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Abstract 

DNA damage, particularly double-strand breaks (DSB), plays an important role in aging, 

carcinogenesis, and other diseases. The efficacy of the DSB repair protein SIRT6 is known to 

correlate with the maximum lifespan (MLS) across species. However, it is still unclear whether 

the function of SIRT6 can be further optimized through protein sequence engineering. Here, 

we used RoseTTAFold to predict the structural variance of SIRT6 sequences across 142 

mammalian species. We then analyzed the association between the MLS, sequence, 3D 

structures, and amino acid selection of SIRT6 and found that sequence and spatial information 

are correlated with MLS. By fine-tuning the ESM-fold model, we were able to accurately 

predict the MLS of the species from SIRT6 sequence (Pearson’s r = 0.818, MAE = 8.608 years). 

We further generated mutant sequences of the human SIRT6 using ProteinMPNN and analyzed 

different sites’ importance based on their impact on predicted MLS. A subset of 37 amino acids 

sites that play a key role in sequence function was found, and among them, 20 sites located in 

the NAD+ banding area and β1-sheet were found to have the greatest impact. We then tested 

the DNA repair efficiency of 2 novel SIRT6 sequences (with predicted MLS improvement of 

16.5% and 20.1%), and immunofluorescence showed that their DSB repair efficiency is indeed 

higher than human ortholog SIRT6 sequence. Together, our study demonstrates that despite 

being highly conservative in evolution, there is still room for optimization of human SIRT6. 

We not only identified crucial sites correlated with sequence optimization but also designed 

optimized SIRT6 protein with longer MLS, thereby providing novel insights into potential anti-

aging or anti-cancer interventions. This study also developed a comprehensive framework of 

sequence optimization methods for functional proteins whose efficiency is relatively harder to 

obtain or measure directly. 

Keywords: SIRT6, Maximum lifespan, protein design, Convolutional Neural Network, 

RoseTTAFold, Elastic net, Protein language model, ESM model, MPNN, Immunofluorescence 
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1. Introduction 

1.1 Research background 

Aging is the largest risk factor for many chronic diseases1. In 2020, it was estimated that 

there were approximately 700 million individuals aged 65 or older worldwide and the 

population is still growing rapidly. It is thus of great social and medical significance to study 

the mechanism of aging and reduce the occurrence of related diseases, thereby reducing the 

disease burden of the population and improving the life quality of the elderly population. 

Among the various causes of aging, the progressive accumulation of genetic damage is critical, 

and failure to repair DNA damage contributes to genomic instability, which is a major cause 

of cell senescence and aging2–5. The efficiency of double-strand breaks (DSB) pathway repair 

may be most critical for aging because DSBs not only alter gene sequences but also cause 

epigenetic changes by altering higher-order chromatin structures, leading to global gene 

transcriptional dysregulation. Not only does DSB contributes significantly to ageing, it also 

leads to the development of cancer6, and the efficiency of DSB repair pathways is positively 

correlated with maximum lifespan7,8.  

Sirtuin 6 (SIRT6), a member of the SIRT protein family, possesses the enzymatic activities 

of NAD+-dependent histone deacetylase and mono-ADP ribosyltransferase and plays a role in 

long-chain lipid deacylation9. Research found that SIRT6 is an important factor in the 

regulation of the DSB repair pathway, and its function indirectly promotes longevity10,11. Direct 

activation of SIRT6 through agonists has been shown to extend lifespan, and transgenic mice 

overexpressing SIRT6-exhibited an increase in lifespan of up to 30%12. Cohort and case-

control studies conducted in natural populations also revealed that certain mutations in the 

SIRT6 locus are associated with longevity, resulting in an increased average life expectancy of 

approximately 5 years13. Therefore, SIRT6 sequences with higher efficiency repair DSB at a 

faster rate and thus correspond to longer lifespan in mammals. Such sequences have broad 

application prospects in gene therapy, new drug design, and the exploration of novel drug 

targets. 

Maximum lifespan varies widely among mammalian species, ranging from 16 months in 

shrews to 211 years in bowhead whales14. This makes comparison of genetic differences 

between species (comparative genomics) a valuable field of research. In a previous study15, 

Tian et al. compared the sequence of SIRT6 of 18 species of rodents with different lifespans 

and found that the DSB repair efficiency of SIRT6 protein is highly correlated with lifespan of 
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species. Differences in 5 amino acids (AA) sites located on the protein surface led to the 

difference in protein activity that resulted in the diverse maximum lifespan of different rodents, 

from 3 years to 32 years. However, larger-scope cross-species comparisons, such as those 

involving DNA repair protein mutations across whole mammalian lineages, have not yet been 

reported. 

1.2 Progress in methodology 

Traditionally, protein structure is obtained by synthesizing the corresponding sequence 

and then observing molecule structure using cryo-electron microscopes. Although the obtained 

structure is precise16, the approach is costly and inefficient, making large-scale protein structure 

determination almost impossible. Therefore, previous research focused primarily on the 

relationship between sequence and function, while research utilizing the protein’s 3D structure 

information in analysis was less common. However, bioinformatic methods for predicting 

protein structure based on deep neural networks have seen explosive progress in the last 2 years. 

Models such as AlphaFold 217, RoseTTAFold18–20, and ESMFold21,22 are currently capable of 

high-precision protein structure prediction using only AA sequences. The accuracy of the 

predicted protein backbone structure is similar to that of cryo-electron microscopy, which made 

possible high-throughput obtaining of protein structure using deep learning only. Based on the 

above model, generative models23–26 have been developed for de novo protein design for a 

desired structure, or generating new folds of artificial proteins containing a desired functional 

site. The rapid progress in methodologies described above provides new opportunities for 

SIRT6 research, i.e., designing optimized human SIRT6 protein variants using deep neural 

network generative models based on cross-mammalian sequence and lifespan analysis. 

1.3 Research content 

This study is based on the following assumption: the force of natural selection declines as 

animals live past their reproductive age, and selection rarely acts on deleterious mutations in 

old age27,28. Therefore, maximum lifespan-associated proteins, such as SIRT6, must have been 

subject to relatively less selective pressure and have not been optimized to their fullest 

efficiency. Through the mutation of crucial sites, it is possible to design optimized human 

SIRT6 sequences with higher DSB repair efficiency and more conducive to longevity. 

Corresponding site variation patterns for longevity might also be found. 

Based on the above assumptions, the study obtained mammalian SIRT6 sequence and 

Maximum lifespan (MLS) data from network data platforms such as NCBI and used the 
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RoseTTAFold to predict the 3D structure of all sequences (Figure 1). Using original sequence 

information and predicted 3D structure information, deep learning models such as CNN and 

ESM were used to construct a model to predict MLS. The ProteinMPNN model29 (MPNN) was 

used to generate human SIRT6 mutant sequences, and the established MLS prediction model 

was applied to screen out optimized mutant sequences. After that, DNA repair experiments 

were applied to verify their effect, and patterns of key site variation for SIRT6 optimization 

were summarized based on optimized sequences. 

 

Figure 1. Overall flowchart of the research. After data preparation, the 3D structure of SIRT6 was 

predicted using RoseTTAFold. Different models were then fitted to predict MLS, and the most accurate 

model was selected to evaluate the most optimized sequence. When generating new sequences, possible 

mutation sites that greatly impacted MLS were filtered out and mutated using MPNN to generate new 

sequences. The selected MLS prediction model was applied to screen out sequences with higher functions. 

Finally, experiments were applied to verify their optimization, and patterns of crucial site variation for SIRT6 

optimization were summarized. 

2. Materials & Methods 

2.1 Data collection and pre-processing 

2.1.1 Data acquisition 

The sequence data used in this study was downloaded from NCBI. Only ortholog 

sequences of each mammalian species were used. 203 SIRT6 sequences were retrieved from 

NCBI ortholog database (https://www.ncbi.nlm.nih.gov/gene/51548/ortholog/?scope=40674& 

term=SIRT6). 

Because DSB repair efficiency for each species is hard to obtain, maximum lifespan (MLS) 

data, which positively correlates with DSB repair efficiency (r2=0.76), was used in this study 

to reflect protein function. MLS were retrieved from the database AnAge14 (a sub-library of 

HAGR, https://genomics.senescence.info/species/index.html) and supplemented with the 
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study "Universal DNA methylation age across mammalian tissues"30, which provides further 

adjustments to some data in AnAge. 

After sequences and MLS data were retrieved, they were matched according to the Latin 

standard names of the species. Each sequence was assigned a maximum lifespan of its 

corresponding species. When sequences for two species with different MLSs were identical, 

only the species with a higher MLS was retained. Finally, sequence and MLS data of 142 

species were obtained for analysis. 

2.1.2 Data pre-processing 

Multisequence alignment (MSA) and data encoding 

Muscle (MUltiple Sequence Comparison by Log-Expectation) algorithm31 was used for 

MSA, and the length of SIRT6 after MSA is 685 amino acids (AA). Among them, 355 sites 

correspond to the position of human SIRT6 sites. After MSA, the AA sequences were 

transferred to a 0/1 matrix for modeling using the "one-hot encoding" technique. 

Processing of human sequence 

Human MLS is significantly larger than MLS of all other species for it reflected not only 

the natural DNA repairing abilities of enzymes but also advanced technology and medical care 

of the modern world. To avoid the human sequence’s (NP_057623.2) interference with the 

model’s ability to learn natural patterns, it was excluded from both the train and test set of all 

models and will only be used to generate mutant sequences. A remaining 141 species data was 

used in the MLS prediction model to ensure the robustness of the model results. 

2.1.3 Data splitting 

The distribution of MLS is positively skewed (Figure S1), so to ensure the accuracy of the 

prediction models and fully utilize the 141 sequences, MLS stratified 5-fold cross-validation 

(CV) was applied for the data.  

To facilitate the comparison of different model results, the correlation coefficients between 

the predicted and measured MLS values of the validation set were calculated for each fold, and 

the mean value of the correlation coefficients of the 5 folds was used for model comparison. 

Considering the skewed distribution of MLS, both Pearson's correlation coefficient and 

Spearman's rank correlation coefficient were calculated. 
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2.2 Modeling of MLS and protein sequence 

Considering the complex relationship of MLS with protein sequence, several statistical 

models ranging from the classical Elastic net model to the latest protein language model were 

applied in this research (Figure 2). RoseTTAFold was accessed through the officially provided 

notebook, and all other models were implemented by customizing Python script based on 

pytorch 2.0 and scikit-learn 1.2.0 under Python 3.9.13 environment. 

 

Figure 2. Flowchart of establishing MLS prediction model. Sequence information from 141 mammals 

was directly used to train CNN models. Using RoseTTAFold, distance and dihedral angles between sites of 

all sequences were calculated, which were used to train enhanced CNN models and Elastic net models. 

Intermediate working matrices of RoseTTAFold were extracted and trained in CNN using transfer learning. 

Finally, all sequences were inputted into the ESM model, which utilizes both sequence and structure in its 

model architecture. The model with the best performance is selected. 

2.2.1 CNN model 

Convolutional Neural Networks (CNN)32 were applied, and various model architectures 

including multi-layer convolutional layer were tried until the best is discovered Since complex 

model architecture might increase the risk of overfitting, early stopping was also used, and the 

model stopped fitting if the loss function of the validation set decreases 10 times in a row. 

2.2.2 RoseTTAFold  

Using RoseTTAFold18–20, the 3D PDB structures of all sequences were calculated. 

RoseTTAFold model was accessed through the officially provided notebook file 

RoseTTAFold.ipynb, but was further modified to loop through the execution and to obtain 

intermediate working matrices required for transfer learning33 (Link of notebook code: 
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https://colab.research.google.com/drive/1whVfMQ-syuXFCzv7RokTMt6_g6B6JEep?usp= 

sharing). All sequences were computed using the same version of the code on the Google-

provided Colaboratory (Colab) platform34 over consecutive days to ensure that both versions 

of the RoseTTAFold model used in the analysis and the parameter settings were the same. 

The PDB structural file, the pLDDT values corresponding to each site of the PDB, as well 

as 3 intermediate working matrices (feature_extractor, c6d_predictor, and refine) were saved. 

Then, spatial distances between sites as well as dihedral angles φ and ψ between sites were 

calculated based on 3D structure. For sequences that have missing sites after MSA, 

interpolation was used to fill in the missing values of distances and dihedral angles. 

2.2.3 Elastic net 

CNN is useful in extracting data information but not in screening variables, which becomes 

ineffective when information in the data is too sparse. The Elastic net model (ENET)35,36, which 

combines Ridge regression and Lasso regression, can quickly screen out effective variables 

from a large number of candidate variables for analysis, and its results may be useful for finding 

the crucial mutant site. Optimal values of model parameter L1_ratio and α were determined 

using grid search by dividing data into training/validation set in a 7:3 ratio. The ENET was 

then retrained in 5-fold CV using the obtained optimal parameter settings. 

2.2.4 ESM model 

The ESM model21,22, a protein language model developed by Meta, is a migratory 

application of language modeling in the biological field. Its underlying principle is that the 

protein sequence of an organism is not a random permutation of amino acids, but is subject to 

natural selection. Thus, its statistical patterns should imply structural information, and if a locus 

conservatively selects a certain amino acid or amino acids, it suggests that only the biochemical 

properties of these few amino acids can be adapted to the structure here. Therefore, this study 

also considered the ESM model for transfer learning. esm2_t33_650M_UR50D, the largest 

ESM model that can be used to predict continuous variables, was implemented in this research. 

2.3 Searching optimized human SIRT6 sequences 

In order to find mutant sequences more efficiently, we developed a sequence optimization 

method framework (Figure 3). Firstly, candidate mutation sites were screened out using several 

methods. Secondly, mutation sequences were generated using MPNN, and optimized 

sequences were selected based on predicted MLS increase. Finally, crucial subset of AA site 
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was further filtered based on the optimized sequences, and the mutation pattern of crucial sites 

was summarized. 

 

Figure 3.  Flowchart of searching optimized SIRT6 mutant sequences. To reduce the computational 

complexity, the 355 sites corresponding to human SIRT6 were first screened based on entropy (reflects 

relatively conserved sites), MSE (reflects cross entropy) and elastic net coefficient (reflects the importance 

to MLS). The 159 candidate mutation sites were then inputted into MPNN to generate mutant sequences, 

and crucial sites whose mutation improves MLS in mutant sequences were screened. After obtaining subsets 

of crucial sites with the greatest impact on MLS, MPNN was used to generate two new sequences with 

predicted MLS increase of 16.5% and 20.1%, which was later validated in vivo. Patterns with crucial sites 

were also concluded and found. 

2.3.1 Screening candidate mutation sites 

Since site 27-272 of Human SIRT6 has been confirmed as SIRT6’s functional region, sites 

will only be mutated in the slightly expanded 26-276 region. Since the total possible mutation 

of sequences when replacing all sites using MPNN is too huge to be fully explored in this 

research, 3 methods were applied to reduce the number of candidate mutation sites by first 

excluding sites that are conserved or don’t impact MLS greatly. 

1. Entropy: The entropy value for AA selection of each 26-276 site was calculated, and sites 

with entropy <= 0.4 were considered as conservative and excluded. 127 sites with entropy > 

0.4 were considered as candidate mutation sites (Figure S2). 

2. MSE: The Mean Square Error (MSE, which is the equivalence of cross entropy in 

screening sites) against the MLS is calculated for AA selection of each of the 26-276 sites. 

131 sites with MSE < 335 were considered as candidate mutation sites (Figure S2). 
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3. Elastic net: Since ENETS screened out useful variables in modeling, 46 sites 

corresponding to important coefficients were selected as candidate mutation sites based on 

the regression coefficients of the ENET. 

Finally, the sites from the above 3 methods were merged and a total of 159 candidate 

mutation sites (Table S1) were used in further analysis. 

2.3.2 Generating mutant sequence 

ProteinMPNN (MPNN)29 is a protein design engine released in June of 2022 by Baker Lab. 

The tool effectively combines Rosetta's 10+ years of experience in protein design with deep 

learning methods by complementing physically based methods with deep learning-based 

approaches trained on large numbers of protein structures, which greatly outperforms similar 

tools in terms of computational speed and prediction accuracy. MPNN was used for human 

SIRT6 mutant generation, which was implemented on Colab using notebook 

(https://colab.research.google.com/drive/1EpHMqmEp1d8_ufBuDa2zN4kEksGNLYRX?usp

= sharing). 

The predicted MLS increase (PMI), or percent of MLS increase between the predicted 

value of the new sequence and human SIRT6, was used as a standard for evaluating the 

optimization degree of mutant sequences, and PMI was averaged for 5 CV models to balance 

the influence of 5 CV models in evaluation. 

2.3.3 Ranking of site importance in mutation 

Based on generated optimized sequences (sequences with PMI > 5% and PMI of all 5 

folds > 0%), 159 candidate sites were ranked using backward stepwise elimination (BSE)37 to 

screen out crucial sites that increase MLS: sites were replaced back to the corresponding AA 

of human sequence separately in each sequence, and mean change of PMI after replacement is 

calculated. A negative mean change (decrease after replacement back) suggests that mutation 

at this site does improve PMI, while a positive value means that the site should not be mutated. 

The site with the most positive PMI change was considered first for removal (be replaced back), 

then sequentially (the replacement of the last site kept in the replacement cycle of the next step) 

other sites were replaced back and removed based on PMI change. Since the replacement 

started from the most positive site, the mean PMI of all sequences should first increase and 

then decrease with the decrease of mutated sites number. The highest point of the parabola 

corresponds to the subset of optimal subsets of variation sites. To search for the most concise 
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group of crucial sites, several smaller subsets were also selected for analysis based on the 

change in descent speed of the parabola. 

2.4 Experimental confirmation of mutant SIRT6 efficiency 

2.4.1 Cell line generation of de novo SIRT615,38 

The designed novel sequences were translated back to nucleotide sequences based on the 

human codon usage bias39. The resulting sequences were synthesized and cloned into a pEGFP-

N1 plasmid, replacing the EGFP sequence. The recombinant plasmids were then transformed 

into competent bacteria (E. coli strain DH5α) and the plasmids were isolated using a plasmid 

extraction kit. 

The cell line HEK293 was cultured in an appropriate growth medium at 37°C in a 5% CO2 

incubator. At 70-80% confluency, transfect cells with the SIRT6 expression were constructed 

using a suitable transfection reagent. After 24-48 hours, selective pressure using G418 was 

applied to isolate cells that had incorporated the construct. 

The gRNAs targeting the endogenous SIRT6 gene were designed using sgRNA Scorer 2.0 

and cloned into a suitable CRISPR/Cas9 vector, LentiCRISPR V2. The SIRT6 knockout 

vectors were co-transfected into the cell lines, then genotyping PCR was applied to identify 

clones where the SIRT6 gene has been successfully knocked out. 

The following 4 groups of cell lines were used for further experimentation: 

 OE-NC: Primitive HEK293 cells + blank plasmids transfected. 

 Seq-WT: SIRT6 knockout HEK293 cells + plasmids of human ortholog sequence 

(NP_057623.2) transfected. 

 Seq-16: SIRT6 knockout HEK293 cells + plasmids of mutant sequences (predicted PMI = 

16.5%) transfected. 

 Seq-20: SIRT6 knockout HEK293 cells + plasmids of mutant sequences (predicted PMI = 

20.1%) transfected. 

2.4.2 Protein expression level assessment 

Expression levels of WT and novel SIRT6 sequences were assessed using western blotting. 

Proteins were lysed on ice for 30 min using RIPA lysis buffer with a protease inhibitor cocktail 

and PMSF. Lysates were subjected to sonication and then centrifuged at 12,000 rpm for 20 min 

at 4°C. The supernatants were collected. Protein concentration was measured using a BCA 
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protein assay kit. The protein extracts were supplemented with 5×sodium dodecyl-sulfate (SDS) 

loading buffer and boiled for 10min. Proteins were separated by sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) and then transferred to polyvinylidene 

difluoride (PVDF) membranes, which were blocked in 5% BSA for 1h at room temperature. 

The membranes were incubated with primary antibodies overnight at 4°C and then washed. 

The secondary antibodies were added to the membrane for 1h at room temperature and then 

washed extensively. Subsequently, the immunoreactive bands were detected using a 

chemiluminescence reagent. 

2.4.3 Immunofluorescence and foci quantification40 

DSBs were induced by adding DNA damage inducer Methotrexate (1µM) to the cells, and 

then immunofluorescence staining with γ-H2AX antibodies was performed to visualize DNA 

damage response after 24h. Cells were seeded and cultured in a 12-well plate. After treatment, 

cells were fixed in 4% paraformaldehyde for 30 min at room temperature. The cells were then 

permeabilized with 0.5% Triton X-100 for 10 min. After that, slides were blocked in 5% BSA 

for 1h and then incubated with primary antibodies in 5% BSA overnight at 4 °C, followed by 

fluorescent secondary antibodies at room temperature for 1 h. Cell nuclei were stained with 

DAPI. Fluorescence images were captured using Echo Revolve microscope. 

The intensities per cell were normalized to the average OE-NC foci intensity, and 

differences between treatments were determined by one-way analysis of variance (ANOVA), 

as well as the least significant difference test (LSD) for post hoc test. A probability level of 5% 

(p < 0.05) was considered significant. 

3. Results 

3.1 Establishing MLS predict model using SIRT6 sequences information 

To perform high-throughput screening in silico on designed SIRT6 sequence, a model that 

can accurately predict MLS from SIRT6 sequence information needs to be developed in 

advance. CNN models were first trained based on all 685 AA after MSA of 141 species’ SIRT6, 

and later from only the 355 AAs corresponding to human SIRT6. Various model architectures 

including multi-layer convolutional layer were tried, and as seen in Table 1, the Pearson’s r of 

the models is 0.685-0.701. This suggests that there is some correlation between sequence’s 

one-hot-encoding data and MLS directly, though the correlation is not strong enough to predict 

MLS precisely. 
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Next, 3D structures of SIRT6 sequences (spatial distances & dihedral angles between sites), 

as well as RoseTTAFold’s 3 intermediate working matrices in PDB structure prediction, were 

calculated and added into the CNN model, but the performance of both models was lower than 

the original CNN model even with a more complex model architecture. Considering that the 

large amounts of inputted variables included in the above CNN models might lead to useful 

information being drowned out by data noise, an elastic net model was trained to see whether 

screening variables in the model can improve the result, but the obtained Pearson’s r (r=0.667) 

is still slightly lower than the basic CNN model. Results of models listed above indicate that 

the calculated spatial distance and dihedral angle data do provide some additional information 

for MLS prediction, but inputting these data directly into models is inefficient in extracting 

useful information. 

Table 1.  Performance of different models for predicting MLS  

Model Type & 
Variables included in Model Model parameter settings Metrics of validation set 

MAE Pearson’s r Spearman’s ρ 
CNN: 685 sites Flatten/512/256/128/1 10.072 0.686 0.729 

CNN: 685 sites Conv2d(32,3)/Maxpoll2/Fla
tten/512/256/128/1 10.466 0.678 0.722 

CNN: Human 355 sites Flatten/512/256/128/1   9.872 0.701 0.719 

CNN: Human 355 sites Conv2d(32,3)/Maxpoll2 
/Flatten/512/256/128/1 10.030 0.685 0.709 

CNN: human 355 sites + 
distance & dihedral angle of 

355 sites 

Flatten/2048/1024/512 
/256/128/1 13.546 0.483 0.494 

CNN: human 355 sites + 
transfer learning matrix from 

RoseTTAFold 

Flatten/1024/512/256 
/128/1 10.831 0.652 0.534 

Elastic net: human 355 sites + 
distance & dihedral angle of 

355 sites 

l1_ratio = 0.0275,  
α= 1.1721 10.019 0.667 0.635 

ESM: human 355 sites esm2_t33_650M_UR50D   8.608 0.818 0.750 

 

Finally, esm2_t33_650M_UR50D of the ESM model, a protein language model that can 

extract information from protein structure as well as utilize the underlying biochemical 

properties of AAs, secondary and tertiary structures by simply inputting sequence and 

comparing it with millions of actual protein sequences, was used in the analysis. The result 

shows that the prediction accuracy of ESM is much higher than the original CNN model (r = 

0.818, ρ= 0.750, Figure S3). Since the ESM model has the best performance in MLS 

prediction, it will be used as the criteria for determining the effect of mutant sequences on 

prolonging MLS in subsequent studies. 
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3.2 Generating optimized human SIRT6 sequences 

A B 

  
C  

Subset # of 
sequence 

PMI % of sequence for PMI 
Mean Max > 0% > 5% > 10% 

159 942080 -0.8 14.3 30.8 0.1 <0.1 
104 102400 2.4 19.8 93.3 6.2 0.5 
  74 102400 2.4 20.1 94.3 5.5 0.3 
  50 102400 2.6 17.3 96.1 6.4 0.2 
  37 102400 2.6 17.7 98.2 5.5 0.1 

 

Figure 4. Splitting of AA site subsets, and PMI distribution for mutant sequence of site subset. (A) 

Parabola curves of average PMI of cumulative reducing variation sites correspond to the No. of sites left in 

the subset. The curve first rises rapidly with the increase of site number. After forming a small platform of 

around 37 sites, the rising speed significantly slowed down, and finally reaches the highest platform between 

104 and 74 sites, then declined with the increase of site number. (B) Violin plot of PMI for a mutant sequence 

of different site subsets. Negative median PMI for sequences of subset 159 suggests that deleterious 

mutations were still included in this subset. The median PMI for sequences of all other subsets is positive. 

With the decrease in subset size, the percentage of sequences with PMI > 0% increased, and the minimum 

PMI also increased, but the maximum PMI (novel protein with the highest efficiency) of the subset decreased. 

(C) PMI summary of different site subsets. The result indicates although smaller subsets do contain more 

important sites, sequence optimization may require the participation of multiple sites simultaneously, and 

relying solely on a small number of crucial sites might not generate the most optimized sequence. 

As introduced in section 2.3, a 3-step approach was applied to search for optimized 

sequences efficiently: Firstly, 159 candidate mutation sites (which excludes conserved sites 

and unimportant sites) were selected from 355 sites of human SIRT6 for mutation based on 

entropy, MSE, and elastic net coefficient. Secondly, 942,080 sequences were generated using 

MPNN based on human SIRT6 crystal structure (PDB: 5X16). 569 of them have been 

considered as optimized for their PMI > 5% and PMI of all 5 folds > 0%. Finally, using 569 

optimized sequences, 159 sites were ranked on their importance to MLS using backward 
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stepwise elimination based on PMI change, and subsets of 104, 74, 50, and 37 AA sites 

respectively (Figure 4A, Table S1) were selected based on the descent speed’s change of the 

PMI parabola curve (which reflects their importance to protein function). For each subset, 

102,400 sequences were generated using MPNN, and their PMI distribution was summarized. 

The result (Figure 4B and 4C) shows that the median PMI of subset 159 was negative, 

suggesting that deleterious mutations were still included in this subset. For each smaller subset, 

all their median PMI became positive, and their maximum PMI, percent of PMI > 5% or 

PMI >10% were all higher than subset 159, indicating that using smaller subsets is indeed more 

advantageous for sequence optimization. Moreover, as subset size decreases, the percentage of 

sequence for PMI > 0% increased, and it reached 98.2% for subset 37, indicating that subset 

37 indeed includes sites that are most beneficial in improving MLS. However, the percentage 

of sequences with PMI > 10% decreased with a smaller subset size after subset 104, with the 

maximum PMI of 20.1% belonging to subset 74 instead of the expected subset 37. This 

suggests that although smaller subsets do contain more important sites, relying solely on a 

small number of crucial sites might not be enough to generate the most optimized sequence, as 

sequence optimization may require the participation of multiple sites to form the most favorable 

spatial structure for its biological functions. 

3.3 Distribution pattern of crucial sites in sequence optimization  

3.3.1 General correlation between site distance and MLS 

Figure 5 displays the heatmap of the correlation between site distance and MLS. For the 

functional region of sites 27-272, two key areas could be noted. 

1. Site 27-65: These sites form the α1-helix, β1-sheet, and α2-helix41. Generally, the distance 

between sites in the same α/β structure is negatively correlated with MLS, but the distance 

in these structures, as well as with sites outside 27-65, is positively correlated with MLS, 

suggesting that the more compact the internal structure and more loosely spaced out of the 

structure, the higher the MLS. 

2. Site 65-85 vs. site 135-185: These two sites are negatively correlated, suggesting the more 

compact between these two areas, the higher the MLS. The former corresponds to the small 

structural domains that form the upper part of the NAD-binding domain (α2-helix and 

periphery), while the latter corresponds to the zinc ion-binding module and the peripheral 

flexible ring. It is possible that the compact structure of this region would allow the binding 
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domain to bind to the corresponding molecule more rapidly, thus further affecting the 

catalytic efficiency of the protein. 

 

Figure 5. Correlation heatmap of distance and MLS. The relatively strong correlation between distance 

and MLS was observed in Site 27-65, and Site 65-85 vs. Site 135-185 (Marked with red dashed lines in the 

figure). 

3.3.2 Spatial location of crucial sites 

The location of the crucial sites in subset 37 (the most concise subset) can be divided into 

4 subregions (Figure 6).  

1. NAD+ binding domain sites: This binding domain involves 14 sites that are sequentially 

distant from each other but are located in the periphery of the binding domain in terms of 3D 

structure, including the minor structural region of α2-α3 (53-68) that constitutes the back of the 

binding domain, the region of the lower edge of the binding domain (213-220) that constitutes 

by the Rossmann folding, and site 256 at the edge of the binding domain.  

2. β1-sheet: Subset 37 contains 6 consecutive sites (sites 47-52), which forms the β1-sheet 

in Rossmann fold internal. 

3. α1-helix: A total of 9 sites were screened in the 26-44 region where the α1-helix is 

located. 
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4. Other sites: sites 142, 145, and 146 are located around the flexible loop of the SIRT6-

specific zinc ion binding domain, while the remaining 5 sites are scattered around the periphery 

of the long and wide pocket region of the hydrophobic channel of the sirt6 protein, as well as 

in various portions of the exposed protein spatial structure. 

A B 

 

Structure AA site range 

α1-helix 26-44 

β1-sheet 47-52 

α2-helix 53-60 

α2-α3 connection 61-68 

α3-helix 69-75 

α3-α4 connection 76-92 

Zinc-binding area 125-190 

α6-helix 193-207 

β7-α7 connection 213-220 

α7-helix 221-232 

β9-α8 connection 254-257 
 

Figure 6.  The position of the subset 37’s site in the spatial structure of SIRT6. (A) Position of the subset 

37’s site in SIRT6 structure (PDB ID: 5X16). ■Gray: Sites not belong to subset 37. ■Cyan: ADP-ribose. 

■Yellow: Sites belong to α1-helix in subset 37. ■Magentas: Sites belong to NAD+ binding area in subset 

37. ■Orange: Sites belong to β1-sheet in subset 37. ■Green: Sites belong to other area in subset 37. (B) 

Correspondence of AA site to spatial structure. 

3.3.3 Estimated importance of each spatial subregion of subset 37 

Based on 569 optimized sequences, the importance of subset 37’s 4 subregions in sequence 

optimization were estimated by replacing them back to the original human AA separately. 

Figure 7 shows that when the NAD+ banding area or β1-sheet is replaced back, the mean PMI 

decrease is higher than 5%. The change in α1-helix led to relatively weaker decrease in mean 

PMI, and decrease caused by other sites is even weaker than that of α1-helix. These results 

fully demonstrate that in subset 37, NAD+ banding area and β1-sheet most significantly affects 

sequence optimization. 
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Figure 7. Violin plot of PMI decreases for replacing back of different spatial subregions of subset 37. 

The change in NAD+ banding area or β1-sheet led to a mean PMI decrease higher than 5%. The change in 

α1-helix also led to decreases in mean PMI, but the distribution range of PMI decrease significantly widened, 

indicating that the PMI change varied greatly among generated sequences. These results fully demonstrate 

that in subset 37, NAD+ banding area and β1-sheet most significantly affects sequence optimization. 

3.4 Experimentation proves increased DSB repair efficiency for optimized sequences 

 

Figure 8. Alignment of Seq-20, Seq-16 and human SIRT6 sequences (Seq-WT) 

To further confirm the effect of sequence optimization, we took 2 sequences with PMI of 

20.1% (Seq-20) and 16.5% (Seq-16) for experimental validation. Seq-20 comes from subset 

74 and is the aforementioned generated sequence with the highest PMI, while seq-16 is 

generated from subset 50, contains fewer changes, and is less susceptible to becoming 

dysfunctional due to too much change in sequence. The number of sites mutated in Seq-20 and 
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Seq-16 are 51 and 33, respectively (Figure 8), with 30 and 27 sites belonging to subset 37, 

which further suggested that those included in subset 37 are the most important sites. 

The result of western blotting (Figure 9A) shows that all SIRT6 proteins (raw human 

SIRT6 sequence or novel sequence) in each group were successfully expressed. DSB repair 

efficiency was tested using γ-H2AX immunofluorescence and foci quantification at 24h after 

treating HEK293 cells with Methotrexate (Figures 9B and 9C). Compared to the normalized 

fluorescence intensity of OE-NC and Seq-WT (1.000 and 0.815 separately), lower normalized 

mean fluorescence intensity was observed in the cells of Seq-16 and Seq-20 (0.498 and 0.528 

separately, n = 5, P < 0.01), indicating that the 2 novel sequences are more potent at repairing 

Methotrexate-induced DNA damage, therefore having higher DSB repair efficiency than raw 

human SIRT6 sequence. 

A C 

 

 

B 

 
Figure 9.  Comparison of DNA damage repair by γ-H2AX immunofluorescence. (A) Result of western 

blotting for 4 groups of HEK293. (B) Representative fluorescent micrographs of HEK293 cells at 24h after 

being treated with Methotrexate. (C) Comparison of normalized fluorescence intensity, where all intensities 

were normalized to the average OE-NC foci intensity. The normalized mean fluorescence intensity of Seq-

16/20 is statistically significantly lower than OE-NC / Seq-WT, indicating higher DSB repair efficiency for 

the novel sequences. 
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4. Discussion 

4.1 Extreme value of human MLS leads to challenges with prediction models 

The relatively limited sample size of this study made it important to fully extract all 

information while eliminating bias in data. MLS data displays a right-skewed distribution 

(Figure S1), with most species having MLS of less than 60 years and human’s 122.5 years 

being the largest of all mammals. Human MLS reflected not just the natural repairing abilities 

of the enzyme but also medical and technological advances that artificially prolonged lifespan. 

For instance, SIRT6 of human and gorilla sequences differs in only 2 AA out of 355 sites, but 

their MLS is 122.5 and 60.1 years respectively. There are also billions of human age data, 

which far exceeded other mammals, making extreme values of human MLS more likely to be 

used for this study. Thus, human SIRT6 is excluded from the train and test set to reduce bias 

in the prediction model. Using human SIRT6 sequence for only the generation of novel 

sequence and not prediction of sequence function ensured the robustness of the prediction 

model. 

4.2 Information hidden in the sequence goes beyond distance and dihedral angle 

In essence, all information used in this study, from amino acid sequence to 3D structure 

and amino acid properties, are derived from protein sequence. However, the relatively poor 

prediction performance of the CNN baseline model (Pearson’s r=0.648) that only uses protein 

sequences indicates that using the sequence’s "one-hot encoding" data is not enough to extract 

all useful information in sequences. Additional degrees of information, such as protein 

structure and biochemical characteristics of amino acids, should be considered to build more 

complex models. We then focused on the spatial structure of the protein and considered adding 

the spatial distances and dihedral angles to the model to enhance the CNN model, but 

surprisingly the model performance did not improve. A possible explanation may be that the 

total site, distance, and angle variables exceed 70,000, resulting in the inability to extract 

effective information through the CNN network. Transfer learning of RoseTTAFold also 

encountered similar problems, where flattening the working matrices may dilute the effective 

information. Therefore, to improve the effectiveness of the model, it is necessary to consider 

conducting variable screening in advance. The slightly improved performance of the ENET 

model, which filters variables as well as learns from them, leads to similar conclusions. 

Therefore, an effective combination of variable screening methods with the CNN model will 

be the next topic worth discussing. The protein language model ESM is capable of utilizing 
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sequence, structure, and underlying patterns of amino acid biochemical properties to discover 

how statistical trends in sequence may relate to protein structure and function. The greatly 

improved performance of ESM model indicates that the information contained in both the 

protein’s spatial structure and its amino acid selection needs to be fully utilized to better predict 

protein performance. However, the black box nature of ESM makes it difficult for us to conduct 

an in-depth analysis of this issue, and it is very possible that if biochemical characteristics of 

amino acid on each site could be extracted as information matrix and inputted into models, the 

performance of previous models like CNN and ENET may be improved. Such results will also 

help us have a deeper understanding of the exercise between protein function and structure. 

4.3 Limitations of experimental results 

Although immunofluorescence using γ-H2AX indicates that 2 generated sequences did 

increase the DSB repair efficiency of HEK293 cells, several limitations of the lab results should 

be noted. Since SIRT6 efficiency for all 142 species is relatively hard to obtain and previous 

studies have found a strong correlation between DSB repair efficiency and MLS (r2=0.76)15, 

maximum lifespans are used to reflect protein function. Ideally, an experiment on the lifespan 

of organisms (e.g., transgenic mouse overexpressing optimized Human SIRT6 genes42) should 

be conducted, but this is not possible to implement in our study due to limited time and 

resources. Therefore, currently conducted experiments measure DSB repair efficiency in one 

single cell type, but the discrepancy between MLS and DSB repair efficiency should still be 

pointed out. Further research may focus on conducting lifespan assays on organisms. On the 

other hand, only two of the hundred generated sequences with a large PMI were experimentally 

validated due to resource constraints. Although the two sequences did improve DSB repair 

efficiency, this does not suggest that all generated sequences have improved functions for false 

positives, dysfunctional folds, and inaccurately predicted sequences might exist due to 

limitations in algorithms and predictions. If all sequences can be batch-tested and verified, the 

experimental data could be used to validate proposed models, discover patterns between 

predicted values and actual values, and investigate the relationship between mutated subsets 

and protein function, therefore helping researchers gain a deeper understanding of pattern 

sequence optimization. 

4.4 Importance of spatial location for crucial sites in sequence optimization 

Analysis shows that sites of subset 37 are mainly located into several spatial regions. 

Among them, NAD+ binding area and β1-sheet play the most important role in sequence 
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optimization. Multiple sites are located in the NAD+ binding domain since variation of these 

sites directly changes the spatial structure of the binding domain43, thus affecting the 

deacetylase activity of SIRT6. 6 consecutive sites in subset 37 are in β1-sheet, which 

constitutes the Rossmann fold internal region44. Although it does not have direct contact with 

ligands, β1-sheet is located in the middle of four large alpha helixes, serves as one of the three 

pleated sheets at the center of the protein, and is connected directly to NAD+ binding domain, 

so mutations in this part of the sequence might affect the overall structure of the protein or lead 

to changes in the NAD+ binding domains. It is worth pointing out that a total of 11 sites in 

subset 37 are located on the cofactor binding loop (β1-α2 loop)41, which is highly dynamic in 

structure and plays an important role in catalyzing reactions. The concentrated distribution of 

crucial sites on the cofactor binding loop also indicates that our findings are consistent with the 

results of existing research. 

Apart from the two subregions discussed above, other sites in subset 37 also have 

meaningful spatial locations. 9 sites are located on the α1-helix, which is at the outer edge of 

the Rossmann folded structure and may be related to chromatin binding efficiency (which in 

turn affects the activity of H3K9 and H3K56 deacetylation) due to the proximity of this helix 

to the N-terminus. The other sites are located around the flexible loop of the SIRT6-specific 

zinc ion binding domain, the periphery of the long and wide pocket region of the hydrophobic 

channel of the sirt6 protein, or in various portions of the exposed protein spatial structure. All 

these sites may play a role in affecting protein function directly or indirectly. Further in-depth 

analysis of how each specific site will affect protein’s function will be a topic worthy of 

research. 

4.5 Further methods of improving protein function 

The maximum PMI of the mutated sequence found in this study is around 20%, and further 

approaches may be taken to exceed this value. First, site variations outside the functional region 

27-272 can be considered. The N-terminus of SIRT6 is essential for chromatin association and 

intrinsic histone 3 lysine 9 (H3K9) and H3K56 deacetylation activity, whereas the C-terminus 

is required for the nuclear localization and recognition of nucleosomal DNA44. However, since 

the spatial structure of these sites is not fixed (pLDDT < 0.3 for most sites in prediction), they 

were not included in this study, and more attention needs to be paid to avoiding statistical 

artifacts in the analysis. Second, the sampling temperature used in MPNN can be increased. 

When the temperature is 0, the model takes the AA with the highest probability at the site 
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according to the current 3D structure, and when it is much higher than 1, the AA at the site is 

taken randomly. The author of MPNN points out29 that adding noise to the backbone and using 

high sampling temperature can increase the diversity of sequences, therefore making the 

protein design task more effective. The highest sampling temperature used in our study is 1.0 

(the highest value of the model by default), but we also tried different values of the parameter 

between 1.0 and 2.0. Results show that the higher the temperature, the larger the mean PMI 

and the maximum PMI reaches 27% when the temperature is 2.0. Although the risk of 

dysfunctionality is also higher due to the new sequence deviating from the original 3D structure 

at this time, it is possible to raise the temperature parameter while decreasing the number of 

mutation sites to prevent introducing too much disruption into the sequence function, therefore 

finding more optimized sequences. 

5. Conclusion 

Using information from both sequence, structure, and amino acid selection, we trained a 

model that accurately predicts species’ MLS from SIRT6 sequence (r=0.818). Despite the 

highly conserved nature of SIRT6 throughout evolution, our research reveals that there is still 

potential for its function optimization and generated 2 novel sequences with experimentally 

validated increases in DSB repair efficiency. Patterns in the SIRT6 function and AA selection 

were also summarized, and a subset of 37 AAs were found to play important roles in MLS 

optimization. Among them, 20 sites in the NAD+ binding domain and β1-sheet have the most 

significant impact on SIRT6 function. This study not only identified key sites correlated with 

human SIRT6 sequence optimization but also designed optimized SIRT6 proteins with longer 

MLS and higher efficiency, thereby providing novel insights into potential anti-aging or anti-

cancer interventions. Moreover, the study developed a comprehensive framework of sequence 

optimization methods, which can be systematically applied to the optimization research on 

other functional proteins whose efficiency is relatively harder to obtain or measure directly. 
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Table S1.  Site list for different site subset 

# of sites 
in subset Site list 

159 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 
49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 76, 79, 80, 
81, 82, 84, 88, 90, 92, 93, 99, 100, 102, 104, 106, 108, 120, 122, 136, 138, 142, 
143, 144, 145, 146, 149, 151, 152, 154, 155, 156, 157, 160, 161, 162, 163, 165, 
167, 168, 169, 170, 171, 175, 180, 182, 185, 186, 191, 194, 196, 198, 199, 204, 
205, 206, 207, 208, 209, 211, 212, 213, 215, 216, 217, 218, 219, 220, 223, 224, 
225, 227, 228, 229, 230, 231, 232, 233, 234, 235, 237, 238, 239, 240, 241, 242, 
243, 244, 245, 246, 247, 248, 249, 250, 251, 253, 254, 255, 256, 257, 258, 259, 
260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 
276 

104 
(optimal 
subset) 

28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 47, 48, 49, 50, 51, 52, 53, 
54, 55, 56, 58, 60, 61, 62, 63, 64, 65, 66, 68, 76, 79, 80, 82, 84, 90, 92, 100, 102, 
120, 142, 144, 145, 146, 151, 152, 154, 156, 157, 160, 161, 162, 163, 165, 167, 
168, 169, 171, 180, 185, 186, 194, 196, 198, 205, 206, 207, 208, 209, 211, 212, 
213, 215, 217, 219, 220, 223, 225, 228, 229, 232, 233, 234, 235, 237, 238, 239, 
240, 243, 247, 250, 251, 254, 256, 259, 260, 262, 270, 272, 273 

74 28, 29, 31, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 47, 48, 49, 50, 51, 52, 53, 54, 55, 
56, 58, 60, 61, 63, 64, 65, 66, 68, 76, 79, 82, 84, 90, 100, 102, 120, 142, 145, 146, 
151, 152, 156, 157, 161, 167, 168, 169, 171, 180, 194, 196, 198, 205, 207, 208, 
209, 211, 212, 213, 215, 217, 219, 220, 228, 232, 235, 238, 239, 256, 259, 260 

50 28, 29, 31, 33, 36, 37, 38, 39, 40, 43, 44, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 
60, 61, 63, 64, 65, 68, 76, 79, 82, 100, 102, 142, 145, 146, 152, 167, 168, 171, 194, 
196, 205, 211, 215, 217, 219, 228, 256, 260 

37 28, 29, 31, 33, 36, 38, 39, 43, 44, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 60, 61, 
63, 64, 65, 68, 76, 79, 82, 142, 145, 146, 205, 215, 219, 228, 256 

 

 

Figure S1. Histogram of maximum lifespan (MLS) 
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Figure S2.  Line plot of Entropy and MSE for sites 26-276. (A) Line plot of Entropy. (B) Line plot of 

MSE. 

 

   

Figure S3. Scatter plot of MLS vs. predicted MLS for esm2_t33_650M_UR50D model 
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