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Abstract 

Recent literature has shown that political tension between countries can affect innovation. 

After Trump's election and its subsequent impact on Chinese innovation, two contrasting 

mechanisms have emerged. The knowledge diffusion framework suggests that such tensions 

adversely impacted Chinese inventors, whereas transaction cost economics proposes that 

Chinese inventors improved their self-reliance. Utilizing the unexpected "Trump shock" as an 

opportunity for study, we apply a differences-in-differences model on patent data from the 

United States Patent and Trademark Office (USPTO) to identify the causal effects of political 

tension on Chinese innovation. Using similar regions nearby China as the control group, we 

find that while innovation in most regions was negatively affected by the Trump shock, China 

performed comparatively better in patent quality, quantity, and search distance following the 

shock. Results remain consistent across robustness checks. Further heterogeneity analysis 

shows that inventors with larger collaboration networks and Chinese firms in southern urban 

cities performed better. Our research contributes to the understanding of knowledge diffusion 

and transaction costs, and we highlight the importance of uncovering the unintended effects of 

politics. 
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1. Introduction 

Innovation has been proven to be the engine of economic growth (Romer, 1990; Aghion 

& Howitt, 1992). Although many factors, such as breakthroughs in basic science, influence the 

pace and direction of innovation, economists have begun to focus, at least since President 

Donald Trump came to power, on the important role of politics in shaping investments in 

innovation (Aghion et al., 2023; Engelberg et al., 2022; Jia et al., 2023). In this paper, we ask: 

How do political shocks in the U.S. affect innovation in China? How do firms in China react 

to these shocks? 

Politics can affect innovation through two competing mechanisms: On the one hand, 

political decisions affect collaboration and knowledge diffusion across countries and 

individuals, which might negatively hurt firms' innovation (Aghion et al., 2023; Jia et al., 2023). 

On the other hand, political shocks may raise the transaction cost of acquiring patents, which 

forces the firms to invent independently and increase innovation output (Williamson, 1983). 

From our perspective, the question is not whether one or the other is exclusively at work; 

instead, it is more important to examine which one outweighs the other, on average, and which 

contextual conditions amplify one process relative to the other. 

Recent debates about how Trump affects innovation in China illustrate the dilemma: 

While some expect Trump's policies on immigration, communication, and collaboration 

restrictions to heavily affect the volume, quality, and direction of Chinese research due to the 

increasing cost of getting funding resources from the U.S., others view it as a chance for 

Chinese firms to catch up and decrease reliance on the technology of other countries. Firms 

often have to make the critical decision on whether to invest resources in internal patent 

invention (make it) or pursue external acquisition (buy it). Among all the factors affecting firms’ 

decision to “make” or to “buy,” one of the most significant is the transaction cost. The political 

shock from Trump increased the transaction cost of buying patents and forced the firms in 

China to create. 

However, empirically identifying the effect of the political shock on innovation is 

challenging due to several obstacles. First, many other factors confound the estimation of the 

effect. For example, China's National 15-year Plan for Science and Technology Development 

was implemented over a decade ago, showing how China had been attempting to develop its 

indigenous innovation even without substantial political shocks (Sun & Cao, 2021). Second, 
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Chinese data on specific Chinese political decisions and the behavior of inventors in China are 

limited and have unestablished veracity.  

This paper takes advantage of the election of Donald Trump as an opportunity for 

naturalistic observation to investigate the effect of political conflict on innovation. Donald 

Trump was overwhelmingly predicted to lose to Hillary Clinton (Katz, 2016), and he won the 

Electoral College vote, not the popular vote (Shaw, 2016). These factors illustrate how Trump's 

win was an unexpected, exogenous shock. Other papers have used similar reasoning to justify 

the identification of Trump's election victory as a shock (Engelberg et al., 2022; Child et al., 

2021).  

To empirically identify the impacts of Trump on Chinese inventors, we apply a 

differences-in-differences (DID) approach, utilizing data from the USPTO. We use patents, 

inventors, and firms from China as our treatment group and estimate the causal effect with a 

control group containing innovation from Japan, South Korea, Taiwan, and Singapore. 

There is no simple, one-dimensional method to measuring innovation; as such, we 

construct numerous dependent variables indicative of innovative output at the patent, inventor, 

and firm levels. The quantity of patents is the number of patents granted, and the quality of 

patents is measured through the number of citations received. Furthermore, we construct two 

variables that indicate search distance. First, technological distance is defined to be the extent 

to which a patent searches distant knowledge fields during the invention process. In this case, 

knowledge fields are based on each patent’s respective Cooperative Patent Classification (CPC) 

subclasses, a categorization system that denotes the fields of every patent. The second search 

distance measure is cognitive distance, measuring the extent to which inventors searched for 

knowledge with low visibility. These distance measures reflect the chances of meaningful 

innovation, as previous literature has established that larger search distances heighten the 

occurrence of serendipitous discoveries (Arts & Fleming, 2018; Zheng & Wang, 2020). 

We find that following the Trump shock, China has produced higher patent quality, patent 

quantity, and search distance compared to its regional counterparts. The quality of Chinese 

patents improved 17.8% relative to the control group on average, technological distance 

improved by 5.4%, and the ratio of U.S. patents cited increased by 6.6%. These results 

remained consistent across the patent, inventor, and firm levels. In fact, inventors saw a 17.7% 

increase in patent quality on average.  

Moreover, robustness checks reinforce the evidence of China's change from relying on 

licensing U.S. patents to investing in domestic innovation. To address concerns regarding time 

lags and COVID-19, we change the post-election indicator to 2017 and extend the timeframe 
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to include 2023. The regression results remain statistically significant and positive. We also 

employ other measures of communication and search distance, which bring similar regression 

results, demonstrating the robustness of our indicators. Overall, our analysis strongly supports 

the transaction cost hypothesis that China was catalyzed into developing its domestic 

innovation, but it also affirms aspects of the knowledge diffusion theory by showing how all 

examined countries were negatively impacted in some way. 

We further find that the impact was more pronounced across certain fields of research: 

Chinese patents related to semiconductors and electricity saw a quality increase of 20.3% 

relative to the control group following the Trump shock. This analysis affirms the importance 

of the “technosphere” in the status quo. 

Furthermore, other heterogeneous results show that larger inventor networks contributed 

to greater innovative output, and the geographical location of a firm –– whether it was in urban 

or in southern China –– made a difference in its response to the Trump shock. Notably, 

inventors in the top 95th percentile uniquely improved their patent quality by a statistically 

significant 32.2%, firms located in big cities improved their patent quality by 27.4% compared 

to other firms, and southern Chinese firms improved their patent quality by a statistically 

significant 25.1% compared to northern Chinese firms which did not demonstrate statistically 

significant improvement. 

This paper contributes to several parts of the existing literature. First, it contributes to prior 

research surrounding the understanding of how politics affects innovation. Previous studies 

have highlighted the role of decreasing labor mobility, collaboration, communication, and 

expectation (Kim & Marschke, 2005; Møen, 2005; Atkin et al., 2022; Aghion et al., 2023; Jia 

et al., 2023). We add a new perspective, transaction cost, and emphasize the importance of 

firms’ strategic decisions. Secondly, there is a significant amount of attention devoted to 

studying factors that affect the innovation of firms (Marx et al., 2009; Dustmann & Preston, 

2019; Atkin et al., 2022; Wuchty et al., 2007). We add new evidence showing how disruptive 

institutional change can be a source of the changing nature of innovation. Lastly, we provide 

new empirical evidence for the transaction cost literature by testing the theory in a novel 

international context. 

Moreover, this paper will have implications for policymakers. The tension between China 

and the U.S. has aroused attention among academics, the public, and policymakers. Without 

fully understanding how political tension affects the economies of China and the U.S., it is 

difficult for government officials to find a comprehensive way to react to the rising issues in 

foreign affairs. This paper sheds light on one of the most critical aspects of an economy –– 
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innovation –– and helps policymakers better understand the true weight of their political 

decisions.  

The rest of the paper proceeds as follows: Section 2 provides background for the Trump 

Administration and its actions; Section 3 establishes two competing theoretical frameworks 

and develops three hypotheses; Section 4 illustrates the construction of the variables in detail; 

Section 5 analyzes the results of the DID regression approach; Section 6 discusses this study’s 

findings while providing insight into the limitations of this study; and Section 7 concludes.  

2. Background about the Trump Administration 

2.1 Trump’s Unexpected Election Victory  

Before the election, the overwhelming majority of mainstream news media predicted 

Donald Trump would lose to Hillary Clinton (Katz, 2016). These predictions were in part 

because Trump had a non-political background as a celebrity businessman (Child et al., 2021). 

Despite losing the popular vote, Trump became president by achieving a majority in the 

Electoral College (Shaw, 2016). Subsequently, major news outlets such as The Guardian (2016) 

have described the election as "one of the most improbable political victories in modern U.S. 

history" and one that "shattered expectations." Even Fox News, a pro-Trump Republican outlet, 

echoed that the event was a "historic election upset" (2016).  

Given that the majority of onlookers did not expect a businessman who had never held 

office before to win the 2016 election, it is reasonable to deduce that the election was an 

exogenous shock to the world as much as it was to the U.S.   

2.2 Trump’s Actions to China  

Trump’s anti-China stance began long before he took office. During the 2016 presidential 

debates with Hillary Clinton, he repudiated China’s unfair trade policies and publicly claimed 

that “[the Chinese] are taking [Americans’] jobs” and “are using our country as a piggy bank 

to rebuild China” (Beech, 2016).  

Trump heightened tensions with China from the outset by accepting a congratulatory call 

from Taiwan President Tsai Ing-Wen, pressuring China to urge North Korea to limit nuclear 

weapons testing, and taking stances against China regarding controversies such as control of 

the sea, naval operations, and territorial disputes (Sutter, 2017). Throughout his presidency, 

Trump’s foreign policy was remarkably inconsistent. In 2018, other members of his department 
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increased the tensions with China, exemplified by Vice President Pence’s confrontational 

speech directed at China, stating that the “[U.S.] will not stand down” (Perlez, 2018).  

In November 2018, the Department of Justice launched the China Initiative to "protect U.S. 

intellectual property and technologies against Chinese Economic Espionage." However, 

studies have shown its prejudice against researchers and inventors of Chinese origin (Aghion 

et al., 2023). It significantly increased the bureaucratical and logistical challenges of 

collaboration between U.S. and Chinese inventors, leading to the systematic exclusion of 

targeted researchers from U.S. institutions. 

Moreover, the escalation of the trade war affected China's access to U.S. markets. 

Following the first tariffs levied against China in 2018, China retaliated. In total, taxes from 

tariffs increased by almost $80 billion during the Trump administration, affecting more than 

$380 billion of trade (York, 2022). Consequently, U.S. import volumes from China decreased 

from 2018 to 2021, even before the pandemic halted global supply chains. From 2018 onward, 

the majority of Americans had decided that the U.S. and China were “mostly rivals” as opposed 

to “mostly partners” (Kim, 2021). 

On top of this, Trump issued Proclamation 10043 in 2020, an immigration restriction 

targeted against Chinese students and researchers. The Proclamation effectively denied and 

revoked the visas of numerous Chinese students and researchers given any association with the 

People's Liberation Army or certain universities (Anderson, 2023). By four months, the U.S. 

claimed it had revoked more than 1,000 visas of Chinese citizens (BBC, 2020), and in 2021, it 

refused 1,964 visas. Furthermore, these figures understate the true impact of immigration 

restrictions, as Chinese individuals who would have otherwise applied for visas were 

discouraged from doing so.  

China's front-running technology corporations have also been targeted by Trump. Huawei, 

one of China's largest technology corporations and the second-largest seller of smartphones in 

the world, and ZTE, another China-based technology corporation, were prevented from buying 

parts from U.S. companies (Stewart, 2018). Trump’s executive order also added their various 

subsidiaries to a trade blacklist. In a similar vein, executive orders in 2020 banned popular 

social media applications TikTok and Wechat from U.S. app stores, albeit later rescinded by 

Biden (Lerman, 2020).  

2.3 Trump Sparked Debate and Attention 

The election of Trump and his subsequent actions have sparked controversial debate in 

both society and academia. To start, Chinese society was divided over which candidate would 
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be preferable. According to some polls, a slight majority of Chinese citizens preferred Trump 

over Hillary Clinton prior to the election (Lai, 2016). Hillary had been known for a track record 

of controversial interference with China's government, yet Trump also used hawkish rhetoric 

against China throughout his presidential campaign. In a sense, it was picking between the 

lesser of the two evils. Chinese government officials likewise swayed back and forth. Some 

officials favored Hillary –– who was already outspoken in her views –– over Trump, whose 

potential actions were largely unknown (Asia Society, 2016). However, following the election, 

President Xi publicly underscored China's rejuvenation, partly thanks to Trump's unilateral and 

nationalist foreign policy. President Xi further claimed to support investing in "Chinese 

solutions" to international problems resulting from the void that the U.S. was creating (Doshi, 

2020). Still, rewards came with risks, and Chinese officials have been weary of unpredictable 

American confrontation and threats during the Trump administration. 

In the U.S., academics and voters have been split over assessing Trump's impacts on 

innovation. Historically, the U.S. has relied on attracting the world's talent, yet Trump's 

implantation of national security measures, visa restrictions, and travel restrictions have 

undermined the China-U.S. STEM pipeline (Burke, 2021). While the government has argued 

that these approaches and restrictions were necessary, others have underscored their negative 

impact on the U.S. economy (Ahmed & Bick, 2017). 

During the COVID-19 pandemic, relations worsened as Trump's antagonism toward China 

heightened. In part galvanized by Trump's finger-pointing, 73% of U.S. adults claimed they 

had an unfavorable view of China in 2020 (Pew Research Center, 2020). As victims of anti-

Asian sentiment, Chinese individuals reflected that their opinion of the U.S. drastically turned 

hostile during the Trump presidency (McCaig, 2022). These rapid fluctuations of opinion have 

generated hot debates and warrant further investigation regarding Trump’s impacts, 

specifically on Chinese innovation. 

3. Literature Review and Hypotheses 

Two prominent conflicting sides have theorized how the Trump shock affected innovation. 

On the one hand, researchers have posited that the Trump shock affected Chinese innovation 

negatively by restricting knowledge diffusion –– including talent mobility, immigration, and 

communication –– between the U.S. and China. On the other hand, viewing the Trump shock 

through the lens of transaction cost economics would indicate that the U.S. catalyzed China 
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into more self-reliant innovation, pushing it to perform comparatively better than its regional 

counterparts. 

3.1 Politics and Knowledge Diffusion  

First, the former theory that the period of Trump inhibited Chinese innovation revolves 

around emphasizing three well-researched determinants of the breadth and depth of innovation: 

labor and talent mobility (Kim & Marschke, 2005; Møen, 2005; Belenzon & Schankerman, 

2013; Agarwal et al., 2009), communication (Atkin et al., 2022; Agrawal & Goldfarb, 2008), 

and collaboration (Aghion et al., 2023; Jia et al., 2023).  

Labor and talent mobility is defined as the ease and likelihood of people moving to 

different economies. Despite the age of the Internet, the movement of people is a potent 

facilitator of knowledge exchange, which is crucial to innovation (Dustmann & Preston, 2019). 

Hence, limitations to labor mobility can directly hamper innovation. Similar to how non-

compete contracts decrease the innovative productivity of a region by limiting the labor 

mobility thereof (Marx et al., 2009), changes in immigration could affect inventors across the 

world. Moreover, talent mobility is especially paramount in recent developing country contexts 

(Fry, 2023), and its importance cannot be understated in the Chinese context. Google was 

blocked in 2014, and installing a virtual private network (VPN) to bypass the firewall was 

burdensome, so Chinese researchers have particularly relied on labor mobility and social 

networks. This is evidenced by Zheng & Wang's (2020) analysis of the negative effect of the 

Google blockade on Chinese search distance due to their reliance on the West. During the 

Trump administration, the U.S. president's restriction of immigration in the form of limiting 

visas of certain Chinese researchers and students contributed to fewer academic exchanges 

between American and Chinese researchers.  

The Trump shock also theoretically hampered communication between Chinese and 

American scholars. The aforementioned immigration restrictions reduced Chinese and 

American scholars’ face-to-face interactions, which play a surprisingly significant role in 

knowledge spillovers (Atkin et al., 2022). In addition to the immigration restrictions, which 

directly restricted certain Chinese scholars from traveling to the U.S., worsened relations 

following the trade war and other schisms contributed to further distance between Chinese and 

American scholars. The trade war significantly reduced market access (Fajgelbaum & 

Khandelwal, 2022), and worsened relations due to anti-Chinese sentiment during the Trump 

administration may have led to less motivation and optimism in pursuing innovation. Given 

how Engelberg et al. (2022) demonstrated that willingness and ability to be productive directly 
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affects effort and productivity, Trump’s influence on Chinese researchers’ sentiment and 

optimism could have made them more likely to overexploit recent information, patent less, and 

pursue fewer serendipitous leads. 

Lastly, collaboration among researchers of varied specializations is becoming increasingly 

effective in knowledge production (Hofstra et al., 2020; Boone et al., 2019). Teams produce 

high-impact research with more frequently cited patents than solo authors in nearly all fields 

(Wuchty et al., 2007). The importance of collaboration and coauthoring is shown in the rising 

number of U.S.-China collaboration projects up until the Trump administration (Aghion et al., 

2023; Jia et al., 2023). However, the 2018 China Initiative, among other restrictions, directly 

reduced collaboration between American and Chinese scholars. These actions disintegrated 

teams into solo authors and split teams into smaller, more homogenous ones. Fos, Kempf, and 

Tsoutsoura (2021) have illustrated how firms perform worse when misaligned executives with 

divergent perspectives leave an executive team; the same theoretical backbone applies to 

American coauthors leaving inventing teams: the teams likely perform worse without 

multifaced viewpoints.  

All of this could affect innovation by limiting search distance and decreasing the quantity 

and quality of Chinese patents compared to patents from South Korea, Taiwan, Singapore, and 

Japan. Therefore, following this theory, the following hypothesis can be made: 

Hypothesis 1: Following the Trump shock, China performed comparatively worse on the 

patent, assignee, and inventor levels, showing decreases in quality of patents (measured by 

number of citations received), quantity of patents, and search distance relative to that of the 

control group, including Singapore, Japan, Taiwan, and South Korea. 

3.2 Politics and Transaction Cost 

Transaction cost is the cost when making an economic trade in a market. The amount of 

transaction cost directly influences the decision between vertically integrating and outsourcing. 

In other words, the cost is a significant factor in firms' decision to buy something from the 

market or to make it themselves (Leiblein et al., 2002). Depending on the fit of governance, 

transaction attributes, and broader context, the transaction cost also plays a prominent role in 

defining the organizational boundaries of a firm (Mosakowski, 1991). In recent years, there has 

been a shift to the market for knowledge and technology, where the two are treated as definable 

and tradeable commodities (Arora et al., 2004). In this market, transaction cost determines 

whether firms buy or sell their innovation.  
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This framework provides a new perspective on the impact of the Trump shock. The 

framework of knowledge diffusion in the previous subsection theorized that the political shock 

harmed Chinese innovation by hampering labor and talent mobility, communication, and 

collaboration. However, viewing the shock through the lens of transaction cost economics 

indicates the opposite hypothesis: the Trump shock has done nothing short of incentivizing 

China to become more self-reliant in innovating. 

To begin with, China's research and development (R&D) strategy pre-2016 was to 

predominantly outsource innovation. With relatively low transaction costs, China was inclined 

to utilize a number of technology acquisition strategies, including licensing patents, equipment 

purchasing, acquiring foreign firms, and other outsourcing arrangements with foreign nations 

(Choung & Koo, 2023; Edamura et al., 2014). Overall, the potential to tap into specialized 

capabilities from other sources while minimizing internal costs was a principal advantage of 

outsourcing, despite its drawbacks of reduced coordination and information transfer (Leiblein 

et al., 2002).  

The Trump shock drastically changed transaction costs by introducing many political and 

geopolitical uncertainties. To begin, Trump's lack of a previous political record made many 

Chinese officials nervous (Asia Society, 2016). These fears were confirmed in 2018 when 

Trump suddenly banned exporting goods to ZTE, a large Chinese telecoms company –– ZTE 

was brought near bankruptcy within days (The Economist, 2018). Likewise, Trump 

implemented sudden export bans on Fujian Jinhua, a Chinese integrated circuit company (The 

Economist, 2018). Following this, Trump continued to bar sales of sensitive technologies to 

certain Chinese companies and blacklisted 28 Chinese organizations (Swanson & Kang, 2020). 

These access restrictions on U.S. technology immediately added to the transaction costs of 

Chinese firms. Not only were many goods outright banned, but the uncertainty in transaction 

costs made U.S. technology no longer a sustainable option for China. 

As a result, Chinese firms and the government were incentivized to become more self-

reliant through a variety of mechanisms. Most notably, these efforts were epitomized in the 

Made in China 2025 strategy and Five-Year Plan (2016-2020), when China increased its R&D 

spending by double-digits annually to become the world's second-largest R&D investor behind 

the U.S. (Gill, 2021). Other mechanisms included establishing programs that attracted 

engineers from elsewhere (The Economist, 2018). Acknowledging its previous drawbacks, the 

government also began enforcing better intellectual property protection to attract foreign 

domestic investment (Salitskii & Salitskaya, 2022).  
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Some researchers, such as Hu et al. (2017), point out that China's propensity to seek patents 

may have been motivated by "non-innovation related motives" that resulted in quantity being 

prioritized over quality. Even though China's low grant ratio (WIPO, 2021) indeed illustrates 

that some Chinese patents were more quantity-oriented than driven by innovation-related 

motives, there was nevertheless a substantial amount of frequently cited granted Chinese 

patents following China's surge in investment. The government was incentivized to spur 

genuine development and innovation for their own economic benefit, especially given that they 

could no longer reliably depend on licensing and acquiring foreign technology. 

Using this theoretical framework, we hypothesize that transaction costs had significantly 

more impact on Chinese innovation than knowledge diffusion: The U.S. government's 

restrictions that limited China's access to American technology sparked internal change and the 

urgent need to circumnavigate challenges. Hence, China performed relatively well compared 

to nearby Asian regions because the Trump administration's actions incentivized China to make 

rather than buy inventions, reform its organizational structure, and become more nationalistic 

in sentiment. As a result, we posit that Chinese inventors have performed comparatively better 

in search distance and patent quality because of the incentives to gather information from a 

wider variety of sources. We further theorize that the number of U.S. patents cited by Chinese 

patents also increased following the shock –– despite worsened relations –– because of the 

need to cite high-quality patents, many of which are of U.S. origin. 

Hypothesis 2: Following the Trump shock, China performed comparatively better on the 

patent, assignee, and inventor levels, showing increases in quality of patents (measured by 

number of citations received), quantity of patents, and search distance relative to that of the 

control group, including Singapore, Japan, Taiwan, and South Korea. 

3.3 Moderating Effects: Patent Class, Inventor Network, and Location 

Factors  

Patent class  

The fields of patents vary widely, entailing varying attention and resources allocated to 

different fields depending on their importance. China's emphasis has been on the 

"technosphere": semiconductors, A.I., quantum communication and information processing, 

biotechnology, 5G, and more (Salitskii & Salitskaya, 2022). Although significant efforts in 

developing these fields of technology started in 2015 with the Made in China 2025 strategy, 

the actions during the Trump administration significantly contributed to greater incentives for 

China to become self-reliant. For example, the U.S. began technological decoupling with the 
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trade war. The export bans on ZTE mentioned earlier served as warnings to Chinese tech 

companies, including Huawei, Alibaba, and Baidu (The Economist, 2018). These uncertainties 

contributed to increasing Chinese tech firms’ transaction costs. Later, Huawei getting banned 

from the U.S. market during the trade war further directly undermined the possibility of 

licensing or buying U.S. inventions as an option.  

President Xi announced, “Scientific and technological innovation has become the main 

battlefield of the international strategic game” (Salitskii & Salitskaya, 2022). The national 

strategy shifted focus onto developing these fields of technology while decoupling from 

previous reliance on importing technology from the U.S.  

In this study, we argue that China’s greater emphasis on high-tech fields such as 

semiconductors and 5G following political shocks contributed to better performance than other 

fields. Hence, we propose the following heterogeneity hypothesis: 

Hypothesis 3.A: Following the Trump shock, the quality of Chinese patents (measured by 

number of citations received) in fields of technology (including semiconductors and electricity) 

performed better relative to that of patents in other fields. 

Inventor network  

Of the many factors that go into innovation, the inventor network has been stated by 

literature to be an integral part. Collaboration networks, usually created when inventors work 

or interact together, result in the facilitation of knowledge transfer and the discovery of various 

perspectives. For instance, Paruchuri & Awate (2017) illustrate how individuals with higher 

reach to others have more depth and breadth of organizational knowledge. In fact, Singh (2005) 

demonstrated that interpersonal networks influenced patterns of knowledge diffusion more 

than regional or firm boundaries. This literature suggests that prominent Chinese inventors with 

large collaboration networks and outreach may have been hindered less by the possible adverse 

effects of the Trump shock outlined in hypothesis 1 (Section 3.1) and facilitated more by the 

benefits of self-reliance illustrated in hypothesis 2 (Section 3.2). 

In the context of utilizing patent data, the size of an inventor’s network can be indicated 

by the number of their granted patents and whether they have U.S. coauthors, both of which 

are correlated with their access to broader information flows and development of relationships 

in the field. Hence, we propose the following hypothesis:  

Hypothesis 3.B: The impact of the Trump shock on the quality of patents by Chinese 

inventors (measured by the average number of citations received) was comparatively better for 
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inventors with greater prominence, who had the highest numbers of granted patents and 

collaborated with U.S. coauthors. 

Location  

Another aspect that influences innovation is the location of firms. The physical location of 

a firm and its nominal attribution directly determine the number of available resources and the 

nature of region-specific policies, with both affecting innovation.  

Literature has paid much attention to agglomeration, the phenomenon of firms preferring 

to cluster in large cities (Carlino & Kerr, 2015). Agglomeration has resulted in a growing rural-

urban disparity in China, with unequal infrastructure, employment, social welfare, and global 

connectivity; figures indicate that socioeconomic disparity has been growing year on year, 

ranking China’s rural-urban income gap as one of the largest around the globe (Yao & Jiang, 

2021). Research has shown that the concentrated development of urban areas has resulted in 

the spatial concentration of innovation because firms and startups prefer to operate in cities that 

host the nation’s leading institutions and attract the most talent (Carlino & Kerr, 2015). 

Moreover, China is also displaying a growing north-south gap. Evidence of this gap is 

clearly reflected in the data on differences in human resources, spending, exports, and industrial 

production between the North and South. The growing gap is partially a result of regional 

policies. While the local governments of southern regions tend to tolerate a greater variety of 

market entities and flexible economic policies, northern local governments tend to remain more 

traditional. The inequality is especially apparent in the tech industry, with the headquarters of 

major tech companies such as Huawei, Tencent, Alibaba, and BYD residing in southern cities. 

The north-south gap also has historical roots: Deng Xiaoping's Open Door policy in 1978 

spurred special economic zones along southern coastal cities such as Shenzhen and Xiamen 

while essentially continuing practices in northern cities (Chen et al., 2003). 

Hence, we hypothesize that the location of a Chinese firm –– whether rural or urban and 

whether northern or southern –– influences its response to the Trump shock. Specifically, we 

propose the following hypothesis: 

Hypothesis 3.C: The impact of the Trump shock on the quality of patents by Chinese firms 

(measured by the average number of citations received) was comparatively better for firms 

located in big cities and in the Southern parts of China. 
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4. Method 

4.1 Data and Sample 

This paper’s primary data source is the patent data from the United States Patent and 

Trademark Office (USPTO). This source was chosen because of the work of previous scholars 

and its clear, expansive, and transparent data. Due to USPTO’s international recognition and 

utility, prior studies about patents and innovation have conducted their analyses using figures 

from the same source (Engelberg et al. 2022; Zheng and Wang 2020).  

Specifically, we downloaded the data through the PatentsView website, an analysis 

platform created by USPTO. We chose to analyze granted patents instead of patent applications 

because granted patents have higher quality thresholds and more comprehensive citation data. 

For the type of granted patent, we chose to discard design, reissue, and plant-type patents, 

keeping only utility patents –– as is standard in literature –– because they are more accurate 

indicators of innovation compared to patents of other types. For instance, utility patents protect 

the functionality of an invention, whereas design patents protect ornamental appearance. 

Finally, we use the backward citations of a focal patent, which patent applicants use to cite 

prior art. We include both applicant-added and examiner-added citations because they are 

valuable indicators of knowledge flow and search behavior (Jaffe et al., 2000; Nerkar, 2003). 

Our full data sample includes all patents granted between 2012 and 2022. In our primary 

regressions, we restrict the time frame to patents granted between 2012 and 2020 to fully 

capture four years before and after the Trump shock in 2016. We also implemented robustness 

checks that examine regression results, including years after 2020 and moving the shock from 

2016 to 2017. 

We conduct a differences-in-differences approach to establish causal inferences. For this 

analysis, we chose a control group comprised of geographically proximate East Asian countries 

that shared economic, political, and cultural similarities. The control group includes South 

Korea, Singapore, Taiwan, and Japan. The assignee locations attributed to each focal patent 

are used to identify the country of that patent; in other words, the firm’s location identifies the 

country to which the patent belongs. In the end, 992,455 patents from China and the control 

group are identified, but this data is narrowed into a sample of 300,178 patents for regression 

analysis after keeping patents that have technological distance data. 
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4.2 Dependent Variables  

Number of citations received 

A patent’s quality is indicated by the number of citations it receives. This measurement 

has been used in well-established literature (Henderson et al., 2005; Hall et al., 2005; Engelberg 

et al., 2022), and it makes intuitive sense. For instance, patents frequently cited by others tend 

to have higher economic value and visibility.  

To construct this numerical indicator of patent quality, we use the full citation dataset of 

all countries and restrict it to patents from China and the control group, which are on the 

receiving end of citations. We determine the year the citation was made by the year the citing 

patent was granted. Simply counting and adding the number of citations received per patent 

would result in an issue: older patents likely have been cited more times, as they have been 

granted and visible for longer periods. To control for this time effect, we restrict the time 

interval to define the dependent variable as the number of citations received by a focal patent 

immediately two years after the year it was granted. For instance, if patent X was granted in 

2014, we counted the number of citations received by patent X from 2014 to 2016. Similarly, 

patents granted in 2020 included citations from 2020 to 2022.  

The ratio of U.S. patents cited to all patents  

In the opposite direction, the patents cited by a focal patent are also valuable indicators of 

search behavior. Determining the origin of these cited patents provides meaningful insight into 

the extent of knowledge diffusion and communication between countries. To construct this 

variable, we begin by restricting the full citation dataset of all countries to focal patents from 

China and the control group; focal patents are the patents granted between 2016 and 2022 that 

cite other patents. After determining the country of the patents cited by using the location of 

their assignee, we construct a binary indicator of whether the location is the U.S. Moreover, 

we count the total number of citations made by focal patents. Then, we use the following 

equation to calculate the ratio of the number of cited patents of U.S. origin to the number of 

total cited patents: 

𝑅𝑎𝑡𝑖𝑜 𝑓𝑜𝑐𝑎𝑙 𝑝𝑎𝑡𝑒𝑛𝑡 𝑖 =  
# 𝑜𝑓 𝑈. 𝑆. 𝑜𝑟𝑖𝑔𝑖𝑛 𝑝𝑎𝑡𝑒𝑛𝑡𝑠 𝑐𝑖𝑡𝑒𝑑 𝑏𝑦 𝑓𝑜𝑐𝑎𝑙 𝑝𝑎𝑡𝑒𝑛𝑡 𝑖

# 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑡𝑒𝑛𝑡𝑠 𝑐𝑖𝑡𝑒𝑑 𝑏𝑦 𝑓𝑜𝑐𝑎𝑙 𝑝𝑎𝑡𝑒𝑛𝑡 𝑖
 

Technological distance 

Technological distance measures the extent to which a patent searches distant knowledge 

fields during the invention process. The construction of this variable is based on previous 

literature. Specifically, we follow in the footsteps of Zheng and Wang (2020). In order to find 
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the knowledge distance of a specific focal patent, the overall strategy is to take the mean or 

aggregate of the focal patent's knowledge distance with the patents it has cited. We first find 

the typical knowledge distance between two CPC subclasses by constructing a cross-citation 

matrix using the citation data of patents granted between 2012 and 2022. Specifically, 𝐶𝑡
𝐴→𝐵 

represents the ratio of citations made from patents in subclass A to patents in subclass B, as 

illustrated in the equation below: 

𝐶𝑡
𝐴→𝐵 =  

# 𝑜𝑓 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑝𝑎𝑡𝑒𝑛𝑡𝑠 𝑖𝑛 𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠 𝐴 𝑡𝑜 𝑝𝑎𝑡𝑒𝑛𝑡𝑠 𝑖𝑛 𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠 𝐵

# 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑚𝑎𝑑𝑒 𝑏𝑦 𝑝𝑎𝑡𝑒𝑛𝑡𝑠 𝑖𝑛 𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠 𝐴
 

Where 𝑡 refers to a specific given year. Having this ratio, we can determine the knowledge 

proximity between subclasses by offsetting  𝐶𝑡
𝐴→𝐵 with the random possibility of any patent 

citing patents in subclass B. In other words, 𝐶𝑡
𝐵 represents the proportion of citations to patents 

in subclass B over the total number of citations:  

𝐶𝑡
𝐵 =

# 𝑜𝑓 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑡𝑜 𝑝𝑎𝑡𝑒𝑛𝑡𝑠 𝑖𝑛 𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠 𝐵

# 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑚𝑎𝑑𝑒 
 

Hence, knowledge proximity between two subclasses in a given year t can be represented 

by the following: 

𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦𝑡
𝐴→𝐵 = 𝐶𝑡

𝐴→𝐵 − 𝐶𝑡
𝐵 

Since knowledge proximity is always less than 1, knowledge distance can be calculated as: 

𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑡
𝐴→𝐵 = 1 − 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦𝑡

𝐴→𝐵 

Given this cross-citation matrix with the knowledge distance between two CPC subclasses, 

we can construct the patent-level knowledge distance by matching the focal patent and its cited 

patent to CPC subclasses, which derives its knowledge distance. However, since each patent 

can have more than one CPC subclass, we take the mean of all the possible knowledge distance 

values from different subclass combinations between a focal patent and its cited patent. In the 

equation below, 𝛼  represents the set of all of the focal patent i’s CPC subclasses, and 𝛽 

represents the set of those for patent j.  

𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖→𝑗 =  
1

# 𝑜𝑓 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝛼 𝑎𝑛𝑑 𝛽
× ∑ 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐴→𝐵

𝐴∈𝛼
𝐵∈𝛽

 

After this step, we have one knowledge distance value between a focal patent and every 

patent it cites. In our main regression results, we use the mean of all the knowledge distances 

of a focal patent and the natural log of this mean to minimize skewness. The set 𝑆 contains all 

the patent js that the focal patent cites. 
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𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑚𝑒𝑎𝑛𝑖 =
1

# 𝑜𝑓 𝑐𝑖𝑡𝑖𝑛𝑔 𝑝𝑎𝑡𝑒𝑛𝑡𝑠 𝑖𝑛 𝑠𝑒𝑡 𝑆
× ∑ 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖→𝑗

𝑗∈𝑆
 

We also implement robustness checks by running the same regression on the sum of the 

variables without a natural log. 

𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑠𝑢𝑚𝑖 = ∑ 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖→𝑗

𝑗∈𝑆
 

Cognitive distance 

Cognitive distance measures the extent to which inventors avoided the local search trap to 

search for prior art and knowledge with low visibility. Building on work from Zheng and Wang 

(2020), we construct this variable through two measures: temporal visibility and assignee 

visibility. 

Temporal visibility indicates how recent the cited patent j is. We first take the difference 

between the last year the patent j was cited and the year when the focal patent i made the 

citation. This value would be more positive for a more recent and prominent patent j. For 

example, a patent j that was cited by patent i in 2016 but also most recently cited in 2023 would 

have a visibility of 7, whereas if the same patent was most recently cited in 2020, it would have 

a visibility of 4. Hence, the visibility is calculated as:  

𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑣𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑗 𝑓𝑜𝑟 𝑖 = 𝑦𝑒𝑎𝑟 𝑝𝑎𝑡𝑒𝑛𝑡 𝑗 𝑤𝑎𝑠 𝑚𝑜𝑠𝑡 𝑟𝑒𝑐𝑒𝑛𝑡𝑙𝑦 𝑐𝑖𝑡𝑒𝑑 − 𝑦𝑒𝑎𝑟 𝑝𝑎𝑡𝑒𝑛𝑡 𝑖 𝑐𝑖𝑡𝑒𝑑 𝑝𝑎𝑡𝑒𝑛𝑡 𝑗 

Assignee visibility measured the prominence of an assignee. Specifically, it measured the 

prominence of patent j’s assignee in patent j’s field based on its ranking in the number of 

granted patents in the field from 2012 to 2022. To deal with the fact that a patent could have 

more than one CPC subclass, we constructed the visibility as the maximum ranking of an 

assignee in any of their fields because they would likely be most known for that.  

Subsequently, we calculated cognitive distance by first standardizing and aggregating 

temporal and assignee visibility. Then, we took the reciprocal of the sum so that larger 

visibilities would correspond with smaller distances. Once we had the measure of cognitive 

distance for each focal patent and its cited patent j’s, we aggregated the cognitive distances 

across the cited patent j’s in set 𝑆 for each focal patent, as shown in the following equation: 

𝐶𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖 = ∑
1

𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑣𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑗 + 𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑒 𝑣𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑗𝑗∈𝑆
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4.3 Independent Variables 

The independent variables in this study include China, an indicator of whether the firm is 

located in China, and the Trump shock, an indicator of whether the year is post-2016 (in 

robustness checks, we change this post to 2017 to reinforce the causation effect). 

4.4 Moderators (Heterogeneity) 

Patent class 

Results in the dependent variable can vary significantly depending on the Cooperative 

Patent Classification (CPC) patent class, a system jointly developed by the European Patent 

Office (EPO) and USPTO. The CPC class system categorizes patents into eight distinct classes 

ranging from class A to class H. Specifically, class H best represents the “technosphere” 

mentioned in section 3.3; class H includes semiconductors, electric elements, electric 

communication, and electronic circuitry.   

On the official USPTO database, each patent on the data is attributed to one or more CPC 

classes, as there is possibility for overlap. We determine the primary CPC class of a patent by 

choosing the one that goes first in the CPC sequence, which ranks CPC classes of a patent by 

their relevance to the patent. 

Inventor network 

This moderating variable captures the size of the network of inventors. It is composed of 

two parts: first, whether the inventor is in the top 95th percentile for creating patents; and second, 

whether the inventor has a U.S. coauthor.  

In constructing the former, we ranked inventors based on the number of granted patents 

they produced from 2012-2022, marking them with the indicator if they had produced a number 

in the top 95th percentile of all inventors. 

We determined whether the inventor has a U.S. coauthor by matching the inventors of a 

patent to their inventor I.D. and location. We use a binary indicator for inventors in the 

treatment and control group that do have a U.S. coauthor. 

Location 

We construct two indicators for the location of a patent, in addition to its country: whether 

it is in northern China or a big city.  

First, we asked ChatGPT for a list of major cities in the treatment and control groups. This 

allowed for a binary indicator of whether a focal patent’s location is a big city.  
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Secondly, for the treatment group, China, we use the coordinates of the location of the firm 

to determine whether its location is in northern or southern China. In this study, we follow the 

consensus that the Qin-Huai line, roughly the 33rd parallel, is the geographical demarcation 

between northern and southern China. This definition classifies Beijing and Tianjin as northern 

cities and Shanghai and Shenzhen as southern cities. 

4.5 Control Variables 

The control variables used vary depending on the regression. For the four primary 

dependent variables, we control for the inventor number of patents per year, assignee number 

of patents per year, inventor number of U.S. coauthors, whether the inventor is in the top 95th 

percentile, and whether the location is a big city. Controlling for northern and southern cities 

is omitted, as this indicator only applies to patents in the treatment group, China.   

4.6 Differences-in-differences Regression 

Given the dependent variables, independent variables, moderators, and control variables 

described above, we use the following equation for regression analysis: 

𝑌𝑖𝑡 = 𝛼 + 𝛽1𝑇𝑟𝑒𝑎𝑡𝑖 + 𝛽2𝑃𝑜𝑠𝑡𝑡 + 𝛽3𝑇𝑟𝑒𝑎𝑡𝑖𝑃𝑜𝑠𝑡𝑡  +  𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 + 𝜀𝑖𝑡 

In the equation, 𝑖 refers to the firm (assignee), individual inventor, or focal patent; 𝑡 refers 

to the year; 𝑌 indicates the dependent variable; 𝑇𝑟𝑒𝑎𝑡 refers to the treatment group, China; 

𝑃𝑜𝑠𝑡 refers to the post-election indicator (whether the year is past 2016); 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 include the 

control variables outlined in Section 4.5; and 𝜀𝑖𝑡 indicates the error.  

We chose the control group of Singapore, Japan, Taiwan, and South Korea by matching 

China with geographically proximate regions that were the most economically and culturally 

similar. Innovative activity in these regions was substantially more similar to China compared 

to European nations or the U.S.  
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5. Results  

5.1 Main Results  

Table 1 Summary statistics and T-tests in overall sample 

 Mean 
Difference S.E. N 

 Non-China China 

Ln (mean of technological distance) -0.133 -0.107 -0.026*** 0.000 300178 

Cognitive distance (standardized) -28.607 -16.063 -12.544 16.169 273417 

Inventor number of patents per year 7.091 6.086 1.005*** 0.059 288001 

Inventor number of U.S. coauthors 3.684 10.629 -6.946*** 0.077 288001 

Assignee number of patents per year 2725.456 483.474 2241.982*** 13.084 300178 

Total number of patents cited 7.149 5.982 1.168*** 0.071 300178 

Number of U.S. patents cited 2.869 2.504 0.365*** 0.038 300178 

Ratio of U.S. to all patents cited 0.380 0.423 -0.043*** 0.002 300178 

Number of citations received per patent 0.451 0.355 0.096*** 0.008 300178 

*** p <.001 

 

The table above illustrates the summary statistics and t-tests in the sample. With these 

results, we recognize that though China and the countries in the control group are 

geographically proximate and share many cultural, political, and economic similarities, this is 

not a perfect control group. Nonetheless, many other papers have used this practice (Zheng & 

Wang, 2020), and the relative differences between the treatment and control group picked are 

less than if a different group of countries was picked for the control group. 

Table 2 Assignee and inventor level results 

 (1) (2) (3) (4) 

 Assignee Inventor 

VARIABLES 
Number of 

patents 

Number of 

citations 

received per 

patent 

Number of 

patents 

Number of 

citations 

received per 

patent 

     

Treatment (1 = China) -0.583 -0.119 0.213*** -0.147*** 

 (4.184) (0.158) (0.0335) (0.0316) 

Post (1 = after 2016) -1.650*** -0.244*** -0.0620*** -0.305*** 

 (0.561) (0.0212) (0.00625) (0.00588) 

Treatment X Post  10.73*** 0.0249 0.370*** 0.0600*** 

 (1.354) (0.0511) (0.0240) (0.0225) 

Constant 16.22*** 0.504*** 1.738*** 0.559*** 
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 (1) (2) (3) (4) 

 Assignee Inventor 

VARIABLES 
Number of 

patents 

Number of 

citations 

received per 

patent 

Number of 

patents 

Number of 

citations 

received per 

patent 

 (1.148) (0.0433) (0.00549) (0.00516) 

     

Observations 56,489 56,489 478,275 478,275 

R-squared 0.935 0.418 0.638 0.329 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

The table above features the first two columns at the assignee (firm) level and columns 3 

and 4 at the inventor level. At each level, the dependent variables include the number of patents 

and the average number of citations received per patent, which measure the quantity and quality 

of patents, respectively. The assignee level demonstrates that patent-owning organizations 

based in China versus nearby regions were not statistically significantly different before the 

Trump shock. The coefficient before post is negative for both, reflecting Trump's impacts on 

the rest of the world in terms of quantity and quality of patents. The statistically significant 

interaction term is 10.73 for the number of patents, which, given the sample's mean of 15.2, 

indicates that Chinese assignees increased the production of patents by 70.5% relative to 

assignees of nearby regions (Singapore, Japan, Taiwan, and South Korea) after the Trump 

shock.  

At the inventor level, the number of citations received per patent increased by 

approximately 17.7% (given its sample mean of 0.34) for patents with Chinese inventors 

relative to the control group. At the same time, the number of patents from Chinese inventors 

increased by 0.370 relative to the control group after the Trump shock.  

These results fit in line with hypothesis 2: China’s organizations became increasingly self-

reliant after the Trump shock. While nearby regions such as Singapore, Japan, Taiwan, and 

South Korea were also affected by the shock, they had weaker incentives to become self-reliant 

because they could still rely on buying U.S. inventions with relatively low transaction costs. 
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Table 3 Effects of the Trump shock on dependent variables 

 (1) (2) (3) (4) 

VARIABLES 
Number of citations 

received 

Ratio of U.S. 

patents cited  

to all patents 

Mean technological 

distance 

Cognitive 

distance 

     

Treatment (1 = China) -0.106*** -0.0156*** 0.00426*** 29.34 

 (0.0146) (0.00299) (0.000695) (35.70) 

Post (1 = after 2016) -0.171*** -0.00506*** 0.00469*** -37.67* 

 (0.00514) (0.00163) (0.000379) (19.26) 

Treatment X Post 0.0680*** 0.0251*** 0.00714*** 2.457 

 (0.0175) (0.00363) (0.000843) (43.53) 

Inventor number of 

patents per year  
0.00396*** -0.00118*** -0.000358*** -3.284*** 

 (0.000110) (6.39e-05) (1.48e-05) (0.739) 

Assignee number of 

patents per year 
5.19e-06*** -4.53e-06*** 1.57e-06*** -0.00938*** 

 (1.17e-06) (2.71e-07) (6.29e-08) (0.00318) 

Big city  -0.0154*** -0.0116*** 0.00628*** 5.497 

 (0.00567) (0.00170) (0.000396) (20.27) 

Inventor number of 

U.S. coauthors 
0.000571*** 0.000894*** 1.51e-05 -4.948*** 

 (0.000197) (4.28e-05) (9.93e-06) (0.503) 

Inventor top 95th 

percentile  
0.135*** -0.0248*** -0.00218*** 15.34 

 (0.00520) (0.00163) (0.000378) (19.19) 

Constant 0.509*** 0.420*** -0.137*** 46.26** 

 (0.00492) (0.00169) (0.000392) (19.98) 

     

Observations 691,998 229,170 227,961 210,351 

R-squared 0.016 0.096 0.440 0.006 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

The first column displays the effects of the Trump shock on the number of citations 

received per patent, which measures the quality of patents. The regression results show that 

before the Trump shock, the treatment group on average received 0.106 fewer citations per 

patent than those of the control group. This coefficient is statistically significant. Given that 

the mean number of citations per patent for the sample is 0.38, 0.106 number of citations is 

around 27.7% fewer citations than that of the control group. This result is consistent with the 

common perception that Chinese patents were historically lower quality than their East-Asian 

counterparts. As expected, the coefficient before the post illustrates how the control group 

decreased somewhat in response to the Trump shock, which indicates that the election and 
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presidency of Trump affected the rest of the world. After the Trump shock, the average number 

of citations received per patent in China was 0.0680 higher than those received by nearby 

regions (including Singapore, Japan, Taiwan, and South Korea). This statistically significant 

change is approximately 17.8% of the mean number of citations per patent. Therefore, China's 

improvement in patent quality relative to comparable regions supports the hypothesis that 

Chinese innovators became more self-reliant and robust following the Trump shock. Because 

the transaction costs of relying on licensing U.S. innovation increased, firms began developing 

their own innovation, leading to more experience and productivity in innovation and, thereby, 

higher quality patents. 

The second column illustrates the ratio of citations of U.S. patents made by the focal patent 

to the total number of citations made. The post coefficient partially supports the hypothesis of 

knowledge diffusion decreasing following the Trump shock, as it shows the control group’s 

ratio decreasing after 2016. However, the interaction term illustrates the impacts on China: 

knowledge diffusion may exist, but it is not a main driver. China began to catch up with 

comparable regions by taking full advantage of existing knowledge. This conjecture is 

supported by China’s relative increase in the ratio of U.S. patents cited; the U.S. is a leader in 

innovation, so taking full advantage of knowledge would entail citing more U.S. patents.  

Similarly, the effect of the Trump shock on technological distance is shown in the third 

column. After the Trump shock, the control group somewhat increased in distance, yet China 

began displaying 5.4% larger technological distance (given its sample mean of 0.13) compared 

to nearby regions. This similarly reaffirms China’s heightened propensity to internalize the 

innovation process following the Trump shock due to higher transaction costs of outsourcing. 

Lastly, the fourth column shows cognitive distance. While the interaction term is not 

statistically significant, it is positive, providing evidence to support the hypothesis that Chinese 

firms became independently stronger innovators. The results indicate that there is a chance that 

Chinese firms increased their cognitive distance by 8.6% (given its sample mean of 28.6) 

compared to nearby regions. Recent literature has discussed make it or buy it, and these results 

overall reflect that China, compared to the control group, was incentivized to invest drastically 

more in its internal innovation rather than rely on foreign technology. 
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5.2 Heterogeneity Analysis  

Table 4 Patent class moderating effect on the quality of patents 

 (1) (2) (3) (4) (5) (6) (7) (8) 

VARIABLES Class A Class B Class C Class D Class E Class F Class G Class H 

         

Treatment (1 

= China) 
-0.0550 -0.0538 -0.218*** -0.155 -0.171* 0.229*** -0.101*** -0.130*** 

 (0.133) (0.0539) (0.0281) (0.175) (0.0884) (0.0579) (0.0248) (0.0214) 

Post (1 = 

after 2016) 
-0.0117 -0.196*** -0.0906*** -0.169*** 

-

0.362*** 
-0.169*** -0.123*** -0.226*** 

 (0.0484) (0.0150) (0.0110) (0.0479) (0.0427) (0.0182) (0.00830) (0.00802) 

Treatment X 

Post  
0.290* 0.161** 0.0866** 0.575*** 0.185* -0.0528 -0.0119 0.0864*** 

 (0.155) (0.0651) (0.0352) (0.205) (0.106) (0.0713) (0.0289) (0.0259) 

Inventor 

number of 

patents per 

year 

0.0125*** 0.00243** 0.000273 0.0135** 0.00743 0.00813*** 0.00261*** 0.00412*** 

 (0.00411) (0.00111) (0.000485) (0.00556) (0.00597) (0.00118) (0.000251) (0.000124) 

Assignee 

number of 

patents per 

year 

-8.46e-06 5.96e-06 -4.14e-06 -1.47e-05 
-6.51e-

05** 
5.10e-06 2.98e-06* 

7.18e-

06*** 

 (1.53e-05) (6.12e-06) (3.70e-06) (1.47e-05) 
(2.90e-

05) 
(7.47e-06) (1.73e-06) (1.63e-06) 

Big city -0.0825 
-

0.0661*** 
-0.0279** -0.0381 -0.0571 0.0660*** -0.0407*** 0.0112 

 (0.0510) (0.0180) (0.0108) (0.0643) (0.0425) (0.0194) (0.00949) (0.00872) 

Inventor 

number of 

U.S. 

coauthors  

-0.000650 -0.000609 0.00415*** 
-

0.00446** 
-0.00328 0.000856 0.000735** 0.000391 

 (0.00217) (0.000819) (0.000466) (0.00213) (0.00224) (0.00118) (0.000303) (0.000279) 

Inventor top 

95th 

percentile  

0.00228 0.110*** 0.127*** 0.120** 0.0704 0.0891*** 0.148*** 0.153*** 

 (0.0561) (0.0166) (0.0120) (0.0588) (0.0542) (0.0201) (0.00832) (0.00797) 

Constant 0.532*** 0.575*** 0.310*** 0.469*** 0.846*** 0.479*** 0.483*** 0.534*** 

 (0.0454) (0.0141) (0.00964) (0.0617) (0.0401) (0.0169) (0.00784) (0.00801) 

         

Observations 31,437 74,335 43,374 2,909 4,165 36,974 209,525 289,279 
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 (1) (2) (3) (4) (5) (6) (7) (8) 

VARIABLES Class A Class B Class C Class D Class E Class F Class G Class H 

R-squared 0.019 0.020 0.016 0.049 0.065 0.021 0.010 0.015 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

Table 4 displays the specific results of difference-in-difference analysis for eight possible 

CPC patent classes. The numbers shown indicate the number of citations received per patent, 

an indicator that models the quality of the patent. The interaction term row illustrates that class 

D and H are the two statistically significant patent classes among the eight. Class D only has 

2,909 patents, making it of little economic significance. On the other hand, class H is especially 

intriguing, as the CPC class includes fields such as electric communication, electric elements, 

information technologies, communication technologies, and semiconductor devices. Moreover, 

the quality of Chinese patents in class H showed an improvement of a substantial 20.3% (given 

its sample mean of 0.42) relative to those of Singapore, Japan, Taiwan, and South Korea. This 

provides support for hypothesis 3.A developed in section 3.3. It is evident that the Chinese 

government placed special emphasis on the electric communication and semiconductor 

industries because these were the industries where it faced the sharpest rise in transaction costs 

and uncertainty following the 2016 election. 

Table 5 Inventor network moderating effect on the quality of patents 

 (1) (2) (3) (4) 

VARIABLES Not Top 95th Percentile Top 95th Percentile No U.S. 

Coauthor 

U.S. 

Coauthor 

     

Treatment (1 = China) -0.0543*** -0.187*** -0.0711*** -0.174*** 

 (0.0179) (0.0250) (0.0194) (0.0228) 

Post (1 = after 2016) -0.151*** -0.198*** -0.159*** -0.207*** 

 (0.00656) (0.00823) (0.00588) (0.0105) 

Treatment X Post  0.00486 0.155*** 0.0676*** 0.0882*** 

 (0.0217) (0.0292) (0.0233) (0.0275) 

Inventor number of 

patents per year  

0.0211*** 0.00382*** 0.00388*** 0.00479*** 

 (0.00217) (0.000117) (0.000114) (0.000392) 

Assignee number of 

patents per year  

7.43e-06*** 2.55e-06 7.60e-06*** -3.68e-07 

 (1.57e-06) (1.77e-06) (1.37e-06) (2.27e-06) 

Inventor number of U.S. 

coauthors  

0.00362*** -4.36e-05   

 (0.000451) (0.000230)   
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 (1) (2) (3) (4) 

VARIABLES Not Top 95th Percentile Top 95th Percentile No U.S. 

Coauthor 

U.S. 

Coauthor 

Inventor top 95th 

percentile 

  0.153*** 0.0662*** 

   (0.00620) (0.0109) 

Big city  -0.0147** -0.0151 0.00892 -0.0780*** 

 (0.00713) (0.00934) (0.00657) (0.0113) 

Constant 0.449*** 0.676*** 0.475*** 0.627*** 

 (0.00722) (0.00781) (0.00552) (0.0111) 

     

Observations 399,468 292,489 501,113 190,835 

R-squared 0.010 0.022 0.017 0.015 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

Table 5 shows the impacts of the characteristics of inventors on the number of citations 

received by patents. The table indicates that inventors in the top 95th percentile were paramount 

in China’s relative improvement in patent quality. Top 95th percentile inventors demonstrated 

a uniquely statistically significant 32.5% improvement in patent quality (given its sample mean 

of 0.48), whereas non-top 95th percentile inventors did not show a significant improvement in 

patent quality. Moreover, columns 3 and 4 indicate that inventors with U.S. coauthors likewise 

demonstrated a more critical role in contributing to patent quality. Chinese inventors with U.S. 

coauthors improved their patent quality by19.7% (given its sample mean of 0.45), whereas 

those without U.S. coauthors improved their patent quality by 18.7% (given its sample mean 

of 0.36), resulting in a small yet noticeable difference of 1%. Given the vast literature on 

inventor networks, these results reinforce the importance of expansive communication and 

collaboration networks. 

Table 6 Location moderating effect on the quality of patents 

 (1) (2) (3) (4) 

VARIABLES Not big city Big city Northern firm Southern firm 

     

Treatment (1 = China) -0.114*** -0.0512* -0.180*** -0.0896*** 

 (0.0169) (0.0301) (0.0320) (0.0162) 

Post (1 = after 2016) -0.165*** -0.187*** -0.171*** -0.171*** 

 (0.00614) (0.00946) (0.00522) (0.00518) 

Treatment X Post  0.0398** 0.139*** 0.0599 0.0704*** 

 (0.0201) (0.0357) (0.0381) (0.0194) 

Inventor number of patents per 

year  

0.00846*** 0.00339*** 0.00381*** 0.00391*** 

 (0.000423) (0.000118) (0.000110) (0.000111) 

Assignee number of patents 2.83e-06** 7.04e-05*** 5.22e-06*** 6.09e-06*** 
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 (1) (2) (3) (4) 

VARIABLES Not big city Big city Northern firm Southern firm 

per year  

 (1.21e-06) (6.47e-06) (1.14e-06) (1.14e-06) 

Inventor number of U.S. 

coauthors 

0.000685*** -0.000371 0.00142*** 0.000817*** 

 (0.000232) (0.000380) (0.000265) (0.000212) 

Inventor top 95th percentile  0.102*** 0.135*** 0.131*** 0.135*** 

 (0.00663) (0.00984) (0.00549) (0.00529) 

Constant 0.505*** 0.458*** 0.504*** 0.502*** 

 (0.00543) (0.00877) (0.00461) (0.00454) 

     

Observations 489,138 202,813 614,829 676,296 

R-squared 0.017 0.019 0.013 0.016 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

The heterogeneity of geographical location can be seen in Table 6. Columns 1 and 2 

compare the regression results between patents with firms located in big cities versus those not 

in big cities. The interaction term illustrates how the patents with the former characteristic 

demonstrated more statically significant results. Furthermore, the patent quality of firms in big 

cities improved by 37.7% (given its sample mean of 0.38), whereas the patent quality of firms 

not in big cities improved by only 10.3% (given its sample mean of 0.37), overall resulting in 

big city firms performing better by 27.4%. This analysis provides evidence that China's rural 

and urban areas are growing further apart in a uniquely impactful manner. 

Columns 3 and 4 compare patents with firms located in northern China versus southern 

China. The interaction term is more positive and uniquely statistically significant for southern 

firms: they produced patents of 25.1% higher quality following the shock (given its sample 

mean of 0.28). This performance falls in line with expectations and historical trends of northern 

versus southern China, illustrating southern China’s greater propensity for innovation. Taken 

together, columns in Table 6 affirm hypothesis 3.C, showing how regional inequality indeed 

played an instrumental role in determining the success of China’s responses. 
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5.3 Robustness Checks  

Table 7 Robustness checks 

 (1) (2) (3) (4) (5) 

VARIABLES Number of citations received Total number of 

U.S. patents cited 

Sum technological 

distance 

 Original 2017 shock Extend 

timeline 

  

      

Treatment (1 = China) -0.106*** -0.0891*** -0.0982*** -0.346*** -1.442*** 

 (0.0146) (0.0125) (0.0125) (0.0149) (0.109) 

Post (1 = after 2016) -0.171*** -0.156*** -0.321*** -0.00325 -1.123*** 

 (0.00514) (0.00527) (0.00397) (0.00472) (0.0558) 

Treatment X Post 0.0680*** 0.0484*** 0.0361*** 0.245*** 0.274** 

 (0.0175) (0.0165) (0.0138) (0.0163) (0.125) 

Inventor number of 

patents per year 

0.00396*** 0.00396*** 0.00365*** -0.000371*** 0.0275*** 

 (0.000110) (0.000110) (8.94e-05) (0.000106) (0.00198) 

Assignee number of 

patents per year 

5.19e-06*** 4.81e-06*** 5.88e-06*** -5.41e-05*** -5.70e-05*** 

 (1.17e-06) (1.17e-06) (8.63e-07) (1.03e-06) (8.90e-06) 

Inventor number of 

U.S. coauthors 

0.000571*** 0.000568*** 0.000121 0.00386*** 0.0287*** 

 (0.000197) (0.000197) (0.000135) (0.000161) (0.00137) 

Inventor top 95th 

percentile 

0.135*** 0.133*** 0.106*** -0.0970*** 0.215*** 

 (0.00520) (0.00520) (0.00385) (0.00456) (0.0533) 

Big city  -0.0154*** -0.0168*** -0.0132*** -0.106*** -0.852*** 

 (0.00567) (0.00567) (0.00413) (0.00490) (0.0562) 

Number of total 

patents cited 

   0.478***  

    (0.000221)  

Constant 0.509*** 0.483*** 0.519*** 0.00922* 6.311*** 

 (0.00492) (0.00467) (0.00399) (0.00474) (0.0590) 

      

Observations 691,998 691,998 953,340 953,340 287,970 

R-squared 0.016 0.016 0.019 0.834 0.025 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

We conducted numerous robustness checks to validate our findings. The dependent 

variable that measures patent quality through the number of citations received per patent is 

used. Columns 2 and 3 address concerns over the timeline of Trump’s shock, such as having a 

time lag between the Trump election and his impact and the role of the COVID-19 pandemic. 

Columns 4 and 5 address data-oriented concerns by providing distinct ways of measuring U.S. 

patents cited and technological distance but ultimately providing similar regression results. 



28 

 

First, we analyze and compare regression results between the original time frame, changing 

the post to 2017, and extending the time frame to 2023. To begin with, we changed the shock 

indicator to 2017 to account for a possible time lag between the Trump shock and its impacts 

on Chinese innovation. As shown in column 2 of the table above, the interaction coefficient 

remains largely the same as that of column 1, the original, after changing the post to 2017. 

Comparing the two interaction terms, we can see that both are statistically significant and 

positive, indicating that both empirical methods supported hypothesis two (China becoming 

more self-reliant relative to comparable regions). Their comparability reflects how the political 

shock indeed had immediate ramifications upon the organizational decisions of Chinese firms, 

as well as long-term effects. 

Secondly, we extend the time frame of the entire sample to include the COVID-19 

pandemic, the period from 2020 to 2023. Likewise, as illustrated in column 3, the interaction 

term in this extended time frame remains positive and statistically significant, buttressing 

hypothesis two by showing how the effects of the political shock continued even years after 

the end of Trump's term and the start of a global pandemic. Nonetheless, the interaction and 

post coefficients in the extended timeframe are comparatively smaller than those of columns 1 

and 2, showing how COVID-19 negatively affected the entire world’s development. 

Thirdly, column 4 shows the analysis of the number of U.S. patents cited in place of the 

ratio of U.S. patents cited dependent variable used in Table 3. After controlling for the number 

of all patents cited in this regression, we find that the interaction term remains similarly positive 

and statistically significant, demonstrating how the two indicators are largely interchangeable. 

Lastly, our fourth robustness check in column 5 comprises of taking the sum of 

technological distance in place of the mean of technological distance used in Table 3. The sum 

of technological distance aggregates all the pairwise technological distances between a focal 

patent and the patents it has cited. This method of summing distances entails a larger distance 

for granted patents that made more citations, which may be slightly inaccurate in determining 

the authentic technological distances in patents. This slight difference is reflected in how the 

interaction term from this regression is slightly less statistically significant than the regression 

using the mean of technological distance. Hence, this study improves upon prior studies, such 

as Zheng and Wang (2020), by focusing on the mean of technological distance, which may be 

a more accurate measure of actual search distance. 
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6. Discussion 

Though the vast majority of the literature has traditionally focused on internal 

characteristics of a country that affect its innovative capacity, it is now becoming apparent that 

political actions –– even those across the world –– can affect a country's innovation. The central 

question of this study concerns how the election and administration of Trump affected 

innovation in China. The Trump shock has sparked significant debates in academic and non-

academic worlds. There are two major perspectives regarding how politics can affect 

innovation. The perspective of knowledge diffusion argues that Trump’s actions hurt Chinese 

innovation by limiting communication, collaboration, and labor mobility (Kim & Marschke, 

2005; Møen, 2005; Atkin et al., 2022; Aghion et al., 2023; Jia et al., 2023). In contrast, the 

transaction cost perspective argues that Trump gave a chance for China to decrease its reliance 

on U.S. innovation by raising the cost of pursuing external acquisition (Arora et al., 2004; 

Choung & Koo, 2023; Edamura et al., 2014; Salitskii & Salitskaya, 2022). We develop both 

frameworks by acknowledging that the central question of this debate is not about which 

perspective is correct but rather the extent to which either perspective has occurred in the real 

world.  

Through our empirical analysis and regression results, we find that inventors and firms in 

China experienced relative increases in patent quality, quantity, and search distance following 

the Trump shock. These results support the transaction cost hypothesis being the more 

dominant one. Furthermore, our results demonstrate that the impacts of the shock are 

heterogeneous. Innovative capacity, measured by patent quality, was comparatively higher for 

fields related to electricity and semiconductors, supporting the hypothesis that China seized the 

opportunity to catch up in the technosphere. In addition, we found that inventors with more 

extensive collaboration networks were the frontrunners for China’s improved performance. 

Lastly, our heterogeneity results reaffirm the geographical inequality between northern and 

southern China, as well as rural and urban areas; firms in big cities and southern China 

demonstrated better performance following the shock. 

Our paper makes several contributions to literature. First, we add to the overall framework 

of innovation by examining evidence of external political shocks. We overcome obstacles to 

collecting empirical data by using the USPTO dataset to examine the Trump administration 

following Trump’s election victory as a natural experiment.  

Secondly, we add nuance to the literature on knowledge diffusion. On the one hand, our 

results demonstrate that knowledge diffusion is still a critical part of innovation: following the 
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shock, the countries in the control group were negatively impacted due to limitations in 

communication, collaboration, and talent mobility. The heterogeneity results also reinforce 

previous findings that diversified teams perform better (Fos et al., 2021), as we found that 

Chinese inventors working with U.S. coauthors tended to produce higher-quality patents 

following the election of Trump. On the other hand, our study shows that knowledge diffusion 

may only be one part of the larger picture when considering the impacts of political actions on 

innovation. The differences-in-differences regression results show that attempts at self-reliance 

in response to sufficient incentives outweighed possible limitations and restrictions in 

communication and collaboration between international inventors.  

Thirdly, we add to transaction cost economics by illustrating how transaction costs are 

expanding to apply to innovation in the 21st century (Arora et al., 2004). China's better 

performance compared to Singapore, South Korea, Taiwan, and Japan illustrates that 

heightened transaction costs in "buying" resources from the U.S. incentivized China to pursue 

internal vertical integration. Some scholars have noted China's tendency to rely on U.S. 

technology (Choung & Koo, 2023; Aghion et al., 2023), but few have studied the shocks that 

catalyzed China into becoming more self-reliant. Moreover, some studies focused on China’s 

push for innovation, such as the Made in China 2025 plan (Hu et al., 2017; Salitskii & 

Salitskaya, 2022), but these papers have utilized local Chinese databases for data instead of 

USPTO, which is more transparent, reliable, and international. Hence, our findings indicate 

that China's act of catching up is being reflected on the international stage. 

Our paper also provides a novel perspective to policymakers. China's unexpectedly 

flexible response to Trump's actions illustrates how policies aimed to ostensibly stifle 

competitors can have large inadvertent effects by pushing competitors to become more self-

reliant and powerful instead. The results from inventor networks also demonstrate the 

importance of communication and collaboration, which entail the exposure of firms to new and 

different talent. Lastly, the heterogeneous impacts depending on the city size and location serve 

as cautious reminders to the government that growing inequality could impact innovation by 

concentrating innovation in certain agglomerated areas instead of taking advantage of the 

unique aspects that numerous different geographical locations can offer. 

Nonetheless, there are some limitations of this study. First, we recognize that the control 

and treatment groups are imperfect; while the East Asian countries share a handful of 

similarities, many differences exist. Future studies could do sample matching to allow the 

control and treatment groups to better align before the shock. Second, we took the trade-off of 

using the internationally recognized U.S. patent base, USPTO, instead of the Chinese patent 
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base, Chinese National Intellectual Property Administration (CNIPA). We chose not to use the 

Chinese patent base mainly because of logistical obstacles, such as the fact that many Chinese 

patents are not publicly available and existing data require significant work to clean. This 

decision to focus on patents from the USPTO risks capturing only a portion of the true impacts 

of the Trump shock, as in some rare cases, some Chinese inventors may have decided to stop 

filing patents in the USPTO despite the benefits of filing in a well-recognized office to expand 

the patent's power. There are opportunities for future studies to explore the Chinese patent base 

and patent data from other databases, such as the European Patent Office (EPO). Lastly, future 

studies could add more information about specific firm-level characteristics and related 

heterogeneous effects, such as firms’ amount of resources available and whether firms are 

state-owned enterprises. 

7. Conclusion  

Innovation is the engine of economic growth; literature has timelessly proven this. There 

have been studies on the factors contributing to innovation, including knowledge diffusion and 

transaction cost. However, few past studies have accounted for the coexistence of these two 

seemingly contradictory theories, and even fewer have considered the impact of politics. This 

study uses recent empirical evidence to provide a new perspective on political tension and 

innovation. By analyzing patents from USPTO, we find that on all three levels –– the patent, 

inventor, and firm –– China has produced higher patent quality and quantity, as well as 

demonstrated greater search distance compared to the nearby regions of the control group, 

including Singapore, Japan, Taiwan, and South Korea. We also observed three trends of 

heterogeneity across the results:  

1. Innovation efficacy depended heavily on the field of research, with semiconductors and 

electricity being prioritized by China; 

2. Larger inventor networks led to more innovative output; 

3. The geographical location of being in an urban city in southern China contributed to 

more valuable inventions. 

These results contribute to literature regarding knowledge diffusion, transaction cost, and 

their coexistence. Our analysis also guides policymakers to caution about the inadvertent 

economic implications of political actions. The impacts of the Trump shock have been more 

complex than individuals may have thought; this research has again demonstrated that global 

politics and economies are not simply predictable pieces but instead intricate cogs in a societal 
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machine transforming in multidimensional ways. Moving forward, more studies can focus on 

the growing interconnectedness between politics and innovation, the Trump shock’s long-term 

impacts, and China’s unforeseen responses. 
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