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ABSTRACT

Traditional methods for obtaining cellular responses after perturbation are usually
labor-intensive and costly, especially when working with rare cells or under se-
vere experimental conditions. Therefore, accurate prediction of cellular responses
to perturbations is of great importance in computational biology. To address this
problem, some methodologies have been previously developed, including graph-
based approaches, vector arithmetic, and neural networks. However, these meth-
ods either mix the perturbation-related variances with the cell-type-specific pat-
terns or implicitly distinguish them within black-box models. In this work, we
introduce a novel framework, scPerb, to explicitly extract the perturbation-related
variances and transfer them from control data to perturbed data. scPerb adopts
the style transfer strategy by incorporating a style encoder into the architecture
of a variational for the differences in the latent representations between control
cells and perturbed cells, which allows scPerb to accurately predict the gene ex-
pression data of perturbed cells. Through the comparisons with existing methods,
scPerb presents improved performance and higher accuracy in predicting cellular
responses to perturbations. Specifically, scPerb not only outperforms other meth-
ods across multiple datasets, but also achieves superior R? values of 0.98, 0.98,
and 0.96 on three benchmarking datasets.

Keywords— Single-cell RNA sequencing, Perturbation, Style transfer, Variational auto-encoder
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1 INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) is a revolutionary technology to profile gene expression of cells in
heterogeneous tissue samples [1-3]. This technology can measure transcripts in thousands of single cells from
multiple biological samples under different conditions [4-8]. Such breakthrough technology has inspired the
development of tailored computational tools such as cell type annotations [9-12], identification of pseudo-time
trajectories [13, 14], and rare cell type detection [15, 16], facilitating the biological insights into single-cell data
[17,18].

Although scRNA-seq technologies have led to a remarkable growth of single-cell data, it is still challenging to
collect the matched pairs of control and perturbed samples for a particular perturbation. As current databases
comprise a wide variety of single-cell data collected from samples at normal conditions, there is a critical
need to leverage the existing data at normal conditions to generate and predict the single-cell data after a
certain perturbation. To achieve this, an accurate and robust method is needed, with generalized capabilities in

revealing gene expression patterns across different tissues, different platforms, and limited data size.

In recent studies, the gaps in perturbation tasks were filled using generative models like Generative Adversarial
Networks (GAN) [19] and Variational Auto-Encoders (VAE) [20], to fill up the missing pieces in perturbation
tasks. Specifically, GAN introduced a generator to construct fake perturbed data and trained an adversarial
discriminator to determine whether the generated data was close to the real data or not. Such adversarial battle
aimed to train a robust generator to infer high-quality data samples. However, the major drawback of GAN
lay in the difficulty in balancing the adversarial training, leading to a useless collapsed generator that was very
sensitive to the input data noise. sc-WGAN [21] transferred a more stable WGAN to the single-cell pertur-
bation and style-transfer GAN (stGAN) [22] introduced the idea of style transferring that transferred multiple
styles determined by the users to the generator. On the other hand, VAE generated data by sampling from
a multivariate Gaussian distribution and used an encoder to estimate the mean and variance of the Gaussian
distribution components of the original distributions, and new data observations are generated based on the
estimated distribution using variational inference. For example, scGen [23] assumed a fixed linear gap between
the control cells and the perturbed cells, calculated the latent difference from both datasets, and predicted the
perturbed cell response using latent representation from the control cells and the perturbed cells. Conditional
Variational Auto-Encoder (CVAE) [24] introduced more constraints to the neural network, allowing the predic-
tion of perturbed data.

In this work, we presented a novel tool, i.e., scPerb, to predict single-cell gene expressions under specific
conditions such as a dose [25], a treatment [26, 27], or a modification of genes [28-30] (Fig.1). Given two
datasets generated under different conditions, for the same cell type, we denoted X" to represent the ith
cell from the control condition, and X ;’ ™’ for the jth cell from the perturbed dataset. scPerb solved the
perturbation task by learning the latent features of cell types and the dataset-specific style vector. Inspired
by the VAE architectures, scPerb first estimated the multi-variance normal distribution of the latent cell type
feature c. Inspired by the stGAN [22], scPerb used a neural network to learn the style transformation matrix
from the dataset. Compared with scGen, which adopts a constant vector to transfer the latent features from cells
of the control dataset to perturbed cells, scPerb introduces learnable parameters and allows the neural network
to learn both the style and content differences between the control and perturbed datasets. scPerb performs

better and produces better prediction results when compared to other approaches.

2 METHODOLOGY

Inspired by the stGAN [22], we presented scPerb, a generative model to predict gene expression data after
perturbation. We hypothesized the observations X ! and X?°"® from the control and perturbed datasets had
two independent latent features: a cell type-related latent feature, denoted as “content” c; and a dataset-specific
feature, denoted as “style” s. scPerb learned the contents Z*"" and ZP°" of the cell types from both the control



and perturbed datasets, where ¢ represented the content features of the cell types and transferred the style Z<t
from the control dataset to the perturbed dataset ZP°™ | and s represented the dataset styles (Fig. 1).

scPerb was inspired by VAE [20] and stGAN [22]. Using an encoder, scPerb translated the input data into a
probability distribution in the latent space. Specifically, it mapped the input data to a mean (1) and a variance
(o) for each latent variable. We then projected the style vector s into the latent space and learned the trans-

Perb and the learned difference between

formation from the control dataset X “*" to the perturbed dataset X
X< and XP¢"® would be denoted as o5. Furthermore, we denoted E,(.) as the content encoder acquiring the
cell-type awareness features, ;3 (.) as the style encoder projecting the random style vectors to the latent space,
E;(.) and E5(.) as the ;1 and o estimation for the probability distribution generated by the encoders, and Dy (.)
as the decoder generating the perturbed data using the latent variables ¢ and s. In the inference stage, given
a specific cell type from the control dataset X °"!, scPerb would extract the cell type-related features ZS'",
generate the “fake” perturbed cell type X" based on Z¢"! and o5, and minimize the differences between

Zet and Zper?,

2.1 ENCODERS

To extract common cell type content features, we projected both inputs (X", XP°™) into the latent space.
Followed by the setting of VAE, we assumed the content features were multivariate normal distributions,
N(u, o), where p and o represented the mean and variance of multivariate normal distribution). The latent

representation Z°"! of input data X “*"! was obtained from the learned distribution
N(Mctrl o_ctrl) . thrl ~ N(Mctrl O_ctrl)
,where 1" = B¢ (E§(X ™)) and 0" = E5(E§(X™)).

Since the projection weights were shared between the two input datasets X*"' and XP°™®, the latent rep-
resentation ZP°"® of input data XP°"® was obtained from ZZ¢™® ~ N(uP<® o), | where Pt =
E5(E§(XPem?)) and 0P = ES(E§(XP™?)). Followed by VAE settings, we used KL loss to estimate
Mctrl’ o_ctrl’ Mper*b’ and o_perb:

KLLoss" = KL(N(u™", ™", N(0,1))
K LLoss"™ = KL(N(uP"", o?""), N(0, 1))
, where KL divergence was calculated by:

P(z)
Q)

KL(P,Q)= > P(x)log(=,—)

rzeX

In this work, our task was to generate the “fake” perturbed cell types from the same cell types in the control
dataset. Therefore, instead of learning the dataset styles explicitly, we applied a light-wise network to learn the
transformation sigmas in the latent space. Our idea was inspired by the style transfer learnings [22], where
randomly sampled style vector (s) and projected the latent space as the styles. In scPerb, we applied a style
encoder I3 (.), which can project the s into the latent space as the transformation variable to convert ze to
Zg)e'r'b:
os = E5(s)
ZPet = Z%r] + o4

Therefore, we had the following Style Loss:
StyleLoss = SmoothL1Loss(ZP"", ZcP™)
While the SmoothL1Loss was defined below:

(z—y)? .

s -yl <
SmoothLlloss(x,y) = 26 ifle—yl <5

|z —y| —0.58 otherwise



Style Vector (s)

Style Loss

Fig. 1. scPerb predicts gene expressions of perturbed cells. scPerb was designed to predict gene
expressions in perturbed cells and combines the principles of both style transfer and VAE. With the perturbed
and control dataset as inputs, the content encoder projected the data into latent space. Differences between the
latent representations of the perturbed dataset and the control dataset were captured by a Style Vector (s), which
enabled transferring from the perturbed style to the control style. Such Style Vector was initiated with a random
vector and updated via a style encoder, which learned the style of the perturbed dataset and transferred it to the
control dataset by adding it to the latent representation of the control dataset. By minimizing the differences
between both latent representations and gene expressions between predicted perturbed data and real perturbed
data, scPerb transferred the control style to the perturbed style and predicted the gene expression of perturbed
cells.

2.2 DECODER

In the decoder part, scPerb reparametrized the latent variable from the estimated posterior distribution Z"" ~
N(pt™ oY and ZP°™® ~ N(uP®™, o) . Unlike the standard VAE, which directly reconstructed the
output XP°"? from the latent variable Z*"* and Z2¢"" | scPerb converted the representation of the control data

Z4 to the latent representation Z2°"”, and generated the predicted perturbed data from decoder Dy:
X—pcrb _ D¢(Zperb)
c

Note that our task was to predict the perturbation of the cell types using the control dataset, instead of generating

erb

the samples from Z2°"® and Z<'"" as the original VAE, we only used Z2°"” to generate X?*"*. Therefore, our

GeneratedLoss was:
GeneratedLoss = SmoothL1loss(XP¢™, XP?)

2.3 LOSS FUNCTION

The final objective function consisted of the Generatedloss, StyleLoss, and the K L regulation terms.

Loss = w1 StyleLoss + wo K LLoss® ™ + ws K LLoss"™ + wyGeneratedloss

3 DATASETS AND PREPROCESS

We obtained the PBMC-Zheng dataset from Zheng et al. [31]. After removing the megakaryocyte cells that
had uncertainly assigned labels, we log-transformed and normalized the data and selected the top 7,000 highly
variable genes.

Kang et al. published a dataset from PBMCs including both control and perturbed cell types [25]. Among these
data, we extracted the average of the top 20 cluster genes, which has 6,998 genes in total, from seven cell types,



respectively: B cells, CD4-T cells, CDS-T cells, CD14 Mono cells, Dendritic cells, FCGR3A Mono cells, and
NK cells, the same cell types as the PBMC-Zheng dataset.

Harber et al. presented a dataset using the responses of epithelial cells infected by Salmonella and H.poly
[26]. In this dataset, there were 3,240 control cells, 2,711 H.poly-infected cells, and the rest 1,770 Salmonella-
infected cells. The data were also normalized and log-transformed, and the top 7,000 highly variable genes
were selected in this dataset.

In our model, we performed further data preprocessing to ensure consistency between control and perturbed
cells within each cell type. Specifically, for each cell type, we randomly selected an equal number of cells from
both the control and perturbed groups and used them to balance the dataset. This data preprocessing step helped
us create a more robust and unbiased dataset, enabling accurate and fair comparisons between each cell type’s
control and perturbed conditions during subsequent analyses. By doing such data processing, we guaranteed
that each pair of X "' and XP°" have the same cell type, so the following style transfer process would be
valid.

4 STATISTICS AND REPRODUCIBILITY

In scPerb, we evaluated the performance of our model under a fixed seed of 42 by using the square of the
R value (R?), calculated through scipy.stats.linregress function [32]. This metric evaluated the degree to
which the generated images and the real perturbed data were correlated. We computed the R? values for all
genes’ mean and variance and the top 100 Differential Expressed Genes (DEGs). To understand the model’s
results visually, we created scatter plots comparing the generated images to the corresponding ground truth

data. This graph allowed us to observe how well the model’s predictions aligned with the actual values.

Additionally, we used a violin plot to examine the discrepancies between the generated images and the real
perturbed data for the top DEGs. The DEGs were identified using the scanpy.tl.rank_genes_groups [33]
function, employing the Wilcoxon method [34].

Through these analyses, we aimed to assess the accuracy and performance of our scPerb model based on
the input gene expression data. The evaluation of R? values and the visualization of the scatter and violin
plots provided valuable insights into the model’s capabilities and highlighted any discrepancies between the
generated and real perturbated data for further investigation.

5 RESULTS AND ANALASYS
5.1 SCPERB OUTPERFORMS OTHER BENCHMARKS

To demonstrate the performance of scPerb, we compared scPerb with currently existing methods, including
scGen, CVAE, stGAN, and sc-WGAN [21-24]. Three datasets were used for benchmarking, including two
published human peripheral blood mononuclear cell (PBMC) datasets, i.e., PBMC-Kang [25] and PBMC-
Zheng [31] datasets, which were perturbed with interferon (I F'N — 3), and the intestinal epithelial cell dataset
fetched by parasitic helminth H.poly [26], i.e., H.poly dataset.

Based on those three datasets, each method’s performance was evaluated using the R? between predictions
and real perturbed data. Specifically, we randomly selected a cell type to predict its gene expression data after
perturbation, meanwhile using the rest of the cell types for model training. We repeated such process across
all cell types and presented the average of the R? in Fig. 2a. In the PBMC-Zheng dataset, scPerb achieved the
average R? score of 0.98, which was better than the performance of the competitors, including scGen (average
R? = 0.94), CVAE (average R® = 0.93), stGAN (average R* = 0.39) and sc-WGAN (average R* = 0.10).
Surprisingly, the GAN-based methods had much worse performance, as both GAN-based methods could not
reach a R? value exceeding 0.5. Meanwhile, in the PBMC-Kang dataset, scPerb achieved the highest average
R? score of 0.98, while the second-best and third-best approaches were scGen and CVAE which had 0.96 and
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Fig. 2. The Overall result of scPerb. a: Comparison of R* values across all benchmarking methods;
b: Bar plots showed the R? value of all methods in the PBMC-Zheng dataset [31]; ¢: Scatter plot showed the
correlation between real and predicted gene expression of 7,000 genes by scPerb and other three benchmarking
methods in CD4-T cells, and the five red dots represented the top five DEGs; d: The distribution of the control
dataset, perturbed dataset, and the prediction of all methods in one of the least DEGs (FTL), and one of the top
DEGs (IFIT2).

0.91. Similarly, the stGAN and sc-wGAN only had an average R? score of 0.42 and 0.12, respectively, in this
dataset. Finally, we applied scPerb to the H.poly dataset and still got a 0.96 average R? score, followed by the
scGen, CVAE, stGAN, and sc-wGAN with the average R? score of 0.95, 0.93, 0.58, 0.14. When comparing
their results in a specific cell type, scPerb consistently outperformed other benchmarking methods (Fig. 2b).
For example, in CD4-T cell type, one of the most numerous cell types in the PBMC-Zheng dataset, scPerb
achieved a superior R? score of 0.99, which was much better than scGen, CVAE, stGAN, and sc-WGAN (R2
score: 0.96, 0.95, 0.16, and 0.09) respectively.

In particular, we evaluated the performance of the proposed scPerb and the other benchmarking methods at
the gene level. In Fig. 2¢, we illustrated the prediction of our scPerb and the performance of the other three
benchmarking methods in CD4-T cells from the PBMC-Zheng dataset. The scatter plot demonstrated that
scPerb got the average R score of 0.9905 when we used all the genes in this cell type. The performance
could go up to 0.9935 when we only consider the top 100 DEGs. In comparison under the same setting, scGen
achieved the average R? score of 0.9605 over all genes and 0.9963 on the top 100 DEGs. Our scPerb could
outperform CVAE (average R? score of all genes = 0.9472, average R? score of top 100 DEGs = 0.9578) and
sc-WGAN (average R? score = 0.0924, average R score = 0.9578) on both the evaluation criteria. Specifically,
DEGs including IFIT1, IFIT3, IFI6, ISG20, and ISG15, showed the best performance.



In Fig. 2d, the distribution of /FIT?2 in the control dataset varied from its distribution in the perturbed dataset.
Based on the predicted gene expression, the mean of scPerb’s prediction was closest to the mean of the perturbed
dataset, with a relatively large value range between 0.5 to 3.0 after log transformation. The scGen and sc-
WGAN provided comparable predictions, but the mean of the predictions was slightly larger than the real
perturbed data. In this particular gene, CVAE was more associated with the control data, and stGAN focused
on the outliers with high gene expressions. In Fig. 2e, the distribution pattern of FTL in the control dataset was
similar to the distribution in the real perturbed dataset. Under such scenarios, most of the predictions in scPerb
were close to the mean of the perturbed data, while the predictions from scGen and CVAE were expanded to a
larger range. stGAN responded to the high gene expressions while the predictions in sc-WGAN had lower gene
expressions. To further illustrate that our result was better than that of benchmarks, we applied the Wilcoxon
[34] test to these results. In this case, only scPerb resulted in an adjusted P value larger than 0.05 for both genes
(0.1763, and 0.0742 respectively for the FTL gene and the IFIT2 gene), which showed that the prediction of
scPerb did not have a significant difference from the ground truth.

All benchmarking techniques, in contrast, produced P values less than 0.05, indicating a considerable departure
from the altered sample. To be more specific, scGen scored 6.3 x 10~ *° and 0.0033 for the FTL gene and the
IFIT2 gene, while CVAE scored 0.0307 and 1.63 x 10™%, stGAN scored 4.81 x 107'°° and 3.14 x 1073,
and sc-WGAN scored 2.01 x 1073" and 2.41 x 10™'°. Therefore, scPerb demonstrated superior performance

than the other benchmarking methods.

5.2 SCPERB IS AN INNOVATIVE MODEL THAT PREDICTS SINGLE-CELL PERTURBATION
RESPONSES ACCURATELY

In this section, we aimed to show that scPerb could accurately predict the single-cell perturbation responses for
other cell types. Fig. 3a illustrated scPerb’s performance across multiple cell types. In CD4-T, CD14 Mono,
and FCGR3A Mono cells, scPerb could achieve an average R? score = 0.99 in both the top 100 DEGs and
all gene expressions. In Dendritic cells, the average R? score was 0.98 and 0.98 respectively. In B cells and
NK cells, the performance of the top 100 DEGs was slightly better than the performance of all genes, which
was 0.99 vs. 0.98 and 0.98 vs. 0.97 respectively. We also observed that in CD8-T cells, the performance of
the top 100 DEGs was 0.94, which was slightly lower than the performance on all genes (average R? score =
0.96). Fig. 3b was the dot plot that demonstrated the correlation of representative genes among different cell
types. In half of the selected genes, the dot plot showed a strong difference between the gene expression and
the real perturbed gene expression. On the other half of the selected genes, we presented similar gene patterns
in both the control and perturbed datasets. This dot plot suggested a strong association between the mean gene
expression levels across all cell types in scPerb’s predictions and those in the actual perturbed dataset, even
when the gene expressions varied in the control dataset. The UMAP in Fig. 3¢ showed that the predicted gene
expression from scPerb in CD4-T cells was well-correlated with the real perturbed gene expression in the latent

space. In particular, for a specific gene /FI6, we also illustrated the consistent observation.

5.3 SCPERB CAN ACCURATELY PREDICT THE PERTURBATION OF CELLS IN MULTIPLE PBMC
DATASETS

scPerb had robust results in multiple datasets. In PBMC-Kang dataset [25], scPerb still outperformed other
methods, achieving 0.98 in the mean R? of all the cell types, followed by scGen with a R? of 0.96, CVAE with
0.91, stGAN with 0.42 and sc-WGAN with 0.12 (Fig. 4a). Moreover, scPerb precisely predicted the result
of FCGR3A Mono cells, reaching R? of 0.9948 and 0.9978 respectively for all genes and its top 100 DEGs.
The top 100 DEGs as well as the entire gene population showed lower R? values for alternative benchmark
approaches including scGen, sc-WGAN, and style-transfer GAN. To be more specific, scGen produced R?
values of 0.9623 and 0.9545 for all genes and the top 100 DEGs, respectively. For the same categories, sc-
WGAN revealed R? values of 0.3303 and 0.8593, and stGAN produced R? values of 0.5223 and 0.7361,
in the same categories. This scatter plot further reinforces scPerb’s robust predictive abilities. Moreover, in
MT2A genes, one of the top DEGs in FCGR3A Mono cells, which also had a control condition filled with
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Fig. 3. Result of scPerb in PBMC-Zheng dataset. a: Grouped boxplot showed the result of scPerb
in R? values in all genes and the top 100 DEGs in every cell type in the PBMC-Zheng dataset; b: Dot plot
illustrating the mean gene expression in each cell type of control, real perturbed, and predicted perturbed
condition, including the top DEGs and the least DEGs; c-d: UMAP [35] visualizations depicted the condition
distribution of the overall CD4-T cell type in the PBMC-Zheng dataset and the expression pattern of /FI6, one
of the top DEGs in the CD4-T cells.

zero values, scPerb made a better prediction than any other method, capturing the mean of the ground truth.
In this case, the prediction of other methods barely captured the mean of the real perturbed data. (Fig. 4b)
The Wilcoxon test can further explain the difference between the prediction and the real perturbed cells in the
MT?2A genes: only scPerb achieved a P value of 0.8785, meaning that the difference between the prediction of
scPerb and the real perturbed data was not statistically different; however, all other methods including scGen,
CVAE, and both GAN-based methods resulted in an adjusted P value far less than 0.0001, showing a significant
difference between their predictions and the real perturbed data (Fig. 4¢). Besides, the dot plot (Fig. 4d) showed
that scPerb could get robust prediction no matter whether the original control gene expression was lower (for
example the IFITI gene), approximately the same (for example the RPLI3A gene), or higher than (for example
the FTHI gene) the ground truth. Moreover, it is worth noting that the prediction of scPerb correlated better
with the real perturbed data, especially the top 5 DEGs (the red dots shown in Fig. 4e); and the R* values of
scPerb (0.9950 and 0.9956 for all genes and the top 100 DEGs) were also higher than all the other benchmarks
including scGen, CVAE, and sc-WGAN.

5.4 SCPERB HAS ROBUST RESULTS ACROSS DIFFERENT DATASETS

In the H.poly dataset [26], scPerb maintained superior performance with robust predictive capacity. For the cell
types in the H.poly dataset, scPerb gained an average of R? as 0.96, which was better than the scGen and CVAE
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Fig. 4. Result of scPerb in PBMC-Kang dataset. a: This bar plot compared the R? values of all the

methods within the PBMC-Kang dataset, while central values represented the mean R? values across all 7 cell
types in the dataset; b-c: Comparing the distribution of all the methods in the MT2A gene in CD4-T cells in
the PBMC-Kang dataset. Center values in Fig. 4¢ were the adjusted P values comparing the prediction of each
method to the ground truth by using the Wilcoxon test [34]; d: A dot plot comparing the mean gene expression
of all 7 cell types and all three conditions in the most and least DEGs in the PBMC-Kang dataset; e: The
correlation of the mean expression of all 6,998 genes in FCGR3A Mono cells. It compared predictions from
three of the best benchmark methods and scPerb against the ground truth, with shaded lines representing the
95% confidence interval of the regression estimate.

(scGen =0.95, CVAE = 0.93), much better than stGAN and sc-WGAN (stGAN = 0.38, sc-WGAN = 0.14). The
line plot in Fig. 5a also illustrated that scPerb maximized its difference in R? compared with other methods
in Tuft cells, having R% = 0.94. While other VAE-based benchmarks had worse performance (scGen = 0.91,
CVAE = 0.84). Fig. 5a also showed that all VAE-based methods (scPerb, scGen, CVAE) had a much better
result than GAN-based methods (sc-WGAN, stGAN). In 7 out of 8§ other cell types, scPerb showed superior
performance than the benchmarking methods. Even for the endocrine cell type, in which scPerb presented less
outperformance, it still achieved R? as 0.87, which was comparable with scGen (R? = 0.89).

Moreover, scPerb made better predictions in this dataset, especially in the Enterocyte. Progenitor cells. In Fig.
5b, the distance between the prediction (green dot) and real perturbed data (orange dot) was closer than the
distance between the perturbed dataset to the control dataset (blue dot). For the other benchmarks, the VAE-
base methods, scGen (Fig. 5¢) and CVAE (Fig. 5d) could not easily divide the control data samples from the
prediction and perturbed data, so their prediction resulted somewhere in between the control data samples and
the perturbed data samples. And for the GAN-based methods, as shown in Fig. Se for stGAN and Fig. 5f for
sc-WGAN, the predictions were notably distant from both the control and perturbed datasets.
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Fig. 5. The result of scPerb in the H.poly dataset a: Line plot using R? to compare the outcomes of all
the methods; b-f: The UMAP visualization of the control (blue dots), perturbed (orange dots), and predicted
(green dots) condition of all the methods.

6 DISCUSSION

scPerb is a generative model that dynamically transfers the gene expression in the control dataset into the
reliable perturbed dataset. The encoder of scPerb projects the raw control gene data into the high-dimensional
latent space. scPerb aggregates it with the dataset-specific styles to generate a high-quality representation for
the perturbed dataset. Based on the representation, the decoder from scPerb can reconstruct gene expressions
that are correlated with the mean of the perturbed dataset. The experiments demonstrate that scPerb can capture
the latent content features and generate stable dataset-specific styles across different cell types and data from
multiple studies. Moreover, the quantitative evaluation indicated the performance of scPerb outperforms four
representative benchmarks, having state-of-the-art results in three different datasets.

Compared with traditional works [21-24], scPerb is a data-driven algorithm that can fully explore the gene
expression in the raw dataset and does not rely on solid domain priors. On the opposite, the traditional works
extract the principal components and build up a graph-based model in the low-dimensional manifold. Such
methods rely heavily on the experienced domain knowledge, and lack of generalization abilities. Compared
with other data-driven algorithms, scPerb incorporates the stableness from the VAE settings and exploits the
advantage of the GAN to generate high-quality samples.

However, minor problems still exist. In Endocrine cells in the H.poly dataset, one of the cell types containing
the fewest cells in the H.poly dataset (163 in 5,059), scPerb makes predictions slightly worse than scGen [23].
Using R? values as a criterion, scGen results in 0.89 while scPerb only results in 0.87. Note that scGen only
calculates a fixed liner vector while scPerb uses style transfer, in this case, the problem of “overfitting” exists.
However, such cases are very rare and scPerb can still outcompete “simple” methods like scGen in other cases
when the data is small. In Tuft cells, also one of the cell types containing the fewest cells in the H.poly dataset
(248 in 5,059), scPerb achieves a R? value of 0.94 while scGen only gets 0.91.
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