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Abstract

In this paper, we redefine sequences such as A002605, A155020, A028860,
A063727, and A057087 by using the number of ways to tile a board length n
using different colors of squares and dominoes to represent the numbers in the
sequence. Moreover, we discuss the algebraic identities of sequence A002605 by
conditioning on the location of the last square or last blue tile or last fault and
introducing them to other sequences such as A063727 as well as A057087 by
changing the coefficients of the formulas.
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1 Introduction

The Pell number dates back to 250 BC, when it was first introduced by the
Greek mathematician Pythagoras. The Pell number can also be represented by
the number of ways to tile a strip of length n using two colors of squares and
one color of dominoes only.

Based on the Pell number, let us define gn to be the number of ways to tile
a board of length n with two colors of squares (of width 1) and two colors of
dominoes (of width 2). If we look at the different ways to arrange a board of
length 2, as shown:

Figure 1: Tilings for a strip of length n = 2

We see that there are 6 ways to tile a strip of length 2 using red or blue
squares and red or blue dominoes. Hence, g2 = 6.

Here are some more values for gn :

The first few values for gn.

n -1 0 1 2 3 4 5 6 7 8 9
gn 0 1 2 6 16 44 120 328 896 2448 6688

This is a sequence in the OEIS! It’s right here: A002605.

Specifically, for n ≥ 0,

gn = Gn+1.
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where Gn is the actual numbers in the sequence A002605. For combinatorial
convenience, we shall express most of our identities in terms of gn instead of
Gn.

Very quickly, we see the following pattern established:

gn = 2gn−1 + 2gn−2

To prove this, we first consider all tilings ending with a square. There will be
gn−1 ways of tiling the rest of the strip. With the two colors of squares available,
there will be 2gn−1 ways to tile the strip. Alternatively, we consider all tilings
ending with a domino. There will be gn−2 ways of tiling the rest of the strip.
With the two colors of dominoes available, there will be 2gn−2 ways to tile the
strip. Together, we get the identity above.

Inspired by the book “Proofs That Really Count” by Art Benjamin and
Jennifer Quinn, which introduces a lot of beautiful identities primarily concern-
ing the Fibonacci numbers, we decided to find new theorems concerning the
sequence of gn.

2 New Theorems

2.1 The sequence gn

Here is our very first theorem. Again, let gn be defined as the number of ways
to tile a strip of length n with two colors of squares (of length 1) and two colors
of dominoes (of length 2). For convenience, we will say that the two colors are
red and blue. Also, for convenience, we will define g−1 to be 0, because of course
there is no way to tile a strip of length −1 since length −1 doesn’t even exist.

Here is our first theorem about these numbers.

Theorem 1. For n ≥ 0, we have

2g2n + g2n+1 = g2n+2.

Proof. How many tilings exist for a (2n+ 2)-board using two colors of squares
and two colors of dominoes?

Answer 1: There are g2n+2 tilings of a (2n+ 2)-board.

Answer 2: [2] We condition on whether the tiling is breakable at cell (n+1)
of the length (2n+ 2)-board. If the tiling is breakable at cell (n+ 1), there are
g2n+1 ways to tile the strip. If the tiling is unbreakable at cell (n+ 1), with two
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Figure 2: Breakability at cell (n+ 1)

colors of domino for cell (n+1), there are 2g2n ways to tile the strip. Hence the
total number of ways to tile the strip length (2n+ 2) with two colors of square
and two colors of domino would be 2g2n + g2n+1.

Since the two answers must be the same, we conclude that

2g2n + g2n+1 = g2n+2.

To prove this theorem, we can also use the following algebraic method.

Proof. From A002605, we have

gn = (1 +
√
3)n · ( 12 +

√
3
6 ) + (1−

√
3)n · ( 12 +

√
3
6 ).

By using the formula of gn to represent the left hand side of the theorem we
get

2 · [(1 +
√
3)n · ( 12 +

√
3
6 ) + (1−

√
3)n · ( 12 +

√
3
6 )]2 + [(1+

√
3)n+1 · ( 12 +

√
3
6 ) +

(1−
√
3)n+1 · ( 12 +

√
3
6 )]2.

After simplifying the expression, we will get

(1 +
√
3)2n · (6 + 2

√
3) · ( 12 +

√
3
6 )2 + (1−

√
3)2n · (6− 2

√
3) · ( 12 −

√
3
6 )2

which equals to

(1 +
√
3)2n · (1 +

√
3)2 · ( 12 +

√
3
6 ) + (1−

√
3)2n · (1−

√
3)2 · ( 12 −

√
3
6 )

and we will soon get

(1 +
√
3)2n+2 · ( 12 +

√
3
6 ) + (1−

√
3)2n+2 · ( 12 −

√
3
6 ) = g2n+2.

4

http://oeis.org/A002605


Although the sequence gn’s identities can be proved by a myriad of methods,
we find the combinatorial approach ultimately satisfying. Through the compar-
ison of the two approaches used to prove Theorem 1, the method of tiling will
be applied in the following proofs of sequences’ identities for its convenience in
calculation.

Theorem 2. For n ≥ 0, we have

g2n+1 =

n∑
k=0

g2k · 2n−k+1.

Proof. How many tilings of a length 2n+ 1 tiling exist?

Answer1: By definition, there are g2n+1 such tilings.

Figure 3: Tile a 2n+1-board with squares and dominoes and condition on the
location of the last square

Answer2: [2] Condition on the location of the last square. Since the board
has odd length, there must be at least one square and the last square occupies
an odd-numbered cell. There are g2k tilings where the last square occupies cell
2k + 1, as illustrated in Figure 3. Considering the colors of square and domino,
the number of ways to tile the strip is g2k ·2n−k+1. Hence the total number of
tilings is

n∑
k=0

g2k · 2n−k+1.

Theorem 3. For n ≥ 1, we have

n∑
i=1

(gi−1 + gi−2) · fn−i = gn − fn.
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and we can re-write this in a more pleasing format as the following:

n∑
i=1

gi · fn−i = 2(gn − fn).

Proof. How many tilings exist to tile a length (n) board with at least one blue
tile?

Answer 1: There are (gn) tilings in total of a (n) board. If we exclude
the “all red” tilings, then we are excluding fn such tilings (because fn gives the
number of ways to tile a board with just one color of squares and dominoes).
So, this gives (gn − fn) tilings with at least one blue tile.

Answer 2: [2] Condition on the last blue tile of a n board, which will cover
cell i (if a square) and cells i − 1 and i (if a domino). There are (gi−1) tilings
to the left of the blue square, and (gi−2) tilings to the left of the blue domino;
since this last blue tile is EITHER a square OR a domino, then we have in all
(gi−1 + gi−2) such tilings. On the right, we have red tiles covering cell (i + 1)
to cell (n), and so there are (fn−i) ways to tile the rest of the board.

Figure 4: Condition on the last blue tile

Combining the tilings on the left AND the tilings on the right gives us
(gi−1 + gi−2) · fn−i such tilings.

Summing up all such tilings gives us

n∑
i=1

(gi−1 + gi−2) · fn−i.

Since the two answers must be the same, we conclude that

n∑
i=1

(gi−1 + gi−2) · fn−i = gn − fn.
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Theorem 4. For n ≥ 0,

n∑
i=0

g2i · 2n+1−i = gn · gn+1.

Proof. How many tilings of a (n)-board and (n+ 1)-board exist?

Answer 1: By definition, there are gngn+1 such tilings.

Answer 2: [2] How many tiling pairs have their last fault at cell i, where
0 ≤ i ≤ n ?

Figure 5: Consider the place of the last fault

There are g2n ways to tile both boards through cell i. To avoid future faults,
there is exactly one configuration of squares and dominoes to finish the tiling, as
in Figure 5. (Specifically, all tiles after cell i will be dominoes except for a single
square placed on cell i+1 in the row whose tail length is odd.) Now we have to
remember that all these squares and dominoes can be one of two possible colors,
and there are n− i dominoes and 1 square in finishing up the tiling. Summing
over all possible values of i, and considering the colors of squares and dominoes,
gives us

n∑
i=0

g2i · 2n+1−i = gn · gn+1.

Theorem 5. For n ≥ 1,

g2n − 2n = g12
n + g32

n−1 + g52
n−2 + · · ·+ g2n−32

2 + g2n−12
1.

Proof. How many ways are there to tile a length-2n strip with at least one
square?

Answer 1 : There are g2n tilings of a 2n board. Excluding the “all domino”
tiling gives g2n − 2n tilings with at least one square.

Answer 2 : Condition on the location of the last square.
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Figure 6: Consider the place of the last square

There are gi tilings where the last square covers cell gn+1.(Specifically, imust
be odd since the total length and the cells left for dominoes must be even.) This
is because cells 1 through i can be tiled in gn ways, cell gn+1 must be covered
by a square, and cells n+ 2 through 2n must be covered by dominoes. Hence
the total number of tilings with the restriction of at least one square exists is
g12

n + g32
n−1 + g52

n−2 + · · ·+ g2n−32
2 + g2n−12

1.

Thus, we have

g2n − 2n = g12
n + g32

n−1 + g52
n−2 + · · ·+ g2n−32

2 + g2n−12
1.

Theorem 6. For n ≥ 0,

n∑
i=0

2n+1−i · gi = gn+2 − 2n+2.

Proof. How many tilings of an n+2-board use at least one domino?

Answer 1: There are gn+2 tilings of an n+ 2-board. Excluding the “all
square” tiling gives gn+2 - 2n+2 tilings with at least one domino.

Answer 2: We concider the location of the last domino.

There are gi tilings where the last domino covers cells i+ 1 and i+ 2. This
is because cells 1 through i can be tiled in gi ways, cells i+ 1 and i+ 2 must be
covered by a domino, and cells i+ 3 through n+ 2 must be covered by squares.
Hence the total number of tilings with at least one domino is

∑n
i=0 2

n+1−i · gi.
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Figure 7: Consider the place of the last domino

Thus, we have
n∑

i=0

2n+1−i · gi = gn+2 − 2n+2.

Theorem 7. For n ≥ 0, ∑
k≥1

2n ·
(
n

k

)
· gk−1 = g2n−1.

Proof. How many (2n-1)-tilings exist?

Answer1: By definition, there are g2n−1 ways to tile the strip.

Answer2: Condition on the number of squares that appear among the first
n tiles. Observe that a (2n− 1)-board must include at least n tiles, of which at
least one is a square. If the first n tiles consist of k squares and n− k dominoes,
then these tiles can be arranged

(
n
k

)
ways. Considering the color of tiles as well,

there will be 2n ·
(
n
k

)
ways to cover cells 1 through 2n− k. The remaining board

has length k − 1 and can be tiled gk−1 ways.

Theorem 8. For n ≥ 0,

2n ·
(
n

0

)
+ 2n−1 ·

(
n− 1

1

)
+ 2n−2 ·

(
n− 2

2

)
· · · = gn.
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Proof. We ask, how many tilings of a n board exist?

Answer 1: There are gn such tilings.

Answer 2: We condition on the number of dominoes. How many n-tilings
use exactly i dominoes? For the numbers of tilings to not be zero, 0 ≤ i ≤ n

2 .
Thus, n− 2i squares will be used and in total, n− i tiles. The number of ways
to select i of these n− i tiles to be dominoes is

(
n−i
i

)
. Taken the number of

colors into consideration, there will be 2n−i ·
(
n−i
i

)
tilings in total. Hence, there

are
∑

i≥0 2
n−i ·

(
n−i
i

)
n-tilings.

Thus, we have ∑
i≥0

2n−i ·
(
n− i

i

)
= gn.

Theorem 9. For n ≥ 0,∑
i≥0

∑
j≥0

2n−i

(
n− i

j

)
· 2n−j

(
n− j

i

)
· 2 = g2n+1.

Proof. How many ways are there to tile an 2n+1-board ?

Answer 1: By definition, there are g2n+1 ways.

Answer 2: We condition on the number of dominos on each side of the
median square. How many tilings contain exactly i dominoes to the left of the
median square and exactly j dominoes to the right of the median square?

There are i+ j dominoes in total. Consequently, the number of squares
is 2n+ 1− 2(i+ j), with n− i− j squares on each side of the median square.
With n− j tiles on the left side of the median square, there are

(
n−j
i

)
ways to

choose i dominoes from the n− j tiles. Considering the color of the tiles, there
are 2n−j

(
n−j
i

)
ways to tile the left side. Similarly, there are 2n−i

(
n−i
j

)
ways to

tile the right of the median square. Hence, there are
∑

i≥0

∑
j≥0 2

n−i
(
n−i
j

)
·

2n−j
(
n−j
i

)
· 2(considering the color of the median square) tilings altogether.

As i and j vary, we obtain the total number of (2n+ 1)- tilings as

∑
i≥0

∑
j≥0

2n−i

(
n− i

j

)
· 2n−j

(
n− j

i

)
· 2 = g2n+1.
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The next identity is based on the fact that for any t ≥ 0 a tiling can be
broken into segments so that all but the last segment have length t or t+ 1.

Theorem 10. For m, p, t ≥ 0

gm+(t+1)p =

p∑
i=0

(
p

i

)
gitg

p−1
t−1 gm+i.

Proof. How many (m+ (t+ 1)p)-tilings exist?

Answer1: gm+(t+1)p.

Answer2: For any tiling of length m+ (t+ 1)p, we break it into p+ 1
segments of length j1, j2, j3, · · · , jp+1. For p ≥ i ≥ 1, ji = t unless that would
result in breaking a domino in half–in which case we let ji = t+ 1. Segment
p+ 1 consists of the remaining tiles. Count the number of tilings for which i of
the first p segments have length t and the other p− i segments have length t+ 1.
These p segments have total length it+ (p− i)(t+ 1) = (t+ 1)p− i. Hence jp+1

= m+ i. Since segments of length t can be covered gt ways and segments of
length t+ 1 must end with a domino and can be covered gt−1 ways, there are
exactly

(
p
i

)
gitg

p−1
t−1 gm+i such tilings.

Figure 8: An example of t = 4 and p = 3

Theorem 11. For n ≥ 0 and n is even,

n
2∑

k=0

2
n−2k+2

2 · g2k =

n
2∑

k=0

2
n−2k+4

2 · g2k−1 + 21+
n
2 + 2 · gn−1.

Proof. We question on the number of ways an n+1-board be tiled using squares
and dominoes.

Answer 1: Condition on the location of the last square. Since n+ 1 is odd,
the last square must exist on an odd cell. For 0 ≤ 2k + 1 ≤ n+ 1, the number of

ways to tile the rest of a n+ 1-tiling with last square on cell 2k + 1 is 2
n−2k+2

2 .
For the tilings in front of the last square, there are g2k ways. Altogether, the

number of ways to tile n+1-tilings is
∑n

2

k=0 2
n−2k+2

2 · g2k.
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Figure 9: Condition on the location of the last square or the first tile

Answer 2: There are gn−1 such tilings that begin with a domino. Consid-
ering the color, there are 2 · gn−1 ways in total. Among those that begin with
a square, we condition on the last square. There is one tiling consisting of a
single square followed by all dominoes, considering the colors as well, there will
be 21+

n
2 tilings in total. For 3 ≤ 2k + 1 ≤ n+ 1, the number of n+1 tilings that

begin with a square and whose last square occurs at cell 2k + 1 is

n
2∑

k=0

2
n−2k+4

2 .

Altogether, we have

n
2∑

k=0

2
n−2k+4

2 · g2k−1 + 21+
n
2 + 2 · gn−1.

The above identities of gn can fit in the following sequences only with a
change of some coefficients.

2.2 The sequence bn

Let us now introduce a new sequence, which we will call bn, and we define it to
be the number of ways to tile a strip of length n with our two colors of squares
and dominos, but with the added restriction that the first tile must be blue.

For example, b1 = 1 because there is just one way to tile a strip of length 1
if we are only able to use a blue tile. Likewise, by direct calculation, b2 = 3 and
b3 = 8 and so on.
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Here are some values for bn :

The first few values for bn.

n 0 1 2 3 4 5 6 7 8 9 10
bn 1 1 3 8 22 60 164 448 1224 3344 9136

This is a sequence in the OEIS! It’s right here: A155020.

Theorem 12. For n ≥ 3,

2bn−1 + 2bn−2 = bn.

Proof. How many tilings of a (n)-board exist when the first tile must be blue?

Answer 1: By definition, there are bn such tilings.

Answer 2: We consider the last tile. It is either a red or blue square (and
if we remove that square, then we have bn−1 ways to tile the rest), or it is a red
or blue domino (and if we remove that domino, then we have bn−2 ways to tile
the rest). Summing up these four cases gives us 2bn−1 + 2bn−2 in all.

Comparing the two answers gives us bn = 2bn−1 + 2bn−2, as desired.

Theorem 13. For n ≥ 1,

bn =
gn
2
.

Proof. How many tilings of a (n)-board exist when the first tile must be blue?

Answer 1: By definition, there are bn such tilings.

Answer 2: We consider the tilings of the first two or three cells.

With the restriction that the first cell must be blue, there would be three
ways to tile them (starting with a blue square and followed by a square or
starting with a blue domino.) and gn−2 ways to tile the rest of the strip or two
ways to tile them (starting with a blue square followed by a domino.) with gn−3

ways to tile the rest of the strip. In total, there are 3gn−2 + 2gn−3 ways to tile
the strip. According to the identity:

For n ≥ 2,
2gn−1 + 2gn−2 = gn.

We have bn = 3gn−2 + 2gn−3 = gn−1 + gn−2. So, we have bn = gn
2 .

13
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Figure 10: Tilings for a strip of length n with the first cell blue.

2.3 The sequence sn

Let’s define sn to be the number of ways to tile a strip of length n with our two
colors of squares and dominoes, but with the added restriction that the first tile
must be square.

For example, s1 = 2 because there are two ways to tile a strip of length 1
(with two colors of square.) Likewise, by direct calculation, s2 = 4 and s3 = 12
and so on.

Here are some values for sn :

The first few values for sn.

n 0 1 2 3 4 5 6 7 8 9 10
sn 0 2 4 12 32 88 240 656 1792 4896 13376

This is a sequence in the OEIS! It’s right here: A028860.

Theorem 14. For n ≥ 2,

2sn−1 + 2sn−2 = sn.

Proof. How many tilings of a (n)-board exist when the first tile must be a
square?

Answer 1: By definition, there are sn such tilings.
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Answer 2: We consider the tilings of the first cell. With the restriction
that the first cell must be square, there would be two ways to tile them and
gn−1 ways to tile the rest of the strip. According to the identity:

For n ≥ 2,
2gn−1 + 2gn−2 = gn.

We have 2gn−1 = 4gn−2 + 4gn−3. According to the identity: sn = 2gn−1

We have 2sn−1 + 2sn−2 = sn.

Similarly, the ways of tiling the strip of a (n)-board with the restriction of
the first tile must be a domino will also get the sequence of sn, but with a
starting value of s1=0 and s2=2.

Theorem 15. For n ≥ 1,

sn+1 = 2gn = 4bn.

Proof. How many tilings of a (n + 1)-board exist when the first tile must be a
square?

Answer 1: By definition, there are sn+1 such tilings.

Answer 2: We first exclude the first cell of the board and consider the
tilings of the rest of the board which is gn according to definition. Considering
the color of the first tile, in total there are 2gn ways to tile the board. According
to the identity:

For n ≥ 1,

bn =
1

2
gn

.

We have sn+1 = 2gn = 4bn.

2.4 The sequence cn

Let’s define cn to be the number of ways to tile a strip of length n with four
colors of squares and two colors of dominoes. For convenience, we will say that

15



the four colors of dominoes are red, blue, green, and brown. The two colors of
squares are still red and blue.

For example, c1 = 2 because there are two ways to tile a strip of length 1
(with two colors of square.) Likewise, by direct calculation, c2 = 8 and c3 = 24
and so on.

Here are some values for cn :

The first few values for cn.

n 0 1 2 3 4 5 6 7 8 9 10
cn 1 2 8 24 80 256 832 2688 8704 28160 91136

This is a sequence in the OEIS! It’s right here: A063727.

Theorem 16. For n ≥ 2,

2cn−1 + 4cn−2 = cn.

Proof. How many tilings of a (n)-board exist when there are two colors of
squares (of width 1) and four colors of dominoes (of width 2) ?

Answer 1: By definition, there are cn such tilings.

Answer 2: We consider the tilings ending with squares. There will be fn−1

ways to tile the rest of the strip. With the two colors of squares available, there
will be 2cn−1 ways to tile the strip. Alternatively, we consider all tilings ending
with a domino. There will be cn−2 ways to tile the rest of the tiling. With two
colors of dominoes available, there will be 4cn−2 ways to tile the strip. Together,
we get 4cn−2 + 2cn−1 ways of tiling.

We have 4cn−2 + 2cn−1 = cn.

According to the direct combinatorial approach used in proving theorems in
gn, we can similarly get the following identities of cn.

For n ≥ 0, we have
4c2n + c2n+1 = c2n+2.

For n ≥ 0, we have

n∑
i=0

c2i · 4n−i · 2 = cn · cn+1.

16
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For n ≥ 0, we have

c2n − 4n = 2 · (c14n−1 + c34
n−2 + c54

n−3 + · · ·+ c2n−34
1 + c2n−14

0).

For n ≥ 0, we have

n∑
i=0

4 · 2n−i · ci = cn+2 − 2n+2.

For n ≥ 0, we have∑
i≥0

∑
j≥0

4n−i

(
n− i

j

)
· 4n−j

(
n− j

i

)
· 2 = c2n+1.

2.5 The sequence tn

Let’s define tn to be the number of ways to tile a strip of length n with four
colors of squares and four colors of dominoes. For convenience, we will say that
the four colors of dominoes are red, blue, green, and brown, so as the square.

For example, t1 = 4 because there are four ways to tile a strip of length 1
(with four colors of square.) Likewise, by direct calculation, t2 = 20 and t3 =
96 and so on.

Here are some values for tn :

The first few values for tn.

n 0 1 2 3 4 5 6 7 8 9
tn 1 4 20 96 464 2240 10816 52224 252160 1217536

This is a sequence in the OEIS! It’s right here: A057087.

Theorem 17. For n ≥ 2,

4tn−1 + 4tn−2 = tn.

Proof. How many tilings of a (n)-board exist when there are four colors of
squares (of width 1) and four colors of dominoes (of width 2) ?

Answer 1: By definition, there are tn such tilings.

Answer 2: We consider the tilings ending with squares. There will be tn−1

ways to tile the rest of the strip. With the four colors of squares available, there

17
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will be 4tn−1 ways to tile the strip. Alternatively, we consider all tilings ending
with a domino. There will be tn−2 ways to tile the rest of the tiling. With four
colors of dominoes available, there will be 4tn−2 ways to tile the strip. Together,
we get 4tn−1 + 4tn−2 ways of tiling.

We have 4tn−1 + 4tn−2 = tn.

According to the direct combinatorial approach used in proving theorems in
gn, we can similarly get the following identities of tn.

For n ≥ 0, we have
4t2n + t2n+1 = t2n+2.

For n ≥ 0, we have

n∑
i=0

t2i · 4n−i · t = tn · tn+1.

For n ≥ 0, we have

t2n − 4n = t14
n + t34

n−1 + t54
n−2 + · · ·+ t2n−34

2 + t2n−14
1.

For n ≥ 0, we have

n∑
i=0

4n−i+1 · ti = tn+2 − 4n+2.

For n ≥ 0, we have ∑
i≥0

4n−i ·
(
n− i

i

)
= tn.

For n ≥ 0, we have∑
i≥0

∑
j≥0

4n−i

(
n− i

j

)
· 4n−j

(
n− j

i

)
· 4 = t2n+1.

3 Future Work

[1] There is a possible application of the algebraic identities of the sequences
interpreted in this paper which is discovering the number-theoretic aspects of
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sequences. Below is one proposal waiting to be proven valid in the future in
terms of number theory.

For integers a and b, the greatest common divisor, denoted by gcd(a, b), is
the largest positive number dividing both a and b. It is easy to see that for any
integer x.

gcd(a, b) = gcd(b, a− bx).

since any number that divides both a and b must also divide b and (a-bx), and
vice versa.

gcd(a, b) = gcd(b, a− b).

We propose,

For n ≥ 1 and n is odd, gcd(Gn, 2Gn−1) = 2
n−1
2 .

For n ≥ 1 and n is even, gcd(Gn, 2Gn−1) = 2
n
2 .

4 Conclusion

In conclusion, we see that we can use a few common techniques (taken from
Benjamin and Quinn’s book) such as:

1. Looking at location of last colored tile,

2. Counting how many tilings have at least one square,

3. Looking at the location of the last fault of two tilings,

4. Considering the breakability of the middle cell,

5. Discussing the number of squares or dominoes in the first n tiles.

These gave us a number of different theorems and equations, thus showing that
Benjamin and Quinn’s formulas of the Fibonacci sequence can be applied to
many other different sequences.

Using those combinatorial approach introduced in Benjamin and Quinn’s
book can create identities that can be fit into numerous sequences that only
need to change a few coefficients depending on the combinatorial definition of
the sequence.
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In particular, here’s one nice formula that I discovered and that I added to
the OEIS at A099156.
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