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Abstract—Early detection and diagnosis of glaucoma are crucial
to prevent irreversible eye damage. This paper introduces an
online, AI-based APP for early glaucoma diagnoses, improving the
conveniency and effectiveness of glaucoma prevention. It expands
diagnostic settings by enabling users to upload their phone-taken
colored retinal fundus images on Cloud and receive AI-based di-
agnostic results directly. This eliminates the two major obstacles in
current glaucoma diagnosis: high equipment costs and the necessity
of ophthalmologists. The APP’s realization involves two image
preprocessing modules and a prediction module. The preprocessing
phase, encompassing the rectification and noise-removal modules,
innovatively employs matrix algorithms, including a perspective
transform for rectification and the FTDTV model for denoising, in
which intelligent matrix operations ensure superior computational
efficiency. To guarantee accurate and robust glaucoma diagnosis,
the prediction module features innovative components. These
include a Polar Transform layer and MobileNet 1.0 for image
focus and feature extraction, an Attention Module for handling
imbalanced tags, an Overfitting Prevention strategy, and Diversity
Learning to enhance model robustness against unpredictable image
capture processes. When applied to real colored retinal fundus
image datasets, the prototype application showed promising results.
The ACC and WKappa values reach 0.9301 and 0.9221, respec-
tively, when testing the effectiveness of this paper’s proposed system
in real-world glaucoma image datasets, demonstrating a high
potential for wide-scale, real-world application in early glaucoma
detection and diagnosis.

Index Terms—Glaucoma diagnosis, perspective transform, FT-
DTV.

I. INTRODUCTION

Glaucoma, positioned as the second leading cause of blindness
globally by the World Health Organization (WHO), inflicts
progressive damage to the optic nerve, usually linked with
elevated intraocular pressure and visual field losses [1], [2]. If
left undiagnosed or untreated, the damage or resultant blindness
is irreversible [3]. As of 2020, an alarming 5.9 million out of
79.6 million patients worldwide suffer from irreversible bilateral
blindness due to glaucoma [4]. Despite the critical need for
early glaucoma detection, several challenges exist, particularly
the latency of symptoms, which often leads to delayed diagnosis
and treatment. Open-angle glaucoma, the most prevalent type, is
characteristically silent in its early stages, with patients typically
unaware of the initial symptoms including painless intraocular
pressure increase and peripheral vision losses [5].

Globally, approximately 6.9 million glaucoma patients suffer
from preventable visual impairments due to delayed diagno-
sis and treatment [1]. This issue is especially prevalent in
developing countries, where technological and socioeconomic
barriers often lead to delayed diagnoses and consequential visual
impairments [6], [7]. For instance, in Egypt, delayed diagnosis

accounts for 43.03% of glaucoma cases [8], while in China, out
of 9.4 million glaucoma patients, 5.2 million (55%) are blind in
at least one eye, and 1.7 million (18.1%) suffer from bilateral
blindness [9]. Given the irreversible damage caused by glaucoma
and the current diagnosis delays, accurate and early detection of
glaucoma is of paramount importance.

Currently, the primary methods for early glaucoma detection
include optic coherence tomography (OCT) diagnoses, visual
field (VF) tests, and colored retinal fundus image (CRFI) diag-
noses. Despite their prevalence, these methods present signifi-
cant limitations. On the one hand, high equipment costs of OCT
diagnoses and VF tests restrict access for smaller hospitals and
financially limited patients. On the other hand, CRFI diagnoses,
despite being less expensive and more widely available, rely on
skilled medical professionals’ diagnoses and other technologies’
assistance, which are often inaccessible to individuals in remote
regions with limited medical resources.

Based on existing literature, there is a relatively limited
number of studies exploring alternative methods for early glau-
coma detection beyond direct analyses of OCT, VF images, and
colored retinal fundus images. This is particularly true for highly
applicable methods that utilize user-friendly platforms, such as
online apps for the general public.

This paper proposes a mobile app designed to facilitate early
glaucoma diagnosis while alleviating limitations inherent in
currently prevalent methods. The app enables users to pho-
tograph their paper-version colored fundus images using their
smartphones and upload these photos for analysis by cloud-
based machine learning algorithms. This process eliminates the
need for professional medical workers, making the app an ideal
tool for glaucoma early detection. The app accomplishes four
key objectives: economic feasibility, convenience, prevalence,
and accuracy.

• Economic Feasibility and Convenience: By employing AI
algorithms to analyze inexpensive colored fundus images,
the app offers an economical solution that doesn’t require
direct involvement from medical professionals, thus ensur-
ing convenience.

• Prevalence: The app’s prevalence is facilitated by the
increasingly widespread internet infrastructure, which has
been equipped in remote rural regions of many developing
countries. In 2022, the number of Chinese internet users
reached 1.05 billion, with an internet penetration rate of
74.4%, according to the China Internet Network Informa-
tion Center (CNNIC) [10].

• Accuracy: The app’s intelligent machine learning algo-
rithms are robust and can deliver reliable results even when
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analyzing low-quality phone-taken photos.

However, the development of this app comes with its own
set of challenges. The first challenge is ensuring the correct
positioning of images and managing the noise associated with
them. Second, the subtlety of early glaucoma signs can lead to
difficulties in accurately classifying samples. Lastly, the chal-
lenges are compounded by the existence of highly unbalanced
sample tags and the unpredictable nature of the image capturing
process.

To address these problems, the app first rectifies images using
a perspective transform. After the rectification, a noise-removal
module efficiently denoises the uploaded image to improve its
overall quality. With these two steps, the quality of the images
themselves is significantly enhanced. Furthermore, a prediction
module is designed with AI-powered components, improving
the accuracy and efficiency of the analysis. The main technique
contributions are listed as follows.

• To ensure images are optimally rectified for AI analysis
and diagnosis, this paper implements a perspective trans-
form algorithm. This efficient method rectifies images via
straightforward matrix operations, thus creating a reliable
basis for subsequent AI analysis and diagnosis.

• To effectively and efficiently remove noises from images,
this paper proposes a method to recover noise-free images
using low-rank tensor recovery. Specifically, the objective
images’ low-rank features are demonstrated through SVD
operations, and this paper utilizes the FTDTV model [11]
in conjunction with the Alternating Direction Method of
Multipliers (ADMM) algorithm. The FTDTV model, with
its low-rank factor prior, reduces computational burdens
and eliminates the need to predetermine the Tucker rank.
By leveraging the strengths of the FTDTV model, the
corresponding noise-free image can be extracted from the
observed image, effectively isolating the noise.

• To ensure accurate and robust glaucoma diagnosis de-
spite the challenges of imbalanced tags and unpredictable
image capture processes, this paper presents a developed
prediction module. The module features innovative com-
ponents, including a Polar Transform layer and MobileNet
1.0 for image feature extraction, an Attention Module to
handle imbalanced tags, an Overfitting Prevention strategy,
and Diversity Learning to fortify model robustness against
unpredictable image capture processes. Integrating these
strategies results in a highly effective tool for glaucoma
diagnoses.

• Extensive experiments are conducted on four datasets
containing diversified colored fundus retinal images, i.e.
G1020, ORIGA, LAG-dataset, Real dataset, to verify the
effectiveness of the proposed glaucoma diagnostic system.
Ablation studies show that the two image preprocessing
modules, the rectification module and the noise-removal
module, and the optimizations, including polar transform,
the overfitting prevention module, and the diversity learn-
ing, in the prediction module significantly improve the
diagnostic accuracy and generalization ability. Experiments
show that this paper’s proposed online glaucoma diagnostic
system achieves satisfactory diagnostic results, reaching
the ACC and WKappa of 0.9301 and 0.9221, respectively,

outperforming some of the existing diagnostic methods:
CABNet, ResMLP, and UQ.

II. RELATED WORK

For early glaucoma detection, there are currently three main-
stream approaches: OCT diagnoses, VF tests, and CRFI di-
agnoses. This section analyzes and discusses these three ap-
proaches.

A. OCT diagnoses

In recent years, OCT diagnosis has become one of the most
common glaucoma tests. It is a non-contact, non-invasive diag-
nostic tool that provides cross-sectional imaging of the anterior
and posterior eye, using light in an approach similar to computed
tomography [12]. The OCT diagnosis offers fine details of each
retinal layer and blood vessels, thus providing efficient and quick
results [13]. Some studies have combined machine learning
models with OCT images for improved diagnoses. For example,
[14] uses a 3D Convolutional Neural Network (CNN) to identify
diagnostic regions associated with glaucoma classifications. In
[15], automated machine classifiers are investigated to better dis-
tinguish glaucomatous eyes from non-glaucomatous ones based
on OCT images. [16] identifies the Random Forest (RF) model
as the best machine learning model for detecting glaucomatous
symptoms on OCT images. However, despite the high quality
of OCT images and the innovative machine-learning approaches,
two significant problems exist. Technologically, artifacts in OCT
images often resemble glaucomatous signs, leading to inaccurate
detection results [17]. In terms of the economic feasibility, OCT
devices are expensive and bulky, making them inaccessible for
widespread use especially in remote regions [18].

B. VF tests

The VF test is another mainstream glaucoma test that can
detect visual loss in peripheral vision, which is an important
early sign of glaucoma [19]. Similar to OCT diagnoses, VF
tests provide high-quality images and have been investigated
using machine learning techniques. For instance, [20] uses linear
regression analysis of the Visual Field Index (VFI) to predict
whether uploaded VF images are glaucomatous. In [21], the
Recurrent Neural Network (RNN) is used to provide robust
labels and predictions of visual loss, aiding the diagnosis of
glaucoma. However, VF tests face technological and economic
challenges. Technologically, glaucomatous signs in VF tests
are often detectable only after retinal nerve fiber layer loss
has occurred, leading to delayed diagnosis [22]. Economically,
similar to OCT tests, the high cost of VF test devices makes them
inaccessible to many patients in remote or financially struggling
regions.

C. CRFI diagnoses

CRFI diagnosis is a common eye test that records colored
images of the interior surface of the eye using a fundus camera
to aid in the diagnosis of eye health [23]. In glaucoma diagnoses,
CRFI focuses on the optic cup and disc region and calculates the
cup-to-disc ratio, an important glaucomatous sign [24]. Unlike
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OCT diagnoses and VF tests, CRFI diagnoses are relatively low-
cost and can be found in almost all hospitals and community
health care service centers. Machine learning algorithms are also
applied to emphasize glaucomatous signs and aid in diagnoses.
For example, [25] applies automatic image processing to retinal
fundus images, offering pixel-level segmentation of optic cups
and discs to calculate the cup-to-disc ratio. [26] employs unsu-
pervised Anomaly Detection (AD) models for detection based on
colored fundus images. [25] uses image transforms and Gabor
filters to maximize glaucomatous signs and utilizes Artificial
Neural Network (ANN) to extract features for later diagnoses.
[27] employs the U-Net architecture for glaucomatous sign
identification and uses SVM, neural network, and Adaboost
classifiers to provide diagnostic aids for doctors. However, since
patients normally only have paper-version colored fundus retinal
images, a significant drawback of CRFI diagnoses is their
dependency on the final diagnoses made by professional medical
workers. Further advancements are needed to offer automated
diagnoses for people in regions with limited medical resources.

Additionally, some studies devise an AI-based image identi-
fication system to return glaucoma diagnostic results to users,
based on cheap colored fundus retinal photography technology.
For example, [28] proposes GLIM-Net, a diagnostic system
consisting of a time positional encoding module and a time-
sensitive multi-head self-attention (MSA) module. Thus, GLIM-
Net provides the users with the predicted probability that they
will develop glaucoma in the future based on users’ uploaded
colored fundus retinal images in digital forms. Despite the high
accuracy of the GLIM-Net prediction system, it doesn’t apply
in some real-world diagnostic settings patients are facing, since
users hardly have access to the digital format of their colored
fundus retinal images but only have the images in printed paper
format. Given the situation that patients often get their paper-
version colored fundus retinal images directly through their
community health care service without having the chance to visit
ophthalmologists, the GLIM-Net, which doesn’t take the phone-
taken images of users’ paper-version results into account, still
can’t alleviate patients’ diagnostic problems. Namely, patients
have difficulties getting glaucoma diagnostic results either from
AI diagnoses or professional ophthalmologists’ diagnoses.

III. SOLUTION OVERVIEW

As shown in Fig.1, this app consists of two parts: the client
side and the server side. The client side captures fundus images
and uploads them to the server side. Once there, the images are
processed, features are extracted, and a final diagnostic result
(positive or negative for glaucoma) is provided.

As illustrated in Fig.2, the server side is composed of three
modules: the rectification module, the noise-removal module,
and the prediction module. These modules are effectively
integrated to deliver a straightforward diagnostic result to the
users.

• In the rectification module, the uploaded image un-
dergoes a perspective transform for optimal rectification.
This method efficiently rectifies the image using matrix
manipulations, without incurring significant computational
complexity and costs.

• The noise-removal module separates the noise-free image
from the observed noisy image, leveraging the low-rankness

Fig. 1: System architecture.

Fig. 2: Server-side structure.

of images. Specifically, the FTDTV model [11] in conjunc-
tion with the Alternating Direction Method of Multipliers
(ADMM) algorithm are utilized. This ensures high accuracy
while maintaining high computational efficiency.

• The prediction module processes denoised images from
the noise-removal module to complete the diagnostic pro-
cess, guaranteeing accurate and robust results. This is
achieved by integrating various sophisticated techniques to
highlight critical regions of the image, extract features,
address imbalanced tags, and handle unpredictable im-
age capture processes. These combined strategies create a
highly accurate and robust tool for glaucoma diagnosis.

After all processing and diagnostic procedures are completed
on the cloud, the diagnostic result is returned to the client side
of the app. The subsequent sections of this paper will provide
detailed information on these three major modules of the app.

IV. RECTIFICATION MODULE

A. Problem
When users upload fundus images taken with their phones,

it can be challenging to ensure that the images are properly
centered and captured with the phone’s camera parallel to
the image. This often leads to images being in inappropriate
positions for subsequent feature extraction and analysis, thus
hindering accurate interpretations and diagnoses. Therefore, it is
crucial to have a convenient and effective rectification module
that can output an image with the correct position and fixed size,
enabling reliable feature extraction and analysis.

The main function of the rectification module is illustrated in
Fig. 3. The input image, captured by the phone’s camera (Fig.
3(a)), is transformed into the rectified image (Fig. 3(b)).

B. Method
While several neural network-based rectification methods

have been proposed recently, they typically involve complex
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(a) The input image is 
not parallel to the 
phone's camera.

(b)   The image after
        rectification with the 
        fixed size 512×512.

(b )  The  i ma ge  a f t e r  
rectification with the 
fixed size 512×512.

(a) The input image is 
not  para l le l  to  the 
phone's camera.

Fig. 3: Rectification module’s function.

neural network models and require pairs of images for training
the alignments. However, obtaining such image pairs can be
difficult. For example, the RANSAC-Flow method [29] produces
good rectification results through a two-stage process involving
a coarse rectification using RANSAC based on existing features
and a fine rectification using a deep network. However, the
RANSAC-Flow method requires two images of the same scene
from different views to establish a reference.

Instead of requiring pairs of images for reference, this paper
adopts the perspective transform method, leveraging its low
computational complexity through the use of simple matrix
manipulations with no need for referencing pair images.

The perspective transform involves transforming the 2D
Cartesian coordinates of the uploaded image into 3D homo-
geneous coordinates using homography matrix operations. The
conversion is performed using the following equations, where
X and Y represent the horizontal and vertical Cartesian coordi-
nates in the 2D image, respectively, and eU , eV, fW represent the
homogeneous coordinates obtained by multiplying the Cartesian
coordinates with the 3⇥ 3 homography matrix, which includes
eight unknown elements denoted as Hij .

0
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The rectification module can be divided into four main steps:
• Extraction of Actual Cartesian Coordinates: The actual

Cartesian coordinates (X and Y) of the four vertices of
the uploaded square-shaped image are extracted. These
coordinates represent the current position and orientation
of the image.

• Determination of Expected Homogeneous Coordinates:
Based on the desired output size of the image, the expected
homogeneous coordinates ( eU , eV, fW) of the vertices after
rectification are determined. These coordinates define the
desired position and size of the rectified image.

• Calculation of Homography Matrix Elements: The de-
termined homogeneous coordinates are used in matrix
operations to calculate the values of the eight unknown
elements (Hij) in the homography matrix. The homography
matrix represents the transformation needed to rectify the
image.

• Transformation and Conversion: Using the calculated
homography matrix, all points in the original image are
transformed to their rectified positions in homogeneous

coordinates. This transformation is achieved by multiplying
the coordinates with the homography matrix. Finally, the
rectified image in homogeneous coordinates is converted
back to 2D Cartesian coordinates using the equations:

X
0 =

eU
eV

and Y
0 =

eV
fW

(2)

These equations convert the rectified image from
homogeneous coordinates to its final 2D Cartesian
representation, where X

0 and Y
0 represent the rectified

horizontal and vertical coordinates, respectively.

The perspective transform method effectively performs rec-
tification using simple matrix operations while maintaining
low computational burdens and without requiring any ref-
erence images.

V. NOISE-REMOVAL MODULE

A. Problem
One major challenge in accurately analyzing glaucoma in

users’ uploaded images taken by phones is the presence of
noise. The noise in uploaded images can be attributed to factors
including camera shake, original movements of objects, and out-
of-focus optics [30]. Typical types of noise include Gaussian and
impulse noises [31]. The quality of colored retinal fundus images
is significantly degraded by these noises, making it difficult to
detect glaucoma.

(a) Observation (b) Noise-free image (c) Noise
Fig. 4: Noise-removal module: separate the noise-free image from the

observed image.

In order to address this issue, a noise-removal module, as
shown in Fig. 4, is introduced with the objective of efficiently
generating a noise-free image from the observed image.

B. Method
Currently, there are various denoising methods available, and

one representative method is the low-rank tensor recovery ap-
proach. Among existing tensor recovery approaches, the Tucker
decomposition (TKD) is an effective denoising tool due to its
strong representation ability. TKD links factor matrices with
a core tensor to capture hidden data and achieve satisfactory
image recovery performance [32]. However, existing TKD-
based models suffer from low computational efficiency when
dealing with large-scale tensors due to complex SVD operations.
Additionally, predetermining the Tucker rank beforehand adds
to the overall complexity of the problem-solving process.

To overcome these limitations, this paper adopts the FTDTV
model [11] and proposes the ADMM algorithm. The FTDTV
model, with the assistance of low-rank factor prior, helps allevi-
ate computation burdens and eliminates the need for determining
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the Tucker rank in advance. By leveraging the advantages of
the FTDTV model, the corresponding noise-free image can be
separated from the observed image, effectively isolating the
noise.

The proposed noise-removal method treats a noisy image as
a combination of its corresponding noise-free image and noise,
both represented in tensor form. This allows for direct denoising
from the input image itself by separating the noise-free image.
Since the input colored retinal fundus images are represented
in the RGB form, they can be represented as fourth-order
tensors. Therefore, the noise-free image is represented by X 2
RI1⇥I2⇥I3⇥I4 , the original observation by Y 2 RI1⇥I2⇥I3⇥I4 ,
and the noise by Z 2 RI1⇥I2⇥I3⇥I4 , where I1 and I2 are the
length and width of the image, respectively, I3 defaults to 3 for
RGB images with 3 channels, and I4 represents the number of
images included in the dataset.

In order to determine the appropriateness of using low-rank
separation to extract the noise-free image, SVD is conducted on
some digital-version original colored fundus retinal images to
validate their low-rankness.

Mode-1 utfolding Matrix                          Mode-2 utfolding Matrix                            Mode-3 utfolding Matrix

Fig. 5: Singular values of the mode 1, mode 2, and mode 4 utfolding
matrices.

Fig. 5 illustrates the curves depicting the change in singular
values of the unfolding matrices for mode 1, mode 2, and mode
4. The declining nature of these curves clearly indicates that the
majority of singular values are close to zero, while only a few
large singular values dominate. This observation provides strong
evidence for the low-rankness of the image.

Leveraging the low-rankness of the images, the separation
of the noise-free image can be achieved using Robust Principle
Component Analysis (RPCA), as depicted in Figure 5. The basic
and conceptual noise-removal model is outlined as follows:

Y = X+ Z (3)

The conceptual model aims to extract the low-rank noise-free
image X from the observed image Y, which can be formulated
as an inverse problem. To ensure the problem is well-posed and
avoids instability, prior regularization is incorporated for both the
original observation and the noise. In this context, the FTDTV
model is utilized, which is a low-rank tensor denoising model
that combines factors prior and total variation regularization. The
modeling of the FTDTV model is as follows:

min�1

NX

n=1

�n

��FnX(n)

��+ ↵n

NX

n=1

kUnk⇤ + �2kGk2F + �3�2(Z)

s.t. X = G ⇥ 1U1 ⇥ 2U2 . . .⇥ NUN and Y = X + Z
(4)

The regularization coefficients {↵n}Nn=1 ,�1,�2,�3 are in-
troduced in the model. The term

PN
n=1 �n

��FnX(n)

�� represents
the total variation regularization, where �n can take values of

either 1 or 0. The L1 norm of a matrix is denoted by | • |,
and Fn is a matrix of dimensions (In � 1) ⇥ In0 with all
elements being 0 except for [Fn]i,i = 1 and [Fn]i,i+1 = �1.
The total variation regularization term is employed to promote
local piecewise smoothness in the images.

The low-rank properties of the noise-free image X are ex-
tracted using

PN
n=1 kUnk⇤ and Tucker decomposition, where

X is represented as X = G ⇥1 U1 ⇥2 U2 · · · ⇥N UN , and G
serves as an overfitting-preventing term.

The term �2(Z) denotes the sparse regularizer for Z, and
in this model, a non-convex and non-smooth MCP (Minimax
Concave Penalty) function [11] is employed to overcome the
limitations of the commonly used L1 norm in existing literature.

In order to solve the aforementioned model, auxiliary vari-
ables need to be introduced, leading to the following equivalent
model:

min�1

NX

n=1

�n |Qn|+ ↵n

NX

n=1

kUnk⇤ + �2kGk2F + �3�2(Z)

s.t. {Qn = FnRn, Rn = X(n), Vn = Un}Nn=1

X = G ⇥ 1U1 ⇥ 2U2 . . .⇥ NUN

Y = X + Z
(5)

To handle the ”min” constraint in the model and simplify
the optimization process, this paper adopts Alternating Direction
Method of Multipliers (ADMM). The augmented Lagrangian
function of the proposed model is as follows:

L (Qn,Rn,Un,Vn,X,G,Z;⇤n,⌦n,�n,W,K) =

�1

NX

n=1

�n |Qn|+ ↵n

NX

n=1

kUnk⇤ + �2kGk2F+

�3�2(Z) +
NX

n=1

�n
%

2

����Qn � FnRn +
⇤n

%

����
2

F

+

NX

n=1

�n
%

2

���� Vn �Un +
⌦n

%

����
2

F

+
NX

n=1

�n
%

2
kRn�

X(n) +
�n

%

���2F +
%

2

���Y �X� Z +
K
%

���2F +
%

2

���X�

G ⇥ 1 V1 ⇥ 2 V . . .⇥N VN +
w

%
k2F,

(6)

where ⇤n,⌦n,�n,W,K are Lagrangian multipliers, and % is the
penalty term. Then the ADMM algorithms is as follows:

C. Analysis

The incorporation of the MCP function enables the noise-
removal module to effectively extract sparse noises, while the
ADMM algorithm efficiently computes the result for the pro-
posed FTDTV model. The noise-removal module achieves high
accuracy and will significantly improve the overall performance
of the final prediction.

Notably, the noise-removal module exhibits satisfactory ef-
ficiency due to two key factors. Firstly, the low-rank prior is
applied to the small-size factors, thereby reducing the compu-
tational costs associated with SVD operations. Secondly, the
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Algorithm 1 ADMM algorithm
Require: observation Y , the parameters ↵n,�n,�1,�2,�3, ⌧, %, µ, �1, �2.

1: Initialize: X0,G0, Z0,W0,K0, {Q0
n, R

0
n,⇤

0
n,⌦

0
n,�

0
n, }Nn=1, k = 0

2: while not converge do
3: Update Qk+1

n = argminL
�
Qn, Rk

n, U
k
n , V

k
n ,Xk,Gk, Zk;⇤k

n,⌦
k
n,�

k
n, w

k
�

4: Update Rk+1
n = argminL

⇣
Qk+1

n , Rn, Uk
n , V

k
n , Zk,Gk,Sk ;

⇤k
n,⌦

k
n,�

k
n, w

k,Kk
�

5: Update Uk+1
n = argminL

⇣
Qk+1

n ,Rk+1
n ,Un,Vk

nk ,X k,Gk,Zk ;
⇤k
n,⌦

k
n,�

k
n, w

k,Kk
�

6: Update Vk+1
n = argminL

⇣
Qk+1

n ,Rk+1
n ,Uk+1

n , Vn,X k,Gk,Zk ;
⇤k
n,⌦

k
n,�

k
⇡ , w

k,Kk
�

7: Update Xk+1 = argminL
⇣
Qk+1

n ,Rk+1
n ,Uk+1

n , Vk+1
n ,X ,Gk,Zk ;

⇤k
n,⌦

k
n,�

k
n, w

k,Kk
�

8: Update Gk+1 = argminL
⇣
Qk+1

n ,Rk+1
n ,Uk+1

n , Vk+1
n ,X k+1,G,Zk ;

⇤k
n,⌦

k
n,�

k
n, w

k,Kk
�

9: Update Zk+1 = argminL
⇣
Qk+1

n , Rk+1
n , Uk+1

n , V k+1
n ,Xk+1,Gk+1, Z ;

⇤k
n,⌦

k
n,�

k
n0wk,Kk

�

10: Update multipliers ⇤k+1
n ,⌦k+1

n ,�k+1
n ,Wk+1,Kk+1 and the penalty

term %
11: k := k + 1
12: end while

module eliminates the need for determining ranks in advance,
further enhancing its efficiency.

Considering both the denoising performance and efficiency,
the noise-removal module proposed in this paper is highly
applicable and supportive of the prevalent usage scenarios of
the App.

VI. PREDICTION MODULE

A. Problem and challenges

Despite the utilization of high-quality input images prepro-
cessed by the preceding two modules, predicting glaucoma
remains a significant challenge due to the following four reasons:

• Subtle Glaucomatous Indications: Certain crucial signs of
glaucoma in colored fundus images are subtle and difficult
to detect. This subtlety complicates the extraction and
identification of these minor yet critical features.

• Imbalanced Training Data: The dataset used for training
glaucoma classification models exhibits severe class imbal-
ance. Non-glaucomatous images substantially outnumber
glaucomatous ones, which can lead to biased model learn-
ing. In such cases, non-glaucomatous features may domi-
nate, impeding the effective identification of glaucomatous
images.

• Limited Training Data: Acquiring high-quality glaucoma
fundus images is a challenging task, leading to a con-
strained dataset. Training neural network models with such
limited data can potentially lead to overfitting, thereby
affecting the model’s performance in real-world scenarios.

• Variability in Data Sources: Glaucoma fundus image
datasets can vary significantly due to differences in data
acquisition equipment and procedures. It’s difficult to pre-
dict the conditions under which patients obtain the images.
The network model needs to learn to handle this diversity
to accommodate a wide range of images in real-world
application scenarios.

Fig. 6: Prediction module.

B. Method

To address the challenges outlined above, this paper proposes
a prediction framework specifically tailored for glaucoma pre-
diction. The prediction module (as depicted in Fig.6) consists of
three key components:

• Feature Extractor: Designed to overcome the challenge
of detecting small and hard-to-see glaucomatous signs in
input images, the Feature Extractor starts with a prepro-
cessed image that has been through prior rectification and
noise-removal modules. This paper first introduces a Polar
Transform layer to preprocess the input image, focusing
particularly on highlighting crucial regions of interest: the
optic cup and disc. This paper then uses MobileNet 1.0 as
the backbone to extract image features, selected based on
extensive experimentation that has demonstrated its supe-
rior performance compared to other network architectures.

• Attention and Overfitting Prevention Module: This mod-
ule effectively addresses the issue of imbalanced sampling
tags and mitigates the risk of overfitting. It consists of
two key parts: an Attention Module, designed specifically
to handle imbalanced labels, which captures fine details
and discriminative features using the Global Attention
Block (GAB) and the Category Attention Block (CAB);
and overfitting prevention mechanisms, including random
dropout applied to GAB-produced feature maps and batch
normalization implemented on CAB or the overall attention
module-generated feature maps.

• Classifier: In the final stage of the prediction module,
a classifier is utilized to generate the definitive binary
diagnostic result. This classifier employs a Global Average
Pooling (GAP) layer and a Fully Connected (FC) layer
to process the enhanced features and make a glaucoma
prediction. Furthermore, to ensure robust prediction, this
paper employs the Entropy Loss Function and proposes a
diverse learning strategy. This strategy aims to train the
network model to recognize and learn diverse features from
various types of image sources.

1) Feature Extractor

The feature extraction process in our model begins with the
utilization of a Polar Transform layer. This layer preprocesses
input images and emphasizes critical areas such as the optic cup
and disc. Specifically, during the polar transformation, the center
of the input (the colored fundus image) is set as the origin in the
new polar coordinate system. Once the origin is set, every point
with Cartesian coordinates is converted into polar coordinates
using a specific formula. Here, (✓, r) represents the resulting
polar coordinates, and ( x, y ) refers to points in the original
rectangular Cartesian coordinates.
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⇢
✓ = tan�1

� y
x

�

r =
p
x2 + y2

(7)

(a) The input image, 
in which the optic 
cup and disc are 
in normal sizes.

 

(b) The preprocessed 
image,  in which the 
optic cup and disc are 
highlighted.

(b) The preprocessed 
image, in which the 
optic cup and disc are 
highlighted.

(a) The input image, 
in which the optic 
cup and disc are in 
normal sizes.

Fig. 7: Polar transform.

Following the polar transformation, the processed input enters
the MobileNet 1.0 backbone feature extractor. This backbone
serves as a fundamental feature extractor within the prediction
module. It was selected for its superior performance in feature
extraction, a conclusion derived from rigorous experimentation
with various models, including Vgg16, Resnet50, Xception,
Densenet121, and Inceptionv2.

MobileNet 1.0, a lightweight deep neural network primarily
designed for mobile vision applications, is particularly effective
for this task [33]. Its architectural design, featuring a stack of
multiple 1×1 and 3×3 convolutional layers, an average pooling
layer, a Fully Connected (FC) layer, and a Softmax classifier,
makes it an efficient and effective backbone for our prediction
module.

2) Attention and Overfitting Prevention Module

Attention module for imbalanced learning. An existing pre-
diction system that provides diabetic retinopathy grading results
is CABNet [34], which incorporates an attention module. This
module includes a Global Attention Block (GAB) to capture
detailed features, such as subtle lesions, and a Category Atten-
tion Block (CAB) for category-level processing of discriminative
features, treating them equally with other features [34].

Inspired by CABNet [34], this paper handles imbalanced
training data by processing fine information in the attention
module after coarse feature extraction through MobileNet 1.0
and input simplification by a 1×1 convolutional layer (as shown
in Fig.8). In this module, the GAB learns the global fine details,
while the CAB focuses on discriminative regions and refines the
feature extraction done by GAB.

In the CAB, the input first undergoes channel attention. This
feature selector indicates the importance of each feature chan-
nel by learning channel-wise attention weights. The operation
process of channel attention is as follows, where Fc�att denotes
the output of channel attention, � presents the Sigmoid function,
Conv2 refers to two 1⇥1 convolutional layers, GAP is the Global
Attention Pooling layer, FGAB�1N denotes GAB’s input, and ⌦
signifies element-wise multiplication.

Fc�att = (�(Conv2(GAP (FGAB�IN ))))⌦ FGAB�IN (8)

Fc�att is then used as the input for spatial attention, which
signifies the importance of each spatial position by learning
spatial attention weights. The spatial attention feature map
is obtained through the following operation, in which CGAP

represents cross-channel average pooling.

FGAB�out = Fc�att ⌦ (�(C GAP (Fc�att))) (9)

The output of GAB, denoted as FGAB�out serves as the
input for CAB. Within GAB, a 1 ⇥ 1 convolutional layer is
first employed to produce feature maps, denoted as F 0 2
RH⇥W⇥2K , where k is the number of channels needed to
detect discriminative regions for two classes (glaucomatous and
non-glaucomatous). To prevent overfitting, the optimization of
random dropout is introduced, generating feature maps with re-
duced weights (F 00 2 RH⇥W⇥2K). To ensure that discriminative
regions are learned, half of the features are randomly set to
zero, resulting in new feature maps (F 000 2 RH⇥W⇥2K). The
importance (Si) of the feature maps for the class is evaluated
using the following formula, where GMP stands for global max
pooling and f 000

i,jrepresents the jth feature map for the ith class
from the input feature maps after random dropout (F 000.).

Si =
1

k

kX

j=1

GMP
�
f 000
i,j

�
, i 2 {1, 2} (10)

Meanwhile, to prevent important information from being
overlooked during the random dropout, all features undergo
a category-wise cross-channel average pooling operation, as
represented by the following formula. In this formula, f 00

i,j

denotes the jth feature map for the ith class, which is derived
from the original input feature maps prior to the random
dropout operation, F 0.

F 00
i avg =

1

k

kX

j=1

f 00
i,j , i 2 {1, 2} (11)

The category attention, denoted as ATTCAB 2 RH⇥W⇥1, is
calculated by combining operations both with and without the
random dropout operation. This approach is designed to focus
specifically on meaningful discriminative regions and produce
the output of CAB, where FCAB�OUT represents the output
feature maps.

ATTCAB =
1

L

X

i=1

LSiFi avg00

FCAB�OUT = FCAB�IN ⌦ATTCAB

(12)

Fig. 8: Attention module.
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TABLE I: Three model results diagram.

Model Image Illustration

G1020 1020 Glaucoma:
724 Negative
glaucoma:296

ORIGA 650 Glaucoma:482
Negative
glaucoma:168

LAG-dataset 5824 Glaucoma:2392
Negative
glaucoma:3432

Real dataset 826 Glaucoma:673
Negative
glaucoma:153

Overfitting Prevention Module. To bolster the prediction
module’s generalization capability, this paper has incorporated
an overfitting prevention module consisting of two operational
layers. This includes a random dropout, as previously mentioned
in the attention module, situated between GAB and CAB to
generate feature maps, denoted as F 00. During this random
dropout operation, the weights for all features are reduced to 0.5.
Simultaneously, for the feature maps produced by the attention
module, denoted as FCAB�OUT , a batch normalization (BN)
operation is applied, yielding the output F 0

CAB�OUT for the
classifier.

3) Classifier:

This classifier employs a Global Average Pooling (GAP) layer
and a Fully Connected (FC) layer to process the enhanced
features and make a glaucoma prediction.

Loss function
The loss function employed during the training of the pre-

diction module to constantly evaluate the model’s prediction
performance is identified as an Entropy Loss Function. The loss
is computed using the following formula, where N denotes the
total number of samples, yi represents the classification result
(1 or 0) of the ith sample, and pi indicates the probability that
the ith sample is positive (1).

L =
1

N

NX

i=1

yi log (pi) + (1� yi) log (1� pi) (13)

Diversity learning
Fundus image datasets for glaucoma can exhibit significant

variability due to differences in data acquisition equipment and
procedures. The sources of these variations may include, but are
not limited to:

• Diversity in the types and models of fundus photography
equipment used.

• Unique settings for parameters such as exposure and con-
trast on individual fundus photography cameras.

• Comorbidities in glaucoma patients, such as cataracts or
vitreous body disorders, which can induce refractive media
opacity, thereby affecting the imaging outcomes.

Table I provides a visual representation of the varied images
derived from disparate datasets.

Predicting the precise acquisition process of a patient’s images
is challenging. Consequently, if the training of the network
model only relies on one single dataset, the prediction accuracy
may be compromised when the user inputs an image that
deviates from the training set type.

To leverage the diverse information from various datasets,
this paper proposes an integrative approach that combines
multiple datasets into a comprehensive dataset. By training the
network model using this large dataset, this paper aims to better
accommodate the disparities across data sources. This, in turn,
is expected to enhance the model’s robustness in glaucoma
identification tasks. In section VII, experimental results to
corroborate the efficacy of the diversity learning approach will
be presented and discussed.

VII. PERFORMANCE EVALUATION

A. Experiment setup

This paper assess the proposed techniques using four datasets,
as detailed in Table I: G1020 [35], ORIGA [36], LAG-dataset
[37], and Real-dataset, which is a part of the SIFG-database
[38]. Each dataset is split into two subsets: a training set and a
testing set.

• The G1020 dataset: The training set comprises 875 images,
including 655 glaucomatous and 220 non-glaucomatous.
The testing set consists of 145 images, with 69 glauco-
matous and 76 non-glaucomatous.

• The ORIGA dataset: The training set includes 520 im-
ages, of which 386 are glaucomatous and 134 are non-
glaucomatous. The testing set includes 130 images, with
96 glaucomatous and 34 non-glaucomatous.

• The LAG-dataset: The training set includes 5244 im-
ages, composed of 2007 glaucomatous and 3237 non-
glaucomatous.

• The Real-dataset: The training set includes 695 images,
with 590 glaucomatous and 105 non-glaucomatous. The
testing set consists of 131 images, which include 83 glau-
comatous and 48 non-glaucomatous.

To simulate real-world scenarios where users upload colored
retinal fundus images taken with their phones, this paper created
a ’phone-taken dataset.’ This dataset consists of images from the
Real-dataset that were printed out and then photographed using
mobile phones.

Accuracy (ACC) is a commonly employed metric for mea-
suring the performance of a classification model. It represents
the ratio of correctly classified samples to the total number of
samples. In the implementation, this paper uses a result matrix
to record the model’s predictions for the two categories, and



9

then compute the accuracy. A higher accuracy signifies better
model performance.

The Weighted Kappa (WKappa) is a metric used to evaluate
the performance of classification models, taking into account
both the consistency and the importance of different categories.
The WKappa is defined as follows: WKappa = 1 � (

P
(wij ⇥

Oij)/
P

(wij ⇥Eij)), where wij represents the weight given to
the agreement between category i and category j. If the model’s
predictions align with the actual labels, the value of wij is 0. In
contrast, if they are not in agreement, the value of wij is 1/4.
Oij denotes the observed frequency of consistency between the
model’s predictions and the actual labels for categories i and j.
On the other hand, Eij represents the expected frequency for
categories i and j.

Weighted Kappa’s value range is from -1 to 1. It’s typically
utilized to assess the consistency between model classifications
and random classifications. A value closer to 1 indicates superior
model performance.

In this paper’s proposed method, several techniques aiming at
improving prediction accuracy and robustness are listed below.

• Rectification module: Rectifies the images.
• Noise-removal module: Removes noise.
• Polar Transform layer: Emphasizes key regions such as the

optic cup and disc.
• MobileNet 1.0: Extracts fundamental features from images.
• Attention Module: Manages imbalanced labels.
• Overfitting Prevention strategy: Mitigates overfitting.
• Diversity Learning: Ensures model robustness across varied

datasets.
To validate the effectiveness of this paper’s proposed main

modules, this paper constructs a Basic model that consists of
MobileNet 1.0, the Attention Module, and Overfitting Prevention
strategy. This paper refers to the model that includes all modules
as the Whole model.

B. Ablation Study on Two image preprocessing modules
To enhance the overall prediction efficiency, this paper pro-

poses two image preprocessing modules for rectifying and
denoising images before the final classification stage.

The experimental results validate the efficacy of these mod-
ules. The effectiveness of the rectification module is demon-
strated in Table II, and the effectiveness of the noise-removal
module is shown in Table III.

TABLE II: Ablation on the rectification module.

Dataset Model ACC W-kappa
Photo-taken dataset Basic 0.6415 0.1925
Photo-taken dataset Basic + Rectification 0.6804 0.2392

TABLE III: Ablation on the noise-removal module.

Dataset Model ACC W-kappa
Photo-taken dataset Basic 0.8308 0.6046
Photo-taken dataset Basic+Noise Remove 0.9033 0.9012

C. Ablation Study on the Prediction Module
Table IV presents an ablation study conducted on the targeted

optimizations within the prediction module. The results highlight

TABLE IV: Ablation on the prediction module.

Dataset Model ACC W-kappa
Photo-taken dataset Whole 0.9301 0.9221
Photo-taken dataset Whole-Polar Transform 0.8527 0.6517
Photo-taken dataset Whole-Polar Transform -

Overfitting-prevention
0.7829 0.4728

TABLE V: Ablation on diversity learning I.

Training Set Test Set Model ACC W-kappa
Combined
big dataset

Real dataset Basic 0.8092 0.5383

Real dataset Real dataset Basic 0.7786 0.4536
Combined
big dataset

ORIGA Basic 0.7615 0.3386

ORIGA ORIGA Basic 0.7154 0.1827
Combined
big dataset

G1020 Basic 0.4897 0.0238

G1020 G1020 Basic 0.5179 0.0670
Combined
big dataset

LAG-dataset Basic 0.9569 0.9023

LAG-dataset LAG-dataset Basic 0.9362 0.5589

that the inclusion of the Polar Transform and Overfitting-
Prevention modules leads to a significant improvement in ACC
and Kappa metrics.

Due to the use of different types of equipment in various
hospitals, the colored fundus retinal images in the four datasets
exhibit significant differences. In order to enhance the robustness
of the prediction module, enabling it to account for a wider
variety of colored retinal images, we have employed diversity
learning that combines images from all four datasets. According
to Tables V and VI, this approach yields satisfactory results.

Table V shows the effectiveness of diversity learning by
comparing the performance of the basic model on combined
datasets and individual datasets. Except for the G1020 dataset,
the ACC and Kappa metrics are higher when the basic model is
trained on a diversified dataset rather than individual datasets.

Table VI reinforces the conclusion drawn from Table V,
indicating that combined datasets perform better than individual
ones. Specifically, when the basic model, trained only on a single
dataset without diversity learning, is applied to each dataset to
evaluate its generalization ability, the model performs well only
on the test set from the same dataset. However, its performance
decreases on test sets from other datasets, indicating a lack of

TABLE VI: Ablation on diversity learning II.

Training Set Test Set Model ACC W-kappa

Real dataset

Real dataset

Basic

0.7786 0.4536
ORIGA 0.2923 -0.1671
G1020 0.5172 -0.0039

LAG-dataset 0.5103 -0.0196

ORIGA

Real dataset

Basic

0.3664 -0.0264
ORIGA 0.7154 0.3656
G1020 0.5172 0.0512

LAG-dataset 0.8328 0.6258

G1020

Real dataset

Basic

0.3130 -0.4416
ORIGA 0.7308 -0.0152
G1020 0.5172 0.0671

LAG-dataset 0.6207 -0.0327

LAG-dataset

Real dataset

Basic

0.3817 -0.0084
ORIGA 0.6692 0.2861
G1020 0.4897 -0.0056

LAG-dataset 0.9362 0.8524
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TABLE VII: Comparisons to CABNet, MesMLP, and UQ.

Method Dataset ACC W-kappa
CABNet Photo-taken dataset 0.8076 0.5447
ResMLP Photo-taken dataset 0.7385 0.6115
UQ Photo-taken dataset 0.6521 0.3145
Whole Photo-taken dataset 0.9301 0.9221

robustness when diversity learning is not implemented.

D. Performance Comparison
To evaluate the comprehensive performance of the AI-based

early diagnosis system for glaucoma proposed in this paper,
this paper compared its experimental results with a widely-
used diagnostic systems: the CABNet [34]. Additionally, though
not specifically designed for eye disease diagnosis, this pa-
per implemented two recent image classification algorithms:
ResMLP [39] and UQ [40]. The CABNet, initially used for
grading different levels of diabetic retinopathy, consists of a
backbone, an attention module, and a classifier. ResMLP is an
architecture built entirely upon multi-layer perceptrons for image
classification. It’s a simple residual network that alternates be-
tween a linear layer, where image patches interact independently
and identically across channels, and a two-layer feed-forward
network, where channels interact independently per patch. UQ
proposes the use of background classes to reduce class activa-
tion uncertainty without significantly increasing training time.
Notably, neither the CABNet, ResMLP nor UQ include image-
preprocessing modules. As shown in Table VII, the diagnostic
system proposed in this paper outperforms in terms of both ACC
and Wkappa metrics. Significant improvements, particularly in
diagnosing phone-taken images, can be attributed to the image
preprocessing modules and the targeted optimizations in the pre-
diction module proposed in this paper. Specifically, the proposed
system delivers approximately 11% higher ACC than CABNet.
For the kappa value, this paper’s proposed system surpasses
CABNet by a remarkable 38%, demonstrating the proposed
system’s superior capability in providing accurate and robust
glaucoma detection results based on phone-taken colored retinal
fundus images. While ResMLP is a promising recent image
classification algorithm, its ACC is inferior to both CABNet
and this paper’s proposed system, as it does not specialize in
disease diagnosis.

VIII. CONCLUSION

This paper proposes an App prototype designed to provide
online, early diagnostic results for glaucoma based on machine
learning algorithms. To achieve this, three basic modules have
been developed to perform rectification, denoising, and predic-
tion tasks, respectively. The extensive experiments presented in
this paper demonstrate that the techniques are effective. In the
future, this online glaucoma early diagnosis App could prove
particularly useful for people living in remote regions or those
with limited financial resources. They could easily obtain AI-
based diagnostic results and, if necessary, seek early treatment.
Consequently, delayed diagnoses and subsequent deterioration
can be largely alleviated, improving overall eye health outcomes.
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