TRt A, . PR

\i~

e L IRET I T A1 A

B L
SR BIK

TRPHINLES : Eihm X

1 ST s o R 2 b A

=
—

W@ H: LBPNet: Inserting Local Binary

Patterns into Neural Networks to Enhance

Manipulation Invariance of Fake Face Detection




LBPNet: Inserting Local Binary Patterns into Neural Networks to
Enhance Manipulation Invariance of Fake Face Detection

Chen Sida
Shanghai World Foreign Language Academy

sidachen2003@gmail.com

Abstract

Fake face detection is an essential yet under-explored area, because faces generated by modern Gen-
erative Adversarial Networks (GANs) are virtually indiscernible by human observers. A recent work
inventing the GramNet [ /9] proposed using global texture information as heuristic, because approaches
in the past rely on features that are largely lost after image corruption and are not generalizable to
different GANs. However, our theoretical reasoning and empirical studies both lead to the realization
that their GLCM descriptor, as a global texture descriptor, is still not robust enough in all cases of image
manipulation, because it doesn’t take enough pixels into account, making it distortion-prone. Statistical
analyses show that LBP is more generalizable to different GANs, and also reaches high consistency in
outputs after image manipulation. Motivated by this finding, we implemented a Convolutional Neural
Network with a ResNet backbone that uses LBP to enhance its global texture perception, effectively
describing the texture at various semantic levels in an image with improved robustness. We conducted
experiments with our model on images generated from StyleGAN and StyleGAN2, as well as images
manipulated by different filters, and showed that our model reaches better and more consistent perfor-
mance during image manipulation or in cross-domain settings, especially when images are subjected to
Gaussian noise, in which we reached a performance increase from 82% to 90%. We open-sourced our
code at https://github.com/Josh—-Cena/lbpnet.

Keywords: Texture descriptor, Local binary pattern, Fake face detection

1 Introduction

With the rapid development in Generative Adversarial Networks (GANs) [12, 3, 13, 14], fake face gen-
eration has been a field of increasing attention in recent years. The images generated are of such high
quality that no human observer could possibly discriminate them from real faces. In Figure 1, three
out of the six are generated using the latest generative model, StyleGAN2 [14], while the other three
are real. Can you tell the fake from the real?' Because computer-synthesized fake faces are so highly

' Answer: the 1, 3, 6 faces are fake


https://github.com/Josh-Cena/lbpnet

Figure 1: Three of these faces are generated with StyleGAN2 [14] and three are real people’s photos.
Can you tell which ones they are?

deceiving, political and social concerns naturally arise, such as-forged faces being used to bypass face
recognition checks, generate prank photos, and spread false information on the Internet. This weakens
the credibility of mass media, exposes security vulnerabilities, and creates social unrest.

As human efforts in detecting fake faces have mostly been in vain (proven empirically by the example
above), a fake-face classifying neural network becomes an urgent need. Existing algorithms make use
of different information, including color distribution [”], reflection spectrum [10, 15, 17], and texture
fingerprints [4, 21, 19] to classify images as “real” or “fake”, but many of them have severely degraded
performance when images have been manipulated, or when the network is trained and tested using im-
ages from different GANs, due to the information they rely on not being robust enough. As image
manipulations and difference among generative models significantly distort those cues that neural net-
works like ResNet [9] and Co-detect pick up, it becomes vital to direct the neural network to focus on
more robust features that are inherent to the target.

A recent work by Liu et al.; named GramNet [19], proposed using global textures as a robust feature
to address the cross-GAN and image manipulation issues, and conducted a series of empirical studies to
support their hypothesis. Global textures are persisted after image manipulation and tend to be more con-
sistent among GANs than between fake and real. They used the handcrafted Gray-level co-occurrence
matrix (GLCM) [£] to describe global texture, but still, their own experiments suggested that the GLCM
as a heuristic is not able to describe the texture robustly in every case, particularly when the image is
passed through a blur or noise filter. For more details, see Section 3.1.

In this paper, we propose a new architecture, named LBPNet, which inserts the local binary pattern
(LBP) [24] as texture descriptor into image classification networks to achieve high manipulation ro-
bustness in all scenarios. We conducted variable-controlled empirical studies with LBP and GLCM as
texture descriptors on fake face image datasets, and discovered that while larger-scale textures are pre-
served almost perfectly even after severe image degradation, in all reception field sizes, LBP-described
textures are more resilient than GLCM-described ones. LBP also has more output dimensions under
similar setup, leading to richer information contained within the descriptor.



100
I ResNet
95 -

GramNet
§ 90 - B LBPNet
3 85
|S)
©
c 80 A
k)

S 754
?
& 704
65 -
60 -
SCvs. SC S2C vs. S2C SC vs. S2C

Figure 2: Our LBPNet has a significant performance boost when analyzing noise-filtered images, and
stays generalizable when the testing and training set are from different GANs. SC and S2C are two
datasets—StyleGAN-CelebA and StyleGAN2-CelebA. ”SC vs. S2C” is a cross-domain setting.

Our contributions are summarized as follows:

* We conducted theoretical and empirical studies to reveal that the GLCM applied to the original
GramNet [ 9] cannot satisfactorily handle manipulations- in different domains (i.e., blur, noise,
and down-sampling between the same or different GANs).  Compared with GLCM, in the same
domain (StyleGAN [13]), the consistency of LBP global texture description is improved by 4%,
6%, and 8% in the correlation of blur, noise, and downsampling, reaching 98%, 96%, and 98%,
respectively. In cross-data domains (StyleGAN [13] and StyleGAN2 [14]), the performance of
LBP in blurring and down-sampling is comparable to that of GLCM, but the noise has an absolute
improvement of 4%.

* We designed our LBPNet architecture by coupling the LBP descriptor with the classic ResNet
architecture, making the image classifier focus more on the texture information described by the
local binary pattern. The backbone of ResNet is used as a feature extractor, where each convo-
lutional layer generalizes the image to a higher semantic level. Meanwhile, an LBP analyzer is
applied to the output of each convolutional layer to describe their global texture. We open sourced
our code on GitHub: https://github.com/Josh-Cena/lbpnet.

* We reproduced GramNet proposed in the previous work [19], and crafted a bk-image dataset
of faces of mixed identities (real or fake) by training StyleGAN and StyleGAN2, following their
experiment setup. The dataset is further diversified by manipulating the images with various image
filters. The complete code to generate the dataset is also open sourced along with the model.

* We conducted in-domain and cross-domain training and testing on LBPNet and GramNet. The ex-
periment demonstrates that the performance of LBPNet is more manipulation invariant and com-
plements the shortcomings of GramNet, as shown in Figure 2. Especially in Gaussian noise, the
prediction accuracy is improved by 6%, while in other manipulations, it is the same as GramNet.


https://github.com/Josh-Cena/lbpnet

2 Related work

In this section, we will briefly introduce the progress in related fields. First, we will explore modern
image generating models available in the wild. Then, we will introduce the principal methods for iden-
tifying generated faces, comparing them with our approach. Lastly, we will enumerate a few examples
of LBP and other texture descriptors in computer vision, and explain why LBP has the potential to yield
promising results.

2.1 GAN-generated fake faces

Goodfellow was the first to coin the term Generative Adversarial Networks (GANs) [7], describing a
GAN as “a generative model G that captures the data distribution, and a discriminative model D that
estimates the probability that a sample came from the training data rather than (G. The training procedure
for G is to maximize the probability of D making a mistake”. Further work has been done to apply GANs
to areas including text generation, image generation, game Al, etc.

Specifically, in the field of fake-face-generation, the most widely used GANSs are the StyleGAN fam-
ily, developed by the team of T. Karras. The first generation, Progressive Growing of GANs (PGGAN)
[12], reached state-of-the-art performance in both variation and quality with three innovations: (1) pro-
gressive training with inputs of improving quality; (2) using minibatch standard deviation; (3) normal-
ization in the learning rate and feature vector of generator and discriminator. The group went on to
develop StyleGAN [13], which took an alternative approach of using style-based generation rather than
directly providing the generator with the latent code. The image quality was further improved by remov-
ing normalization artifacts, enhancing image smoothness, and correcting eyes and teeth that do not have
natural positions, the resulting architecture known as StyleGAN2 [14].

Besides StyleGAN, popular models include StarGAN [3], which trains a single model across multiple
datasets and domains. It is targeted towards partial face forgery, e.g., changing facial expressions or
attributes, so it won’t be the main topic of this-paper, which focuses on entire face synthesis.

2.2 Fake face detection

Based on our survey, we divided fake face detection into two categories: leveraging texture information
and semantic information. Semantic information refers to any feature that may be picked up by human
observers, e.g., earrings, letters, illumination, etc., while texture information often relies on computer
analysis of pixel values and is almost completely ignored by human discriminators.

Semantic analysis often relies on understanding of how objects appear in real life. S. Hu et al. ana-
lyzed corneal highlight to detect inconsistency in the reflection spectrum [10]. Similarly, the reflectance
intensity of skin regions under different wavelengths can be used to discriminate between “natural light-
ing” and “synthesized lighting” [15, 17]. These solutions are more viable than detecting objects, because
the latter do not appear consistently in every image. Corneal highlight is also unlikely to be disguised,
compared to mouths and noses, which may be masked (especially in the current pandemic). However,
semantic information are prone to corruption as JPEG compression or color distortion during digital
transmission easily hides away small-scale details, which limits their usage.

Texture information yields more corruption robustness due to its ability to capture large-scale patterns.
Liu et al. proposed the GramNet architecture to detect periodic patterns in face images on various



semantic levels [19]. They used the gray level co-occurence matrix (GLCM) to describe the texture
and drew the conclusion that global textures are more corruption-robust. It is also proven that each
GAN leaves its unique “fingerprint” in generated images, which could be extracted and identified [21].
However, this approach fails when the GAN producing the image is not included in the training set, and
reliable detection relies on knowledge of all GANs in the wild, a seemingly unviable task.

Apart from gray-scale texture information, color distribution information has also been scrutinized
[22, 2]. However, CNNs are observed to reach similar performance when color is removed [19], imply-
ing that color distribution may not be the key influencer in fake face detection networks. By a similar
argument, Mummadi et al. [23] questioned the hypothesis that correcting the strong texture bias in
CNNs by improving shape bias can lead to improved performance [6], because the approach of styliza-
tion merely increases data augmentation and variable-controlled experiments yield similar performance
in non-shape-bias-enhanced images.

An attention map was proposed to improve the face detection algorithm’s modularity and explain-
ability [4]. Cao et al. utilized this attention-based approach to detect fake faces, achieving promising
performance within compressed images by pairing each high-quality input with a low-quality one and
extracting compression-insensitive features [I]. This approach is analogous to ours because we also
attempt to extract compression-invariant features, yet our use of texture descriptors yields extra explain-
ability and doesn’t require knowledge of any high-quality input in training phase.

2.3 Texture descriptors in face detection

There are numerous ways to describe “texture” contained in a image, a lot of which already picked
up by deep learning algorithms in face recognition.” Local Binary Pattern (LBP) [24] and Histogram
of Gradients (HOG) [20] are two such descriptors. This section is a compilation of miscellaneous
investigations in how LBP and HOG can be used in computer vision.

A. Dosovitskiy and T. Brox conducted an interesting experiment to reverse-deduce the original image
given a texture descriptor (LBP and HOG for-two such examples) [5]. The promising results implied
that these descriptors carry much richer information than expected.

Kabbai et al. used LBP in place of SIFT in image matching algorithms to achieve greater robustness
towards corruption [I1]. They demonstrated that after down-sampling or adding noise, LBP is still
able to capture texture feature, while SIFT, which relies on intricate edge information, loses grasp. This
means LBP and the similar HOG would perform better under image corruption to describe the global
texure. LBP and HOG have been used jointly to indentify faces under infrared [25]. Yassin et al. did
an extensive comparative study using LBP, HOG, SIFT, SUREF, etc. in face recognition [16]. VLC and
LBP have demonstrated superior performance by reaching the highest true positive rate at every false
positive rate. This enhanced the confidence in using LBP and HOG for fake face detection as they will
be able to-accurately capture human face features.

In the area of fake face detection, Liu et al. first incorporated canonical texture descriptors [19].
They used GLCM and contrast coefficient to describe the local- and global-textures, and by plotting
the correlation against the “reception field size” of the GLCM, argued that global textures are better
preserved after compression. Their final architecture used the Gram matrix, a variant of the covariance
matrix, to describe the global texture. We will demonstrate how the direct use of texture descriptors in
the network architecture improves explainability and performance.



3 Our method

Liu et al.’s proposal of the GramNet [19] is very promising, but even from a theoretical perspective,
its performance is degraded when the image is manipulated by a blur or noise filter, which can also be
observed from their own experiments. We propose to replace the core texture extractor, Gram Block,
with LBP to enhance its capability of recognizing global textures during manipulation. In this section,
we will use empirical studies to illustrate how LBP can be more capable of describing textures, and
propose our own architecture.

3.1 Pitfalls of using GLCM to describe global texture

Liu et al. used a Gray Level Co-occurrence Matrix (GLCM) [£] to describe the global texture. GLCM,
as its name (a co-occurrence matrix) suggests, measures how often two pixel values co-exist. Given a
pair distance r, it outputs a matrix G of size 256 x 256, where G;; is the number of occurrences of a
pixel with value ¢ which is r pixels to the left, right, above, or below a pixel with value j. To scalarize
this matrix, we use a weighted sum of every cell:

256
C = Z li — j|*Gi; (1)

1,7=0

which is called the “contrast ratio” of the image.

To verify that global textures are preserved after image manipulation, they computed the contrast ratio
for each image before and after processing. As the “reception field size” increases, the Pearson correla-
tion between the contrast ratios also increases, indicating a stronger retainment of texture information.

Figure 3: GLCM takes at most four points into consideration when describing textures.

However, GLCM only takes at most 4 points within distance 7 into account, which is far from be-
ing descriptive of the fexture, especially global texture. It is evident from their own experiment results
that the handcrafted GLCM descriptor has degraded performance when applied to noise-filtered im-
ages (see Figure 4), which is because of the limited descriptiveness of GLCM. It is very likely that the
“co-occurrence” matrix will be significantly distorted when every pixel is shifted randomly and inde-
pendently by the noise mask.



100

90
80 1
70
60 -
50
40 -

original downsample  blur noise

Prediction accuracy

Figure 4: The performance of GramNet, reproduced from the PGGAN vs. CelebA-HQ experiment
group in Table 3 of Liu et al.’s original paper [19]. There is a large drop in performance in noise-filtered
images, and also a greater error.

3.2 Are global textures described by LBP manipulation invariant?

Because GLCM appears to be non-ideal, we decided to adopt LBP-as an alternative descriptor in the im-
age classification network. LBP has been widely used in computer vision to analyze texture information,
particularly in face recognition. It takes more pixels into account, and generates descriptive results of
the local binary pattern, as the name goes, as opposed to a scalar contrast index. Therefore, we believe
that leveraging LBP as the heuristic for texture recognition can be more manipulation-robust and achieve
better results. We conducted some empirical analysis to verify that LBP is truly manipulation-robust in
describing global textures.

3.2.1 Mechanism of LBP

Local Binary Patterns [24] is a texture descriptor that summarizes the occurrences of different binary
patterns of a given size. It takes two parameters: the reception field radius r and the number of points 7.
First, the image is divided into cells of size 16 x 16. For each pixel z in the cell, the pixel values of
the n pixels within radius » from x are compared to z, in a given order (typically clockwise). We index
these pixels in that order as y; to y,,. Figure 5 gives a rough illustration of how pixels are selected.

Figure 5: How pixels are selected based on the central pixel in our LBP algorithm. The pair distance r
varies from 1 to 3; n is 4 in the first one and &8 otherwise.



For each pixel, the comparison result will be a binary number d with length n describing the “pattern”.
Mathematically, this distribution descriptor is calculated as

d= is(yi, x)-2",
i=1

1, ify, >z
0, ify; <z

(2)
S<yi7 [E) =

Each pixel has a value of d associated, which can be understood as its own “local binary pattern”. The
transformation from the original image to the local binary patterns is exemplified in Figure 6.

3 1 4 1 5 4 31 12 31 2

2 6 5 3 0 191} 14 47 71

:T_E_ 9 7 9 80 144 0 21 0

3 2 3 8 4 100 26@ 160
32

195
97 193

6 2 6 4 3 0

N

Figure 6: A toy example demonstrating how an image is tranformed to an LBP matrix. The radius r is 2
and the number of points n is 8. the pixel with value 2, when comparing values to its 8 neighbors in the
arrow’s direction, yields the pattern 10111111, which becomes 191.

To turn the pattern distribution into a feature vector, we traverse the image and compute the histogram
of d, i.e., how often does each pattern occur, yielding a histogram vector of dimension 2", corresponding
to all possible values of d. In the last step, the histograms from each cell are concatenated.

The LBP algorithm is known for its transformation invariability, and compared to the covariance
matrix, LBP can also be variable in its reception field size. From its principle, we also reason that it is
more manipulation-robust, because it takes more pixels into account when describing texture patterns.
This means that corruption to a few pixels or local sites will not distort large-scale textures as other
non-corrupted points balance out the fluctuations. To further prove our point, we conducted a statistical
analysis on our dataset using LBP to verify that it is manipulation-invariant.

3.2.2 Statistical analysis of LBP’s performance at capturing global texture

We followed a similar experiment setup as Liu et al. [19]. The dataset generation method is dis-
cussed in Section 4.1. We used the LBP implementation from skimage . feature”, with radius r €
{1,2,5,10, 15,20}, and number of points n = max{8r, 16}. In other words, except for r = 1 where

https://scikit-image.org/docs/dev/api/skimage. feature.html#skimage.feature.loc
al_binary_pattern


https://scikit-image.org/docs/dev/api/skimage.feature.html#skimage.feature.local_binary_pattern
https://scikit-image.org/docs/dev/api/skimage.feature.html#skimage.feature.local_binary_pattern

n = 8, n is equal to 16 for all the other radii. The output of the LBP algorithm is a vector with length
2",

To verify that global textures are more robust over long distances, we would increase the radius of
our “reception field” and find whether how correlated the textures are before and after modification.
For each image I and their corresponding processed image F'(I), we computed their LBP vectors X =
LBP(I),Y = LBP(F(I)), and found the pearson correlation coefficient px y. We took the average of
all images, and use this value p as the “correlation factor” at this distance.

Pearson correlation coefficient is a measure of how linearly related two sets of values are. Given two
one-dimensional vectors X and Y, the correlation coefficient is given by

Y- 0wm-9
VE @i -2 S — P

The closer r is to 1, the more linearly correlated the two data vectors are. Therefore, the pre-
diction from our hypothesis is that as the pair distance in the LBP algorithm increases, the Pear-
son correlation coefficient also increases. We used the implementation of Pearson correlation from
numpy . corrcoef?.

p (3)

1.0 1.0 1.0
. | | |\ —————
o) S <
5] 0.9 A g C 0.9 A 5] 0.9 1
& i E E
[ [ [
8 8 8
c 08 2 0.8 c 08
o =] =]
= SC (GLC B SC (G 5 SC (GLC
2 g7~ SceLem 274 Sceem o7 — SC(GLCM)
S SC (LBP) S SC (LBP) S SC (LBP)
—— S2C (LBP) —— S2C (LBP) —— S2C (LBP)
0.6 — T T T T 0.6 — T T T T 0.6 — T T T T
12 5 10 15 20 12 5 10 15 20 12 5 10 15 20
pair distance pair distance pair distance
(a) Down-sample (b) Blur (c) Noise

Figure 7: Pearson correlation of texture feature vectors between original images and their manipulated
counterparts. There is generally more correlation as the pair distance increases, i.e., when the feature
becomes more global, while LBP shows better consistency on larger scales.

The complete results are shown in Figure 7. The correlation factor generally displays an increasing
trend when the reception field radius increases from 5 to 20, and reaches a correlation of p > 0.95 for all
modification methods when r = 20. Interestingly, the behavior is less deterministic when r < 5, because
the correlation decreases in both (a) Down-sample and (b) Blur. We reason that this is because there is
a behaviorinconsistency when 7 increases from 1 to 2: more points are taken when r» = 2. We couldn’t
have taken-16 points when r = 1, however, because there are just 8 points with distance 1 from the
central pixel. Nevertheless, the global optimum for all curves occur at r = 20, verifying our hypothesis
that the LBP is able to capture global texture information after image modification in the same way as
Gram matrix.

It is evident from Figure 7 that LBP is more manipulation-invariant at larger scales, achieving about
5% increase in correlation compared to GLCM. Moreover, it also shows good generalizing abilities,

3Shttps://numpy.org/doc/stable/reference/generated/numpy.corrcoef.html

9


https://numpy.org/doc/stable/reference/generated/numpy.corrcoef.html

because the curves from SC (StyleGAN-CelebA) and S2C (StyleGAN2-CelebA) have nearly the same
values everywhere.

The superiority of LBP is, from our description of its mechanism, that it is actually a description of
patterns of a given size, rather than merely counting the co-occurrences between discrete points. The
latter can be subject to great fluctuations when pixels are randomly adjusted by the noise filter.

3.3 Architecture of LBPNet

To directly compare the effectiveness of LBP to the baseline model, GramNet, we designed our model
with the same ResNet-18 [9] backbone, substituting the Gram block with an LBP block. ‘'The outputs
from each convolution layer are concatenated to obtain a feature vector, which is then passed through a
fully connected layer. The architecture is illustrated in Figure 8. In the next subsections, we will describe
in detail the designs of the backbone and our LBP blocks.

o H o o o =2 o o o =2 o o o H o o o H o o o (<3 <)
E&-5-5 §#-35-5 S8-5-8 S8-5-8 E&-5-8 S§#-5-5
< B < < < B < < < /W < = < M. < = <= /" < = < < <

ndur
AUO0D

Figure 8: Our LBPNet architecture. ® represents vector concatenation, while & represents vector addi-
tion. The input is a gray-scale raw image, and output is the biclassification result from Softmax (“real”
or “fake”). The main backbone (on the bottom) has the exact same dimension settings as the original
ResNet-18 [9], and the LBP blocks have similar design as GramNet [19].

3.3.1 ResNet backbone

The LBPNet architecture uses ResNet-18 as the backbone. Like other Deep convolutional neural net-
works, ResNet is primarily composed of a series of convolution layers which extract feature maps on
different semantic levels. ResNet inserts shortcut connections between every convolution layer, which
permits residual functions to be passed through the layers and thus mitigates the problem of degradation
as the convolution depth stacks up and the residual approaches zero.

We could view each layer in the ResNet as a feature extractor, which turns an image into a feature map,
or a lower-level feature map into a feature map of features. This permits the network to continuously
recognize semantic information of larger and larger scale. This permits us to integrate our LBP algorithm
directly on top of the convolution output: the LBP will describe the distribution of features extracted on
different semantic levels.

ResNet-18 is the model from the set of PyTorch implementations* with the smallest number of con-
volution layers. We selected this model because as we are attaching an LBP block to every layer, we

*https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py

10


https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py

Table 1: The dimensions for each LBP analyzer block’s input and output.

Level Inputdimensions LBP radiusr Output dimensions

1 mxnx 1 1 B0 x1x32
2 m X n x 64 1 B0 x1x32
3 m X n x 64 2 (m-n)x1x 32
4 m X n x 128 4 (m-n)x1x 32
5 m X n X 256 8 (m-n)x1x 32
6 m X n x 512 8 (m-n)x1x 32

need to restrict the output dimensions to a reasonable size. However, the same design principle can be
applied to deeper convolutional networks, just by distributing the insertion of LBP blocks more sparsely
(e.g. one block every four convolutional layers).

3.3.2 LBP analyzer block

We insert our LBP analyzer block at six levels of convolution. In each block, the input image is first
convolved by 32 convolutional map layers b!, 0 < [-< 32. The outputs are passed through the LBP layer
which can be described by:

7
=0

where I is the input image with dimensions enlisted in Table 1, B; is the convolutional filter with radius
r,and v; = 2! are the weights. Equation 4 is equivalent to Equation 2, re-written in vector form to reveal
its nature as a convolution process. The radius 7 increases as the image passes through each convolution
layer, because the feature maps are becoming increasingly “global”, hence the reception field sizes of
the LBP layers also increase.

The output from the LBP, before being transformed into a histogram (which is, essentially, a pooling
layer), has the same dimensions as the original input. After pooling, the LBP is vectorized so that outputs
from different levels can be concatenated.

F=L,aL, & - oL, (5)

where L/ is the vectorized feature map from the i-th LBP analyzer block. F is the final feature vector,
which, after the final fully connected layer and softmax layer, yields the prediction result.

In our model, the feature vectors are concatenated across the layers to obtain a final result. The
rationales behind this are:

1. Each component in the feature vector can be viewed as a unique pattern contained in the im-
age. All the components are of equal importance, and by concatenating them, we obtain a fair
representation of the holistic feature distribution within the image.

11



2. A similar architecture has been proposed by Liu et al. [19], and through this similar setup, cross-
model performance comparisons can be conducted fairly. It will not be hard to improve the inte-
gration method, or use an alternative backbone other than ResNet-18.

4 Experiment

4.1 Crafting dataset

Original (a) Down-sample (b) Blur (c) Gaussian noise

Original (a) Down-sample (b) Blur (c) Gaussian noise

Figure 9: Results of different image manipulation techniques applied to the CelebA dataset. Note that
some images from this dataset (such as the second here) are already in gray-scale, hence no conversion
is needed.

We first acquired a dataset of original and processed faces, which we will also use for model train-
ing. Following the previous work [19], we chose CelebA [18] as the dataset for real faces. It contains
200,000+ face images, each labeled with style attributes, but which we will not pick up. We utilized three
common image modification techniques to simulate image corruption in the real world: down-sampling,
blur, gaussian noise.

* Down-sampling. Block size is set to (4, 4), and the block reducer is an arithmetic mean, which pro-
duces a quite convincing down-sampled image. We used the implementation of block_reduce’

from skimage .measure.

Shttps://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.measure.blo
ck_reduce

12


https://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.measure.block_reduce
https://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.measure.block_reduce

e Blur. We used the implementation of PI1L,. ImageFilter®, with the defalt setup of a convolution

kernel with size 5 x 5:

— = =
_o O O
_ o O O

_ o O O

—_ = e

(6)

* Gaussian noise. This is achieved by generating a normal distribution mask with . = 0,0 = 16,
applying to the original image, and then normalizing pixel values to [0,255]. In mathematical
terms, we first compute the mask

=
exp | —

oV 2

2
I—),a:m
g

2 2

And then apply this mask to the original image with normalization:

I'=1+M

"o o__

255

max(I’) — min

(I’) (Ifij

— min(I'))

(7)

(8)

We randomly selected 20,000 images from CelebA, converted them to gray-scale, and applied the
filters above. The results of manipulation for two images are shown as examples in Figure 9. To make
manipulation more convenient, all images are pre-processed with the gray-scale filter. This step is jus-
tified by numerous research papers demonstrating that CNNs are more focused on texture information

than color information.

Next, we trained a StyleGAN’ and a StyleGAN2® model on CelebA with pre-trained parameters,
and acquired two fake face datasets: StyleGAN-CelebA and StyleGAN2-CelebA, each with size of about
3000. They will be used to conduct in-domain and cross-domain experiments. We also applied the image
filters discussed above, i.e., down-sample, blur, noise, to these fake faces.

Table 2: Performance of different LBPNet compared to baseline models with in-domain settings, tested
with images processed with different manipulations.

Dataset Model Original | Down-sample Blur Noise
ResNet [9] 93.1+£0.5 80.7+ 1.2 752409 | 72.1+1.6
StyleGAN-CelebA [13] | GramNet [19] | 95.0£3.2 | 90.7 £ 2.8 926 +1.9 | 82.1+5.7
LBPNet 94.0 £ 1.7 91.3+19 |930+14 909422
ResNet [9] 90.7+ 3.3 76.0 £ 1.0 78.0+2.1 | 69.5+1.5
StyleGAN2-CelebA [14] | GramNet [19] | 97.2 4+ 1.5 89.0+1.1 |90.6+1.0 | 77.1+£4.2
LBPNet 97.5+32| 904+21 | 89.1+18 | 82.6+26

Shttps://pillow.readthedocs.io/en/stable/reference/ImageFilter.html
"https://github.com/NVlabs/stylegan
8https://github.com/NVlabs/stylegan?

13


https://pillow.readthedocs.io/en/stable/reference/ImageFilter.html
https://github.com/NVlabs/stylegan
https://github.com/NVlabs/stylegan2

4.2 Implementation and setup

Our model is implemented with PyTorch. The datasets are the ones collected as aforementioned, with
1k real faces and 1k fake faces for training. For each model, the learning rate is fixed at 10~°. We trained
for a maximum of 10 epochs, validating with a 500-image holdout set of mixed identities (original or
manipulated) at the end of each epoch. The models are then tested using another test set consisting of
1k faces.

The experiment consists of three sets: two in-domain experiments using StyleGAN-CelebA (SC)
and StyleGAN2-CelebA (S2C) as both training and testing set, and one cross-domain experiment using
StyleGAN-CelebA for training and StyleGAN2-CelebA for testing. The baseline model is ResNet-18,
the backbone model. In addition, we implemented our own version of GramNet [19] to compare out
performance to. Image sizes are all rescaled to 256 x 256, the size that the original CelebA dataset uses.

100 100
95 | Il ResNet 95 | BN ResNet
I GramNet [ GramNet

g 90+ B LBPNet g 90+ B LBPNet
O 85 2 85
|9} 19}
@© ©
c 80 A c 80
.© e
G 754 6 754
9 9
& 70+ & 704

65

60 -

SCvs. SC S2C vs. S2C SCvs. S2C SCvs. SC S2C vs. S2C SC vs. S2C
(a) Original images (b) Down-sampled images
100 100
95 | I ResNet 95 4 I ResNet
W GramNet [ GramNet

g 90+ BEm LBPNet g 90+ BN LBPNet
O 85 2 85
(o} o
© ©
c 80 A c 80
o o
G 754 6 754
k5 3
g 704 g 704

65 65

SC vs. SC S2C vs. S2C SCvs. S2C SCvs. SC S2C vs. S2C SC vs. S2C

Figure 10: The performance of the three CNN models: ResNet, GramNet, and LBPNet, on different

(c) Blurred images

(d) Noise-filtered images

datasets. SC stands for StyleGAN-CelebA, and S2C, StyleGAN2-CelebA.

4.3 Experiment results

All the experimental results are summarized in Table 2 and Table 3. Figure 10 provides visualization of

all data combined.

14



Table 3: Performance of LBPNet compared to baseline models with cross-domain settings.

Training set | Testing set Model Original | Down-sample Blur Noise
ResNet [9] 87.3+2.5 84.1+4.6 72.4+3.7 | 63.4+9.3
StéﬁS&N' Stycl‘;fiﬁgz' GramNet [10] | 96.4+1.4 | 862429 | 841418 | 79.9+6.2
LBPNet 96.1+£16 | 88.4+70 |85.2+4.1|83.1+93

The error values mostly stay at around 2.0, signaling a comparatively consistent performance of all
models. However, LBPNet experiences a significantly higher fluctuation in prediction accuracy in the
cross-domain setting. The same behavior was observed in the GramNet paper [ 9] as well, where the er-
ror once reached 12.0 (Table 3, PGGAN - PGGAN, Noise), and is generally higher than our experiments
by about 5%. We reason that this is because of the unique texture fingerprints inherent to each GAN [21],
described in Section 2.3. Liu et al. used PGGAN as their cross-domain model, while we adopted the
novel StyleGAN2. Because StyleGAN and StyleGAN?2 operate with similar principles (style-based gen-
eration), the texture fingerprints are also likely to be more similar than between PGGAN and StyleGAN.
Based on this hypothesis, we predict that if the cross-domain experiment is extended to PGGAN or other
non-style-based GANs, we should observe a larger fluctuation in performance than currently.

LBPNet improves in most scenarios of image processing compared to GramNet (8 out of 12 exper-
iment setups), while consistently outperforming the ResNet baseline. LBPNet has a most significant
improvement in the case of Gaussian noise, reaching at:most ten-percent increase in prediction accu-
racy. There is a slight regression in one setting involving blurred images and two with original images.
We reason that these are the cases in which GLCM is actually behaving properly as a texture descriptor,
because the co-occurrence pattern is not distorted by manipulation. Gaussian blur is a uniform ma-
nipulation applied to every pixel through a convolution kernel, and thus the GLCM texture is preserved.
Contrastly, down-sampling involves information loss, and Gaussian noise is non-uniform. In these cases,
LBP extracts textures more robustly than GLCM, thus bringing a performance boost.

Compared to Liu ef al.’s reported results (one set of experiments is shown in Figure 4), our reproduced
results are generally worse. This could be due to a lack of training data, because their training used a
more diverse (20k) dataset, with higher resolution (512 x 512). However, due to the computing power
and resource limitations, we were unable to fully replicate their setup. Still, under the same dataset and
computing conditions, LBPNet has a better performance.

5 Conclusion

In this paper, inspired by the approach of using global textures in fake face detection [19], we ex-
plored the possibility of incorporating LBP as a texture extractor in image classification networks like
ResNet [9]. Our statistical studies show that LBP carries rich texture information that is robustly pre-
served in all cases of image manipulation, and is also generalizable to cross-GAN settings. Subsequently,
we incorporated LBP into the ResNet-18 backbone as an LBP analyzer block, and used it to extract tex-
tures on various semantic levels from the convolution output. The model’s performance in manipulations
such as Gaussian noise and down-sampling shows a consistent improvement compared to the past re-
search using GLCM as descriptor. In cross-domain settings, LBPNet is able to generalize global texture
information across images generated by different GANs, and also reaches high prediction accuracy.

15



References

(1]

(2]

(31

(4]

(5]

(6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

S. Cao, Q. Zou, X. Mao, and Z. Wang. Metric learning for anti-compression facial forgery detection, 2021.
5

S. Chen, T. Yao, Y. Chen, S. Ding, J. Li, and R. Ji. Local relation learning for face forgery detection.
Proceedings of the AAAI Conference on Artificial Intelligence, 35(2):1081-1088, May 2021. 2, 5

Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo. StarGAN: Unified generative adversarial networks
for multi-domain image-to-image translation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018. 1, 4

H. Dang, F. Liu, J. Stehouwer, X. Liu, and A. K. Jain. On the detection of digital face manipulation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 2020. 2, 5

A. Dosovitskiy and T. Brox. Inverting visual representations with convolutional networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, June 2016. 5

R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, and W. Brendel. Imagenet-trained CNNs
are biased towards texture; increasing shape bias improves accuracy and robustness, 2019. 5

1. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.
Generative adversarial networks, 2014. 4

R. M. Haralick, K. Shanmugam, and I. Dinstein. Textural features for image classification. IEEE
Transactions on Systems, Man, and Cybernetics, SMC-3(6):610-621, 1973. 2, 6

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016. 2, 10, 13, 15

S. Hu, Y. Li, and S. Lyu. Exposing GAN-generated faces using inconsistent corneal specular highlights,
2020. 2,4

L. Kabbai, A. Azaza, M. Abdellaoui, and A. Douik. Image matching based on LBP and SIFT descriptor. In
2015 IEEE 12th International Multi-Conference on Systems, Signals Devices (SSD15), pages 1-6, 2015. 5

T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive growing of GANs for improved quality, stability,
and variation, 2018. 1, 4

T. Karras, S. Laine, and T. Aila. A style-based generator architecture for generative adversarial networks,
2019. 1, 3,4, 13

T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila. Analyzing and improving the image
quality of StyleGAN, 2020. 1, 2, 3,4, 13

Y. Kim, J. Na, S. Yoon, and J. Yi. Masked fake face detection using radiance measurements. Journal of the
Optical Society of America Association, 26(4):760-766, Apr 2009. 2, 4

Y. Kortli, M. Jridi, A. A. Falou, and M. Atri. A comparative study of CFs, LBP, HOG, SIFT, SURF, and
BRIEE techniques for face recognition. In M. S. Alam, editor, Pattern Recognition and Tracking XXIX,
volume 10649, pages 184 — 190. International Society for Optics and Photonics, SPIE, 2018. 5

J. Li, Y. Wang, T. Tan, and A. K. Jain. Live face detection based on the analysis of Fourier spectra. In A. K.
Jain and N. K. Ratha, editors, Biometric Technology for Human Identification, volume 5404, pages 296 —
303. International Society for Optics and Photonics, SPIE, 2004. 2, 4

Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. In Proceedings of
International Conference on Computer Vision (ICCV), December 2015. 12

16



[19] Z. Liu, X. Qi, and P. H. Torr. Global texture enhancement for fake face detection in the wild. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, June 2020. 1, 2, 3, 5, 6, 7, 8, 10, 12,
13,14, 15

[20] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer
Vision, 60(2):91-110, 11 2004. 5

[21] F. Marra, D. Gragnaniello, L. Verdoliva, and G. Poggi. Do GANSs leave artificial fingerprints?, 2018. 2, 5, 15
[22] S. McCloskey and M. Albright. Detecting GAN-generated imagery using color cues, 2018. 5

[23] C. K. Mummadi, R. Subramaniam, R. Hutmacher, J. Vitay, V. Fischer, and J. H. Metzen. Does enhanced
shape bias improve neural network robustness to common corruptions?, 2021. 5

[24] T. Ojala, M. Pietikinen, and T. Menp. Multiresolution gray-scale and rotation invariant texture classification
with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7):971-987,
2002. 2, 5,7

[25] Z.Xie, P.Jiang, and S. Zhang. Fusion of LBP and HOG using multiple kernel learning for infrared face recog-
nition. In 2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS),
pages 81-84, 2017. 5

17



6 Acknowledgements

My first experience with fake faces came from a news report on https://thispersondoesnote
xist.com/, a website that shows faces generated by StyleGAN2. Although I had some exposure to
generative models, I never came to realize that they could be so deceptive. Being a debater, I started
pondering about the social implications this technology could bring, and thus actively explored the
area of fake face detection to search for a countermeasure. I came up with this topic when I read Liu
et al.’s paper on GramNet, which instantly interested me. I had been reading about image analysis
techniques at that time, and things like GLCM, Gaussian blur, etc., struck me as familiar. My instincts
told me, however, that there’s something non-ideal about their use of GLCM in global texture analysis,
so I decided to take an alternative approach of use LBP, another concept I dug up in my exploration.
GramNet was especially modular in nature, almost plug’n’play style, so I easily adapted it to my own
design.

This project benefited greatly from the courtesy of UCloud, who sponsored us with a free 2-GPU
server instance for four months.

My parents were always there to support me and push me forward. I'm especially grateful for their
understanding and allowing me to stay up late at night to write my paper (they always advocate for going
to bed early, but I'm usually productive after midnight).

My tutor taught me valuable skills like how to read research papers, and helped me formalize my
research plan when I presented my idea to him.

I’d like to thank my math teacher, Zhao Zhe, for being extremely lenient on homework submissions.
I had two coinciding deadlines, and he generously postponed the math paper submission date as much
as possible, so that I could devote my full effort to this paper to make it a polished one.

Several of my friends helped me proof-read my work and make it easily understood. They knew al-
most nothing about artificial intelligence or computer science in general—but that’s exactly what helped.

18


https://thispersondoesnotexist.com/
https://thispersondoesnotexist.com/
https://www.ucloud.cn/

