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Abstract: This paper explores theoretically and empirically the impact of industrial 
robot adoption on the investment decision of pollution abatement technology (the green 
investment), and the pollution intensity. A theoretical model predicts that a rising 
fraction of automation will increase firms’ green investment, because the cost-saving 
advantage of robots over low-skilled labors can reduce the marginal production cost of 
firms and increase the marginal benefit of investing in pollution abatement technology. 
The model also predicts that the rising fraction of automatable technology may decrease 
the level of pollution intensity. Empirical evidence from Chinese manufacturing firms 
provides support to these theoretical predictions. We find that firms that adopt robots 
invest more on green facilities and have lower pollution intensity than non-robot firms.  

 

Key Words: Automation; Green Investment; Pollution Abatement 

 

  



Content 
1. Introduction ................................................................................................ 4 
2. Model ......................................................................................................... 8 
2.1 Market Structure ...................................................................................... 9 
2.2. Intermediate Goods Sector ...................................................................... 9 
2.2.1 Automation and Production .................................................................. 9 
2.2.2 Production and Pollution..................................................................... 10 
2.2.3 Automation and Green Investment ..................................................... 12 
3. Data and Variables ................................................................................... 15 
3.1 Data ........................................................................................................ 15 
3.2 Variable Construction ............................................................................ 16 
3.2.1 Green Investment, Pollution Intensity, and Robot Adoption .............. 16 
3.2.2 Instrumental Variables ........................................................................ 16 
3.2.3 Control Variables ................................................................................ 18 
3.2.4 Summary Statistics.............................................................................. 19 
3.3 Simple Stylized Facts ............................................................................. 20 
4. Empirical Results ..................................................................................... 22 
4.1 Automation Firms Invest More on Green Facilities .............................. 22 
4.1.1 Empirical Framework ......................................................................... 22 
4.1.2 Fixed Effect Estimation Results .......................................................... 23 
4.1.3 IV Estimation Results ......................................................................... 23 
4.1.4 Robustness .......................................................................................... 26 
(1) Domestic Robots .................................................................................... 26 
(2) Before Year 2007 ................................................................................... 27 
(3) Alternative IVs ....................................................................................... 27 
(4) Expanded Measures of Robots ............................................................... 29 
4.1.5 Productivity Heterogeneity ................................................................. 29 
4.1.6 Whether to Invest Green (IV Estimations) ......................................... 30 
4.2 Automation Firms May Not Pollute More ............................................. 31 
5. Conclusion ............................................................................................... 32 

 



1. Introduction 

With rising labor costs in the past two decades, the adoption of industrial robots has 
been increasing substantially worldwide. The automation technology, such as the 
robotics and autonomous system, is projected to be deployed by 60% of companies 
worldwide by 2025 (World Economic Forum, 2020). However, it is also argued that 
the automation technology has profoundly altered how economy and environment inter-
relate (Galaz et al., 2021), and may have created negative environmental impacts such 
as exacerbating pollution (Guenat et al., 2022).  

Could the advancements in productivity, catalyzed by the automation technology 
such as industrial robots, come at the expense of the environment and ecosystems? 
There is no systematic examination to this question yet, even though answering this 
question is so essential. Indeed, the air pollution and the associated global warming 
have been causing substantial risks to the natural, human and economic systems, in 
particular in those fast-growing economies like China (Stock, 2020; Wolf et al., 2022; 
Song et al., 2023) 1. If automation does induce worse environment, human society may 
need to be more cautious in pursuing automation.  

This paper aims to answer this question. Specially, we investigate whether 
industrial robot adoption encourages firms to invest in pollution abatement technology 
(henceforth the green investment), and what are the environmental consequences of 
industrial robot adoption. We first construct a simple model to identify the mechanism 
through which industrial robots may affect firms’ decisions on the investment of 
pollution abatement technology. The model is featured with automation technology 
where for tasks capable of automation, firms prefer industrial robots to low-skilled 
workers as the rental rate of industrial robots is lower than the wage of low-skilled 
workers (Acemoglu and Restrepo, 2020). Such investments are subject to convex 
investment costs (Aghion et al., 2018). The negative externality associated with firm 
production is pollution emissions, which are subject to a costly tax and induce firms to 
endogenously choose an optimal investment level in pollution abatement technology to 
avoid the emission tax (Shapiro and Walker, 2018).  

 
1 Considerable evidence shows that air pollution exposure is detrimental to the cognitive and physical 
abilities of human (Aguilar-Gomez, et al., 2022), results in over 6 million premature deaths yearly 
(Health Effects Institute, 2020), and causes climate damages almost seven times of the energy input 
(Stock, 2020) 



We find that in the model, a rising fraction of automatable tasks will encourage 
firms, and particularly the large and high-productivity firms, to invest more in pollution 
abatement technology, which may imply a potentially cleaner economy in the process 
of industrial robotization. The intuition is simple. The marginal benefit of investing 
green will be amplified by the fraction of tasks capable of automation, as the rental rate 
of industrial robots is relatively lower than the wage of low-skilled workers (Acemoglu 
and, 2020). Such a stimulating effect of industrial robots on green investment is 
particularly strong for high-productivity firms, since for such firms, industrial 
robotization will deliver them particularly low marginal production costs and result in 
even large market shares. Thus, the heterogeneity effect of industrial robots on firms’ 
green investment suggests a resource reallocation from low-productivity firms to high-
productivity firms during the industrial robotization.  

We empirically test these theoretical predictions with Chinese manufacturing firm 
data. The Chinese setting is especially suitable for addressing the question. China has 
been a leading country in adopting robots. The stock number of robots in China 
surpassed that in Japan in 2016, ranking top 1 in terms of the stock of industrial robots 
since then (Figure 1). According to the “2021 World Robot Report” released by the 
International Federation of Robotics (IFR) in 2020, China accounted for 43.85% of 
global robot installations. The robot density in the manufacturing industry amounts to 
246 industrial robots for every 10,000 employees, which is twice the world average, 
and the operational stock of industrial robots in China was 943,223 units by the end of 
2020, accounting for 31.4% of the world's total number.2 

Figure 1. The stock number of robots in major countries 

 

 
2 https://ifr.org/ifr-press-releases/news/robot-sales-rise-again 



Thanks to the Chinese Customs Database (CCD), we obtain firm level information 
of robotization. This dataset provides firm-level import information on industrial robots, 
which we use as the measure of the adoption of industrial robots. This is a reliable 
measure for two reasons. First, the robots deployed by Chinese firms were mainly 
imported before 2010. Robots made in China emerged only after year 2010 (Fan et al., 
2021). Second, robot production is highly monopolistic and concentrated in the six 
major global manufacturers, none of which resides in China (Bonfiglioli et al., 2020) 3. 
Additionally, we obtain firm green investment and pollution data from the Chinese 
Industrial Firms Pollution Emissions (CIFPE), and firm operation data from the Annual 
Survey of Industrial Firms (ASIF). We restrict our sample to the years of 2000 to 2009 
due to the data availability of the CCD dataset (running from 2000 to 2013), and that 
the ASIF dataset misses important variables in the year of 2010. During our sample 
period, the imported robots are the major source of industrial robots for firms.4 

Table 1 Differences Between Robot Adoptors and Non-robot Adoptors 
 (1) (2) (3) (4) (5) 
VARIABLES Gas Facilities Coal 

Consumption 
SO2 

Emissions 
Sales Output 

      
Robot Adoptors 0.191*** -4.180*** -1.296*** 2.257*** 2.225*** 
 (5.63) (-23.17) (-14.42) (70.21) (66.95) 
Constant 0.785*** 5.726*** 2.454*** 9.822*** 9.857*** 
 (327.19) (460.64) (394.03) (6,237.42) (6,054.19) 
      
Observations 83,926 79,195 87,859 620,520 620,505 
F 31.68 536.8 208.0 4930 4482 
      

Notes: (1) Robot Adoptors refer to firms that imported robots from 2000 to 2009, and non-robot 
firms refer to firms that did not import robots during this period. (2) The coefficients are from the 
following regression, 𝑦! = 𝛽"𝑅𝑜𝑏! + 𝛽# + ε!, where 𝑦! indicates the average value of variable 𝑦 
for firm 𝑗 over sample years. 𝑅𝑜𝑏!=1 if the firm is robot adoptor, and 0 for a non-robot adoptor. 
(3) t-statistics in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

 

Table 1 reports the raw differences in green investment and pollution emissions 
between robot adoptors that have ever imported robots from the year 2000 to 2009, and 
non-robot adoptors that never imported robots during this period. A few points are 
worth noting. First, robot adoptors are in general larger than non-robot adoptors. They 

 
3 The 6 major robot producers are ABB (Switzerland), Omron (USA), Fanuc (Japan), Kawasaki (Japan), 
KUKA (Germany), Yaskawa (Japan). 
4 Indeed, it is pretty common in the literature to measure firm-level robot usage with imported robots 
(see Bonfiglioli et al., 2020; Acemoglu et al., 2020; Koch et al., 2021). 



have higher sales and output. Second, robot adoptors have significantly larger amount 
of gas treatment facilities, indicating more green investment than non-robot adoptors. 
Third, robot adoptors consume less coal resource than non-robot adoptors, and may 
pollute less in terms of the level of SO2 emissions. We take SO2 emissions as our 
measure of pollution emission, as it was one of the most important pollutants during 
the sample period (Vennemo et al., 2009). 

However, Table 1 does not imply any causality from robot adoption to firm 
performance. To identify such causal effects, we exploit the more rigorous instrumental 
variable (IV) approach. In particular, we construct two instrumental variables, one built 
on robot tariffs (the Tariff IV) and the other on robot adoption in the same industry in 
the U.S. (the US IV). We find that firms that adopt robots will invest more on gas 
treatment facilities (green investment). This is especially true for the high-productivity 
firms. We also find that firms adopting industrial robots in general have significantly 
lower SO2 pollution intensity. Such empirical findings are consistent with our 
theoretical predictions. 

Our paper contributes to the literature that investigates the impact of industrial 
robot adoption on environmental related issues, such as the energy consumption (Luan 
et al., 2022), energy efficiency and pollution emissions (Song et al., 2023). Due to the 
lack of data on robot adoption at the firm-level (Koch et al., 2021), most of the existing 
studies measure robot adoption at the industry, regional, or country level (Luan et al., 
2022). The underlying assumption is the homogeneity of firms’ capacity and 
willingness to use robots while ignoring the potential resource reallocation across 
heterogeneous firms. Among the very few papers that search for firm-level evidence 
(Song et al., 2023), none of them offers a theoretical explanation or empirical evidence 
of the causality from automation to firm green investment. We fill in these gaps. 

Our paper is also related to a growing literature that studies the economic impacts 
of industrial robots. The IFR defines industrial robots as “automatically controlled, 
multipurpose, and reprogrammable” machines that do not require a human operator 
(IFR, 2014). Accordingly, industrial robots are argued to change or replace low-skilled 
labors in a range of tasks (Acemoglu and Restrepo, 2020). However, Acemoglu and 
Restrepo (2018) also pointed out that the cost savings brought by automation and the 
new tasks created by productivity improvements may boost demand for labor and 
increase their income share. Furthermore, existing studies mainly measure robot 
penetration at the industry or country level (Acemoglu and Restrepo 2018, 2020). With 



limited firm-level robot survey or import data, a few papers find that the use of robots 
can significantly improve the labor productivity and total factor productivity of firms, 
and reduce firms’ product prices (Bonfiglioli et al., 2020; Acemoglu et al., 2020; Koch 
et al., 2021). We contribute to this strand of literature by exploring the impacts of 
industrial robots in a new field, the environmental sustainability. 

Our paper is also related to the literature that studies the determining factors of 
pollution. Existing studies find that economic growth may be at the cost of 
environmental deterioration (Shapiro and Walker, 2018). To balance economic growth 
with environmental sustainability, environmental regulation policies were adopted to 
tackle environmental issues and climate change.5 Different from the literature, we 
emphasize the mechanism that industrial robot adoption reduces firms’ marginal cost 
of production, which on one hand expands firm production, but on the other hand 
encourages firms to invest green, leading to pollution abatement effect and reducing 
pollution intensity.  

The paper is organized as follows: section 2 develops a theoretical model; section 
3 presents the data and variable constructions; section 4 describes the empirical strategy 
and reports the empirical results; section 5 concludes. 

2. Model 

We construct a theoretical model to analyze the environmental impacts of industrial 
robot adoption. We identify the mechanism through which industrial robot adoption 
may affect a firm’s decision on green investment and the corresponding changes in its 
pollution emission intensity. The model includes three key ingredients, the automation 
technology where for a certain fraction of tasks, cheaper industrial robots will replace 
low-skilled workers (Acemoglu and Restrepo, 2020), the costly pollution emission 
which is associated with firm production and subject to a pollution tax (Shapiro and 
Walker, 2018), and the green investment which will reduce the level of pollution 
emission but is subject to convex investment cost (Aghion et al., 2018).  

 
5 Literature states that the rapid economic growth, the advanced financial development, openness to the 
world through foreign direct investment (FDI) or trade, population level and rising urbanization may all 
cause environmental deterioration. Relevant policies include environmental taxes and regulations 
(Shapiro and Walker, 2018; Fan et al., 2019).  



2.1 Market Structure 

Final consumption good, 𝑌, is produced by combining intermediate varieties, y(ω), 

with a CES type of aggregator, 𝑌 = '∫ y(ω)
!"#
!

	
"∈$ dω*

!
!"#, where ω ∈ Ω denotes a 

unique variety produced by a specific firm 𝑖  (hence, 𝑖 = ω ), and σ > 1  is the 
substitution elasticity across intermediate inputs. Such a market structure implies that 

the market demand for each individual variety would be given by: y(ω) = p(ω)%&X, 
where p(ω) is the price of intermediate good ω, and X captures the aggregate factor, 

given by  X ≡ P'𝑌 , with 𝑃 = 6∫ p(ω)(%&	
"∈$ dω7

#
#"!  representing the aggregate 

price index. When we consider individual firm’s decisions, we treat the aggregate factor 
as fixed. 

2.2. Intermediate Goods Sector 

2.2.1 Automation and Production 

Following Bonfiglioli et al. (2020) and Acemoglu and Restrepo (2020), each firm 𝑖 
with productivity level (𝜑)) produces a unique variety (𝑦)) with two types of inputs, the 
worker-robots combined task input, 𝐻), and natural resource (	𝑁)).6 Eq. (1) describes 
the production function of firm 𝑖, 

𝑦) = 𝜑) =
*$
(%+

>
(%+

=,$
+
>	+                 (1) 

where 𝛼 denotes the cost share of the natural resource in the production process.  

The production of combined tasks, 𝐻) , follows a CES type of aggregation 
specified in Eq. (2),  

𝐻@) = 𝑒𝑥𝑝 '∫ 𝑙𝑛[𝑥)(𝑧)]𝑑𝑧
(
- *,                (2) 

where 𝑥)(𝑧) denotes the input of task 𝑧𝜖[0,1]. We assume that tasks (𝑧 ∈ [0, 𝜗))) are 
exogenously assigned to the industrial robots (𝐴)), and the left ones ([𝜗) , 1]) are given 
to the low-skilled workers (𝐿)). The functional forms of the inputs (𝑥)(𝑧)) associated to 
each task is given in Eq. (3), 

 
6 The conclusion is similar when introducing physical capital or high-skilled labor into the production 
function. 



𝑥)(𝑧) = P

.$
/$	
			, 𝑧 ∈ [0, 𝜗))

0$
(%/$

	 , 𝑧 ∈ [𝜗) , 1]
                           (3) 

where 𝜗) measures the exogenous fraction of tasks capable of automation. The larger 
the 𝜗), the more the tasks that robots can work on. In the extreme case where 𝜗) = 1, 
we have 𝑥)(𝑧) = 𝐴), which means that all tasks will be completed by industrial robots. 
In the other extreme where 𝜗) = 0, 𝑥)(𝑧) = 𝐿), all tasks will be done by low-skilled 
workers. Substituting Eq. (3) into Eq. (2), the task combination can be re-written in 
Eq.(4),  

𝐻@) = =.$
/$
>
/$
= 0$
(%/$

>
((%/$)

                  (4) 

Following Shapiro and Walker (2018), we assume pollution emission (𝐸)) follows 
production, and pollution is costly, subject to a market price of 𝜏) . Hence, each firm 
assigns 𝛿) ∈ (0,1) fraction of labor, 𝐿), to abate pollution, and the remaining fraction, 
(1 − 𝛿)) to produce output. The combined task input of firm 𝑖	completed by low-skilled 
workers and industrial robots can be re-written in Eq. (5), 

𝐻) = =.$
/$
>
/$
=((%3$)0$

(%/$
>
((%/$)

= (1 − 𝛿))((%/$)𝐻@)          (5) 

Correspondingly, the production function of Eq. (1) can be re-written in Eq. (6), 

𝑦) = (1 − 𝛿))((%/$)((%+)𝜑) =
*4$
(%+

>
(%+

=,$
+
>
+
= (1 − 𝛿))((%/$)((%+)𝑦V).      (6) 

where the productive factor (𝑦V)) is given by Eq. (7), 

 𝑦V) = 𝜑) =
*4$
(%+

>
(%+

=,$
+
>	+.       (7) 

2.2.2 Production and Pollution 

As in Shapiro and Walker (2018), the amount of pollution emission is assumed to be 
an increasing function of production. To investigate how robot adoption affects a firm’s 
decision on green investment, we assume the pollution emission is a decreasing 

function of the level of green investment (𝐼)), given by Eq. (8), 

𝐸) = 𝜆(𝐼))𝛾(1 − 𝛾)
#"%
% (1 − 𝛿))

&#"'$((#"*)
% 𝑦V)          (8) 



where 𝜆(𝐼))  captures the effect of green investment on pollution abatement, with 
56(7$)
57$

<0, reflecting that green investment reduces pollution intensity (56(7$)
57$

). The term, 

𝛾(1 − 𝛾)
#"%
% , is a scale factor to have a clean representation of the transformed 

production function in Eq. (9) below, satisfying 𝛾 ∈ (0,1). 

Solving for (1 − 𝛿)) in Eq. (8) and substituting it into Eq. (6), we show that the 
production function can be effectively transformed to a Cobb-Douglas function of the 

pollution emission and the productive factors (𝑦V)),  

𝑦) = = 8$
6(7$)9

>
9
= :;$
(%9

>
(%9

.               (9) 

Here, it can be seen that, 𝛾 captures the fraction of pollution cost in the production 
process.  

The marginal cost of production (𝑀𝐶(𝜗))) can then be solved as in Eq. (10), 

𝑀𝐶(𝜗)) = (𝜆(𝐼))𝜏))9 =
<=,(/$)

(%9
>
(%9

         (10) 

where 𝑀𝐶>(𝜗)) captures the marginal cost on the productive factor (𝑦V)), given by Eq. 
(11), 

𝑀𝐶>(𝜗)) =
[@(/$)]*B#"*

C$
          (11) 

𝑅 is the market price of natural resource, and 𝜀(𝜗)) is the marginal cost associated 

with the combined tasks (𝐻@)) given by Eq. (12), 

𝜀(𝜗)) = 𝑟/$𝑊(%/$ ,         (12) 

where 𝑟 is the market price of industrial robots, and 𝑊 is the wage paid to low-
skilled workers. We see that the marginal cost of production (𝑀𝐶(𝜗))) is a function of 
the level of green investment (𝐼)) and the fraction of tasks capable of automation (𝜗)). 
When green investment is high and such that pollution emission intensity is low (falling 
8$
:;$

), the cost due to emission abatement is low. Then, firms have lower marginal costs 

of production. Similarly, when the fraction of tasks capable of automation is high, with 

the assumption that 𝑟 < 𝑊, firms will also have lower marginal costs of production. 

Given the CES type of market structure described in Eq. (1), the market price of 

good 𝑖 and the output of firm 𝑖 would be given in Eqs. (13)-(14): 



𝑝) =
'

'%(
𝑀𝐶),                            (13) 

𝑦) = = '
'%(

𝑀𝐶)>
%'
X.                          (14) 

Here, '
'%(

	  is the price markup, and 𝑀𝐶)  the marginal cost of production which 

captures the cost induced by penalty on pollution emission and the cost on productive 
factors, as defined in Eqs. (10-11). 

2.2.3 Automation and Green Investment 

Following Aghion et al. (2018), we introduce firm decision on green investment. On 
one hand, green investment is beneficial in reducing firm marginal production costs 
(see Eq. (10)). The intuition is that, green investment will reduce the pollution emission 

intensity (falling 8$
:;$
		as 56(7$)

57$
<0). This implies that, holding production (𝑦V)) fixed, a 

firm that invests green will decrease its pollution emission level, suffering less from the 
pollution tax penalty, and thus reduce its total production costs for given amount of 
outputs.  

On the other hand, the investment cost (𝑔(𝐼)) ) is a convex function of the 

investment level (𝐼) ), with 	5D(7$)
57$

>0 and 	5
-D(7$)
(57$)-

>0. We do not specify the exact 

functional forms of 𝑔), as the qualitative discussion is sufficient to illustrate the insights 
in the relationship between automation and investment. 

 Firm 𝑖  chooses optimal amount of robots, low-skilled workers, and green 
investment to maximize its profit, which yields the following first-order condition on 
green investment in Eq. (15): 

− 5<=$
57$

𝑦) =
5D(7$)
57$

	.                    (15) 

The left-hand side of Eq. (15) defines the marginal benefit from investing green 
(𝑀𝐵)), 

𝑀𝐵) = − 5<=$
57$

𝑦) .                    (16) 

Mathematically, we can show that rising green investment would reduce firm marginal 
production cost,  



5<=$
57$

= 9<=$
6$

56(7$)
57$

< 0                    (17) 

as 56(7$)
57$

< 0.  

We next explore how automation affects a firm’s green investment decision. 
Combining Eqs. (16)-(17), we re-write the marginal benefit of green investment in Eq. 
(18), 

𝑀𝐵) = −𝑦)
9<=(/$)

6$

56(7$)
57$

= − 9
6$
= '
'%(

>
%'
c𝑀𝐶(𝜗))d

(%'X 56(7$)
57$

.        (18) 

We then show that, for a given change of green investment, a higher fraction of tasks 
capable of automation (rising 𝜗)) would raise the marginal benefit of green investment 
as shown in Eq. (19), 

5<E$
5/$

= '9
6$
= '
'%(

>
%'
(𝜎 − 1)c𝑀𝐶(𝜗))d

%'X* '56(7$)
57$

* '5<=(/$)
5/$

* > 0,   (19) 

since 56(7$)
57$

< 0 and 

 5<=(/$)
5/$

= (1 − 𝛾)(1 − α)𝜗)𝑀𝐶(𝜗))(𝑙𝑛𝑟 − 𝑙𝑛𝑊) < 0.    (20) 

Note, 5<=(/$)
5/$

< 0 because the unit cost of using robots is assumed to be lower 

than that of low-skilled workers (𝑟 < 𝑊), following Acemoglu and Restrepo (2018) 
and Bonfiglioli et al. (2020). Eq. (17) suggests that, holding factor prices and aggregate 
demand constant, as green investment would reduce a firm’s pollution emission 

intensity (56(7$)
57$

< 0), it will reduce the marginal production cost (5<=$
57$

< 0). Eq. (20) 

further shows that, pollution abatement choices depend on the fraction of tasks capable 
of automation. Ceteris paribus, a larger fraction of tasks capable of automation will 
reduce a firm’s marginal cost of production. This amplifies marginal benefit of doing 
green investment, and encourages the firm to invest more in pollution abatement 
technology. We have Proposition 1 below. 

Proposition 1: Holding factor prices and aggregate demand constant, when the unit cost 
of industrial robots is lower than that of low-skilled workers (𝑟 < 𝑊), a rising fraction 
of tasks capable of automation will reduce the marginal cost of production and increase 
the marginal benefit of green investment, thereby encouraging a firm’s investment on 
pollution abatement facilities. 



Additionally, Eq. (21) shows that, the positive impact of robot adoption on the 

marginal benefit of investing green (5<E(/$)
5/$

> 0) will be even larger for firms with 

higher productivity, as these firms have even lower marginal costs than their peers with 
lower productivity, as shown in Eq. (21) below,  

5F
./0&'$(

.'$
G

5C$
= ''9

6$
= '
'%(

>
%'
(𝜎 − 1)X(1 − 𝛾)(1 − α)𝜗)(𝑙𝑛𝑟 − 𝑙𝑛𝑊)* '56(7$)

57$
* (1 −

𝜎)c𝑀𝐶(𝜗))d
%' '5<=(/$)

5C$
* > 0   (21) 

as	𝑙𝑛𝑟 − 𝑙𝑛𝑊 < 0, 56(7$)
57$

< 0, 1 − 𝜎 < 0, and	 5<=(/$)
5C$

< 0. Eq. (21) implies that firms 

with larger productivity have stronger incentive to invest green. We then have 
Proposition 2 below. 

Proposition 2: The effect of robot adoption on firm green investment will be stronger 
for firms with larger productivity than their peers with lower productivity. 

Finally, we can work out the impacts of automation on firm’s pollution intensity, 

defined as the ratio of pollution emission to output (8$
:;$

). From Eqs. (6) and (8), we have  

𝐸)
𝑦)
=
𝑀𝐶)
𝜏)

𝛾, 

which implies that 

H(
1$
2$
)

H/$
= 9

I$

H(<=$)
H/$

< 0.                     (22) 

Intuitively, as automation increases pollution abatement investment and reduces 
𝜆(𝐼), this will decrease the ratio of emission 𝐸) to a firm’s output. We thus have the 
testable Proposition 3 below. 

Proposition 3: Ceteris paribus, when the unit cost of industrial robots is lower than that 

of low-skilled workers (𝑟 < 𝑊), a rising fraction of tasks capable of automation will 
reduce the firm’s pollution intensity. 

We will test these theoretical predictions in the next section. 



3. Data and Variables 

3.1 Data  

We use three firm-level datasets in this study: the environmental data (China Industrial 
Environmental Statistics Database, CIED), the survey data on Chinese manufacturing 
firms (Chinese Annual Survey of Industrial Firms, ASIF) and the customs data on trade 
transactions (China Customs Dataset, CCD).  

The CIED dataset includes a variety of information such as firm identity, pollution 
emissions, and environmental protection facilities. The ASIF dataset provides extensive 
information on Chinese manufacturing firms with annual sales above 5 million RMB 
(around US$720,000), including firm employment, assets, ownership type (e.g., state-
owned enterprise, foreign invested firm, or private firm), sales, R&D expenditure and 
industry. The CCD dataset provides detailed information on the universe of China's 
international trade transactions. Most importantly, the CCD dataset provides firm-level 
import information on industrial robots (multi-functional industrial robots, robot end 
control devices, and other industrial robots) under the two HS8-digit codes (84795010 
and 84795090) as in Fan et al. (2021). Although the three datasets use different firm 
identifiers, all include extensive firm contact information (e.g., company name, 
telephone number, contact person, zip code) which allows us to generate firm-level 
observations that encompass the trade, environmental and operational activities of the 
Chinese firms.7  

Two further datasets used in the paper are: 1) the IFR dataset, which provides the 
increment and stock of robots at the country-industry-year level, and 2) the tariff data 
from the WTO which provides information on China's import tariffs. We construct 
firm-level instrumental variables based on robot stocks in the United States and the 
import tariffs on industrial robots to deal with the endogeneity problem associated with 
firm adoption of robots. We also match the IFR data with the firm-level trade, 
environmental and operational activities of the Chinese firms via the concordance table 

 
7 The data construction process is as follows. We first clean the ASIF and the CIED dataset following 
Brandt et al. (2012), and then match the two datasets based on the common identity information, such as 
firm name, firm id, legal person, zip code, address and phone number. We do the similar matching for 
the ASIF and the CCD datasets. Finally, we match the three datasets together. 



between China's National Industry Classification Standard (CIC) and the International 
Standard Industrial Classification Standard (ISIC) provided by Brandt et al. (2012).8 

Due to data availability, our sample runs from 2000 to 2009. Following Yu (2015), 
we drop observations that do not comply with accounting standards, including that: (1) 
owner's equity is greater than total assets; (2) fixed assets are greater than total assets; 
(3) net fixed assets are greater than total assets; (4) any variables such as fixed assets, 
intangible assets, total assets, and sales are negative; (5) the number of employees is 
less than eight. We also drop companies that do not comply with accounting standards.  

3.2 Variable Construction  

3.2.1 Green Investment, Pollution Intensity, and Robot Adoption  

We measure a firm’s green investment with the amount of the exhaust gas treatment 
facilities, which are devices for reducing harmful exhaust emissions from production. 
We measure pollution emission with SO2 emissions as they were one of the most 
important pollutants during the sample period (Vennemo et al., 2009). These SO2 
emissions are also examined in Shi and Xu (2018), and Chen et al.(2018). We measure 
the pollution intensity with the ratio of the SO2 emissions to a firm’s output.   

To measure firm-level adoption of industrial robots, we use the data of imported 
robots in the CCD dataset.9 In the empirical analysis below, we consider two measures 
of robot adoption, the robot stock value (𝑅𝑜𝑏JK) which is constructed as the cumulative 
imported robot value from the beginning of the sample period to the current year, and 
the robot stock dummy (𝐷_𝑅𝑜𝑏JK) in year 𝑡. 

3.2.2 Instrumental Variables 

It is highly possible that, large and profitable firms are more capable of using robots to 
produce large amount of production, create more pollution, and invest more on green 

 
8 The official documents of IFR (such as "WR_Industrial_Robots_2020_Chapter_1") shows that the IFR 
dataset basically divides the industry according to the ISIC code.  
9 Though the IFR dataset is a widely used source of robot data (see Acemoglu and Restrepo, 2020), the 
industry-level data in the IFR is not useful to capture the firm-level heterogeneity of robot adoption. 
Firm-level robot data is preferred in order to explore the micro-influences of robot adoption (Seamans 
and Raj, 2018).  



facilities. In order to deal with such endogeneity problem, we use the instrumental 
variable approach.  

We first follow Acemoglu and Restrepo (2020) to construct the instrumental 
variable of firm-level robot adoption using the industrial robot stock value in the United 
States provided by the IFR dataset, as in Eq. (22): 

𝐼𝑉𝑓𝑜𝑟𝑅𝑜𝑏JLMK = ln	c𝐿. 𝑛𝑜𝑅𝑜𝑏𝑐𝑎𝑝JMK ∗ 𝑓𝑜𝑟𝑅𝑜𝑏NOMK + 1d	              (22) 

where 𝐿. 𝑛𝑜𝑅𝑜𝑏𝑐𝑎𝑝JMK  is the lagged import value of non-robot capital goods of 

Chinese firm 𝑗 in industry ℎ in year 𝑡, and 𝑓𝑜𝑟𝑅𝑜𝑏NOMK is the industry-level total 
stock value of robots in the U.S.. According to Acemoglu and Restrepo (2020), there 
are similar characteristics of industry evolution across countries, and hence the 
development of robot application in China may be similar to that in the United States 
at the industry level. However, the industry-level data provided by the IFR may not 
capture the heterogeneity of robot adoptions across firms in the same industry, we thus 
multiply the industry-level of U.S. robot stock with the lagged import value of other 
capital goods of a firm. We use the non-robot capital import to measure the exposure 
of a firm to robot, because according to Koch et al. (2021), robots cannot be placed in 
a firm independently, but instead need to work with other capital goods, and firms that 
import more non-robot capital goods are more likely to import robots in subsequent 
years. 

We also construct an alternative instrumental variable with China’s import tariff 
on the industrial robots as in Eq. (23): 

𝐼𝑣𝑡𝑎𝑟𝑖𝑓𝑓JMK = 𝑙𝑛c𝐿. 𝑛𝑜𝑅𝑜𝑏𝑐𝑎𝑝JMK ∗ 𝑡𝑎𝑟𝑖𝑓𝑓K + 1d	                (23) 

where 𝑡𝑎𝑟𝑖𝑓𝑓K is the robot import tariff of China in year 𝑡. Similar to Equation (22), 
to capture the firm-level heterogeneity in the same industry, the lagged import value of 
non-robot capital goods is taken into the calculation.10  

Both instrumental variables are valid. First, it can be seen that the adoption of 
robots in other countries is relatively independent of the development of Chinese 
economy, and the import tariffs are often viewed as exogenous policy shocks. Second, 
it has also been argued that there is a positive correlation between the adoption of robots 

 
10 Note, the import tariff rate on the HS6-digit good (847950) was 14% from 2000 to 2001, reduced to 
3.5% in 2002, and zero tariff since in 2003. 



in other countries and in China, while the import tariffs on robots are negatively 
correlated with the use of robots since in our sample period China’s robots mainly come 
from imports, which means that the reduction of tariffs will directly impact the cost of 
Chinese firms purchasing robots.  

3.2.3 Control Variables 

To identify the impact of robot adoption on pollution, we need to control factors that 
affect firms’ robot adoption decisions and firm performance. Following Koch et al. 
(2021), we first select factors that affect a firm’s decision on whether to adopt robots, 
using the regression model of Eq. (24), and then control for these relevant factors when 
examining the impact of automation on firm pollution and green investment: 

𝐷_𝑅𝑜𝑏J = Φ(𝐹J,Q- + 𝛿M + 𝜀JMQ-.                       (24) 

In Eq. (24), if a firm j in industry h ever uses robots in , the indicator variable, 
𝐷_𝑅𝑜𝑏J, would be given a value of 1, and 0 otherwise. 𝐹J,Q3 are the relevant factors in 
base year 𝑇- that affect a firm’s decision on robot adoption, including: (1) firm size, 
given by the logarithm of firm total asset (denoted by logtotasset) (Bonfiglioli, 2020); 
(2) trade status, measured by the ratio of the sum of imports and exports to a firm’s 
sales (denoted by traderat), and the logarithm of imports of other type of physical 
capital (denoted by logcapnoR) (Koch et al., 2021); (3) firm financial status, such as 
the leverage ratio measured by the ratio of total debt to total asset (denoted by lever) 
(Bas and Berthou, 2012), and the profitability measured by the return on equity 
(denoted by ROA, calculated as the pre-tax profit to firm owner’s equity) and the total 
cost to total sales ratio (denoted by cost_rat) (Ding et al., 2018); (4) firm’s labor 
intensity measured by the ratio of employment to total physical capital. 𝛿M captures 
the industry fixed effect. 𝜀JMQ- is the residual term. The sample is winsorized at the 
level of 1% on both sides based on relevant variables including the cost-sales ratio, 
leverage ratio, and etc..  

The regression results are shown in Table 2. In Column (1) the base year is 2000, 
and hence only firms that show up in 2000 are included in the regression. In Column 
(2) the base year is the year of the first observation of each firm, and hence all firms are 
included. It can be seen that, a firm that is large (more total asset and other types of 
physical capital), more involved in international trade (high trade involvement), highly 
relying on labor input (high labor-capital ratio), and better financial status (lower 
leverage and cost-sales ratios) will be more likely to adopt robots. This is because the 
adoption of robots would incur a substantial amount of fixed costs, and robots need to 
be imported abroad (especially before 2010). Henceforth, only those large, financially 



healthy and low cost-ratio firms are more likely to cover these extra costs and import 
them. Additionally, it has been argued that robots are substitutes of low-skilled labor, 
and hence firms with higher labor to capital ratios would be more likely to use them. 

Table 2 Factors that drive a firm to adopt robots 
 (1) (2) 
VARIABLES Robot Adoptors Robot Adoptors 
   
Total Asset (log) 0.0016*** 0.0013*** 
 (7.55) (16.34) 
Employment-Capital Ratio 0.0633*** 0.0427*** 
 (4.41) (8.37) 
Debt-Asset Ratio -0.0022*** -0.0012*** 
 (-3.10) (-5.78) 
ROA 0.0017*** 0.0008*** 
 (3.72) (6.60) 
Cost-Sales Ratio -0.0059*** -0.0003 
 (-2.87) (-0.47) 
Trade-Sales Ratio 0.0000 -0.0000 
 (1.23) (-0.02) 
Non-robot Capital Imports (log) 0.0036*** 0.0034*** 
 (15.41) (30.44) 
Constant -0.0099*** -0.0120*** 
 (-3.59) (-10.97) 
Observations 94,155 559,914 
F 42.25 155.2 
   

Note: (1) These regressions are cross-sectional. (2) The base year is defined differently in the two 
columns. Column (1) works with the data of year 2000, and hence only firms that show up in 2000 
are included in the regression. Column (2) works with the data of the first observation of each firm, 
and hence all firms are included. (3) Robust t-statistics in parentheses. *** p<0.01, ** p<0.05, * 
p<0.1 

3.2.4 Summary Statistics 

Table 3 reports the summary statistics of variables. Both pollution variables and robot 
adoptions have a wide variation across firms. This suggests that firms’ capacity and 
willingness to use robots and create pollution emissions are heterogeneous. Thus firm-
level study on the environmental impacts of industrial robots is highly demanded. 

 

 



Table 3 Summary Statistics 

 (1) (2) (3) (4) (5) (6) (7) (8) 
VARIABLES N mean sd min max p10 p50 p90 
Pollution Variables 

Gas Facilities (log) 83,926 0.786 0.693 0 6.235 6.235 6.235 6.235 
Coal Consumption 
(log) 

79,195 5.706 3.502 0 16.29 16.29 16.29 16.29 

SO2 Emissions (log) 87,859 2.447 1.844 0 11.49 11.49 11.49 11.49 
SO2 Emission 
Intensity 

87,801 0.00362 0.207 0 55.57 55.57 55.57 55.57 

Robot Adoption 
Robot Adoptors 
(Cum) 

620,520 0.00204 0.0422 0 1 1 1 1 

Robot Adoption 
Value (Cum, log) 

620,520 0.0232 0.487 0 17.01 17.01 17.01 17.01 

Firm Controls 
Total Asset (log) 620,520 9.480 1.306 4.710 18.33 18.33 18.33 18.33 
Debt-Asset Ratio 612,683 0.555 0.249 0.0122 1.238 1.238 1.238 1.238 
ROA 615,255 0.224 0.332 -0.832 2.628 2.628 2.628 2.628 
Cost-Sales Ratio 614,038 0.853 0.0947 0.424 1.042 1.042 1.042 1.042 
Employment-Capital 
Ratio 

613,162 0.0104 0.00979 0.000446 0.0636 0.0636 0.0636 0.0636 

Non-robot Capital 
Imports (log) 

620,520 0.580 2.284 0 21.34 21.34 21.34 21.34 

Trade-Sales Ratio 618,009 9.910 29.51 0 190.7 190.7 190.7 190.7 
Industry Controls 

Industry Output 
Tariff 

595,625 11.12 6.458 0 63 63 63 63 

Industry Input Tariff 595,627 8.563 3.332 2.323 35.82 35.82 35.82 35.82 
Industry 
Concentration Level, 
HHI 

620,520 0.0161 0.0262 0.000791 0.905 0.905 0.905 0.905 

Industry Trade-
Output Ratio 

620,520 21.29 19.77 0 197.9 197.9 197.9 197.9 

Instrumental Variables 
IV Tariff 456,648 0.0873 0.714 0 19.69 19.69 19.69 19.69 
IV U.S. 456,648 0.712 3.217 0 30.75 30.75 30.75 30.75 
         

3.3 Simple Stylized Facts  

Before we report our regression results, we first show some raw performance 
differences of robot adopters and non-adoptors. To provide some causal implications, 



we divide the sample into two equal periods, 2001 to 2005, and 2005 to 2009, and 
examine how robot adoptors, if they adopt robots before year 2005, would be different 
compared to non-robot adoptors, those that never imported robots during 2000-2009. 
We then calculate the average performance of each group of firms in each year. 

The results in Figure 2 show that robot adoptors on average have more exhaust gas 
treatment facilities than non-robot adoptors. This difference is particularly large after 
year 2005. As robot adoptors import robots in the period of 2000-2005, this enlarged 
difference in exhaust gas treatment facilities suggests a potential role of robot adoption.  

Figure 2 Differences between Robot Adoptors and Non-robot Adoptors 

 

We then present the kernel distributions of robot and non-robot adoptors in 2005 
and 2009 respectively, for the exhaust gas facilities investment (Figure 3). The left 
column reports the kernel distributions for the non-robot adoptors, and the right column 
for the robot adoptors. Clearly, there is a rightward shift of the kernel densities for the 
robot adoptors, indicating that the robot adoptors invest more on exhaust gas treatment 
facilities from 2005 to 2009. However, the pattern is less obvious for the non-robot 
adoptors.  

 

 

 

 



Figure 3 Kernel Density of Gas Facilities Quantity for Robot Adoptors and Non-robot 

Adoptors (2005 v.s. 2009) 

Fig. 3a Non-Robot Adoptors 

 

Fig. 3b Robot Adoptors  

 
  

4. Empirical Results 

4.1 Automation Firms Invest More on Green Facilities  

4.1.1 Empirical Framework  

The model predicts that, holding all else constant, a rising fraction of tasks capable of 
automation will encourage a firm to invest more on pollution treatment facilities. We 
test this hypothesis with the following regression,  

𝑃𝑇𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠JMK = 𝛽(𝑅𝑜𝑏JMK + ΓΦJM(K%() + ΓMΨMK + δJ + δK + εJMK (25) 

where 𝑃𝑇𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠JMK is the logarithm of the quantity of the exhaust gas treatment 
facilities of firm j in industry h in year t (log_gas_facilities_qty).	𝑅𝑜𝑏JMK	is the firm’s 
adoption of robots, measured by the stock of robots that indicates a firm’s holding of 
robots (logcumRob), or a dummy that indicates whether a firm adopts robots 
(dumRocum). We expect a firm that increases robot holdings or adopts robots would 
spend more on exhaust gas treatment facilities on average, hence 𝛽( > 0. ΦJM(K%() are 
the lagged firm-level controls selected from Table 2, whose effects on green investment 

are captured by the coefficients Γ. ΨMK are the industry-level controls, including the 
tariff on the industry output (denoted by outputtariff) to capture the competition effect 
from the rest of the world on domestic industry, the tariff on the industry input (denoted 
by inputtariff) to capture the imported input effect, the industry concentration level 
(denoted by hhi_sales) to capture the overall competition effect in the industry, and the 



industry exposure to the world market (denoted by indutraderat) to capture the 

involvement into the world market. δR  controls the firm features that affect firms’ 

green investment decision but do not vary over time, and δS controls the business cycle 
factors or country-level environmental polies that are time varying but common to all 
firms.  

4.1.2 Fixed Effect Estimation Results 

Table 4 reports the baseline results of firm robot adoption on their investment in exhaust 
gas treatment facilities. A firm’s usage of robots is measured with the stock of robots 
in Columns (1)-(3), and a dummy indicating whether or not to adopt robots in Columns 
(4)-(6). Firm-level controls are added in Columns (2) and (5), and additional industry-
level controls are added in Columns (3) and (6). All columns control firm and year fixed 
effects. 

As expected, a firm that adopts robots would invest more on exhaust gas treatment 
facilities. The estimated coefficients in all columns are positive and significant at 1% 
significance level. According to Columns (1) – (3), on average when a firm raises its 
stock of industrial robots by 10%, its holdings of exhaust gas treatment facilities will 
rise, ranging from 0.121% to 0.137%. For those firms ever choosing to deploy robots 
as shown in Columns (4) – (6), their investment in exhaust gas treatment facilities is 
higher by 1.232% to 1.446%, than those firms never adopting robots. Additionally, a 
firm will invest more on exhaust gas treatment facilities, when the firm has larger size 
(total asset), better performance (ROA), higher exposure to labor (employment to 
capital ratio), or from an industry that faces higher input tariff.  

4.1.3 IV Estimation Results 

As stated earlier, there is a concern of the endogeneity of robot adoption in the fixed 
effect estimations. Both omitted variables and reverse causality may exist, causing 
estimates on robot usage to be biased. Although we include selected control variables 
and firm fixed effects to alleviate such concern in the baseline estimations, there may 
still be other unobservable but time-varying factors that simultaneously affect firms’ 
adoption of industrial robots, green investment decisions and the pollution 
consequences.  

 



Table 4 Gas Treatment Facilities (Fixed Effect Estimations) 
 (1) (2) (3) (4) (5) (6) 
VARIABLES Gas 

Facilities 
(log) 

Gas 
Facilities 

(log) 

Gas 
Facilities 

(log) 

Gas 
Facilities 

(log) 

Gas 
Facilities 

(log) 

Gas 
Facilities 

(log) 
       
       
Robot Adoption 
Value (Cum, log) 

0.0116*** 0.0121** 0.0122**    

 (2.85) (2.50) (2.51)    
Robot Adoption 
Dummy (Cum) 

   0.1173** 0.1267** 0.1271** 

    (2.52) (2.31) (2.32) 
logtotasset_tm1  0.1135*** 0.1136***  0.1136*** 0.1137*** 
  (25.26) (25.31)  (25.28) (25.33) 
logem_rat_tm1  0.0572*** 0.0576***  0.0573*** 0.0577*** 
  (15.33) (15.44)  (15.34) (15.46) 
lever_tm1  -0.0028 -0.0022  -0.0028 -0.0022 
  (-0.37) (-0.29)  (-0.36) (-0.28) 
ROA_tm1  0.0039 0.0037  0.0039 0.0037 
  (1.58) (1.50)  (1.58) (1.50) 
logcamnoR_tm1  -0.0001 -0.0002  -0.0001 -0.0002 
  (-0.27) (-0.38)  (-0.25) (-0.36) 
Industry Output 
Tariff 

  0.0006   0.0006 

   (1.01)   (1.00) 
Industry Trade-
Output Ratio 

  -0.0001   -0.0001 

   (-0.47)   (-0.46) 
Industry Input 
Tariff 

  0.0053***   0.0053*** 

   (3.87)   (3.87) 
Industry 
Concentration 
Level, HHI 

  -0.0702   -0.0707 

   (-1.08)   (-1.09) 
Constant 0.9122*** 0.0086 -0.0412 0.9124*** 0.0080 -0.0418 
 (1,121.12) (0.22) (-1.00) (1,126.26) (0.20) (-1.02) 
Observations 238,375 182,245 182,245 238,375 182,245 182,245 
Firm FE YES YES YES YES YES YES 
Year FE YES YES YES YES YES YES 
F 8.105 108.4 68.48 6.335 108.3 68.43 
       

Note: (1) Robust t-statistics in parentheses. *** p<0.01, ** p<0.05, * p<0.1 



In this section, we introduce instrumental variables to deal with such endogeneity. 
The first-stage model is constructed as follows, 

𝑅𝑜𝑏JMK = 𝛽(𝐼𝑉JMK + Γ(ΦJM(K%() + Γ(MΦMK + δR + δS + µRTS             (26) 

where 𝐼𝑉JMK are measured with two variables, the one built on robot tariffs (IVtariff ) 

and the one on robot adoption in the same industry in the U.S. (IVus). The control 
variables are the same as in the baseline regressions, including firm-level, industry-
level controls, firm and year fixed effects.  

Table 5 and the following tables will only present the IV estimation results. Given 
that our IVs are constructed based on continuous variables which are not suitable for 
the robot dummy variable, we report the results for the stock of industrial robots only. 
The results based on the Tariff IV are reported in Table 5 Panel A Columns (1)-(3), and 
the results based on the US IV are reported in Table 5 Panel A Columns (4)-(6).  

The estimates are ten times bigger than those in Table 4 Columns (1)-(3), ranging 
from 1.435% to 1.565% in the case of tariff IV, and 1.336% to 1.424% in the case of 
US IV, when a firm increases its robot stock by 10%. Again, all estimated coefficients 
are positive and significant at the 1% significance level. The results suggest that, after 
correcting the downward bias in the fixed effect estimations, a firm’s holding of exhaust 
gas treatment facilities will rise significantly when the firm raises its stock holding of 
industrial robots, a finding that is consistent with the theoretical prediction.  

Table 5 Panel B presents the first-stage estimation results, where the control 
variables are the same as in the fixed effect regressions. As expected, rising import tariff 
on industrial robots will significantly reduce firms’ usage of robots as shown in columns 
(1) to (3), suggesting that the reduction of robot import tariff will promote the usage of 
industrial robots. The estimated coefficients in columns (4) to (6) are significantly 
positive, indicating that there is a positive relationship between U.S. robot adoption and 
the Chinese robot adoption. As the first stage results are similar for all the regressions 
below, we will not report them anymore.  

The IV-related statistics in Panel B reject the null hypothesis of weak instrumental 
variables (Kleibergen-Paap rk Wald F statistic) and under-identification (Kleibergen-
Paap rk LM statistic and the P-value of KP statistic), suggesting the validity of these 
instrumental variables. 

 



Table 5 Exhaust Gas Treatment Facilities (IV Estimations) 

 (1) (2) (3) (4) (5) (6) 
 IV Tariff IV US 
VARIABLES Gas 

Facilities 
(log) 

Gas 
Facilities 

(log) 

Gas 
Facilities 

(log) 

Gas 
Facilities 

(log) 

Gas 
Facilities 

(log) 

Gas 
Facilities 

(log) 
Panel A: Second-stage Estimation Results 
Robot Adoption 
Value (Cum, log) 

0.1487*** 0.1223*** 0.1340*** 0.1421*** 0.1282*** 0.1357*** 

 (3.44) (3.23) (3.48) (4.35) (3.73) (3.90) 
       
Observations 193,999 182,245 182,245 193,999 182,245 182,245 
R-squared -0.015 -0.004 -0.006 -0.014 -0.005 -0.006 
Firm Controls NO YES YES NO YES YES 
Industry Controls NO NO YES NO NO YES 
Firm FE YES YES YES YES YES YES 
Year FE YES YES YES YES YES YES 
N 193999 182245 182245 193999 182245 182245 
F 11.84 106.6 67.34 18.92 106.7 67.43 
 . . . . . . 
Panel B: First-stage Estimation Results 
 logcumRob logcumRob logcumRob logcumRob logcumRob logcumRob 
IVtariff -0.017*** -0.020*** -0.020***    
 (-9.52) (-10.29) (-10.23)    
IVus    0.014*** 0.015*** 0.015*** 
    (11.56) (10.93) (10.92) 
weakKP_stat 90.556 104.441 103.319 133.741 117.846 117.445 
UnderKP 118.683 136.408 135.044 174.415 154.345 153.917 
UnderKP_p 0.000 0.000 0.000 0.000 0.000 0.000 
       

Note: (1) Robust t-statistics in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

4.1.4 Robustness 

This section will consider a series of robustness checks, such as whether the application 
of domestic robots and the environmental regulation changes in 2006 may invalidate 
the findings in the baseline regressions. 

(1) Domestic Robots 

In the baseline regressions, we measure a firm’s usage of industrial robots with its 
imports of robots. However, with the development of China's robot industry, the 



application of domestic robots is gradually expanded. Although Chinese domestically 
produced robots are mainly made after the year 2010, we want our findings to be clean 
enough. According to Fan et al. (2021) and the annual report of IFR (2014), robots 
made in China are mainly used in plastic, rubber, electronics, and other manufacturing 
industries, we hence exclude the observations in these industries to ensure that the 
results are not violated by the presence of domestically produced robots.11 The results 
are shown in Table 6 Columns (1)-(2). All estimates are positive and significant, as in 
the baseline regressions. 

(2) Before Year 2007 

In August 2006, China’s central government issued a much stricter environmental 
regulation, the 11th Five-Year Plan for the Control of Total Emissions of Major 
Pollutants in China, to meet the environmental targets of the 11th Five-Year Plan. The 
central government specified exact emission reduction targets for local governments, 
and linked government officials’ promotion to the implementation of pollution 
reductions. The stricter environmental policies of the 11th Five-Year Plan reduced the 
country's overall SO2 emissions substantially by about 14% from 25.5 million tons in 
2005 to 21.9 million tons in 2010,12 which may be consequences of the increased 
investment in pollution treatment facilities. 

Associated with the stricter environmental policies is the rapid economic growth, 
which creates a potential for the quick increase in firms’ robot adoptions. To ensure our 
findings are not driven by the stricter environmental policies, we investigate the period 
before 2007. The results are shown in Table 6 Columns (3)-(4). All estimates are again 
positive and significant, consistent with the baseline results. 

(3) Alternative IVs 

In the baseline regressions, we construct US IV based on the robot adoption in the same 
industry in the U.S.. Here, we use the industry-level robot adoption data in five 
European countries to construct another instrumental variable, the IVEUR5. 

 
11 Domestically produced robots are mainly used in industries with CIC codes and names of: 29-Rubber 
products industry; 30-Plastic products industry; 366-Manufacturing of special equipment for electronic 
and electrical machinery; 391-Manufacturing of electrical machinery; 404-Manufacturing of electronic 
computers; 405-Manufacturing of electronic devices; 406-Manufacturing of electronic components; 409-
Manufacturing of other electronic equipment. 
12 https://www.ndrc.gov.cn/fggz/fzzlgh/gjjzxgh/200806/P020191104623848907871.pdf. 



Considering that as a developing country, China’s industry development may be even 
closer to that of other emerging developing countries, we also construct an instrumental 
variable, the IVgold, based on the industry robot adoption in the BRICs countries. 
Considering the geographical and cultural similarities, we also construct an 
instrumental variable, the IVAsia4, based on the industry adoption of robots in 
developed Asian regions adjacent to China. 13 All these IVs are firm-level, computed 
using Eq. (25). Table 6 Columns (5)-(7) report the results. All estimates of robot 
adoptions are positive and significant, consistent with the baseline results, except for 
the IV of IVEUR5 whose estimate is positive, though insignificant. 

Table 6. Robustness Checks 
 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 
 IVtariff IVus IVtariff IVus IVEUR5 IVAsia4 IVgold IVtariff IVus 
 Excluding 

Domestic 
Robots 

Excluding 
Domestic 
Robots 

Pre-2007 Pre-2007 IVEUR5 IVAsia4 IVgold Expanded 
Robots 

Expanded 
Robots 

VARIABLES Gas 
Facilities 

(log) 

Gas 
Facilities 

(log) 

Gas 
Facilities 

(log) 

Gas 
Facilities 

(log) 

Gas 
Facilities 

(log) 

Gas 
Facilities 

(log) 

Gas 
Facilities 

(log) 

Gas Facilities 
(log) 

Gas Facilities 
(log) 

          
Robot 
Adoption 
Value (Cum, 
log) 

0.0946** 0.1148*** 0.0871** 0.0704** 0.4250 0.1105*** 0.0776*** 0.1269*** 0.1130*** 

 (2.30) (2.98) (2.18) (2.04) (1.35) (3.21) (2.66) (2.93) (3.12) 
Observations 175,300 175,300 122,988 122,988 182,245 182,245 182,245 171,812 171,812 
R-squared 0.002 -0.001 -0.001 0.001 -0.147 -0.001 0.004 -0.004 -0.002 
Firm 
Controls 

YES YES YES YES YES YES YES YES YES 

Industry 
Controls 

YES YES YES YES YES YES YES YES YES 

Firm FE YES YES YES YES YES YES YES YES YES 
Year FE YES YES YES YES YES YES YES YES YES 
F 65.75 65.75 33.27 33.31 54.79 67.66 67.93 64.75 65.05 
          

Note: (1) Robust t-statistics in parentheses.*** p<0.01, ** p<0.05, * p<0.1 

 
13 The Asian regions includes: South Korea; Singapore; Taiwan, China; Hong Kong, China. The BRICS 
countries include: Brazil, South Africa, India, Russia. The European countries include: Germany, France, 
Portugal, Poland, Switzerland. 



(4) Expanded Measures of Robots 

In the baseline regressions, we measure robots with two HS8 products following Fan et 
al. (2021) and Acemoglu and Restrepo (2018). However, some papers also measure 
robot usage with an expanded measure which includes seven HS6 codes (Song et al., 
2023). Table 6 Columns (8)-(9) report the results for this expanded robot measure.14 
Again, all estimates are positive and significant, consistent with the baseline results. 

Table 7 Productivity Heterogeneity Effect on Exhaust Gas Treatment Facilities (IV 
Estimations) 

 (1) (2) (3) (4) 
 high_iv3 high_iv6 low_iv3 low_iv6 
VARIABLES Gas Facilities 

(log) 
Gas Facilities 

(log) 
Gas Facilities 

(log) 
Gas Facilities 

(log) 
Robot Adoption Value 
(Cum, log) 

0.1144*** 0.0912*** 0.0801 0.7877 

 (2.86) (2.63) (0.13) (0.87) 
     
Observations 91,637 91,637 70,339 70,339 
R-squared -0.008 -0.002 0.004 -0.059 
Firm Controls YES YES YES YES 
Industry Controls YES YES YES YES 
Firm FE YES YES YES YES 
Year FE YES YES YES YES 
F 31.28 31.39 15.12 14.73 
     

Note: (1) Robust t-statistics in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

4.1.5 Productivity Heterogeneity 

The theoretical model predicts that, the stimulating effect of robot adoption on firm 
green investment is stronger for firms with larger productivity than their peers with 
lower productivity. To examine such heterogeneity productivity effect, we divide firms 
into two groups, the high-productivity firms whose TFPs are greater than the median 

 
14 The two original HS8 codes are 84795010 and 84795090, which include three types of robots, the 
multi-functional industrial robots, the robot terminal manipulation devices, and other industrial robots. 
In the expanded exercises, we include seven HS6 codes, which are 851531 (arc including plasma arc 
welding robots), 847950 (multi-purpose robots, other multi-purpose robots and robot-end manipulator), 
851521 (other electric resistance welding robots, automobile production line resistance welding robots), 
851580 (other laser welding robots, automobile production line laser welding robots), 842489 (spraying 
robots), 842890 (handling robots), and 848640 (IC factory dedicated automatic handling robots). 
 



of the industry where the firms are from, and the low-productivity firms whose TFPs 
are lower than the industry median. We compute a firm’s TFP with the Levinsohn-
Petrin TFP estimation (Levinsohn and Petrin, 2003). 

Table 7 presents the IV estimation results. Columns (1)-(2) are for firms in the 
high-productivity group, where rising usage of industrial robots significantly increases 
their investment of gas treatment facilities, which is consistent with the theoretical 
prediction. Columns (3)-(4) are for the low-productivity group, where rising usage of 
robot does not have significant effect on the firms’ green investment, but the 
coefficients are positive. 

4.1.6 Whether to Invest Green (IV Estimations) 

We next examine whether firms increasing industrial robot adoption are more willing 
to invest in gas treatment facilities. The dependent variable is now defined as a dummy 
variable, with 1 representing that the firm has a positive amount of exhaust gas 
treatment facilities, and 0 representing that the firm has no gas treatment facilities. 

Table 8 Effect of Robots on the Probability of Investing Green (IV Estimations) 
 (1) (2) (3) (4) (5) 
 FE FE FE IVtariff IVus 
VARIABLES Probability of 

Investing 
Green 

Probability of 
Investing 

Green 

Probability of 
Investing 

Green 

Probability of 
Investing 

Green 

Probability of 
Investing 

Green 
      
Robot 
Adoption 
Value (Cum, 
log) 

0.0021*** 0.0040*** 0.0040*** 0.0454*** 0.0889*** 

 (3.30) (4.62) (4.62) (4.66) (9.26) 
Constant 0.9666*** 1.0731*** 1.0651***   
 (9,018.26) (279.30) (252.29)   
      
Observations 1,972,658 1,404,835 1,404,828 1,404,828 1,404,828 
R-squared 0.481 0.497 0.497 -0.005 -0.024 
Firm Controls YES YES YES YES YES 
Industry 
Controls 

YES YES YES YES YES 

Firm FE YES YES YES YES YES 
Year FE YES YES YES YES YES 
F 10.91 146.4 92.02 90.78 95.03 



    . . 
Note: (1) Robust t-statistics in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Table 8 reports the results. Columns (1) –(3) are the fixed effect estimation results, 
and Columns (4)-(5) are the IV estimation results. All estimated coefficients are 
significant at 1% significance level, indicating that increased robot stock will 
significantly raise the probability a firm invests in exhaust gas treatment facilities. In 
particular, on average when a firm raises its stock of industrial robots by 10%, its 
probability of investing green will rise by 0.021% to 0.038%. 

4.2 Automation Firms May Not Pollute More  

The theoretical model predicts that, a rising fraction of tasks capable of automation may 
reduce the firm’s pollution intensity. We examine this prediction in Table 9. 

Table 9  The Impact of Robots Adoption on SO2 Emission Intensity 
 (1) (2) (3) (4) (5) (6) 
 IVtariff IVus IVtariff IVus IVtariff IVus 
VARIABLES SO2 

Emission 
Intensity 

(log) 

SO2 
Emission 
Intensity 

(log) 

SO2 
Emission 
Intensity 

(log) 

SO2 
Emission 
Intensity 

(log) 

SO2 
Emission 
Intensity 

(log) 

SO2 
Emission 
Intensity 

(log) 
       
Robot 
Adoption 
Value (Cum, 
log) 

-0.5216*** -0.2930** -0.3400** -0.2703** 3.5265 2.7406 

 (-3.35) (-2.30) (-2.18) (-1.99) (0.37) (0.67) 
       
Observations 169,618 169,618 80,583 80,583 70,364 70,364 
R-squared -0.017 -0.001 -0.012 -0.006 -0.109 -0.065 
Firm 
Controls 

YES YES YES YES YES YES 

Industry 
Controls 

YES YES YES YES YES YES 

Firm FE YES YES YES YES YES YES 
Year FE YES YES YES YES YES YES 
Ajusted R2 -0.633 -0.633 -0.633 -0.633 -0.633 -0.633 
N 169618 169618 80583 80583 70364 70364 
F 52.13 52.64 13.29 13.36 16.17 16.34 
r2_within . . . . . . 

Note: (1) Robust t-statistics in parentheses. *** p<0.01, ** p<0.05, * p<0.1 



We measure pollution intensity with the logarithm of the SO2 emission to firm 
output. As expected, a firm that adopts robots would have lower SO2 emission 
intensities. In the full sample reported in Columns (1)-(2), a 10% rise in robot stocks 
will reduce SO2 emission intensity from 3.277% to 5.054%. However, such pollution 
depressing effect only occurs in the full and the high-productivity samples. In particular, 
when a firm increases its robot stock by 10%, its SO2 emission intensity will reduce by 
2.277% to 5.054% in the full sample, and 2.812% to 3.055% in the high-productivity 
firm sample. Instead, there is no significant change in the SO2 emission intensity in the 
low-productivity sample. 

5. Conclusion 

This paper explores the impact of industrial robot adoption on the green investment of 
manufacturing firms theoretically and empirically. A theoretical model featuring 
automation, pollution, and green investment predicts that, when the unit cost of 
industrial robots is lower than that of low-skilled workers, rising fraction of tasks 
capable of automation will reduce the marginal cost of production and increase the 
marginal benefit of green investment, thereby encouraging a firm’s green investment. 
Such falling marginal cost and investment stimulating effect is stronger for high-
productivity firms, suggesting a potential resource reallocation from low-productivity 
firms to high-productivity firms. 

We empirically test the theoretical predictions with the firm-level trade, 
environmental and operation data of Chinese manufacturing firms for the years 2000 to 
2009. We identify causal effects of robot adoptions on firm green investment and 
environmental performance. In particular, we find that firms that adopt robots invest 
more on green facilities, and do not necessarily create more pollution in the sense that 
they have lower SO2 emission intensity. We find high-productivity firms are more 
willing to invest more in green, suggesting resource reallocation from low-productivity 
firms to high-productivity firms. 
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