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Abstract. Breast cancer is among the deadliest illnesses endangering women’s health glob-
ally, and computer-aided segmentation of ultrasonic breast tumor images, greatly assists its
detection. Most existing methods based on convolutional neural network (GNN) focus fon
extraction of high-level features. Continuous downsampling in the encoder destroys low-level
information, making feature maps highly semantic but poor in spatial«clues: As a result, relying
on high-level but low-resolution representations alone is inadequate for' generating' pixel-wise
prediction. Therefore, effective integration of multi-level information is critical to dense label-
ing tasks. A number of existing approaches achieve feature fusion through simple.operations
(e.g. simple concatenation and addition). Nevertheless, these refinement schemes lack flexibil-
ity, which leads to suboptimal performance and feature redundancy, In thisspaper, a feature
mixer network (denoted as FMNet) is proposed, which is a simple and effective end-to-end
deep learning framework for semantic segmentation that achieves'adaptive multi-level feature
fusion with high flexibility. The core of this framework is a multi-level feature mixer (FeaMix)
that is able to adaptively aggregate feature maps from different. stages using two dynamic
weights. For each encoding stage, adjacent feature maps with smaller semantic gap are sup-
pressed by assigning them lower weights; as they carry similar-level features compared to the
current stage. Vice versa, it is also.ensured that higher weights are given to distanced feature
maps that carry more complementary information to the current stage. To further enhance
model performance, supervised boundary information is aggregated into the fusion scheme in
a similarly learnable fashion. Experiments show that FMNet exceeds state-of-the-art methods
on the BUSI breast cancer dataset with.a 75.69 % mean IoU.

Keywords: Convolutional Neutral Network - Semantic Segmentation - Feature Fusion

1 Introduction

Computer-aided segmentation-of ultrasound tumor images assists the diagnosis of breast cancer, one
of the most fatal threats to women’s health around the world. According to statistics, 2,261,400
female breast cancer cases were reported globally in 2020, accounting for more than 685,000 deaths
[10]. Ultrasoni¢ imaging is among the most widely utilized and critical methods for detecting breast
anomalies. It allows tests to be performed rapidly and affordably on patients, yet there still remained
several difficulties to overcome. The clarity and quality of ultrasound imaging are at an inferior level
compared to other methods such as MRI and CT scans, making diagnosis fallible even for experienced
doctors. Shadows and strong noises are exhibited intensively in feature maps. Furthermore, breast
lesions exist in varying scales, irregular shapes, and random distributions on yielded images. Reading
ultrasonic images is also extremely time-consuming, and the error rate might grow as more graphs
are’analyzed [6].
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The scientific community has extensively explored the segmentation of tumors in ultrasound images.
Preliminary approaches towards this problem mainly rely on traditional and hand-crafted feature
extractors and are mostly unsupervised. Boundary detection, for example, makes prediction based
on edges delimited by hand-crafted boundary extractors such as the Canny operator [4]. Common
defects of such traditional approaches include the insufficient extraction of high-level features and
a lack of implementation flexibility. With the development of machine learning, supervised machine
learning approaches grew dominant because of their flexibility and performance advantages over
traditional methods. An example would be the Makarov Random Field (MRF), which miodels the
dependencies within neighbouring pixels to achieve feature extraction. Another example is Random
Decision Forest (RDF), which trains a series of semantic classifiers and uses them in combination
to output segmentation results.

In the past few years, as deep learning develops continuously, outstanding performance compared
to above methods are obtained in the field of computer vision. Recently, Deep Convolutional Neural
Networks (DCNN) have made impressive strides in the challenge of medical image segmentation. As
a classical network using the encoder-decoder architecture, fully*convolutional network (FCN) was
the pioneer among other segmentation models in enabling end-to‘end training by applying fully-
convolutional layers to replace fully-connected layers before output [13] [24]. One problem for the
FCN is that for the decoding process, the model only atilizes the latest-high-level feature maps
in the encoder subnetwork. In the encoding stage, low-level information in shallower layers, such
as object boundaries and details, become insufficient-and are outweighed by high-level semantic
representations when continuous convolution andpooling are applied. UNet and variants of FCN
attempt to address this issue through establishing symmetrical skip=connections between the encoder
and the decoder, but this only alleviates the.problem partially[30]. Only the feature maps of the
same level in the encoder subnetwork are concatenated to.supplement the corresponding context in
the decoder stage. Informative cross-level'context_can not) be utilized effectively, which leads to the
failure in bridging the semantic/gap between multi<level feature representations. DeepLabV3 and
PSPNet respectively utilizes atrous convolution and.spatial pyramid pooling to handle multi-scale
features [7] [41]. Nevertheless, these proposalstexploit low-level features insufficiently since multi-
scale feature extractions are performed only.onhigh-level feature maps to prioritize semantic context
mining.

In current investigations, more flexible solutions towards the feature imbalance are discussed. BiSeNet
designs a separate path that preserves spatial information and later fuses it with high-level feature
maps through/channel-wise-attention [37]. A recently published context contrasted network (CCN)
uses a_ gated sum technique to“aggregate multi-level feature maps [9]. This module benefits feature
fusion by allowing the network to automatically choose desirable detail-rich feature maps while
filtering out inappropriate ones. G-FRNet adopts the common UNet structure but makes informa-
tion from thecencoder pass through a specially designed gate unit before being forwarded to the
encoder [2]. ERN [21] improves model performance by supervising model output with an additional
boundary loss; which forces the model to take in spatially enhanced representations. MFENet im-
proves feature fusion using pixel-wise attention vectors generated by receptive fields in various scales,
therefore strengthening context representation [39]. CGNet proposes a global guidance module that
automatically extracts discriminative features such as object saliency and boundary [40]. DANet
appends both channel-wise and pixel-wise attention into the fusion scheme to model spatial and
channel dependencies independently [12]. However, although the above fusion schemes boast higher
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flexibility, it is still not guaranteed that low-level information plays a sufficiently significant role
while feature fusion is taking place.

In this work, a DCNN-based end-to-end deep learning framework is presented, in which multi-level
feature fusion is specially modeled to narrow down the semantic gap between multi-level feature
maps. For each encoding stage in the encoder subnetwork, feature maps with multi-level information
from other stages are supplemented using two adaptive weights. The weights are numerically’enlarged
for a feature map if it contains information complementary with the current stage. For feature-maps
carrying analogous feature representation, its corresponding weight is suppressed. To further boost
FMNet’s performance on generating accurate tumor boundary predictions, supervised edge feature
maps are innovatively integrated into the fusion module in a learnable fashion. In addition, FMNet
is thoroughly assessed on the difficult BUSI [1] breast tumor dataset. In the éxperiment, the feature
mixer produces noticeable improvements both quantitatively and qualitatively. ENINet reachesstate-
of-the-art result and outperforms previous state-of-the-art segmentation methods, scoring./75.69
percent in mean IoU. This paper’s contributions can be summarized: threefold:

- First, this work presents FMNet, a novel DCNN-based framework 4¢hat dynamically integrates
multi-level information to narrow down their semantic gap. In.the feature mixer; for each stage in
the encoder, feature maps are enhanced by adaptively aggregate features from feature maps of other
stages, which is achieved by applying two flexible weights./The weights allow for the emphasis of
complementary features while suppressing redundant representations during feature fusion.

- Second, FMNet’s performance is further improved via'appending.supervised boundary information
learnably into the feature mixer. Experiments’suggest that this ‘act assists the model in outputting
accurate predictions surrounding tumor beundaries.

- Third, an exhaustive experiment is«carried out to provideva thorough analysis of FMNet’s per-
formance both qualitatively and quantitatively. FMNet’s results in various evaluations illustrate
that this paper’s proposal outperforms previou$ state-of-the-art semantic segmentation methods
and obtains greatly improved segmentation quality on the BUSI [1] dataset.

2 Related Work

2.1 Computer aided breast ‘cancer diagnosis

Breast cancer refers to any form. of malignant tumors that originate from unconfined cell multipli-
cations in‘human breasts [31]: Ultrasonic breast imaging has become one of the key components
in the.processiof breast cancer diagnosis. In the past, pathologists manually examine images and
search for any malignant tissues to diagnose breast cancer. The biggest deficiency of this procedure
is its high reliance on experts’ visual inspection. Manpower can be worn out after reading a large
number of images, which might lead to fatal misjudgements with considerable costs. This process
is also expenditure-unwarranted as double reading might be performed depending on the doctors’
confidence instheir judgements. Computer-aided diagnosis (CAD) has gained their significance in
the process of cancer diagnosis. Specifically in the field of breast cancer diagnosis, solutions based
on computer vision enable automatic and rapid classification and segmentation of breast cancer
based on ultrasonic images. This approach comes with less human participation, which reduces
fatigue-related misjudgements. Much lower inference time is another advantage of CAD compared
to manual approaches.
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Numerous algorithmic approaches have been adopted for breast cancer segmentation and classi-
fication. Early segmentation methods, which mainly depend on hand-crafted extractors and op-
erators, include region-based methods [23] [28] [32], edge-based methods [29] and threshold-based
approaches [17] [26]. Region-based proposals mainly use watershed or region growing as tools to
obtain a rough area for each component in the image. Edge-based methods obtain segmentation
results via applying edge extraction operators such as Sobel and Canny edge detector, [4] [22].
Threshold-based methods, on the other hand, often apply Otsu’s thresholding [26] as preprocess-
ing procedures. Later, machine learning approaches gradually substitute preliminary methods due
to their outstripping performance. Their greatest advantage over traditional methods.is that they
are learnable and can be adapted to almost any given semantic segmentation task. Support Veetor
Machine (SVM) is an example of a solution based on machine learning. This. method optimizes its
parameters by maximizing the distance between the predicted segmentation\béundaries and both of
the segmentation classes splitted by the boundary line. Many investigations'foeus on improvements
based on the original SVM model, such as [5] [8] [25]. Classification of breast cancer is.another
area in which machine learning can be used. K-Nearest-Neighbourhoed (KNN), for example, is a
supervised machine learning method which makes classifications.by taking proximity relationships
in the sample space into account [11].

2.2 Medical semantic segmentation based on CNN

Segmentation of medical images, though an effective paradigm for'diagnosis, remains a challenging
task because of speckle noises, low image quality, and high.dependence on examiner experience
[3] [20]. Deep learning methods have takén-the lead in lesion segmentation tasks in recent years.
UNet is among the earliest and most. favored end-to-end semantic segmentation architectures for
medical applications [19] [30]. It novellyutilizes skip-connections to link feature maps of the same
level in the encoder and decoder subnetworks. Its'major-goal is to aggregate multi-scale features by
stacking together feature maps'with various receptive fields. To enhance its performance, various
upgrades based on the original UNetare propesed. UNet++ [42] constructs denser skip-connections
linking the encoder and decoder toebtain fine-grained foreground details. The additional connections
narrow the semantic gapibetween encoder and decoder feature maps before they are fused, which
is better than the plain skip-connections in the original UNet. Res-UNet [35] applies a weighted
attention mechanism on the original/'UNet. This module enhances the model’s discriminative ability
when dealing with small segmentation areas by highlighting helpful parts of feature maps while
suppressing/useless areas.

Other networks have also reached outstanding results in the challenge of medical image segmentation.
DeepLabV3 [7] was the.pioneer in using dilated convolution with various kernel sizes to detect objects
present at.various scales. Based on the same exigence of multi-scale detection, PSPNet applies
an atrous spatial pyramid pooling module applied after decoding. DANet [12] excavates spatial
dependencies using an innovative dual-attention module. This mechanism consists of both spatial-
wise attention and channel-wise attention, which respectively connects pixels in the same feature
map and builds inter-channel connection between feature maps. To cope with the loss of context
information in the encoder, CE-Net [16] novelly proposes a dense atrous convolution module to
capture wider and deeper context information. In addition, to further model the multi-scale context
information obtained, it applies a residual multi-kernel pooling block to carry out various pooling
operations.
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2.3 Feature fusion in semantic segmentation

Feature fusion for different purposes is researched extensively in the field of semantic segmentation.
The architecture in the Laplacian Pyramid Reconstruction Network [14] fuses low-level feature maps
with high-level representations. Its proposed mechanism uses spatial information rich in low-level
feature maps to fix residual errors found in high-level feature maps, which enhances model perfor-
mance. Global Convolutional Network [27] fuses low-level feature maps into the model pipeline in an
attempt to refine segmentation boundaries. Some other methods fuses feature maps obtainedfrom
their own proposed module to boost model performance. ISHFNet [36] aggregates represéntations
obtained from two separable convolution branches to construct a comprehensivefeature overview;
which is later decoded in a hierachical fashion. DASSNet [18] applies channel-wise attention to fuse
high-level features obtained, which is later upsampled to higher spatial resolution-and supervised.

3 Methodology
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Fig. 1. A schematic illustration of FMNet’s architecture
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3.1 Motivation and overview

In a typical semantic segmentation network based on CNN, low-level information such as object
boundary and spatial clues are mostly abundant in shallow layers of the encoder subnetwork. High-
level information, on the other hand, is highly semantic and abstract, and can be found in deeper
encoding layers. Current dense-prediction proposals have obtained improved performance when
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compared against preliminary approaches. However, many of these methods solely rely on skip-
connections or simple concatenation to achieve the integration of cross-level or same-level feature
maps, which is inadequately adaptive and flexible. In the feature mixer proposed in this paper, two
adaptive weights are used to generate a dynamic “ingredient table” for multi-level feature maps,
which flexibly manipulate their participation in the process of feature mixing. In addition, to further
improve the prediction accuracy on object boundaries, a supervised boundary map is integrated into
the mixer’s workflow.

An illustration of FMNet’s architecture is displayed in Fig.1. The model workflow can be suramarized
as follows: (1) Ultrasound breast cancer images are fed into a CNN encoder to extract multi-level
feature maps. (2) To effectively aggregate feature maps of one stage with information’ from other
stages, two adaptive weights are simultaneously assigned to ensure that complementary information
are emphasized while redundant representations are suppressed. (3) Supervisededge information is
integrated into the fusion scheme using an independent learnable coefficient te'enhance the EMNet’s
accuracy in predicting boundary pixels.

3.2 Imitial extractor

As shown in Fig.1, FMNet adopts the encoder-decoder architecture swith. a-replaceable backbone
model. UNet is selected as the CNN backbone, but it’s worth noting that implementation of the fea-
ture mixer is independent of the backbone network. The-encoder of EMNet consists of five encoding
blocks each with the configuration displayed on the left of Fig.1{ Each encoding block contains two
downsampling packages, each composed of a 3'X'3 convolutienjabatch normalization and a ReLU
activation function. The outputs of the blocks. are‘defined-using the set F; i € [1,2,3,4,5], where
each F; denotes a different encoding stage. Assimilar approach is used to define the four decoding
stages in FMNet with D;,i € [0,1, 2,3, 4]y where each!D; denotes a different decoding stage.

) )

‘ exp(iDis(F3,2,E3))
v

‘ exp(— Dis(F34, E3)

; ‘ exp(® Dis(F3,5, E3)

v

A Caad e
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+ Sigmoid function
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Fig. 2. A detailed diagram illustrating the work flow of the feature mixer
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3.3 Multi-level feature mixer

This section focuses on the implementation of two different forms of adaptive weight, which are the
core of the feature mixer. It’s worth noting that as F; is too shallow and contain noises that can
potentially jeopardize feature fusion, this stage is ignored during feature fusion and boundary ex-
traction. In order to aggregate multi-stage feature maps to the current stage, their spatial resolution
and channel number are first adjusted to fit the current stage. A rescaler function is performed on
the encoding stages to be fused as follows:

Fij = ¢(Up(E})),0r),Vj € [2,3,4,5],j # i (1)

where Up(+) is bilinear interpolation that upsample feature maps to the same size ag'E;, and &(*)
denotes 1 x 1 convolution with parameter 0.

Adaptive weight According to previous assumptions, features carried’by distant feature maps in
the encoder subnetwork tend to be complementary in nature. This results in the conception that
they can be integrated to maximize feature efficiency and minimize featuresredundancy. Based on
such exigence, an adaptive weight is proposed that optimizes feature fusion- based on the level of
redundancy between two feature maps. In an attempt to.enhance E;, the ‘weight W; ; assigned to
resized feature maps from other levels F; ; is defined as:

DiS(FZ‘,j, E,)

Wi,j = exp(— )?VJ S [2737475] 7j #Z (2)

where « is an artificially defined coefficient, here'given the value of 0.7. The distance function Dis(+)
measures the complementarity between two feature maps, here defined as:

H' W
Dis(X,Y) =Y YeAlX; ; — Vi 12 (3)

i=0 j=0

Now the FMNet is able'to obtain strongly enhanced feature representations by applying the defined
weight to each resized feature maps at different stages in the following way:

5
Ci=E > Fin-o(Fn)"Vor Vi€ [2,3,4,5],n #i (4)

n=2

where C; Tepresents feature/maps belonging to stage i after enhanced with multi-level features
adaptively, and o(-) denetes the sigmoid function. For a feature map containing representations
complémentary-with the current stage, the distance function would generate a higher output which
results.in a smaller W. However, since all values from other stages are mapped into (0,1) by the
sigmoid function,»a smaller W as its power would exert a hyperbolic effect on distinctive feature
maps, thus ensuring that complementary information participates in the fusion process more actively

Pixel-wise guidance Although the above mechanism can be deployed alone with small additional
computational cost, the fusion process needs further refinement. An additional mechanism is applied
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to provide a more flexible pixel-wise guidance to multi-level feature maps during their aggregation
using a learnbale mask. The learnable mask for stage ¢ is defined using the denotation:

M;,i€[2,3,4,5] (5)

All M; possesses the same spatial resolution as F; and has only 1 channel. In order to ensure
that adjacent feature maps are suppressed while distant feature maps containing complementary
information are emphasized, this mask is integrated using the following form:

5
Ci=FEi+» (1—o(M)" ) Fip-o(F;n)Vor, Vi € [2,3,4,5]4n # i (6)

n=2

In this equation, M; is first suppressed between (0, 1) using the sigmoid function and assigu it/ with
the distance between the current stage and other stages. To ensure.that distant feature maps are
assigned larger weights than adjacent ones, the values in the mask.obtained.by the last operation are
subtracted from one. This mechanism further narrows the semantici\gap between multi-level feature
representations and contributes to the flexibility of the fusion scheme simultaneously.

3.4 Edge Enhancement

In this section, the aim is to refine feature maps with edge details by combining supervised bound-
ary information into the workflow. Object boundary informationy-as a low-level representation, is
more abundant in shallower layers of the CNN backbone because of large spatial resolution, so F
seems to be the optimal choice for reconstructing tumor boundaries. However, the trade-off between
spatial information concentration anddmage‘quality makes F too noisy to be implemented without
hampering segmentation quality.”Consequently, the extraction of boundary information denoted as
B is carried out based on FEs:

B'= 0(¢(E2,05)) (7)

where ¢(-) denotes a series of 1°x 1 convolution with parameter 65 and o(-) represents the sigmoid
function. To specifically model tumor:boundary, the obtained edge map is supervised using Binary
Cross Entropy (BCE) loss:

N
Lo@BB)~ 1> (Bilog(B:) + (1 - Bi)log(1 - By) 0
=0

where ‘B denotes tumor edges extracted from the ground truth during training using the canny
operator [4] (which can be considered the ground truth for tumor boundary). After obtaining the
supervised boundary map B, bilinear interpolation and several 1 x 1 convolution are applied for
suitable channel number and shape . The guided boundaries are then integrated into the fusion path
in the following form:

Ci=C;+aB (9)

where C; denotes the further upgraded feature maps of stage i and « represents a learnable coefficient
that adds to the flexibility of edge enhancement.
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3.5 Decoding scheme

UNet-style upsampling is adopted to obtain a dense prediction map for breast lesions. The applica-
tion of the feature mixer effectively avoids UNet’s defect that skip-connections only link same-level
information, as all feature maps involved in upsampling are itself multi-level. The decoder in FMNet
aggregates enhanced feature maps C; step by step to obtain representations D;:

) Csi=0
b= {¢T(Cat(¢(Di1,9i),6’6i),9iT),Vi €{1,2,3,4} 10

where ¢(-) and ¢ (-) respectively denotes 1 x 1 convolution with paraméter 0; and transposéd
convolution (deconvolution) with parameter 67, and Cat(-) represents matrix concatenation. A
series of convolutions are applied to the last upsampling layer D, before a prediction mask is

generated by FMNet. The following formula is used to determine the prediction mask:
P = argmax(¢(Up(D4),0p)) (11)

where Up(-) denotes bilinear interpolation and ¢(-) représents a, series of /1"x "1 convolution with
parameters 0p.

3.6 Optimization

A supervision using the BCE loss is added/between the model output and the ground truth and
defined as below:

N
Lr(P,Y) = — DLV log(P) (1 V) log(1 - P) (12)
=0

where Y is the ground truth. In the framework, a composite loss is adopted to supervise both the
extracted object boundaries and‘segmentation. result. The weight assigned to both loss is one, and
thus the total loss is defined as the‘direct addition between the two losses:

Lr=Lg+Lp (13)

where L7 denotes,the total loss obtained, which is optimzed using standard back-propagation.

4 Experiments

4.1 Dataset

To prove that gratifying improvements are made, various experiments are conducted on the BUSI [1]
dataset to evaluate FMNet’s performance. The BUSI [1] dataset collects 780 breast ultrasound
images from 600 female patients in 2018, which contains 133 normal cases, 487 benign cases and
210 malignant cases. Images in the dataset have an average resolution of 500x 500, and are cropped
to 256X 256 before input to reduce computational cost. During a standard diagnostic procedure for
breast cancer, the existence of a tumor is first proved by clinicians before they are segmented in
greater detail. As a result, the normal cases with no masks is removed to simulate this situation,
but an additional experiment where all three categories are present is also carried out.
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4.2 Training and inference

All experiments are performed on PyTorch deep learning framework with Intel Xeon Platinum
8255C 2.50GHz CPU and Nvidia RTX 3090 GPU. The software environment consists of PyTorch
1.12.0, Python 3.8.10, CUDA 11.6 and cuDNN 8.3.0. The Adams optimizer [33] with weight decay
of 0.0005 and initial learning rate of 0.0001 is selected to optimize FMNet on the BUSL{1].dataset.
Each model tested is optimized for 100 epochs after being initialized with random weights, and
the batch size of both training set and validation set is 2. The evaluation metrics are obtained by
calculating the mean result from three successive tests on the entire validation set.m The*deviation
value is calculated by subtracting the highest results with the lowest fromithe three tests, which
measures the stability of a specific model on individual metric.

4.3 Comparison scheme

In horizontal comparisons, performance of FMNet is compared against“previous state-of-the-arts,
including UNet [30], DeepLabV3 [7], PSPNet [41]; CENet [16], AGNet 34] and PyDiNet [15]. To
ensure that comparisons are fair, the same iteration scheme is applied'on every model experimented.
In the table, the best result of each metric is/bolded and the second-best is underlined.

4.4 Evaluation metric

Four commonly used evaluation metrics are employed to evaluate FMNet and other methods quan-
titatively. They are respectively the Jaccard, index (denoted as JA, also known as mloU), Dice
coefficient (denoted-as,DI), Sensitivity (denoted as SE) and specificity (denoted as SP). The follow-
ing formulae may.be used to calculate the metrics assessing model performance:

TP
A:
JA= TPy FN T FP
2T P
DI =
2TP + FN + FP
TP (14)
E=—"_
E=Tp 1 PN
TN
P=——"_
P = TN FP

It’s worth noting that, following preexisting contributions, the Jaccard index is regarded as the
major criteria evaluating a model’s performance.
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Original Ground Our UNet
Image Truth Method (baseline)

4.5 Results

DeepLabV3 PSPNet DANet

Fig. 3. A visual comparison between FMNet’s'ssegmentation result with other semantic segmentation meth-
ods on four samples from the dataset

Qualitative evaluation In Fig.3, four samples are chosen at random from the BUSI [1] dataset
to qualitatively evaluate the performance of FMNet and other methods. In example 1, UNet and
DeeplabV3 neglect the majority of the area containing breast tumor and generate unsmooth bound-
aries, while PSPNet and DANet tend to produce inaccurate boundary prediction. FMNet, by con-
trast,/generates much more accurate prediction on tumor edge because of the integrated boundary
map. In example 2, UNet and DANet barely detect the presence of tumor, while DeepLabV3 out-
puts improper tumor shape. UNet respectively generates prediction of wrong shape and location
in 'example 3 and 4. Predictions generated by FMNet remain stable and high-quality in all four
examples.
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Fig. 4. A visual comparison between mid-layer feature maps from
(B) Cs, after the feature mixer is applied.

ixer is applied;

In Fig.4, 64 feature maps respectivel 5 and emonstrated. Before the feature mixer
is applied, features represented by ayer: , inaccurate and noisy. The majority of
feature maps from E3 are devoi an; 'ndicatio of object lesions. Even for those maps where the
tumor is recognizable, its salie e and there is low contrast between the tumor and
the background. However after is en edusing out feature mixer and turned into Cs, the
quality of mid- layer fe s is gr proved The target tumor is recognizable on most
of the feature map er con the background. In addition, the variance of tumor
shape on dlfferent 1 81gmﬁ y duced marking a more stable model performance.

4’00

ua itativi anal sis Table 1 records the mean and deviation of the four metrics tested on models
on the [1 ] dataset with the normal class removed. Compared against other models,

Net obtains t e best Jaccard, Dice, sensitivity and specificity score, which demonstrates that

can segment breast lesions with higher precision and accuracy. An improvement of 10. 11%
mIo‘@y% Dice, 9.09% sensitivity and 0.96% specificity over the baseline is achieved. Table 2

rds‘the evaluation of models trained with the presence of the normal class. Again, FMNet ranked

)
(@p among all the 7 models compared in all four metrics. Fig.5 provides a visual illustration of

above experiment.
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Table 1. Quantitative comparison of FMNet with other approaches on the BUSI dataset with normal cases
removed

method JA(%) DI(%) SE(%) SP(%)
UNet (baseline) [30]  65.58+1.96  75.73£1.09  76.16£1.27  98.77+0.01
DeepLabV3 [38] 68.41+3.31  71.60+£3.84  72.93+£3.72  98.54-0.04
PSPNet [41] 69.8143.02  78.7842.57  77.0542.54  99.16:0.04
DANet [12] 68.3242.58  76.59+1.47  76.07+1.14  99.0440.00
CENet [16] 67.4941.49  75.96£1.37  75.89+1.73  98.93+0.02
AGNet [34] 69.19+42.53  74.88+1.42  79.49+1.32  99.64:-0.01
PyDiNet [15] 69.78+1.59  76.49+1.92  82.46+1.88  99.43+0,03
FMNet 7569 £ 2.15 88.1811.15 85.2510.92 99.7310.03

Table 2. Quantitative comparison of FMNet with other approaches on“the BUSI dataset-without removing
normal cases

method JA(%) DI(%) SE(%) SP(%)
UNet (baseline) [30]  58.64+2.07  63:39#2.73  69.16+2.44  94.77+0.03
DeepLabV3 [38] 60.4343.52 59.06+2.18 66.931+1.79 94.5440.02
PSPNet [41] 60.37+2.78 66.13+1.46 70.454+1.62 95.761+0.01
DANet [12] 58.914+1.59 65.28+1.57 66.07+2.31 95.04+0.01
CENet [16] 58.0242.47 64.17+1.62 66.8941.72 94.9340.00
AGNet [34] 60.47+2:38 63.084+2.05 70.2941.49 95.641+0.02
PyDiNet [15] 61.77+1.62 61.4942.72 73.464+1.68 95.56+0.04
FMNet 66.81 £1.53 75.1841.77 76.25+0.67 95.83+0.02
(A) Result with the normal class removed (B)loo Result with the normal class present
100 A
4 4

801 80

601 601

40+ 40

B Jaccard (%)
B Dice (%) 20
B Sensitivity (%)
Specificity (%)

B Jaccard (%)
B Dice (%)

B Sensitivity (%)
Specificity (%)

20 A

0- 0-
FMNet UNet Deep PSPNet DANet CENet AGNet PyDiNet FMNet UNet Deep PSPNet DANet CENet AGNet PyDiNet
LabV3 LabV3

Fig. 5. A schematic illustration of the qualitative evaluation result (A) when the normal cases are removed;
(B)*when the normal cases are present.
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Table 3. Comparison of FMNet’s computational efficiency with other methods

method Flops(G) Params(M)
UNet (baseline) [30] 135.93 37.66
DeepLabV3 [38] 34.09 58.63
PSPNet [41] 131.44 65.70
DANet [12] 289.27 65.18
CENet [16] 109.43 32.85
AGNet [34] 123.89 37.96
PyDiNet [15] 163.48 47,64
FMNet 148.88 38.24

Fig. 6. A visual presentation of the ablation experiment. (A) the original image; (B) the ground truth; (C)
baseline; (D) adaptive weight + pixel-wise guidance; (E) adaptive weight + pixel-wise guidance + boundary
enhancement.

Ablation study A comparison of the number of parameters and float operations between these
mentioned models is provided in Table 3. Although FMNet possesses neither the least parameters
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nor float operations, the introduction of the feature mixer does not bring a significant increase in
the number of either parameter or float. FMNet attains a considerable performance upgrade with
an affordable increase in computational cost.

Table 4. Ablation experiment on FMNet to evaluate each component’s utility

Adaptive weight Pixel-wise guidance =~ Boundary enhancement JA(%)
65.58+1.96
v 70.89-:1.47
v v 73.43+£1.19
v v v 75.69 + 2.15

To illustrate the effectiveness of three key modules of FMNet, this seetion shows the result of an
ablation experiment conducted also on the BUSI [1] dataset. The baseline method in this comparison
is the original UNet [30]. Adaptive weight, pixel-wise guidance and boundary enhancement are
added step-by-step into the baseline in order to demonstrate each component’s significance in the
final result. Fig.6 displays the qualitative result of the ablation experiment based on three random
samples from the BUSI [1] dataset. Table 4 presents the outcomes, of the“ablation experiment. All
the proposed components have a positive effect on segmentation-result, and it can be clearly seen
that addressing the semantic gap between multi-level information brings a considerable quantitative
advantage in segmentation quality. The boundary detection module also provides a positive effect
on the performance of FMNet. The combination of thé three components overall results in an
improvement of 10.11% mloU.

5 Conclusion

In this work, an end-to-end DCNN-based deep learning network is presented for breast cancer seg-
mentation. With the help of the proposed.feature mixer, the semantic gap between high-level and
low-level representations is‘effectively addressed. Specifically, this module automatically adjusts the
weight assigned to,different-level feature maps to maximize the introduction of complementary in-
formation. In addition, supervised lesion boundary information is adaptively aggregated into the
feature mixer/to enhance FMNet’s segmentation accuracy in tumor boundaries. It is proven that
firm improvements are brought by the introduction of the feature mixer. Exhaustive experiments
alsodillustrate that FMNet surpasses previous state-of-the-art results both qualitatively and quan-
titatively on the BUSI [1] dataset.
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