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DAISnet: Depth-aware Amodal Instance Segmentation
using 3D Feature Extraction and Occlusion Refinement

Jingcheng Yang

Shenzhen College of International Education, Shenzhen, China

Abstract. In recent years, classical computer vision problem, e.g. instance segmentation, has made great
progress. However, amodal perception, has yet not been paid much attention. Amodal instance segmen-
tation, as the representative of amodal perception, requires additional segmentation of occluded regions
of an object. Amodal instance segmentation is difficult, as it requires a high-level understanding of visual
inputs and features. Amodal instance segmentation is also important to down-stream tasks like robotics
vision and autonomous driving as it offers vehicles additional spacial information to traverse in complex
situations, while enhancing machines’ ability to navigate path to target and object retrieval in complex
environments.

On the principle that depth is an inherent part of occlusion, we propose a novel depth-aware amodal in-
stance segmentation network - DAISnet, to fully utilize depth information in amodal instance segmentation.
We introduced methods to implicitly and explicitly use depth information for amodal instance segmenta-
tion. DAISnet’s backbone is entirely trained using depth features, making it a fully depth-aware network.
We propose processing methods like regional depth normalization and tangent normal computation for
implicit depth and 3D feature extraction. We propose an Occlusion Edge refinement layer that utilizes lo-
calized depth to infer potential regions of occlusion. We improve upon works on shape prior memorization
by creating a 3D encoder that is capable of creating embeddings based on depth and 2D shape features. It
is expensive to obtain pixel accurate depth and amodal segmentation ground truths in depth and amodal
segmentation problems. To address this, we propose a new Real-time Generated Synthetic Dataset, also
named as DAIS-RGSD to overcome this problem. DAIS-RGSD includes pixel accurate depth and amodal
masks, as well as photo-realistic RGB images. We evaluated our method using the KINS benchmark, and
received remarkable results proving the importance of depth information and the effectiveness of DAISnet.

Keywords: Instance Segmentation, Amodal Perception, Deep Learning, Synthetic Data Collection, Depth
Prediction
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DAISnet: Depth-Aware Amodal Instance Segmentation Jingcheng Yang

1 Introduction

Amodal instance segmentation is the segmentation of the visible and occluded region of all objects from an image,
as shown in Fig 1. Visible objects can be segmented with a high degree of accuracy thanks to progress made in
the last few years. Segmenting occluded regions of an object, is much more difficult to achieve. There is no single
probable solution for some occluded regions as Fig 2 demonstrates, and it requires a high level understanding
of the image semantics to achieve reasonable predictions. The annotation of amodal instance segmentation is
also expensive, as it requires annotators to thoroughly examine all possibilities. Although the task appears
ill-posed, past works have demonstrated that high quality amodal instance segmentation is achievable and
helpful. Amodal instance segmentation is also a necessary stepping stone for tasks that require greater amodal
awareness, such as 3D amodal segmentation and amodal reconstruction. Amodal instance segmentation is also
useful in numerous down-stream tasks. Self-driving vehicles can make better decisions on road using occlusion
and spacial information. Occlusion information offers robust information on the order of vehicles for better
navigation, while spacial information can help deduce viable parking regions. Amodal instance segmentation is
also important in robotic vision. Navigation towards an occluded object, efficient retrieval of objects in complex
environments, and preemptive measures all benefit from accurate amodal instance segmentation predictions.

Fig. 1: Amodal instance segmentation segments the entire object while (modal) instance segmentation only
segments visible regions

Past works regarding amodal instance segmentation involves the use of Mask R-CNN architecture which have
achieved state of the art performance in visible instance segmentation. [1–5] Direct implementation of such
architecture have yielded reasonable results. Most amodal instance segmentation networks improve upon this
architecture. Notably, Xiao et al.[6] introduced a code-book mechanism that conducts feature mapping based on
pretrained 2D shape awareness. Amodal mask are refined through this process, improving the accuracy of such
predictions. However, there are limitations in representing 3D objects in a 2D context, which neglects actual
spacial relationship between objects, as well as it’s 3D features. We believe depth is inherent to occlusion, as it
provides information on possible occluded regions and additional features of visible regions. More information
about the visible regions of an object can help make better predictions on amodal predictions.

We improve upon previous solutions by creating a depth-aware amodal instance segmentation network (DAIS-
net) through a monocular depth prediction layer pretrained on synthetic and real-life data. Depth information
is incorporated into the backbone feature extraction pipeline to make our network fully depth-aware. Depth in-
formation is regionally normalized and computed into a normal tangent map through a normal tangent encoder.
Normal maps help describe the change in 3D surface while being distance invariant. To best utilize tangent and
depth information, we introduce the Edge Occlusion and Tangent Occlusion modules which relies on normalized
depth and tangent information of objects to predict possible regions of occlusion, which is essentially a rough
prediction of amodal masks. We base this from the principle that areas directly touching visible objects with
smaller depth (closer to the observer) have a very high possibility of being the occluder. We refine amodal
mask predictions using depth information for 3D shape prior mapping, which provides rich features even under
circumstances with obscure shapes. We used a 3D real-time graphics engine to generate synthetic data of ob-
jects with occlusion, photo-realistic colors, depth and amodal segmentation masks. This workflow allows us to
generate large quantities of data with accurate pixel-level ground truth based on various scenarios for training.

Our contribution can be summarized as:
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DAISnet: Depth-Aware Amodal Instance Segmentation Jingcheng Yang

Fig. 2: There can be multiple amodal predictions given the nature of uncertainty. P3 is the closest to ground
truth, but both P1 and P2 are possible predictions. This shows that it’s difficult to obtain accurate results in

amodal instance segmentation

– A novel depth-aware network for amodal instance segmentation.

– A synthetic dataset that can be used to train depth prediction, 3D feature extraction and amodal instance
segmentation tasks.

– A novel approach at extracting depth information using normal tangent maps and regional depth normal-
ization.

– A post refinement RoI mask head for amodal completion using depth and tangent information.

– A 3D codebook mechanism for amodal mask refinement based on 3D shape prior.

2 Related Work

2.1 Instance Segmentation

Instance Segmentation segment and classify instances’ visible part separately from the image. Amodal instance
segmentation extends directly from research in instance segmentation, which itself extended from research
regarding object detection. Ross at el. [7] introduced the R-CNN network, which selects region of interests from
an image and conduct convolutions on these regions. Regional CNNs have supersede all previous implementations
in performance and accuracy. Ross at el. [8] introduced the Fast R-CNN network that significantly faster than R-
CNN, which was later improved again into Faster R-CNN [1], which improved proposal quality and performance
by using a Region Proposal Network for proposal generations.

He et al. extends Mask R-CNN [2] to instance segmentation by introducing a Mask Head, which conducts
segmentation on detected objects using work derived from Long at el. [9] on semantic segmentation using Fully
Convolutional Networks(FCN). He also proposed RoI Align solution in place of RoI pooling which achieved
pixel accurate region of interests. Chen et al. [3] incorporated Cascade techniques [4] to Instance Segmentation
and improved accuracy through stage specific refinement. Ding et al. [5] extends cascade instance segmentation
by taking advantage of separate stages to establish a bidirectional relation between the mask and the bounding
box. By introducing a mask guided RoI align method, the bounding box and mask prediction continues to refine
each other for accurate instance segmentation. Mask Scoring R-CNN [10] aims to reevaluate predicted masks
by giving lower scores for masks with bad quality, and thus improve mask prediction.

2.2 Monocular Depth Estimation

Monocular depth estimation use one image to inference depth of each pixel to achieve a 2D-3D projection.
Monodepth [11] proposed a self-supervised training pipeline for monocular depth estimation. They used a FCN
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DAISnet: Depth-Aware Amodal Instance Segmentation Jingcheng Yang

to predict disparities for rectified stereo images and supervise it via an image reconstruction loss. Godard et
al.[12] extends the monodepth model to a video-based monocular depth estimator. Performance was improved
by introducing a Per-Pixel Minimum Reprojection Loss, Auto-Masking Stationary Pixels, and Multi-scale Esti-
mation. Fu et al. [13] directly regress the depth through a CNN and introduced a method for monocular depth
estimation that relies on space-increasing discretization, differing from past implementation by its smaller ar-
chitecture and faster convergence, achieved very accurate results. Lee at al. [14] utilizes planar guidance layers
in multiple stages of decoding, which utilizes light and color changes to generate surface information for depth
prediction.

2.3 Amodal Instance Segmentation

As work regarding modal instance segmentation begins to yield state-of-the-art results, research have been done
to extend instance segmentation to occluded region of objects. Some early work involves directly extending
and modifying existing R-CNN architecture to support amodal instance segmentation [15–17] Li at al. [18]
used an iterative bounding box method to filter amodal instance segmentation results from a CNN. Xiao et al.
[6] used a 2D-shape prior codebook that conducts feature matching to enhance amodal instance segmentation
predictions. Zhang et al. [19] introduces a semantics-aware distance map that allows for pixel level amodal
segmentation and occlusion order prediction. Others have tried to include abstract feature awareness to achieve
more accurate amodal segmentation predictions [20] Yang et al. [21] extended amodal instance segmentation
using multi-perspective images that are taken at positions determined by the network. Deng [22] used depth
information to predict amodal bounding box of 3D objects with large success. This demonstrates that 3D visual
features can enhance amodal predictions overall and the 2.5D visual features are correlated to 3D object sizes,
locations, and orientations.

3 Method

Fig. 3: Network overview

3.1 Overview

Our network is improved upon the Mask-RCNN network that was adapted for amodal instance segmentation. We
first obtained depth information using a monocular depth prediction network [14]. We implemented different
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DAISnet: Depth-Aware Amodal Instance Segmentation Jingcheng Yang

methods of using depth information for amodal segmentation. Fig 3 demonstrates our complete network.
Predicted depth information is first passed to the feature extraction backbone alongside RGB data.The backbone
extracts feature maps and generate proposals using the Regional Proposal Network; Since depth information
was included in feature extraction, this entire process is depth-awared.

Depth information is also explicitly given to the RoI pooling layer to generate pooled depth regions with the same
dimension as the object proposals. Box proposals are then used to generate visible mask predictions through
the visible mask head. The visible mask and depth information are both passed to the 3D-aware refinement
layers, which consists of occlusion edge and 3D shape prior refinements.

The occlusion edge refinement layer uses localized depth values to deduce possible regions of occlusion, which
is then given to an occlusion refinement head that refines the amodal mask using occlusion edges. The 3D
shape prior is based upon 2D shape prior works done by Xiao et al. [6]. The shape prior mechanism uses
deep learning to effectively encode and decode shapes. Statistical operations such as clustering can be done on
encoded shapes, which is used for shape matching and refinement based on prior seen shapes. 3D shape prior uses
localized depth information during encoding, which means that the stored codebook contains 3D representations
of objects. After refinement through both modules, the network returns the final amodal instance segmentation
results.

3.2 Synthetic Data Collection

Fig. 4: High-fidelity street scene created within Unity Engine using premade assets. The camera will move
through the street, and objects will be placed around it. This mimics many of the images in KITTI which was

taken in a narrow street with vehicles.

To create a dataset that contains both segmentation and depth data, we decided to develop a synthetic dataset
using Unity Engine©. Similar to the KINS dataset used in past research, our synthetic dataset focuses on
amodal instance segmentation of Pedestrians and Vehicles in street and road scenarios. For our street scenario,
we setup a 3D street that spans for 100 meters long. Buildings and other items are placed for realism and to
ensure our network knows how to ignore distractions. The camera moves randomly through the street within a
fixed boundary.

Cxyz


−5 ≤ x ≤ 5

1 ≤ y ≤ 2

0 ≤ z ≤ 50

V


Vn = r(2, 3)

Vp = [ r(−10, 10), γ, z + r(10, 50) ]

Vr = [ 0, r(0, 360), 0 ]

(1)
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Where for vehicle V : Vn denotes number of vehicles in the scene, Vp denotes position vector of a specific vehicle
, γ denotes a constant y value for vehicle height, Vr denotes rotation of V euler angles, r(min,max) specifies a
random value between two inclusive values.

We assigned bounding boxes for each of the object and use it to detect for collisions. Overlapping objects will
continue to move until it found a suitable location. For pedestrians, we opted for 2D cutouts placed among the
street using a very thin collision box. The ratio of vehicles and pedestrians is roughly 1:3. The directional light
in the scene is also randomly changed per image, so to make sure our dataset is not prone to shadow and light
variances. Post processing image effects such as bloom, which blurs bright regions of an image to mimic bright
light is also used for photo realism.

After the scene is set up, the camera will render four passes. The RGB pass - objects with proper lighting and
albedo textures. The Depth pass, where a fragment shader will compute linear depth between 0 and 50 meters
using geometric data. Unlike other depth datasets like KITTI which uses LiDAR, our ground truth depth does
not contain gaps and is pixel accurate, this significantly improves the quality of our ground truth data. The
final two passes are modal and amodal masks of each generated object, which is generated by assigning an unlit
color to the target geometry, while other objects only effect it through occlusion for visible mask capture.

While the street scenario focuses on Pedestrians and few cars in a complex environment, the open roads scenario
generates data with lots of vehicles. A simple road network in the form of a graph is established. Vehicles will
move through this road network, simulating traffic and road scenarios. Our camera follows one of these vehicles,
for every random interval between 1 and 2 seconds, the camera will initiate a scene check to determine is enough
vehicles are infront of it for valid data capture.

Fig. 5: The Openroads subset of RGSD, which contains RGB, depths and annotations of amodal and visible
masks.

3.3 Monocular Depth Prediction

To predict amodal instance segmentation on datasets like KINS which do not provide depth data, we rely on
a pretrained monocular depth prediction module. We used the BTS network [14] with a backbone trained
using ResNet50 on the KITTI Eigen Split depth dataset. We also trained the BTS network [14] on our own
DAIS-RGSD dataset. This monocular prediction module is inserted before the actual backbone. By doing this,
our network is able to predict a depth map of our RGB input, and send it to the module. The depth information
is also passed to the RoI Head module for occlusion edge and amodal proposal calculations.

Depth values are in an entire different representation than RGB values within the range of 0-255. Our model
normalizes RGB values using standard deviation and mean. Notably:
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z =
x− µ

σ
(2)

Where x denotes a pixel of a single channel, z denotes the normalized pixel of a specific channel, µ denotes the
mean of

∑w
i

∑h
j xij , σ denotes the standard deviation of

∑w
i

∑h
j xij

The same normalization is applied over depth d, but its exponential depth value is first linearized to achieve
linear depth:

dl = log10(d) (3)

Fig. 6: Monocular depth prediction from a single RGB image from the KITTI dataset, the model used the
BTS Network with a DenseNet161 backbone.

It is not possible for depths to be normalized on a per object basis, as that would require the complete seg-
mentation of objects within the image accurately. Since we want the network to be entirely depth-aware from
the beginning, other normalization methods have to be used. The approach using visible regions to normalize
depth per object however, is used in the Edge Occlusion refinement head.

Although it is not possible to completely remove object distance variance entirely without object data, we can
significantly reduce its impact using a Regional Depth Normalization scheme. The scene is being split into
subregions occupying a slice of the full distance, the size of a subregion is called the step size or Ds. We use the
floor function to acquire the subregion of any given depth:

Dir = Di −
⌊
Di

Ds

⌋
×Ds (4)

Where Di represents the depth value of a single pixel, Dir represents the base reference distance / subregion
this pixel belongs to. We obtain the results shown in Fig 7 B, although the floor function divides the image into
subregions, there exists a hard edge between regions. For this, we introduce a soft floor function:

y = x− sin(2πx)

2π
(5)
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Where x is rounded down to the greatest integer less than x with a smooth interpolation between integers. We
use this function to pass in Di/DS as x, obtaining the result in Fig 7 C.

Fig. 7: Regional depth normalization pass.

Although this method greatly decreases variance caused by difference in distances, regional normalization still
means that objects will have some variance in distance as seen in Fig 7 D. This could be minimized by decreasing
the step size, but it will make the data less perceivable to the backbone and feature extraction. To address this,
we introduce an offset value, which creates multiple regional depth maps at different global offsets. We specify
the number of offset maps as Dm, which in our setup is 4 by default. Each offset map should have a different
offset value, which is obtained simply with Ds/Dm. This means we are creating Dm different regional depth
maps over equal intervals between the step size Ds. This produces multiple regional depth maps as shown from
Fig 7 D to Fig 7 G. A Dm of 4 is suitable as each object now has a representation of its regional depth in
roughly all possible ranges. The remaining variance in distance can be ignored due to its insignificance. This
makes individual objects almost invariant to distance, as it includes a normalized depth representation of itself
in ranges [(0, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1)] approximately. This means the the backbone will receive
4 additional channels as depth inputs, for each regional depth map. Experiments on the effect of various Dm

and Ds on the quality of object detection and mask prediction will be conducted.

3.4 Normalized Tangent Map

Depth information however, has extreme variance shifts by nature. Fundamentally, RGB values represent the
intensity of each primary color; Depth values represents distance from the camera, this poses a problem, as two
objects of the same orientation, shape and feature at two distances will produce completely different sets of
depth values. Thus the problem of normalizing global depth to match the RGB input is ill-posed, as there is no
perfect way to normalize the depth of every object prior to object extraction and segmentation. Which poses a
problem in using depth information for backbone feature extraction.

A way to remove distance variance of depth information is to compute normal tangent maps. Normal tangent
maps represent the tangent of a surface at a specific pixel in the form of a normalized vector, where its xyz
component translates to RGB respectively, creating an image of 3 channels. Tangent normal maps have been
used extensively in computer graphics as it is an easy way of representing 3D surfaces without actual geometry.
In our case, we essentially obtained 3D features of an image with depth invariance. Tangent normal maps are
also represented in RGB, which our network backbone is already designed and tested for.

To compute tangent normal maps, we must first obtain the partial derivatives of every pixel. Because depth data
is discrete, we can only estimate its gradient at a given pixel. We use the Sobel–Feldman operator, a discrete
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DAISnet: Depth-Aware Amodal Instance Segmentation Jingcheng Yang

Fig. 8: Normal tangent information obtained using the same depth map in the previous figure. The gradient
maps show the raw outputs of a 5x5 Sobel filter over Dx and Dy. The final normal tangent map uses a Dz of

0.7.

differentiation operator that produces approximations of gradients. For a kernel size of 3x3, where a gradient of
only the adjacent pixels are accounted for, we denote adjacent pixels to origin pixel o from a to i.

 a b c
d o f
g h i

 (6)

We obtain a gradient G between o and any pixel by dividing it’s difference by distance.


a−o√

2
b− o a−c√

2

c− o 0 f − o
g−o√

2
h− o i−o√

2

 (7)

To obtain the gradient in a given direction, we must first obtain the dot product of our directional vector zx in
the x direction or zy in the y direction with the unit vector û:

gx = û · zx (8)

gy = û · zy (9)
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From this we obtain the dot product from o to each pixel with respect to our directional vector zx and zy. By
multiplying gx and gy with gradient G, we obtain the gradient in x and y direction Gx and Gy.

The unit vector in the x direction is: [
1
0

]
(10)

The unit vector ĉ of c is: [
1/
√
2

−1/
√
2

]
(11)

The dot product in the x direction is: [
1 0

]
·
[
1/
√
2

−1/
√
2

]
= 1/

√
2 (12)

We obtain the dot product gx and gy for every pixel, and multiply it with the gradient G at that pixel, obtaining:

Gx =

 −a−o
2 0 a−c

2
−(c− o) 0 f − o
− g−o

2 0 i−o
2

 Gy =

−a−o
2 −(b− o) −a−c

2
0 0 0

g−o
2 h− o i−o

2

 (13)

To extract the kernel from Gx and Gy, we simply divide each value by its difference. To simply our calculations,
we multiply it by a constant factor of 2 to obtain Dx and Dy:

Dx =

−1 0 +1
−2 0 +2
−1 0 +1

 · Z Dy =

−1 −2 −1
0 0 0
+1 +2 +1

 · Z (14)

Where Dx and Dy represent the gradient approximation in the X and Y directions for a certain pixel. Z
represents the depth map, which is convolved over by a 3x3 kernel depicted by the 3x3 matrices. This produces
an output image of equal size to the depth map using 1x1 padding. To produce an estimate for the tangent at
a certain pixel, we first produce the following vector:

Ti =

−Dxi

−Dyi

Dz

 (15)

Where i represents a single pixel, Ti represents the tangent at pixel i, Dxi and Dyi represent the approximate
gradient in x and y direction at pixel i. Dz is a global constant that represents the magnitude of the Z component,
this effects how sensitive the final tangent is with respect to change in Dz and Dx. There is no specific value
for Dz because the strength of both the normal map and the depth map which it derives from is arbitrary, thus
Dz is also arbitrary. The higher Dz is, the less sensitive our tangent is to change and vice versa. For our model,
we used a Dz of 0.8.

Ti can be considered the raw tangent of a given pixel, the final normal tangent map is obtained by calculating
the unit vector of Ti. This is done by dividing each vector by its Euclidean norm:

T̂i =
Ti

|Ti|
=

Ti√
Dxi

2 +Dyi
2 +Dz

2
(16)

Where T̂i is the normalized tangent vector of pixel i.

The sobel filter can be expanded to larger kernel sizes. This is useful as larger sobel filters could detect gradient
changes on larger scales, where smaller 3x3 filters are prone to local variations that do not contribute to useful
feature extraction. By closely observing the calculations for a 3x3 sobel filter, we note that the dot product
and gradient results in the inverse of the squared magnitude with a negative sign if it is against the gradient
direction and vice versa. Thus, for an arbitrary kernel size of N :
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

A11 A12 A13 . . . A1N

A21 A22 A23 . . . A2N

A31 A32 A33 . . . A3N

A41 A42 A43 . . . A4N

...
...

...
. . .

...
AN1 AN2 AN3 . . . ANN


(17)

Where for Ayx we denote j and i as its vector from the center o:

j = y − N − 1

2
− 1 (18)

i = x− N − 1

2
− 1 (19)

Using i and j, we can formulate a general equation for sobel filters of any size N :

Gxij =
i

i2 + j2
(20)

Gyij =
j

i2 + j2
(21)

Using this equation, we obtain for instance the default 5x5 Sobel filter in the X direction used for normal tangent
calculations:


−5 −4 0 4 5
−8 −10 0 10 8
−10 −20 0 20 10
−8 −10 0 10 8
−5 −4 0 4 5

 (22)

It is multiplied by a constant factor of 20 to obtain integer values.

3.5 Depth-Aware Feature Backbone

Our backbone is based on ResNet50. It received with RGB input in the dimension of (N , Cin, H, W ), or (1, 3,
2656, 800) by default. The monocular depth prediction module produces a tensor of size (1, 4, 2656, 800) when
using a subregion Ds of 4.

We simply add the depth tensor as addition channels using the by concatenation, which results in a tensor of
size (1, 7, 2800, 400) for RGB + depth. To accommodate for this increase in channel count, the first layer of
our network is also modified. To best preserve the pre-trained weights, we preserve the weights for the original
three channels, and repeat it for the subsequent channels. The same applies for the normal tangent input, which
3 channels.

Because objects can occur at various different sizes in instance segmentation, feature maps that are either too
complex or simple may have negative effects on classification and segmentation The backbone thus generates
feature maps at different dimensions as implemented in Mask R-CNN. Since we require depth as an explicit
information in proceeding layers, a separate set of depth maps is generated alongside the feature maps, it is
scaled using Bilinear interpolation.

3.6 ROI Pooling

Region of Interest Pooling is the extraction of the bounding box portion of the feature map for evaluation. Mask
R-CNN used an heuristically defined equation to specify which feature map to use:

f(α) =

⌊
4 + log2

(√α

224

)⌋
(23)

Where α is the area of the proposal box, f(α) is the feature map index.

Since depth information is required for occlusion edge calculation on a pixel to pixel accuracy, depth maps are
also scaled to the same resolutions as the feature maps, and pooled alongside feature maps.
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DAISnet: Depth-Aware Amodal Instance Segmentation Jingcheng Yang

Fig. 9: The backbone extracts features from an image, usually hundreds of channels. Each channel is sensitive
to one or multiple visual features. Multiple feature maps of various resolutions (extracted at different layers of

the backbone) and channels are shown below.

3.7 Occlusion Edge Refinement1

Fig. 10: Ground truth (ideal) masks at occlusion edge. Occlusion edge is focused on inferring the unseen based
on visible and depth information. The pooled depth data shows strong feature resemblance to the occlusion

edge, it is easy to infer these regions are potentially occluded.

If the visible region of an object is touching another region that is in front of it, it is highly likely that the
object is being occluded in this direction. The occlusion edge module predicts segments of a visible mask that
is possibly being occluded instead of being its natural boundary. We use the intersecting edge between amodal
and visible ground truths masks to generate the ground truth for occlusion edge. A Gaussian blur is applied
over this edge for relative tolerance. Loss is calculated as:

Leo =

a∑
i=1

a∑
j=1

ℓ(σ(eij), êij) (24)

Where Loe denotes the loss for occlusion edge, eij denotes the probability of pixel (i, j) being the edge of
occlusion, êij denotes the ground truth of pixel (i, j) being on the edge of occlusion, α denotes the size of the
pooled feature map, σ denotes the sigmoid activation function.

Notably, ℓ denotes the Binary Cross Entropy loss:

ℓ(y, ŷ) = − 1

N

N∑
i=1

yi · log ŷi + (1− yi) · log (1− ŷi) (25)

1Occlusion Edge and Edge Occlusion can be used interchangeably, OE and EO stands for the same module.
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The sigmoid activation function σ(x) is:

σ(x) =
1

1 + e−x
(26)

Where x is the predicted probability of a given value.

To use occlusion edge information for amodal mask prediction, we introduce Amodal Attention. Amodal At-
tention is the estimation of where the amodal mask might be, a separate mask head will use this attention
information to complete the amodal mask. Amodal Attention is different from Occlusion Edge as it is already
generated from other information, namely the visible mask and a rough prediction provided by Mask R-CNN’s
proposal network. Instead of overriding the amodal attention, we introduce an Occlusion Refinement layer, with
loss Lor that uses the same loss function as Loe. This refinement layer will correct the current amodal attention
using its occlusion information, regions further behind an object cannot be an object’s occluded region, this can
only be provided by the Occlusion Edge layer.

Fig. 11: Three different setups for the Edge Occlusion module.

We also had different implementations of the occlusion edge module as seen in Fig 11. The first implementation
is an micro FCN network, this network deals normalized depth information as a classification and segmentation
problem. The second implementation copies the structure of the amodal mask head, with deep convolutions to
extract and use features from the normalized depth map for occlusion edge prediction. The third implementation
is a simple 1x1 convolution that simply infers potential areas of occlusion based on the depth value on that pixel.
The setup can be selected based on training configurations, the best will be chosen during the experimentation
phase.

3.8 3D Shape Prior Refinement

The fundamentals of predicting the unseen region is based o n the seen regions and features to look for similar
seen shapes, or shape prior for amodal completion. This is already implicitly achieved by the amodal prediction
mask head. Weights are already trained to correspond visible features to amodal shapes, this is why the Mask-
RCNN network can make reasonable amodal predictions without any modification - shape memorization is
implicitly achieved during training. The shape prior refinement process, first introduced by Xiao at el. [6]
further exploit this principle by explicitly storing and matching seen shapes for refinement.

The shape prior refinement process can be simplified into a problem of finding and matching different seen
shapes. It is much easier to find similarities between shapes if it could be quantified. This is achieved through
embeddings, which converts complex and high-dimensional data into simple, low-dimensional representations.
This method is widely used in machine learning, because simpler data - like numbers and vectors, can be
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Fig. 12: The encoder-decoder network setup, embedding is obtained at the middle of the network. Training
conducted by setting the loss as the difference between the output and the input, in which case they should be

the same.

easily compared. It is very difficult conversely, to directly compare similarities between different shapes. A
simple network consisting of multiple convolutional and deconvolutional (transposed convolutional) layers. The
embedding is obtained in the middle between the convolutions (down-sampling) and the deconvolutions (up-
sampling). By formulating a training method where given an input shape should result in the exact same shape
on output, we are essentially training a network that is capable of encoding a low-dimensional representation
of shapes, and conversely decode it back into the shapes. We can simply split the model into decoding and
encoding functions for us to encode and decode embeddings.

We improve upon the shape prior refinement process by adding localized depth information as an additional
input channel. By adding localized depth values into the encoding process, embeddings generated by the encoder
effectively contains 3D surface features of the shape, which means that it now retains 3D memories of shapes.
This is useful as it means that shape refinement based on shape prior can be significantly more specific, as a
higher dimension allows for clearer distinction between different seen shapes. Shapes that appear to be similar in
2D might be vastly different when it is represented in 3D, which is something the original 2D shape refinement
process is insensitive to.

Fig. 13: Embeddings of a batch of 3D shapes. Each embedding vector has a dimension of 1x392. The image
shows a batch of embeddings with dimensions 32 x 392, which means it consists of 32 individual embeddings.

It is expensive to compare similarity against every single embedding, many shapes are also extremely similar.
We employ K-means clustering to cluster similar embeddings. This way, we only have to compare an embedding
against every cluster in the codebook to obtain the closest matching shape prior.

4 Experiment

The aim of our experiment is to evaluate and prove that incorporating depth information into amodal instance
segmentation tasks can yield better results. Because we have introduced a multitude of ways in which depth
information can be used, an ablation study will be carried out that evaluates the impacts of each module on
performance and different per module configurations.

4.1 Datasets

KINS Dataset For training and evaluation of our model, we used the KINS dataset [23] which provides
amodal and visible annotations of objects. The KINS dataset is based upon the KITTI dataset, which provides
the KITTI Eigen Split depth dataset for which our monocular depth prediction module is trained upon. This
ensure the quality of depth predictions while maintaining RGB as the only ground truth input for inference.
There is a total of 7474 images for training and 7517 images for evaluation. Annotations in the KINS Dataset
are stored in vector masks, it is rasterized into bitmasks prior to training. The KINS Dataset is widely used in
amodal instance segmentation research, many models were trained and evaluated using KINS. This provides a
common benchmark for comparasion between different methods.
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Fig. 14: A single image from the KINS dataset, complete with bounding boxes and amodal masks.

RGSD Dataset All synthetic data are captured in 1280 x 720 pixel resolution on an M1 Max using Unity
Engine. The synthetic training dataset comprises of 10000 city scenes, 10000 street scenes and 20000 open road
scenes. The validation dataset contains 1000 sets, where 400 are open road and 300 for both street and city.
It includes the RGB image, the ground truth depth, amodal and visible masks of objects stored in a bitmask
format.

4.2 Model Set-up

Depth Prediction Module Training of the Monocular Depth Prediction Module for KITTI is done using a
single RTX3070ti with 46375 iterations with a batch size of 2 over 14 epochs. The synthetic dataset is trained
over 19000 iterations with a batch size of 2 over 14 epochs. Both models used a learning rate of 0.0001 with 0.01
linear decay. To optimize training speed and memory usage, the depth prediction module is loaded in inference
mode during amodal instance segmentation, it does not take part in training. Although depth information is
inferred from RGB inputs, a single image always produces the same result. A cache mechanism is used to reload
depth data from disk if it has been predicted before. This reduces training time from 10 hours to 3 hours, more
than 3 times quicker.

Amodal Instance Segmentation The project is setup and implemented using a modified version of De-
tectron2 [24], which has a Mask-RCNN implemented using Pytorch and CUDA. Our project was trained on
Ubuntu 20 using Python 3.6, Pytorch 1.4 and CUDA 10.1. Training is conducted on single Nvidia Tesla V100
instances. We used the ResNet-50 weights trained on ImageNet Classification as our pretrained weight for our
feature extraction backbone, we also used weights from monocular depth prediction, as well as random weights.
Depending on the configuration, data like depth and normal tangent will effect the input channel count for
feature extraction. To preserve the pretrained weights, the first convolution layer will expand and repeat its
three channel weights. For an input channel count of 9, the pretrained weights will be repeated three times.
There are a total of 47979 iterations, the KINS dataset is further post-processed with random crop, rotation
and color filters to enlarge the dataset.

Learning Rate A base learning rate of 0.0025 was chosen for training, this works particularly well with
the pretrained ImageNet backbone. However, for randomly initialized weights, the loss becomes infinite or
not defined (due to division by zero) after a few hundred to thousand iterations depending on the configured
complexity. A lower learning rate solves this problem, but it also means the model might not be trained to its
best performance. Learning rate warmup is a typical approach for solving high loss training. Constant warmup
specifies a lower learning rate for a given number of iterations. Linear warmup increases the learning rate linearly
from zero for a given number of iterations. We observe that during training, both constant and linear warmup
methods are not suitable for our scenario; Loss either converge too slow, or the initial learning rate remains too
high. We introduce a smooth warmup method, which increases the learning rate at a given power:

lrw =
( i
t

)p

× f × lrf (27)

Where lrw is the warmup learning rate, lrf is the final learning rate, i is the current iteration, t is the warmup
iteration count, p is the warmup power, and f is the constant warmup factor.

For random weights, we used lrf = 1.0, p = 1.3, t = 15000.
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Fig. 15: Confusion Matrix

Fig. 16: Area of Overlap vs Area of Union

Post Processing Post processing of training data is commonly used to increase volume of the training set
without actually acquiring additional data. The KINS dataset provides 7000 images for training, which is
significantly lower than datasets used for instance segmentation and object detection for a task that is overall
more difficult. A post processing layer creates variants of the same image, such as flipping the image horizontally,
changing the contrast, and randomly crop the image. Post Processing is however computationally expensive,
it drastically increases training time. For the ablation study, post processing will be disabled for all tests. We
notice a 15% drop in performance with post processing disabled.

4.3 Metrics

Average Precision, or AP, is a method for evaluating performance and accuracy of object detection and segmen-
tation problems. For our evaluation, we used Average Precision, Mean Average Precision and Average Recall to
evaluate performance of different models.

The confusion matrix maps out all possible combinations of results as shown in Fig 15. If a result is predicted,
it is considered positive; If a result is not predicted, it is considered negative. If the prediction is correct, it
is considered true, otherwise it is considered false. Thus, we have True Positive TP , False Positive FP , True
Negative TN and False Negative FN .

An important metric in determining Bounding Box precision is the Intersection over Union, also known as IoU:
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IoU =
|A ∩B|
|A ∪B|

(28)

Where A, B describes the predicted and ground truth bounding box.

IoU is used to determine whether a prediction is True or False. This depends on an IoU threshold. If the predicted
IoU is above this threshold, the result is considered true. Using the confusion matrix, we can determine Precision
and Recall:

Precision =
TP

TP + FP
Recall =

TP

TP + FN
(29)

Precision depicts how many predictions are correct across all predictions. It evaluates how many correct predic-
tions are made among all predictions. Recall depicts how many correct predictions are made. It evaluates how
many correct predictions are made among all correct results.

Fig. 17: Average Precision is the area under a Precision Recall Curve, which is precision over recall.

We use the area under the precision recall curve to calculate Average Precision. However, the precision recall
curve is not a continuous function, so we can only obtain approximations of the area. One method is to use
rectangles to estimate area under the curve as shown in Fig 17.

Calculation of Average Precision is usually for a single class of objects. For the representation of all classes, we
use Mean Average Precision (mAP):

mAP =
1

N

N∑
i

APi (30)

Where N is the number of classes, APi is the average precision of a single class.

Similarly, Average Recall (AR) is twice the area under a Recall over IoU curve. Similar approximation methods
are used to calculate the area.

For both AR and AP, the number behind states the IoU threshold for determining true and false results. AR50

represents an average recall with 0.5 IoU threshold or 50%.

Comparisons To further evaluate our network’s performance, we will compare our best setup with other
commonly used methods such as Mask R-CNN and PANet. All networks used the KINS dataset for evaluation.
Post processing will be applied to our final setup during training.
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5 Evaluation and Ablation Study

Fig. 18: Amodal instance segmentation results from ImageNet weights using RGB and occlusion edge
refinement.

We conducted an ablation study on our network by testing out different setups and combinations of features.
The aim of our study is to evaluate how depth information improves amodal instance segmentation performance,
and what are the most effective methods of using the depth information. The complete table of results is shown
in Table 2. R, D, N O and S stands for RGB, Depth, Normalm Occlusion Edge and 3D shape prior respectively.
A checkmark ✓symbol denote this component is enabled for the given row, other special characters represent
the use of a variation of this component. Depth with N for example, means depth without normalization.
Abbreviations will also be used to describe configurations, the order of components follows that of the table.
For instance, random weights with RGB, depth without normalization, and normal tangent with medium sized
filter is described as Random R+DN+NM.

5.1 Backbone

Our feature extraction backbone used the ResNet50 architecture, by using a standard backbone, we can use
transfer learning to improve our network’s performance. A separate and complete ablation study is done for both
weights. We are using random weights because we want to evaluate the pure performance improvements from
using depth information. A backbone with pretrained weights that are obtained from other tasks may effect the
results of our study negatively. Conversely, most amodal instance segmentation networks utilize a pretrained
backbone feature extractor, which results in significant performance boost from using random weights. We will
evaluate how well depth information copes with pretrained weights that is not depth aware.

As seen in Table 2, there is around a 30% improvement in accuracy from random weights to ImageNet weights.
Imagenet R+N has an AP of 22.83, while Random R+N has an AP of 16.52 only. This demonstrates that even
for weights that were not trained on depth information still yields better results than random weights.

5.2 Depth

The most basic approach towards incorporating depth in amodal instance segmentation is by feeding it through
the feature extraction backbone. By doing this, the entire network will conduct instance segmentation and
amodal segmentation tasks using depth-aware feature maps.
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Table 1: Results on Amodal Instance Segmentation
R D N O S stands for RGB, Depth, Normal, Occlusion Edge and 3D Shape Prior

N stands for raw depth without normalization; S1 stands for regional normalization with subregion of 1; O1 stands for
regional normalization with offset interval of 1; M stands for medium sized sobel filter; L stands for large sized sobel

filter; V stands for visible only depth
Weights R D O R S AP AP50 AP75 APs APm APl AR1 AR10 AR100

Random ✓ 13.20 28.02 10.20 18.21 17.86 14.48 10.51 25.10 28.76
Random ✓ ✓ 16.52 31.49 15.60 22.26 21.28 16.87 11.91 27.72 30.14
Random ✓ N 16.42 31.64 15.50 21.68 20.52 17.22 11.96 27.72 30.14
Random ✓ 10.84 20.71 10.52 14.00 13.09 11.68 7.98 18.32 20.05
Random ✓ ✓ 9.55 20.10 8.02 12.20 11.74 10.08 6.72 16.98 19.03
Random ✓ 11.26 21.38 10.83 14.66 13.45 11.74 8.39 18.89 20.52
Random ✓ ✓ ✓ 16.13 30.71 15.26 21.56 20.52 17.59 11.16 26.77 29.21
Random ✓ ✓ 17.19 32.62 16.38 23.02 21.94 18.09 12.38 28.29 30.61
Random ✓ ✓ ✓ 17.17 23.57 16.30 23.58 22.44 18.15 12.68 28.59 30.91
Random ✓ ✓ ✓ 9.74 20.33 8.38 12.53 12.25 10.41 6.65 17.50 19.66
Random ✓ ✓ ✓ ✓ 10.11 21.34 8.50 12.99 12.37 10.61 7.30 18.46 20.59
ImageNet ✓ ✓ 22.83 40.77 22.97 28.54 26.53 22.17 15.94 33.41 35.36
ImageNet ✓ O1 22.19 39.90 22.26 27.97 26.22 22.36 15.76 32.67 34.64
ImageNet ✓ S1 22.35 39.93 22.49 28.20 26.39 22.42 16.00 33.04 33.04
ImageNet ✓ N 22.57 40.47 22.51 28.28 26.52 21.82 15.69 32.79 34.86
ImageNet ✓ ✓ 24.37 44.02 24.48 30.05 29.08 24.45 16.77 35.56 37.98
ImageNet ✓ M 17.35 32.55 16.32 22.32 20.82 16.96 12.84 26.76 28.50
ImageNet ✓ L 16.25 31.04 15.12 21.19 19.79 16.27 12.11 25.30 27.05
ImageNet ✓ ✓ 24.62 45.63 24.13 30.41 27.67 23.83 16.84 32.60 36.63
ImageNet ✓ V 24.01 45.58 22.92 30.14 28.49 23.58 16.88 32.55 36.62
ImageNet ✓ ✓ ✓ 23.11 41.22 23.44 29.11 27.36 22.74 16.39 33.90 35.93
ImageNet ✓ ✓ 25.41 44.98 25.64 30.73 29.27 24.59 17.45 35.81 37.89
ImageNet ✓ ✓ ✓ 23.00 40.80 23.48 28.59 27.02 22.60 16.23 33.65 28.15
ImageNet ✓ ✓ ✓ 17.13 32.32 16.05 22.26 20.67 16.93 12.46 26.33 28.15
ImageNet ✓ ✓ ✓ ✓ 16.93 31.72 16.16 22.27 2.23 17.53 12.73 26.64 28.43

Usefulness By concatenating normalized depth information consisting of 4 channels by default to the RGB
input, there is a 25% increase in AP from Random R to Random R+D. This demonstrates that using depth
information does result in significant improvements for amodal instance segmentation. To further examine
whether depth information can actually provide features for amodal instance segmentation, the network is
trained on depth without using any RGB information. Random D is 18% lower in AP than Random R, and
35% lower in AP than Random R+D. An AP of 10.84 means that the network is still able to infer reasonable
results soley from depth data. We can also conclude that depth information cannot substitute RGB data, which
is logical as RGB information provides surface features that depth is insensitive to.

Impact of Regional Depth Normalization As mentioned in the methods section, a regional depth nor-
malization pass was done over the depth information before feeding it to the feature extractor. To evaluate
the impact of said normalization, we tested the model without normalization, denoted by N. For both Random
R+DN and ImageNet R+DN, there was only marginal improvements in AP when using regional normalization,
still this means that the model performed worse without regional normalization. Evaluation on the impact of
step size and subregion intervals were also conducted. ImageNet R+D1, which represents regional depth nor-
malization with a subregion count of 1, essentially not creating subregions. This results in a small 1% decrease
in AP and other metrics. ImageNet R+DS1 represents normalization with a step size of 1, which is 2/3 less
than the default step size of 3. This means depth information is far more localized and distance specific. As
hypothesized in the method section, a smaller step size does lead to a drop in AP of 2%, likely caused by
over-fitted local variations.

5.3 Normal Tangent

Depth information can be further processed into normal tangent maps. Normal tangent maps describe the
surface tangent at a given pixel. This is different from depth information as normal tangent maps provide an
explicit representation of 3D surface features, while depth only provide it implicitly to the network.
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Usefulness We have to first evaluate if normal tangent information can be perceived well by the feature
extraction backbone. Normal tangent information is different from depth as depth information can be represented
well within in one channel. Normal tangents are represented in 3 channels, representing the x, y and z components
of the unit vector at a given pixel. There is no implicit separation between RGB and xyz channels, which
might also negatively effect results. ImageNet R+N yields an AP of 24.37, which is 6% higher than that of
ImageNet R+D. This shows that normal information is more useful than depth information for amodal instance
segmentation.

Accuracy and Sensitivity The normal map deduced from the depth information is only an estimate in surface
tangents, it is not the physical geometrical tangents. Since the normal map information is not completely
accurate, how well do different parameters effect estimations is also important. As described in the method
section, different kernel sizes for the sobel filter effect how large of a gradient the normal map is sensitive
to. Larger kernel sizes reflect a broader change in gradient, at the cost of less details. We experimented with
ImageNet R+NM, ImageNet R+NL, which stands for medium and large kernel sizes respectively. The medium
kernel has a size of 21x21, while the large kernel has a size of 71x71. Results show that there is a 29% drop in
AP for the medium filter, and a further 34% drop in AP for the large filter. This means that the improvements
in overall tangent accuracy does not compensate for the loss in detail. Furthermore, the backbone network
ResNet50 uses convolutional kernels larger than 1x1, which increases the perceptive field of a given pixel. This
may implicitly create a representation of more comprehensive gradient changes without sacrificing detail.

5.4 Occlusion Edge Refinement

Fig. 19: Loss of different network setups for EO Refinement Layer

Occlusion edge refinement differs from other components in that it does not affect the overall network in feature
extraction, object detection and visible segmentation. As described in the method section, there were multiple
network setups for the occlusion edge refinement module. The networks were first evaluated with how well loss
decreased before using the best network for amodal instance segmentation.

Network Setup Results indicate that Mode 2, which mimics the network setup of the amodal mask head,
reaches the lowest loss using the least time. The eo loss of different modes over iteration is shown in Fig.19. Mode
3 yields the highest loss. Although it is hypothesized that Mode 1 which uses a micro FCN implementation should
perform best, this is now the case. We believe this is due to either insufficient information, over-complicated
network or improper configurations. Mode 3 performs the worst because the network is too simple, it only infers
occlusion edge based on local depth values, and do not take in account of more general depth patterns.

Usefulness The EO refinement layer has the single most improvement to amodal instance segmentation com-
pared to other configurations. Random R+O is 30% higher in AP than Random R. ImageNet R+O is 11%
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Table 2: Results on KINS dataset, average precision of amodal segmentation.
We compared our model’s results against other methods.

The DAISnet result was trained using ImageNet + RGB + Edge Refinement + Post Processing

Model AP

Mask R-CNN [25] 24.93
PANet [23] 27.39
BCNet [26] 28.87
DAISnet (Ours) 31.48

higher in AP than ImageNet R+D. We believe this is because the EO refinement layer has the most explicit use
of depth information. Since EO refinement occurs after visible mask segmentation, it can use the visible regions
of an object to conduct per object depth normalization. This is extremely useful, as any region with depth value
above that of the visible maximum is guaranteed to not to be occluded, and any region with depth value lower
than that of the visible minimum is likely to be occluded. Even an algorithm can infer plausible results using
this information.

5.5 3D Shape Prior Refinement

The 3D shape prior refinement is denoted by S in Table 2. 3D Shape Prior Refinement combines depth
information during embedding encoding and decoding. The original shape prior implementation [6] used coarse
amodal masks from Mask-RCNN to conduct shape prior matching. Depth information however, is not entirely
reflective of the actual object because it contains occluded regions. Depth of occluded regions of an object are
not the actual depth of these objects. We differentiate these depths by denoting depth in visible regions as
object-only depth. ImageNet R+S results in the second highest AP after Occlusion Edge Refinement. There
is a 7% improvement in AP from ImageNet R+D baseline. ImageNet R+SV, which only uses the object only
depth, yields an AP of 24.01, which is 2% less than using all the depth. We can conclude that depth in occluded
regions does in fact contribute to 3D shape prior refinement. This might be because the shape prior refinement
also implicitly memorize occlusion scenarios. If the same region was occluded and has a higher depth value, it
is reasonable to assume the same for similar cases.

5.6 Combinations

We also tested different combinations of components to see if there is additional performance improvements,
such as using depth and normal information together. It is logical to assume that if both components improved
performance, then the combination of said components should further improve performance. But according to
our experimental results, this is not the case. We first evaluate the performance of combining depth and normal
information. Random R+D+N is 3% lower in AP than Random R+D. ImageNet R+D+N is 1% better than
ImageNet R+D, but 5% lower than ImageNet R+N. This shows that there is no guaranteed improvement when
adding depth and normal data together. We conclude that this is because normal tangents already provide the
same 3D features that depth provide, and in a more explicit way without the issues distance variation poses.

We also experimented on combining depth-aware feature extraction and occlusion edge refinement. There was
marginal difference in adding depth features to occlusion edge, Random R+D+O is only 0.2% less in AP than
Random R+O, while ImageNet R+D+O is 10% less in AP than ImageNet R+O. We believe this is due to
potentially similar roles both components play. The depth features extracted from R+D is implicitly used for
amodal attention. Since the occlusion edge refinement layer uses a similar architecture to the amodal mask head,
it is likely that both modules have used depth in a similar way to predict the amodal mask. However, since the
occlusion edge refinement layer uses per object normalization, it should perform better, which explains why the
occlusion edge component outperforms depth feature extraction. The use of 3D shape prior and occlusion edge
proves that explicit 3D features at region of interest levels improve amodal segmentation results. Implicit uses
of 3D features may require further investigation for improvements in results.

5.7 Limitation and Future Works

Evaluation results show that although DAISnet has utilized depth-aware 3D features to improve amodal in-
stance segmentation performance, there are still some limitations. Computed tangent normals are not the actual
geometric normals of objects, a method of predicting geometric normals using neural network should be made.
Depth-based 3D features can be further incorporates into the model by combining the monocular depth pre-
diction module with DAISnet, which provides additional 3D-aware features during monocular depth prediction
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that might be useful. Current region of interest and mask logit resolutions remain low at 14x14, optimization
techniques on increasing RoI resolution is worth investigating.

6 Conclusion

We proposed a novel depth-aware amodal instance segmentation network (DAISnet) that used depth information
to infer 3D features and occlusion information. This model contains regional depth normalization, normal
tangent computation and occlusion edge refinement methods that implicitly and explicitly utilize the depth
information. We also developed a method of obtaining a synthetic dataset that contains depth and amodal
mask annotations to address the difficulty of acquiring depth and amodal ground truths. Our experiments
demonstrated that depth information and subsequent 3D features extracted implicitly and explicitly brings
notable improvements to amodal instance segmentation performance.
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