
gradients, and for the looking ahead property presented by
Momentum and Nesterov attack methods, we integrated Adam
into I-FGSM as AI-FGSM, namely Adam Iterative Fast Gradi-
ent Sign Method. With state vectors g00 and s0 being initialize
to 0, AI-FGSM updates the adversarial example xadv by:

gt = rxJ (xadv
t , ytrue) (25)

g0t+1 = �1g
0
t + (1� �1)

gt
kgtk1

,

st+1 = �2st + (1� �2)gt � gt,
(26)

ĝ0
t+1 =

g0t+1

1� �t
1

, ŝt+1 =
st+1

1� �t
2

, (27)
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xadv
t+1 = Clip x {xadv

t +
↵p

ŝt+1 +  
� sign(ĝ0

t+1)}, (28)

where �1,�2 are the distribution rate of the leaky average, ↵
is the initial step size, ✏ is the maximum perturbation allowed
and  is a constant that stabilize prevent ↵ from being divided
by 0. The detail of this attacking algorithm can be found in
Algorithm1.

Additionally, Diverse Input Method (DIM) [35],
Translation-Invariant Method (TIM) [29], and Scale-Invariant
Method (SIM) [25] can be integrated into AI-FGSM as
AI-DIM, AI-SIM and AI-TIM, respectively. By combining
the three we end up with a high-performance SI-AI-TI-DIM.
The details of this attack algorithm can be found in Appendix
A.

Algorithm 1: AI-FGSM
Input: A clean example x with ground-truth label

ytrue;a classifier f with loss function J ;
Hyper-parameters: Perturbation size ✏,
maximum iterations T ; decay factor �1,�2

Output: An adversarial example xadv

1 ↵ = ✏/T ;
2 s0 = 0, g00 = 0, xadv

0 = x;
3 for t = 0 to T � 1 do
4 Fetch the gradients gt by Eq.25;
5 Update st+1 and g0t+1 by

g0t+1 = �1g
0
t + (1� �1)

gt
kgtk1

,

st+1 = �2st + (1� �2)gt � gt,
;

6 Perform bias correction using
ĝ0

t+1 =
g0

t+1

1��t
1
, ŝt+1 = st+1

1��t
2
,;

7 Update xadv
t+1 by Eq.28;

8 end
9 return xadv = xadv

T

IV. EXPERIMENTAL RESULTS

In this section, we demonstrate that our proposed methods
can generate effective adversarial examples to attack image
classification models as well as Deepfake models. Firstly, we
introduce our experimental settings in Section IV-A. Next, in
Section IV-B and IV-C, we compare baseline methods and our
proposed methods on their attacking results on both regularly
trained and adversarially trained models 1. We also compare
our methods with the classic gradient-based attacks methods
and the current start-of-the-art method, namely SI-NI-TI-DIM
, in Section IV-D.

Beyond that,we prove that the our proposed methods works
well in image translation attacks as well, and compare it
against the state-of-the-art methods on translation networks.
We test it on white-box attacks on StarGAN, and compare

1https://github.com/jasonliuuu/SI-AI-FGSM

results in IV-E 2. Finally, we use this model to attack face-
swapping deep neural networks using GAN architecture and
autoencoders in IV-F 3.

A. Experimental Setup

Models. For the study of the robustness of different
adversarial attack methods, we use eight image classification
models. Four of them are regularly trained models: Inception
v3 (Inc-v3) [1], Inception-v4 (Inc-v4), Inception Resnet v2
(IncRes-v2) [48], Resnet v2-101 (Res-v2) [49]; and the re-
maining four are adversarially trained models: Inc-v3ens3, Inc-
v3ens4, IncRes-v2ens and Inc-v3adv [50].

In our experiment in image translation, we attack StarGAN.
We use the pre-trained 128⇥128 model from using the CelebA
dataset. The faceswap model is from [3], which we use the pre-
trained model at 200,000 iterations on the trump cage dataset
from [8].

Dataset. For attacks on image classification models, we
randomly select 100 images belonging to the 1000 categories
from ILSVRC 2012 validation set, most of which can be cor-
rectly classified by our chosen Inception models. For attacks
on image translation models we select the CelebA (Large-
scale Celeb Faces Attributes) dataset, which we use choose
randomly 50 images and 5 attributes for a total of 250 images.
The images used in faceswap models are randomly chosen 100
images from the trump-cage dataset from [8].

Baselines. In our attacks we consider 7 algorithms to
compare. Two are baseline methods of attack, namely the
FGSM and I-FGSM attacks, these provide comparisons to the
current methods. From [29] we have MI-FGSM, that improves
on these baselines with gradients using momentum as an ac-
celerator to escape poor local maxima. From [25] we also have
NI-FGSM, which improves on both baseline and MI-FGSM.
Finally, we finally include three of our proposed methods,
AdaGrad-I-FGSM, Adam-I-FGSM, and RMSProp-I-FGSM.
For further attacks on image classification models, we combine
AI-FGSM with the existing image augmentation methods
to validate our AI-FGSM’s compatibility and improvement
upon these methods. Currently image augmentation methods
include TIM [28], DIM [35] and SIM [25]. Denote AI-FGSM
integrated with them respectively as AI-TIM, AI-DIM, SI-
AI-FGSM; and jointly as SI-AI-TI-DIM. In image translation
attacks, we compare our methods similarly with previous
mentioned baselines. The comparison is made between vanilla
methods of attack, optimized, and our methods. Optimized
methods were not previously introduced in image translation
attacks, only using FGSM and I-FGSM for attacks.

Metrics. The two main metrics that we focus on are the
similarity of the images to the original, and the attack success
rate, in image classification attacks this means the rate of
misclassification of the target model, in the image translation
attacks this means the dissimilarity of the generated image

2https://github.com/DazhiZhong/disrupting-deepfakesforcodeofattackingd
eepfake

3https://github.com/DazhiZhong/deepfakes faceswapforcodeofattackingfac
eswapGAN
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TABLE I: Comparison Between Attack Success Rates(%) of TIM and AI-TIM
Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-v2 Inc-v3ens3 Inc-v3ens4 IncRes-

v2ens
Inc-v3adv Average

Inc-v3 TIM 100.0* 14.0 16.0 14.0 10.0 6.0 8.0 6.0 21.8
AI-TIM(Ours) 100.0* 36.0 30.0 20.0 8.0 18.0 4.0 20.0 29.5

Inc-v4 TIM 22.0 100.0* 14.0 14.0 6.0 4.0 2.0 2.0 20.5
AI-TIM(Ours) 44.0 100.0* 28.0 16.0 8.0 8.0 4.0 16.0 28.0

IncRes-v2 TIM 30.0 28.0 90.0* 26.0 16.0 12.0 6.0 8.0 27.0
AI-TIM(Ours) 56.0 60.0 100.0* 40.0 12.0 10.0 10.0 18.0 38.3

TABLE II: Comparison Between Attack Success Rates(%) of DIM and AI-DIM
Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-v2 Inc-v3ens3 Inc-v3ens4 IncRes-

v2ens
Inc-v3adv Average

Inc-v3 DIM 94.0* 44.0 32.0 38.0 18.0 16.0 8.0 14.0 33.0
AI-DIM(Ours) 98.0* 58.0 48.0 42.0 8.0 16.0 8.0 18.0 37.0

Inc-v4 DIM 44.0 100.0* 24.0 36.0 12.0 8.0 2.0 4.0 28.8
AI-DIM(Ours) 54.0 100.0* 42.0 42.0 6.0 4.0 4.0 8.0 32.5

IncRes-v2 DIM 42.0 44.0 96.0* 24.0 14.0 4.0 10.0 18.0 32.0
AI-DIM(Ours) 64.0 54.0 100.0* 48.0 8.0 6.0 10.0 20.0 38.8

TABLE III: Comparison Between Attack Success Rates(%) of SIM and SI-AI-FGSM
Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-v2 Inc-v3ens3 Inc-v3ens4 IncRes-

v2ens
Inc-v3adv Average

Inc-v3 SI-FGSM 100.0* 28.0 26.0 20.0 16.0 10.0 12.0 16.0 28.5
SI-AI-
FGSM(Ours)

100.0* 54.0 54.0 42.0 10.0 12.0 6.0 26.0 38.0

Inc-v4 SI-FGSM 36.0 100.0* 22.0 28.0 10.0 8.0 6.0 10.0 27.5
SI-AI-
FGSM(Ours)

56.0 100.0* 44.0 48.0 14.0 10.0 4.0 22.0 37.3

IncRes-v2 SI-FGSM 38.0 28.0 98.0* 18.0 8.0 8.0 6.0 16.0 27.5
SI-AI-
FGSM(Ours)

60.0 46.0 100.0* 42.0 10.0 10.0 8.0 24.0 37.5

TABLE IV: Comparison Between Attack Success Rates(%) of SI-TI-DIM and SI-AI-TI-DIM
Attack Inc-v3* Inc-v4* IncRes-

v2*
Res-v2 Inc-v3ens3 Inc-v3ens4 IncRes-

v2ens
Inc-v3adv Average

SI-TI-DIM 98.0 98.0 94.0 68.0 48.0 42.0 32.0 44.0 65.5
SI-AI-TI-DIM(Ours) 100.0 100.0 100.0 78.0 56.0 52.0 44.0 46.0 72.0

with attack and the generated image without attack. The
similarity of original and adversarial images will be measured
by SSIM, or structural similarity metric, which is an index
of the perceptual difference between two images [38]. The
success rate for classification attacks would be the percentage
of amount of attack success images in all images. When stating
a method scores better in similarity, it refers to a higher SSIM
or PSNR scores of the input, while stating a method scores
better in attack effect means lower SSIM and PSNR score of
the generated result image, or a lower percentage of accurate
classification of a target mode.

Hyper-parameters. We consider the configuration in [29]’s
experiments and alter them so as to approach to Adam’s
default hyper-parameters settings [32] (i.e. the maximum per-
turbation ✏ = 10, number of iterations T = 10, decay factor
µ = 1.0, and step size ↵ = 0.1). We also configure TIM’s
kernel as Guassian kernel of shape 7 ⇥ 7, DIM’s transform
probability as 0.5, and SIM’s number of scale copies as 5. In
translation attacks, images are standardized to 0� 1, with the
step size ↵ = 0.005, and epsilon the max perturbation amount
as 0.05, we run this on k = 100 iterations. SSIM kernel size
is a default of 11⇥ 11 .

B. Attacking A Single Model

We integrate AI-FGSM into TIM [28], DIM [35], SIM [25],
and their combination SI-TI-DIM, respectively. As shown in
I, II and III,we use the baselines and our proposed methods
to trick Inception v3, Inception v4 and Inception Resnet v2,
respectively, into misclassifying images from ILSVRC 2012
dataset, and we transfer them to attack the rest of our selected
models in black-box manner. We observe that, in most cases,
our methods outperform the baseline by 10⇠20% in black-
box scenario, and generally achieve 100% success rates for
white-box attacks. Overall, the aforementioned experiments
have shown that AI-FGSM is compatible with major image
augmentation methods and can consistently improve the trans-
ferability of adversarial examples.

An adversarial example generated AI-FGSM on Inception
v3 is visualized in Fig.1.

C. Attacking An Ensemble of Models

We validate the robustness of our methods by attacking
an ensemble of models. We choose to simultaneously attack
Inception v3, Inception v4 and Inception Resnet v2 with SI-
TI-DIM and SI-AI-TI-DIM respectively. From Table IV, it is
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noticeable that SI-AI-TI-DIM generally improves SI-TI-DIM
the baseline by 5⇠ 20% in black-box scenario and achieves an
attack success rate of 100% to all white-box models. Overall,
SI-AI-TI-DIM yields an average attack success rate of as
high as 72%. The experiment demonstrates that, for ensemble
attacks, AI-FGSM significantly improves the performance of
the baseline method, and thus adversarially trained models are
by no means robust under the attack of SI-AI-TI-DIM. We also
visualize the attack results in Appendix B

D. Further Analysis on Image Classification Model Attacks

MI-FGSM vs. NI-FGSM vs. AI-FGSM. We also draw
comparisons among MI-FGSM [29], NI-FGSM [25], and AI-
FGSM. The adversarial examples are created and updated on
Inception v3 model for ten iterations. They are then transferred
to attack Inception v4 and Inception Resnet v2 every two
iterations. The Fig.2 shows that, in terms of transfer-based
attacks, AI-FGSM yields the highest success rate under equal
numbers of iterations, which means that AI-FGSM is the least
prone to fall into local maxima.

RI-FGSM and AI-FGSM compared to other gradient-
based attacks. We also compare RI-FGSM and AI-FGSM
to the current classical gradient-based attacks, see Table V.
We choose Inception v3 as the white-box model and transfer
the adversarial examples to the rest of the models. The result
shows that our methods yield the first and second highest
attack success rates among MI-FGSM, NI-FGSM and the other
classical attacks. Specifically, AI-FGSM crafts the strongest
adversarial attacks on every model. This illustrates that our
methods outperform other gradient-based methods in both
white-box and black-box settings.

E. Attacking Deepfake Models

Attack standards. In attacks on StarGAN, we evaluate
models on 6 metrics. Two metrics measure the similarity
of the attacked images to the original, while four measure
the difference between the generated images. The former
two, Input-SSIM, which is the Structural similarity metric
of the input, and Input-PSNR, which is the peak signal-to-
noise ratio of the input, should be maximized so that the
perturbations are minimal. Gen-SSIM, and Gen-PSNR, the
similarity measures of the output, should be minimized to
achieve the highest attack effect. Finally, the L1, and L2

differences, which measure the difference between the two
images in a straightforward, pixel-by-pixel way, should be
maximized.

Attack results. We show our attack results in Table VI.
We see that for the similarity metrics of the input, the vanilla
iterative attack scores best, followed by our proposed AGI-
FGSM and RI-FGSM. Our Adam optimized method (AI-
FGSM), however, only scored mid-range. However, its scores
are better than state-of-the-art methods, namely, momentum
and Nesterov accelerated FGSM updates. This may be because
the inclusion of a variable step size results in a smaller step
size in later perturbations, which then results in less input
dissimilarity, while the reason for I-FGSM to generate more

(a) Inc-v3 model

(b) Inc-v4 model

(c) IncRes-v2 model

Fig. 2: Changes of Attack success rates (%) of NI-FGSM,
MI-FGSM and AI-FGSM as the number of iterations
increases. The adversarial examples are generated on Inc-
v3 model against (a) Inc-v3 model, (b) Inc-v4 model and (c)
IncRes-v2 model.

similar images may be that it is limited by the strength of its
attack.

The three proposed methods, AGI-FGSM, RI-FGSM, and
AI-FGSM, are have a very similar update rule. Adam, how-
ever, slightly improves upon the attack effect because of its
bias correction [32]. This may be because the gradients are
sparse in this particular task, as the model to attack is trained to
high complexity, so a bias correction magnifies the calculated
gradients and step sizes. We display one adversarial examples
crafted by AI-FGSM on StarGAN and its corresponding
outputs in Fig.5.

Other methods hold a static step size, and because their
gradients are all signed, their perturbation amount is inevitably
larger over higher iterations, while the non-iterative FGSM
attack is bound by the epsilon hyper-parameter, or the max
perturbation amount, which it reaches in its one iteration.
Vanilla I-FGSM results in a more similar input may be because
it falls into poor local maxima.
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Attack Inc-v3* Inc-v4 IncRes-v2 Res-v2 Inc-v3ens3 Inc-v3ens4 IncRes-
v2ens

Inc-v3adv Average

FGSM 70.0 6.0 6.0 6.0 6.0 4.0 0.0 0.0 12.3
I-FGSM 100.0 12.0 16.0 16.0 8.0 6.0 4.0 2.0 20.5

MI-FGSM 100.0 36.0 22.0 26.0 16.0 12.0 12.0 20.0 30.5
NI-FGSM 100.0 38.0 34.0 28.0 8.0 10.0 8.0 16.0 30.3

RI-FGSM (Ours) 100.0 32.0 32.0 30.0 16.0 8.0 18.0 16.0 31.5
AI-FGSM (Ours) 100.0 42.0 38.0 48.0 8.0 14.0 2.0 26.0 35.3

TABLE V: The success rates (%) of non-targeted adversarial attacks against seven models, with the ⇤ symbol indicating
white-box attacks. We use Inc-v3 to create our adversarial examples using FGSM, I-FGSM, MI-FGSM, NI-FGSM, AGI-FGSM,
RI-FGSM, AI-FGSM.

Attacks Gen-SSIM Input-
SSIM

Gen-PSNR Iuput-
PSNR

L1 L2

FGSM 0.100 0.875 3.698 27.80 0.547 0.450
I-FGSM -0.227 0.910 -0.942 29.03 1.024 1.289

MI-FGSM -0.253 0.846 -1.717 26.38 1.146 1.557
NI-FGSM -0.240 0.863 -1.079 26.79 1.039 1.317

AGI-FGSM(Ours) -0.255 0.908 -1.620 28.83 1.118 1.495
RI-FGSM(Ours) -0.242 0.908 -1.251 28.93 1.064 1.374
AI-FGSM(Ours) -0.275 0.878 -1.990 27.26 1.181 1.627
AI-FGM(Ours) -0.264 0.894 -1.800 28.07 1.158 1.578

TABLE VI: The metrics for input similarity and output dissimilarity for image translation attacks on StarGAN deepfake.
The metrics include SSIM, PSNR, L1, and L2 diff. Our novel attack methods are compared with baselines and state-of-the-art
attack algorithms.

FGSM I-FGSM MI-FGSM NI-FGSM AI-FGSM(Ours) AI-FGM(Ours)
Gen SSIM 0.716 0.583 0.576 0.692 0.524 0.537
Input SSIM 0.746 0.687 0.694 0.799 0.648 0.659

TABLE VII: The metrics for input similarity and output dissimilarity for image translation attacks on face-swap. The
metrics include SSIM, PSNR, L1, and L2 diff. Our novel attack methods are compared with baselines and state-of-the-art
attack algorithms.

Fig. 3: Output image distortion rates with respect to the
perturbation rates on input image using Vanilla, NI-FGSM
and AI-FGSM, respectively. The horizontal axis refers to
input images’ SSIM with respect to the original image, and
the vertical axis refers to the output’s SSIM with respect to
the original image.

For more adversarial attacks on faceswap GAN from AI-
FGSM, see Appendix C

Further experiments When increasing or deceasing the
max perturbation amount, ✏, we get Fig. 3,where we plot
the relationship between input dissimilarity and generation
dissimilarity. The range of ✏ that we choose were 0.01, 0.03,

Fig. 4: An adversarial example successfully defended by the
perturbation of AI-FGSM from faceswap autoencoder. We
can see that there is noticeable distortion towards the eyes and
mouths.

0.05, 0.1, and0.2. For the potted lines, the lower the better,
indicating that for a lower perturbation amount, it can disrupt
the output more. From it, we see that the AI- FGSM exceeds
both I-FGSM [22] (blue) and NI-FGSM [25] (green) meth-
ods in attack efficiency across perturbation amounts. Though
previous experiments show that under the same maximum, I-
FGSM scores better, we can see that under the same input
perturbation, AI-FGSM disrupts output generation more, and
for the same output disruption, AI-FGSM has the higher input
similarity.
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F. Disrupting Face-Swapping Neural Networks

Attack results. In Table VII, we see that in the face-
swap attack results, comparing to previous methods, AI-FGSM
resulted in a higher attack perturbation under the same epsilon
value, however, we can see that this comes at the expense of
input perturbation amount, which we would further discuss.
Overall, under the same max perturbation amount, alpha value,
and iteration number, we see that AI-FGSM achieved the best
results of 0.524 SSIM for generated image similarity, lowest
of all. For generated results, we see that the output quality be-
comes much lower with small perturbations. Many generated
images achieve dis-formed eyes and mouths, while the worst
results achieved paler skin and inaccurate facial expressions.
One pair of the results is visualized in Fig. 4 This proves
effective in discerning generated images with non-attacked
images. We see that compared to StarGAN, this model’s attack
effusiveness is much lower. StarGAN models may achieve
results that completely change the output color to black or
white, but this only results in a change in facial generation. We
suspect this is because of three reasons. Primarily, the training
methods are trained to recreate original images from trained
altered or warped images. Thus, because the training data was
augmented, it is possible that this type of model would show
resistance against perturbed results. Secondly, because it is
an autoencoder model, the encoder results may reduce the
effects of noise on the final generation, and changes within
the encoder output may not affect the generator to produce
output. Thirdly, because this model was trained extensively,
sparse data may be a problem.

V. CONCLUSION

In our work, we propose three novel algorithms of image
disruption to attack image classification models and image
translation models. In these models, namely AdaGrad Iterative
Fast Gradient Sign Method, RMSProp Iterative Fast Gradient
Sign Method, and Adam Iterative Fast Gradient Sign Method,
incorporate variable step size in Iterative Fast Gradient Sign
Methods, a novel approach compared to previous attacks.
We show that the variable step size feature in our novel
methods increases attack efficacy by decreasing the number of
iterations to converge, increasing generated image disruption
amount or misclassification rate, and decreasing input image
perturbation. Our extensive experiments in image classification
attacks show stronger results than the previous state-of-the-
art methods in white-box, black-box, and ensemble attacks.
We show that with or without incorporating image augmenta-
tion methods, our model consistently outperforms vanilla and
previous methods. Extensive experiments in image translation
attacks show that our algorithm achieves similar efficacy on
face changing algorithms. We show that, in image translation
attacks, our algorithm of attack disrupts image generation
more than previous state-of-the-art methods, while maintaining
a higher similarity of the input to the original. Finally, we
show that our novel algorithm achieves significant results when
attacking deepfake models, showing potential in AI security
defenses against malicious facial manipulation.
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APPENDIX

A. Detailed Algorithm

Here, we summarize SI-AI-TI-DIM method in Algorithm
2. Removing Step 10 and Si(·) in Step 6 and 7 turns it into
AI-DIM attack, removing Step 10 and Di(·; p) in Step 6 and
7 turns it into SI-AI=FGSM attack, and replacing Step 6 and
7 with Eq.25 turns it into AI-TIM attack.

Algorithm 2: SI-AI-TI-DIM
Input: A clean example x with ground-truth label

ytrue;a classifier f with loss function J ;
Hyper-parameters: Perturbation size ✏,
maximum iterations T ; diverse input translator
Di with probability of apply random padding
p; number of scale copies m; a gaussian kernel
W; decay factor �1,�2

Output: An adversarial example xadv

1 ↵ = ✏/T ;
2 s0 = 0, g00 = 0, xadv

0 = x;
3 for t = 0 to T � 1 do
4 gt = 0;
5 for i = 0 to m� 1 do
6 Fetch gradients by

rxJ (Di(Si(xadv
t ); p), ytrue);

7 Sum all the gradients as
gt = gt +rxJ (Di(Si(x

adv
t ); p), ytrue);

8 end
9 Average the gradients as gt =

gt
m ;

10 Convolve the gradients by gt = W ⇤ gt;
11 Update st+1 and g0t+1 by

g0t+1 = �1g
0
t + (1� �1)

gt
kgtk1

,

st+1 = �2st + (1� �2)gt � gt,
;

12 Perform bias correction using
ĝ0

t+1 =
g0

t+1

1��t
1
, ŝt+1 = st+1

1��t
2
,;

13 Update xadv
t+1 by Eq.28;

14 end
15 Return xadv = xadv

T

B. More Visualization of Attacking StarGAN and Faceswap

GAN

Here, we randomly select and showcase a group of original
input images, their corresponding adversarial examples, their
disrupted outputs and their undisturbed outputs in Fig.6. The
adversarial images are crafted on face-swap autoencoder using
AI-FGSM. We see that there is humanly perceptible distortion
towards the individual’s eyes.

C. More Visualization of Attacking Image Classification Mod-

els

We also randomly select 4 original input images, and their
adversarial examples in Fig.7, which are generated on an
ensemble of models using SI-AI-TI-DIM. We see that the
perturbations made by AI-FGSM are imperceptible.

Fig. 5: An adversarial example successfully defended by the
perturbation of AI-FGSM from StarGAN. The left column
is the original image, the middle column is the adversarial
input images, and the righted column is the disrupted output
images. We see that there is imperceptible perturbation on
the adversarial inputs, but obvious distortions in the generated
images.
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Fig. 6: Randomly selected adversarial examples on
faceswap autoencoder using AI-FGSM. The first column is
the original input images, the second column is the perturbed
masks that are added to the original, the third and fourth are
the disturbed outputs, and the last two are the undisturbed
outputs, as a reference.

Fig. 7: Randomly selected adversarial examples on an
ensemble of models using SI-AI-TI-DIM. The upper row
refers to the original images, and the lower row refers to the
adversarial images.




