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In this paper, we discuss domino tiling (perfect matching) problem by reviewing the
derivation of classic Kasteleyn formula in chapter 2, investigating basic methods in domino tiling
problem including linear algebra, Conway’s boundary group, several invariants and combinatoric
methods in chapter 3 and generalize to solve perfect matching problems especially in Cayley
graphs. Our research emphasizes over the relationship between boundary group methods and
combinatoric invariants, and the calculation of several examples considering Pfaffian orientation
methods. We also conclude that the existence of Pfaffian orientation over Cayley color graphs is
negative, but we can still apply the spectra formula([10],[11]) to calculate the parity of
determinant.
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1.PREREQUISITE
1.1 Introduction

During our research, we first considered the light-switch problem, which inspired us for all
the following topics. The light-switch problem goes like this: there is a light on each vertex of a
graph. An operation on one light will change its adjacent lights’ state (i.e. if an adjacent light is on
at first, it will be off after the operation), while the light operated itself remains unchanged. The
goal is to turn all lights (initially on or off) into the same ‘off ’ state. The problem soon reduces to

a linear equation problem in 2F .



The conclusion of [5] is about the parity of determinant of adjacent matrix of the rectangular graph.
It also mentioned the formula which holds in the general domino tiling problems:

 2et fd PA A .

While the light-switch problem focuses more on the parity of the determinant, the problem of
domino tiling puts its emphasis on the exact value of the determinant, when the Pfaffian can be
calculated exactly and is identical to the number of domino tilings.
Then we investigate some basic methods like Kasteleyn Formula and Combinatory methods to get
the tiling number respectively over rectangular tiling program and Aztec diamond. We also discuss
several invariables like the checkerboard coloring, generalized coloring and height function to
judge whether a graph can be tiled or not, especially reviewed their relation with Conway’s tiling
group. To extend the calculation of Kasteleyn Formula, we investigate the Aztec diamond and
other regular graphs. Finally, we return to the parity of determinant to solve the light-switch
problem since it is impossible for Cayley color graph to coincide with Pfaffian orientation
naturally.
Definition 1.1.1(Domino) A domino is a 1 2 grid.
Definition 1.1.2(Domino tiling) A domino tiling is a kind of covering of a grid that use dominos
to place on a 1 2 grid in two ways: horizontal or vertical, like Fig 1.1.2.
Definition 1.1.3(Matching) A matching of a graph C is a matching that each pair of adjacent
blocks are represented by an edge and every vertex of the edge is only connected to that edge.
Please refer to Fig.1.1.3 for an illustration.

Fig.1.1.1 Fig.1.1.2 Fig.1.1.3
Definition 1.1.4(Perfect matching) Every vertex of the graph must be incident to precisely one
edge of the matching for the matching to be considered perfect.

If M and N are both odd, it is impossible to tile the graph with 1 2 grids, for the number of
squares in anM N grid is odd, which cannot be divided by 2 .
So, our question should be based on the fact that M N should be an even number. To tile a
2 n grid（Fig.1.1.5）, if we wipe out the1 2 grid on the right, we can get Fig.1.1.6.

Fig.1.1.5 Fig.1.1.6
Furthermore, if we wipe out a 2 2 grid on the right, we will get Fig.1.1.7.

Fig.1.1.7 Fig.1.1.8



And for the 2 2 grid, there are two ways to tile it. (Fig.1.1.8). The left picture in Fig.1.1.8
coincides with Fig.1.1.6.So, the number of tilings for a 2 n grid equals the sum of the numbers

of tiling for the  2 1n  grid and the  2 2n  grid. Define  (n 2)na  as the tiling number of

the grids.

Conclusion 1.1.5  1 2 2n n na na a    and 1 21, 2a a  .

It shows that the numbers of tiling for 2 n grid coincide with Fibonacci sequence.
Definition 1.1.6(Aztec diamond) The Aztec diamond of order n is the union of those lattice

squares      , 1 , 1 ,a a b b R a b Z     that lie completely inside the tilted square

  , :| | | | 1x y x y n   . (Fig.1.1.9 shows the example of n=3).

Fig.1.1.9
Definition 1.1.7(Cayley Graph) Let G be a group, and let S GÍ be a set of group elements
such that the identity element I SÏ . The Cayley graph associated with ( , )G S can be defined as
the directed graph having one vertex associated with each group element and directed

edges ( , )g h whenever 1gh S- Î . [7]

The graph ( )GG representing generators 1 2 ng ,g ...,g is a directed graph whose vertices are the

elements of the group. For each vertex v G , there will be n outgoing edges, labeled by generators,

and n incoming edges. The edge labeled ig connects v to ivg .

Let R be relators of the group. Then, 1 2 1 2 3, ,..., | ... 0n kG g g g R R R R     (as notation in

[8]). For general Cayley graphs we can’t equip the Pfaffian orientation naturally (see theorem
3.5.3) , we can still solve the light switch problem. Here is equational definition of the switching

problem. (Every entity is in 2 / 2  F .)

Definition 1.1.8
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https://mathworld.wolfram.com/Group.html
https://mathworld.wolfram.com/IdentityElement.html
https://mathworld.wolfram.com/DirectedGraph.html
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F is the adjacency matrix of the Cayley graph;
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The product of the adjacency matrix and the operands shows the parity of the changes that operate
on the lights. By adding the product to the initial state, we can get the final state.
By calculating the adjacency matrix, we can obtain the parity of the determinant. If the value of
the determinant is 1 , then it is a nonsingular matrix, meaning there is only one solution to get to
the final state. If the value is 0 , its uniqueness and existence are not obtained.
1.2 Pfaffian of the skew symmetric matrix

Definition 1.2.1(Pfaffian) The Pfaffian of skew-symmetric matrix A is sgnP (f )( )A=å
t

t w t ,

where the sum is taken over the set of all perfect matchings of the graphG . ( )w t is the product of
the matrix entities corresponding to the edges of the matching, and sgn( )t is the parity of the
matching. [5]

It is known that  2et fd PA A . The sign sgn( )t is determined as following,

Case 1: If one matching can be transformed into the other by an even permutation, then these two
matchings belong to the same class, which is marked by the plus sign  .
Case 2: If one matching can be transformed into the other by an odd permutation, then both two
matchings belong to another class, which is marked by the minus sign  .
Example 1.2.2： Pairs：



Fig.1.2.2 Fig.1.2.3
The Pfaffian should be the sum of all configurations: 1 4 0 3    . The determinant of
adjacency matrix of Fig.1.2.2 should be:

0 1 2 0
-1 0 0 2

det 9
-2 0 0 1
0 -2 -1 0

A

 
 
  
 
 
 

, which coincides with the formula  2et fd PA A .

Definition 1.2.3(Pfaffian orientation) In graph theory, a Pfaffian orientation of an undirected
graph assigns a direction to each edge, so that certain cycles have an odd number of edges in each
direction. Given a figure on the square grid and its graph G , there exists an orientation on the
edges such that the orientation, combined with the parity of configuration, ensures all matchings
of the figure have the same sign. This orientation is referred to as a Pfaffian orientation.

We want to design D such that each non-zero term in the Pfaffian of D correspond to a
configuration C , and every configuration C corresponds to a non-zero term of the Pfaffian of D .
This way, the number of terms in the Pfaffian of D is the number of domino tiling of the grid

,m nQ .To achieve this, we need to find the Pfaffian orientation of the graph. The Pfaffian

orientation of domino tiling is:

( , )( 1, )i j i jD z+ = for  1 1 i m- and 1 j n

( , )( , 1) ( 1) 'i
i j i jD z+ = - for 1 i m and 1 1j n-

A more intuitive expression of the Pfaffian orientation is Fig.1.2.4. To create a polygon in the

tiling, we need an odd permutation, contributing a factor of  1 to  sgn  .

Fig.1.2.5 shows how a standard configuration is turned into a polygon through an odd
permutation.

Fig.1.2.4 Fig.1.2.5
And together with the Pfaffian orientation:

https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Undirected_graph
https://en.wikipedia.org/wiki/Undirected_graph


Fig.1.2.6

As the Pfaffian orientation contributes another  51 to the configuration, every configuration

has a positive sign. Thus, we can add all the ways of configurations together in order to get the
number of tilings.
1.3 Kronecker Product

Let A be an n n matrix and let B be an m m matrix. The Kronecker product A B
is an mn mn matrix that can be written in the form as:
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
.

Properties 1.3.1

(1)      A B C A C B C      and      A B C A B A C      .

(2)       A B C D AC BD    .

(3) If  is a scalar, then    ( )A B A B A B       .

(4) If  A and  B are invertible, then   1 1 1  A B A B    .

2. KASTELEYN FORMULA
Take D , the adjacent matrix of the grid which we want to tile. We want to calculate the

number of perfect matchings using the methods in [3]. Our goal is to decompose it into the sum of

two mn mn matrices. Let nI be the n n identity matrix, and
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Then we can get:    'n m n mD z I Q z Q F    . [3]

We will use an example of a 2 3 grid to prove its correctness.



Let 2m  , 3n  .

1 3 5

2 4 6

Fig.2.1
(The arrangements of numbers satisfy the conditions for the Pfaffian mentioned above.)
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The adjacency matrix of D is:

0 ' 0 0 0
0 0 ' 0 0

' 0 0 ' 0
D=

0 ' 0 0 '
0 0 ' 0 0
0 0 0 ' 0
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According to Properties 1.3.1,
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Thus,    'n m n mD z I Q z Q F    .

In order to compute the determinant of D , we should begin by finding the eigenvectors of Q to
create a matrix U .
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nU is the eigenvalue of nQ .

The transformation 1'n n n nQ U Q U will diagnose nQ , and the diagonal elements of 'nQ will

be the eigenvalues of nQ .
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In the same way, 1' m mm mQ U Q U .

Let ie be the i th standard basis vector and u i be the i th column vector of mU .
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So, we can get m i iU e u .



m m i m i i iQ U e Q u u  ( i is the eigenvalue corresponding to iu ).
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1( )m m m k m m m kU F U e U U e 

     , so 1
1( )m m m k m kU F U e e

    .

So, 'mF takes an anti-diagonal form. All the entries of the anti-diagonal of 'mF are  1 .

1'm m m mF U F U .
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Our final goal is to diagonalize D .

Let n mV UU  .

Take the transformation 1'D V DV to diagonalize D .
According to Properties 1.3.1, we get

1 1 1( )[ ( '( )]( )n m n m n m n mV DV U z I z Q UU Q F U       .



1 1 1 1' ( )( )( ) '( )( )( )n m n m n m n m n m n mD z U I U z U Q UU Q U U F U        .

So, 1 1 1 1' ( )( ) '( )( )n n m m n m n n m m n mD z U I Q U z UU U Q F UU U        ,

1 1 1 1' ( ) '( )n n n m m m n n n m m mD z U I U Q z UU U QU FU U     .

Theorem.2.1 ' ( ' ') '( ' ')n m n mD z I z QQ F   .

Proof. Let ,k kp q be
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Then the entries of 'D take the form:

( , )( ', ') , ' , ' ', 1 , '' 2 cos 2 ' cos
1 1k l k l k k l l k k m l l

k lD iz iz
m n
      
 

,

which is composed of two two-dimensional planes ( , ')k k and ( , ')l l .

The ( , ')k k is formed from mF and 'k k . The ( , ')l l is formed from nQ and 'l l .

The ,l j is the Kronecker delta, which is 0 when i j and 1 when i j .

Since 'D is anmn mn matrix, it can be divided into n n parts withm m cells.
Now, we can find that 'D is formed bym m cells along the diagonal where the non-zero elements
from a cross shape, with 0 entries everywhere else, as seen left below.
Each swap of two adjacent rows or columns can change the sign of the determinant.
First, we swap the second and last columns, and get the one on the right.
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Next, we need to swap the third and last columns, then the fourth and the last, until the 1m  th
column becomes the last column. In these steps, we have swapped 2m  times and the determinant
will not be affected. In this way, we can get a 2 2 cell in the top-left corner and

a    2 2m m   cross in the bottom-right corner.

Then, we continue to produce 2 2 cells along the diagonal, until finally, 'D becomes a cell
diagonal matrix.
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Conclusion.2.2 The determinant equals the product of all the determinants of each 2 2 block.
Proof.
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Definition.2.4 ,
,

( , ') ( , ) '
h v

h v
m nZ z z g h v z z is the generating function in z , 'z where the sum

ranges over , 0h v  and satisfies  2 h v mn  .  ,g h v means the number of tiling

with h horizontal dominoes and v vertical dominoes.

Conclusion.2.5 , (1,1)m nZ returns the total number of domino tiling for an m n grid.

As we’ve reached the conclusion that , ( , ') detm nZ z z D ,we get:

2
2

,

1

1

2

1

(1,1) 2 cos cos
1 1m n

m
n

k l

k lZ
m n
 

 

 
  .

3.OTHERMETHODSANDAPPLICATIONS FOR DOMINO TILING
3.1 checkerboard coloring and generalized coloring
Definition 3.1.1(checkerboard coloring) Checkerboard coloring is to color the grids in
non-rectangular shapes in black or white, and we need to make sure that every two adjacent grids
are not in the same color.

Take the 8 9 grid as an example. Obviously, it can be tiled (Fig.3.1.1). Then we take out the
top-left one and the top-right one, and the number of black grids isn’t the same as that of white
ones, so it cannot be tiled. Another example that can’t be tiled has 21 black ones and 15 white
ones. (Fig.3.1.3)
Preposition 3.1.2Any graph with different numbers of black and white cells can’t be tiled.

Fig.3.1.1 Fig.3.1.2 Fig.3.1.3
Preposition 3.1.3 The checkerboard can always be tiled no matter which black block and white
cells are removed.
Proof. First, cover the black cell, then all the white cells are an even number of cells away. This
means that when we carve out that second white cell, there will always be an even number of cells
between the holes along the paths that can be covered with dominoes.



Fig.3.1.4

Consider the square lattice with its associated free group ,F A U= and cycle group

[ ]:C F F= . [ ]:C F F= is an example of the cycle group C consisting of all words W such

that ( )P W is a close directed path. The group [ ]:C C consists of all words W such that ( )P W is a

close directed path in 2¢ with winding number 0 around every cell in 2¢ . [7]
Definition 3.1.4 (generalized coloring) A generalized coloring map is any homomorphism

:C Af ® , where A is an abelian group.[7]

Theorem 3.1.5 The group 0 / [ : ]A C C C= is a direct sum of a countable number of copies of ¢ ,

which are in one-to-one correspondence with the cells i jc of the lattice 2¢ . The projection map

, :i j Cp ®¢ onto the i jc th ¢ -summand of 0A is given by the winding number ( ( ); )i jw P W c .

Definition 3.1.6 (generalized coloring argument) A generalized coloring argument uses a
generalized coloring map f in order to show that R , a simply connected region, cannot be tiled by
tiles in a set å by showing that the image of the combinatorial boundary [ ]R¶ under f is not
included in the image of the tile group ( )T å under f .[7] Note that

1 2 2 2 1 2( ) ( , )T N U A UA U A U A- - - -å = . According to checkerboard tiling, Fig.3.1.3 cannot be

tiled because of the difference in the number of black and white cells. In terms of generalized
coloring, ([ ]) {(21,15), (15, 21)}Rf ¶ = ,while ( )) {( , ) : }(T n n nf å = Î¢ , so R cannot be tiled by
dominoes. Let ( )B å be the boundary tiling group. ( )B å is the smallest normal subgroup

ofC containing ( )T å and[ ]:C C .

Preposition 3.1.7 [ ]( ) ( ) :B T C Cå = å .

Proof. It is clear that [ ]( ) :T C C B . Use the fact that 1 2 1 2 1 1 2 2{ : , }G G g g g G g G= is a normal

subgroup of G whenever 1G and 2G are both normal subgroups of G to prove the other inclusion.

Since ( )B å is the smallest normal subgroup ofC containing ( )T å and [ ]:C C , and [ ]( ) :T C Cå is

the normal subgroup ofC , so [ ]( ) ( ) :B T C C .



3.2 Height functions and Cayley graph

Let K be the Aztec graph with vertices   2, | | | | 1a b Z a b n   ： and color it in the way of

a black-white checkerboard, with arrows circulating clockwise around white squares and
counterclockwise around black squares. (Fig.3.2.1 shows the case 3n  ). Fig.3.2.2 shows one
tiling as an example. We set the leftmost point as the origin point and weigh it as 0 .Then, add 1 in
the direction of arrow, and we get Fig.3.2.3 which represents a method of tiling. Therefore, we can
get a complete and non-contradictory labeling which is a necessary condition for tiling.

Fig.3.2.1 Fig.3.2.2 Fig.3.2.3
With the help of height function, we can judge whether a graph can be tiled. If two possible
numbers appear on one point, there will be a contradiction, so the graph can’t be tiled. (i.e.
Fig.3.2.4)

Fig.3.2.4

Take the group 2 2 2 2, | ,G x y xy y x yx x y   . Then, we can get the Cayley graph of

G (Fig.3.2.5).

Fig.3.2.5
Fig.3.2.1 is an example of the bottom floor of this Cayley graph. Only the vertices with ingoing



and outgoing edges are the vertices belonged to this Cayley graph. As the graph is
three-dimensional, the height of the vertices in the Cayley graph corresponds to that of the number
labeled by height function.

There are four different directions 1 1, , ,a a b b  in the Cayley graph, with a , 1a being in the same

plane, and 1,b b being in another same plane perpendicular to that of the a and 1a plane. a

points right, 1a points left, b points inside and 1b points outside. If the direction of an edge

coincides with the circulating direction of the bottom floor, then the edge points upward, and vice
versa. The edges collectively form the shape of spirals, with every vertex having its own height.
3.3 Induction over Aztec diamond

Define the order-n Aztec diamond as  nA .  2A can be tiled and decorated with arrows in

opposite directions. (Fig.3.3.1)
Then, move the tiles one step in the direction of the arrows and we get two 2 2 regions in blue.
(Fig.3.3.2)

Fig.3.3.1 Fig.3.3.2
We fill these 2 2 with pairs of arrowed tiles, either like Fig.3.3.3 or like Fig.3.3.4.

Fig.3.3.3 Fig.3.3.4 Fig.3.3.5

Then an arrowed tiling of  2A (Fig.3.3.5) is extended to  3A by moving all the dominos one step

in the direction of the arrows, and we get three 2 2 regions. Again, we can fill every 2 2 pairs
with pairs of arrowed dominos in two ways.

To expand to  4A , we can’t slide straight way because there are some arrows pointing towards

each other. (Fig.3.3.6)
There, remove those yellow tiles, and slide other arrowed dominos.



Fig.3.3.6
Fill them in randomly and repeat. In particular, dominos will never end up overlapping after the
sliding phase, and at the end of it, the region left to be filled is a collection of 2 2 grids.

It is obvious that the first diamond  1A has exactly two tilings.

Since all tilings of  2A come from tilings of  1A ,  2A has 1 22  tilings.

Since  3A comes from  2A ,  3A has 1 2 32   tilings, and so on. (Fig.3.3.7)

If no arrows are clashing, an order- n Aztec diamond has 2 2n  empty grids.
If two arrows are clashing, an order- n Aztec diamond has ( 1) 2 2n   empty grids. But in

every 2 2 grid, there are two ways of clashing, so we still can get
12 2

2

n
n



 ways to tile an

order- n Aztec diamond.

Fig.3.3.7 Fig.3.3.8
Conclusion 3.3.1 The number of tiling for an n -order Aztec diamond is 1 22 n   .
3.4 Calculations of Pfaffians and ways to find Pfaffian orientation

The 2-order Aztec diamond’s Pfaffian orientation can be as follows:



Fig.3.4.1
Number the grids from 1 to 12 in the direction of the Pfaffian orientation.
Suppose the adjacent matrix of the graph is D .
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Compute the determinant of D , and we get 64. From 2( f |)P |D D= , we get Pf 8D  , which is

equal to the number of tilings.
If the graph has a Pfaffian orientation, it is said to be Pfaffian. Every planar graph can find its
Pfaffian orientation. An orientation in which each face of a planar graph has an odd number of
clockwise-oriented edges is automatically Pfaffian. To find such an orientation, we start with
finding an arbitrary orientation of a spanning tree of the graph. The remaining edges, not in this
tree, form a spanning tree of the dual graph, and their orientations can be chosen according to a
bottom-up traversal of the dual spanning tree in order to ensure that each face of the original graph
has an odd number of clockwise edges.
Actually, we can find the Pfaffian orientation as follow:
Step 1. Turn every grid into a vertex. (Figure 3.4.1) Join the vertices, and an adjacent graph will be
formed (Figure 3.4.2).

Fig.3.4.1 Fig.3.4.2
Step 2. Turn some of the edges in real lines to dotted lines, so that every vertex is connected to at
least one dotted line, and the real lines do not form a loop. (Fig.3.4.3)
Step 3. Find the dual graph (Figure3.4.4), which is formed by turning every grid in the adjacent



graph into a vertex.
Step 4. Decide the sequence of the grid of which we will decide its orientation of the edges. We
begin by taking a dot outside, independent of the vertices in the dual graph, and draw the
connection between those dots according to the positions of the dotted lines shown in Figure3.4.5.
It is the spanning tree.

Fig.3.4.3 Fig.3.4.4 Fig.3.4.5
Step 5. Decide the orientation of each face according to the sequence of numbers. Since each face
of the original graph has an odd number of clockwise edges, we can get the following Pfaffian
orientation.

Fig.3.4.6
Here’s another example to show how to find the Pfaffian orientation of an octahedron, with a cone
cut at every corner. (Fig.3.4.7). Fig.3.4.8 shows its planar structure.

Fig.3.4.7 Fig.3.4.8
Then we are able to draw the Pfaffian orientation. It must satisfy the condition that every face has
an odd number of clockwise edges.



Fig.3.4.9
3.5 More examples of the number of perfect matchings

In this section, to calculate the number of perfect matchings for a spherical shape, we can
assign a Pfaffian orientation to them, which means every even circulation should have odd
numbers of edges in each direction. It follows by the results of [2] which states that each planar
graph has an Pfaffian orientation, and we can get the following theorem easily.
Theorem 3.5.1 The spherical graph with even vertices can be equipped with a Pfaffian
orientation.
The following Fig. 3.5.1 is an example of the tiling of a cube.

Fig.3.5.1
To figure out the number of tilings for a cube, we need to find out the Pfaffian orientation.
First, turn the three-dimensional cube (Fig.3.5.2) into a planar shape (Fig.3.5.3).

Fig.3.5.2 Fig.3.5.3
Then, turn some of the edges in real lines to dotted lines and it forms a spanning tree. As is shown
in Fig.3.5.4.

Fig.3.5.4 Fig.3.5.5
Finally, follow the sequence of number and we can get the Pfaffian orientation of the cube.
(Fig.3.5.6)



With the help of Pfaffian orientation, we can calculate the value of Pfaffian
Number the grids from1 to 8 . (Fig.3.5.7)

Fig.3.5.6 Fig.3.5.7
Suppose the adjacent matrix of the graph isD .

0 1 1 0 0 0 1 0
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det 81D  .

From 2( f |)P |D D , we get Pf 9D  , which is equal to the number of tiling.

In the same way, we can calculate the number of perfect matchings for a hexagonal prism.
(Fig.3.5.8). Fig.3.5.9 is the planar structure of the shape, showing the Pfaffian orientation.

Fig.3.5.8 Fig.3.5.9
Suppose the adjacent matrix of the graph is E .
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Calculation shows det 400E  . From 2( f |)P |E E , we get Pf 20E  , which is equal to the

number of tiling.
[9] shows a classification of Cayley graphs of dihedral groups which can be equipped with a
Pfaffian orientation. It could be seen as generalization of the above example.
3.6 Perfect matchings of symmetric graph

As we saw in the last section, we want to give a uniform method to calculate the determinant
of a graph with symmetric structure. So, we investigate the Pfaffian problem over these graphs.
We shall make use of the following results in [10] and [11], where Lovasz concluded that for a
graph with a transitive automorphism group ， its spectrum can always be reduced to that of a
Cayley graph, since its automorphism group has a regular subgroup. Furthermore, Lovasz gave a
formula for the spectrum in terms of group characters as demonstrated in [11].
Theorem 3.6.1 The spectrum of the Cayley color graph ( ; )X X G  can be arranged as

={ :i=1, ,h; j,k=1, ,n }i ijk   .

such that 1 iij ijn   (this common value will be denoted by ij ), and

,1 ,

1 , , 1 1

( )
i i ni

t

t t
t t

g g G s
s i s

s

g g  
  

   
      

   
  


 .

Since Cayley graph is a regular graph, the coloring : ( ) { 1,0,1}E X   gives a regular

orientation while the Pfaffian orientation always comes from some irregular constructions. If there
is a Cayley color graph which leads to certain Pfaffian orientations, then we can use the above
formula to get the eigenvalues, the determinant and finally the number of tilings. But we answer
negatively to this case considering the perfect matching problem where the number of vertices is
even.

Theorem 3.6.2 For a Cayley color graph ( ; )X X G  with : ( ) { 1,0,1}E X   and | |G

even, the coloring never leads to a Pfaffian orientation.

Proof. Assume some integers k , 2 |k G . Then by Sylow lemma, there are some

subgroups H with | | 2kH  . So, there should be some elements with even order, which leads to an

even circulation with 0 clockwise-oriented or counter-clockwise-oriented edges on the Cayley
color graph.

Then the orientation can’t be Pfaffian as the Pfaffian orientation needs an odd number of
clock-wise oriented edges for each even circulation. So, by theorem 3.6.2, We cannot apply
theorem 3.6.1 directly to calculate the number of perfect matchings. While the light-switch
problem focuses more on the parity of the determinant, the formula can still be used to solve
light-switch problem over Cayley graph. We consider the parity of determinant of Cayley graph
for cyclic groups, finite Abelian groups and dihedral groups as examples applying the formula in
theorem 3.6.1 and give general conclusions to the light-switch problem over these graphs. The
following formula is the brief form of theorem 3.6.1 when the group is Abelian [10].



Theorem 3.6.3 Denoting by  1, , n  the spectrum of the Cayley color graph

( ; )X X G  of the Abelian group G we have:

( ) ( ) (1, , )
g

i i
G

g g i n  


   .

Theorem3.6.4 Cayley graph for cyclic groups ( , )Cay G S where  1 2 11, , ... nG r r r  and

 ,S r r  have det 0 (i.e. whose adjacent matrix is singular).

Proof. The cyclic group  1 2 11, , ... nG r r r  has n one-dimensional representations. Suppose the

Cayley graph ( , )G S , where  ,S r r  . Assume the coloring of the Cayley graph is

1, 1: r r     (i.e. the graph is an oriented one relative to this coloring).

We get
2

( ) , 1, 2,...,
ihk

k n
h r e h n



   .

Since
2 2 2( ) ( ) ( )( sin( )) 2
ih ih
n n

h h h
g

h
G

g r r e e
n
hig

   
       



      , we get

1

2(2 ) sin( )
h

n
h

n

h n
hi  



  .

Especially, when h n , 2sin( ) 0h
n
 

 , thus 0h
h
  .

Hence 0 (mod 2)
h

h  , which answer negatively to either existence or uniqueness of solution to

light-switch problem in this case.
Remark 3.6.5 Actually, for a cyclic group, the parity of the number of ‘on’ state (resp. ‘off’ state)
is an invariant. For example, an odd number of ‘on’ lights remain odd after several operations.
Thus, if we want to achieve the state of all lights being ‘on’, an even number of lights should be
‘on’ at the initial state, which gives an elementary proof to the above result.

Furthermore, we can extend the calculation to all abelian groups.

Theorem 3.6.6 For Cayley graph of finite abelian groups ( , )Cay G S  where
1

/ k

T
G q  

1) det 0 (mod 2) when 3iq  for all {1, 2, , }Ti  and 1 1 1
1 1 2 2, , , , ,{ }, T TI I I IIS I    ,

where kI is the generator of / kq  .

2) When 2iq  for each {1, 2, , }Ti  and 1 2, , ,{ }TI IS I , where kI is the generator of

each summand / 2  , det 1(mod 2) when T is odd, and (d met 0 od 2) when T is
even.



1 2

(1) (2) ( ), ......
T

T
i i i   (1 k ki q  ) are the irreducible representations of G , so

1 2

(1) (2) ( )......
T

T
i i i     is an irreducible representation of G . The characters are

1 21 2 3

(1) (2) (3) ( )
, ...... ......

T T

T
i i i i ii i      .

1 2 1 2, ...... , ......( ) ( )
T Tii

g G
i i i i gg  



 .

2
( ) ( )

k

k

k

i i
k m
i k

m
qI e


  .

Case 1: For non-cubic graphs, 1m  or 1m   .

Hence,
1 2 1 2

2

1 1( , ... ) ( , ... )

| |2 2
det = 2 sin( ) ( 1) 2 sin( ) 0

T T

GT T

i i i i i

k

i

Gk

k k

i
q

i
q

i 
       .

Case 2: For cubes and hypercubes, 1m  .

21
(mod 2), (mod 2),...... (mod 2)

Ti i iT T T     , so
1 1

...... (mod 2)
T

G
i i i T     .

So, the parity of T determines the parity of the determinant.

Remark 3.6.7 Actually, there is an elementary explanation considering the hypercube case.
When T is odd, for a fixed light, we can switch every light adjacent to it to make only this light
change its state while any other light remains unchanged. Therefore, for hypercubes in this case,
we can change the state of lights one by one to achieve the final state we want.
When T is even, the parity of the number of lights being ‘on’ or ‘off’ remains unchanged. If one
light is on at the initial state, we will never achieve the state of all lights being ‘off’.

Consider any finite abelian group in general: 1

21 2( / 2 ) / / ...... /T
Tq q q           ,

where the number of / 2  summand is 1T .The general finite abelian groups can be reduced to

the case of hypercubes 1( / 2 )T  case through both spectral calculation similar to case 1 in

theorem 3.6.6, or by a combinatoric adjustment method. Both of which can be obtained easily.

Theorem 3.6.8 The determinant of a Cayley graph for dihedral group ( , )nCay D S  is even

when 0 (mod 3)n  and odd when 1,2 (mod 3)n  , i.e.

0 (mod 2) 0 (mod 3)
det

1 (mod 2) 1, 2 (mod 3)
n
n


   
.

where 1, | 1, 1,n
n nD H H H H        and 1{ , , }S H   .

So, we conclude that an n -side prism can find the only solution in the light-switch problem when
1,2 (mod 3)n  .

Proof. We set the coloring 1( ) 1, ( ) 1, ( ) 1H        , and there are only



representations of 1-dimension and 2-dimension in both the two cases as follows.
Case 1: when n is even,

There are four 1-dimension representations [12], and we denote their characters as 41 2 3, , ,    :

1

4
1

2

3

1 1
1 1

( 1) ( 1)
( 1) ( 1)

k k

k k

k k

H 



 


 
 

is the character table.

Then we can get :
1 1 1 0

1,1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( ( ) ( ) 1 1 1 1.
g

g g H H                      ）

22,1 ( ) ( ) 1 1 1 1.
g

g g       

33,1 ( ) ( ) 1 ( 1) 1 1.
g

g g        

44,1 ( ) ( ) 1 ( 1) 1 1.
g

g g         

And for 2-dimension representations, the character table is as following:

2(0 ) 2 cos 0
2h

k kH
n hkh

n

 
  

So, we get

21

2 2
2 2
,1 ,2

, 1 1

( )sh h
g g G s

h
s

sg g   
  

   
     

   
  

 1 1 1 1 1( ) ( ) ( ) ( ) () ( ) )2 ( ) ( ) (h h hH H H H                             

2 1 1 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )h h hH H H                      

2 22 (1 ( 1) 2 0 0) 1 1 cos ( 1)2 2( 1) cos 1 1 2 2 4 4cos .h h
n n

h
n

   
                    

1 1
,1 ,2

2 2 ( 1)1 2cos 1 2cos 0.h h
h h
n n
    

     

1 1
,1 ,2

4 42cos 1, 2cos 1.h h
h h
n n
      

1 1
,1 ,2

41 2cos .h h
h
n
   



1
2

2

1

1 2 (mod 12)
9 4 (mod 12)
4 6 (mod 12)4det (1 2 cos ) .
9 8 (mod 12)
1 10 (mod 12)
0 0 (mod 12)

n

h

n
n
nh
nn
n
n












     
 






Case 2: when n is odd.
The character table of 1-dimension representations is:

1

2

1 1
1 1

k kH 

 

And 2t  , we still have:

1 2(0 ) 2 cos 0
2

k

h

kH
n hkh

n

 
 

 

In this case, we can get:
1 1 1 0

1,1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( ( ) ( ) 1 1 1 1.
g

g g H H                      ）

22,1 ( ) ( ) 1 1 1 1.
g

g g       

21

2 2
2 2
,1 ,2

, 1 1

( )sh h
g g G s

h
s

sg g   
  

   
     

   
  

 1 1 1 1 1( ) ( ) ( ) ( ) () ( ) )2 ( ) ( ) (h h hH H H H                             

2 1 1 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )h h hH H H                      

2 22 (1 ( 1) 2 0 0) 1 1 cos ( 1)2 2( 1) cos 1 1 2 2 4 4cos .h h
n n

h
n

   
                    

1 1
,1 ,2

2 2 ( 1)1 2cos 1 2cos 0.h h
h h
n n
    

     

1 1
,1 ,2

41 2cos .h h
h
n
   

Therefore,

1
2

2

1

1 1 (mod 12)
4 3 (mod 12)
1 5 (mod 12)4det (1 2 cos ) .
1 7 (mod 12)
4 9 (mod 12)
1 11 (mod 12)

n

h

n
n
nh
nn
n
n







 
     












Above all,
0 (mod 2) 0 (mod 3)

det 
1 (mod 2) 1, 2 (mod 3)

n
n



 




.



Remark 3.6.9 Since we get that uniqueness and existence cannot be obtained in Cayley graphs for

dihedral group ( , ) 0 (mod 3)nCay D S n   ， , we can additionally give an elementary

explanation to this conclusion by invariants. In an 0 (mod 3)n  prism, a line between the
corresponding top and bottom points is marked with 01，. Marked 1 between two points in the
same state, while marked 0 in the opposite state. Multiply each mark by a weight in the order of
1,0, 2,1,0, 2, 1,0, 2 alternatively. The weight is an invariant mod3 . This suggests that we can’t
change every initial state in 0 (mod 3)n  prisms into the same ‘off’ state.
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