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Abstract 

Automated geometry theorem proving is a challenging and 

critical task in the realm of artificial intelligence, demanding 

both auxiliary constructions and long chains of reasoning to 

deduce goals from a set of given facts in a geometry diagram. 

In geometry proofs, auxiliary constructions act as a bridge 

to fulfill theorem conditions, requiring both an effective 

geometry intuition and an efficient search strategy. 

Geometry reasoning aims to plan and search a long path 

from initial facts to final goals; the intermediate results are 

deduced by chaining a series of theorems. In this project, we 

propose a closed loop of neural intuition and logical 

reasoning to address auxiliary construction and reasoning 

in geometry theorem proving. Inspired by the human 

approach to mastering mathematical skills through practice, 

we derive neural geometry intuition, i.e., the skill to swiftly 

generate auxiliary candidates simply by viewing the text and 

diagrams, by learning from an extensive number of geometry 

proofs. Specifically, we explore the neural geometry intuition 

capabilities of large pre-trained language models, such as 

GPT-4, and propose a novel “Mixture-of-Thought” (MoT) 

prompting and search strategy for auxiliary construction. 

For geometry reasoning, we resort to traditional knowledge-

based artificial intelligence and exploit a forward chaining 

algorithm for logical reasoning. Analogous to human trial-

and-error problem-solving approaches, we continuously 

iterate between auxiliary construction and logical reasoning 

until the final goal is proven. The effectiveness of our method 

is verified with a 66% accuracy performance on a complex 

geometry-proof dataset. This demonstrates a strong neural 

intuition and improved precision and generalization of 

automated geometric proofs.     

  

Keywords 
Geometry theorem proving, auxiliary construction, neural 

intuition, logical reasoning, large language model 

 

1. Introduction 

Given a diagram and textual description detailing the 

relationships and measurements of geometry elements, 

geometry theorem proving aims to derive reasoning paths 

towards a final goal using Euclidean axioms. Geometry 

proof is an essential topic in mathematics education, 

nurturing students’ abilities in abstract and logical thinking. 

For many students, geometry can be a tough course due to 

Figure 1. Example demonstrating our closed-loop system. 

(1) Prompt conversion into formal language (2) Auxiliary 

Construction with neural intuition (3) Theorem-guided 

logical reasoning (4) Closing the loop by reconstructing 

auxiliary lines if the goal is not derived. 
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the obstacle of auxiliary construction. It requires the 

association of the problem with axioms and the search for 

missing points or lines within a large geometry space. An 

example of geometry theorem proving is shown in Figure 1. 

Since the birth of artificial intelligence, Automated 

Theorem Proving (ATP) — in particular, geometry theorem 

proving — has been the focus in the field. Existing methods 

include the deduction approach [1], algebraic computation 

[2], and the area method [3]. The deduction approach cannot 

handle problems that require auxiliaries, and the algebraic 

computation and area method both demand mathematical 

expertise, making them difficult for non-experts to master. 

Recently, large pre-trained language models (LLMs) 

have been introduced to reasoning tasks and seem to have 

achieved some success [4]. However, when conducting 

comprehensive experiments using LLMs for geometry 

reasoning, we discover that they often fail to solve geometry 

problems on their own. For example, in Figure 1, when 

presented with the proof goal: CD + AF > DF, although 

LLMs intuitively oriented a proof towards the Triangle 

Inequality Theorem, their auxiliary constructions and proof 

are both incorrect. This indicates that LLMs lack the ability 

of long-term complex reasoning, limiting their performance 

on formal proof tasks. Yet, their ability to identify relevant 

theorems (e.g., Triangle Inequality Theorem), suggests that 

they have the potential in neural intuition, i.e., the skill to 

swiftly generate auxiliary candidates simply by viewing the 

text and diagrams. 
In this project, we propose a closed loop of neural 

intuition and logical reasoning to address auxiliary 

construction and reasoning in geometry theorem proving. 

Inspired by the human approach to mastering mathematical 

skills through practice, we derive neural geometry intuition, 

i.e., the skill to swiftly generate auxiliary candidates simply 

by viewing the text and diagrams, by learning from an 

extensive number of geometry proofs. Specifically, we 

explore the neural geometry intuition capabilities of Large 

pre-trained Language Models, such as GPT-4, and propose 

a novel “Mixture-of-Thought” (MoT) prompting and search 

strategy for auxiliary construction. For geometry reasoning, 

we resort to traditional knowledge-based artificial 

intelligence and exploit a forward chaining algorithm for 

logical reasoning. Analogous to human trial-and-error 

problem-solving approaches, we continuously iterate 

between auxiliary construction and logical reasoning until 

the final goal is proven.   

The procedure of our method is explained in Figure 2. 

Given initial problem statements, our model first parses the 

diagram to text using GeoGebra and then transforms the text 

into formal language through LLMs. Subsequently, we 

Figure 2: The closed-loop geometry theorem proving process with neural intuition and logical reasoning. 
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employ our proposed MoT prompting strategy in LLMs to 

search for auxiliaries, also dubbed “neural geometry 

intuition” — since LLMs are deep neural models trained on 

large amounts of language data. After acquiring the auxiliary 

lines, we use a forward chaining tool Clingo to perform 

reasoning based on basic facts, extended facts (i.e., auxiliary 

lines), geometry axioms, and basic rules. If the goal is among 

the deduced results, we have successfully proved the 

theorem. Otherwise, we go back to search for alternative 

auxiliaries. The intermediate results of each step are also 

shown in Figure 1. 

The effectiveness of our method is verified with a 66% 

accuracy performance on a complex geometry-proof dataset. 

This demonstrates that our model has a strong neural 

intuition and has widely improved the precision and 

generalization of automated geometric proofs.  

Our main contributions are summarized as follows: 

• We introduce a closed-loop method for automated 

geometry theorem proving, joining the neural geometry 

intuition of modern large language models with typical 

knowledge-based logical reasoning. This type of neuro-

symbolic integration work is rare at the moment.  

• We propose a MoT prompting and search strategy that 

effectively guides LLMs in auxiliary construction. Our 

MoT provides an example of how to enhance large 

language models' intuition in scientific domains, such as 

math and physics. 

• Our method has achieved a much higher accuracy in 

geometry problem-solving compared to other methods.  

The rest of the paper is organized as follows. In Section 

2, we introduce closely related works to our method. In 

Section 3, we detail the main components of our method. In 

Section 4, we present the experimental results. Finally, in 

Section 5, we conclude the paper.  

2. Related Works 

In this section, we briefly review the existing literature that 

closely relates to our method. 

Automated Geometry Theorem Proving. There are 

mainly three types of approaches to automated geometry 

theorem proving: the deduction method[1], the algebraic 

computation method (mainly Wu’s method and the 

Gröbner basis method) [2,5], and the geometric invariant 

method, like the area method [3]. Geometry theorem proving 

has been a challenging problem in ATP, which generally 

needs auxiliary construction to accomplish the proof. Due to 

the large search space, auxiliary construction is very difficult 

for the existing reasoning system. Most studies in geometry 

theorem proving focus on problem parsing and symbolic 

reasoning [6~8], with less attention devoted to auxiliary 

constructions.  

Auxiliary Construction. There are mainly two 

categories of approaches that address auxiliary constructions. 

Earlier approaches focus on the exhaustive search method. 

Zhou et al.[9] generate all possible auxiliary lines for special 

points and line segments in the input graphics. They then use 

binary search to select the useful auxiliary lines. This method 

optimizes the efficiency to reduce the search space, but still 

essentially is an exhaustive approach, lacking skill in the 

actual auxiliary construction and performing extensive 

deduction with newly given conditions. Matsuda et al. [10] 

propose a different and more goal-oriented optimization 

mechanism, constructing auxiliary lines to validate a 

necessary postulate that is inapplicable to the original set of 

conditions. This kind of approach, requiring exhaustive 

searching and deduction, is highly complex and inefficient.  

Another type of study uses templates to generate 

auxiliary lines. K. Wang et al. [11] summarize 6 templates, 

each adapted to solve a particular class of geometry 

problems. This provides more guidance for auxiliary 

construction and is more efficient than an exhaustive search. 

However, these templates are insufficient to cover all 

common geometric problems, and selection among these 

templates is generally complex and inaccurate when figures 

become more complicated. Additionally, Matsuda et al. [10] 

do not elaborate on how the designated template is applied 

to each problem. Other efforts such as Mai C et al. [12], 

design a structure-based geometry knowledge representation 

method, and use machine learning to devise auxiliary lines. 

Up to now, the fully automated process for auxiliary 

construction has not yet been achieved. 

Large pre-trained Language Models (LLMs). 

Existing efforts do not realize human-like thinking of 

auxiliary constructions that involve neural intuition. Recent 

advances in LLMs display human-like thinking, raising the 

question: can these models have the potential for neural 

intuition to achieve automated geometric theorem proving? 

There are two views on LLMs' capabilities in ATP. 

Supporters believe that mathematicians can use LLMs to aid 

them with intuition on complex mathematical objects. S. 

Polu et al. [13] propose GPT-f, which discovers new, short 

proofs that are accepted into the main Metamath library. A. 

Davies et al. [14] describe how DeepMind researchers help 

mathematicians to prove two new theorems. The opposite 
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view believes that LLMs lack logical reasoning abilities. S. 

Frieder et al. [15] suggests that, contrary to many of the 

positive reports in the media, ChatGPT fails to achieve the 

performance of single-task mathematical training models. 

OpenAI summarizes GPT-4's mathematical capabilities [16] 

in that it can abstractly express mathematical problems but 

makes frequent mistakes in basic computations and 

reasoning despite appearing to understand mathematical 

prompts. The latest research indicates that the key to 

leveraging LLMs' abilities lies in the design of an effective 

"Chain-of-Thought", guiding the model to think and respond 

in the desired manner. This is demonstrated by the Chain-of-

Thought (CoT) [17] and Tree-of-Thought (ToT) [18,19] 

prompting methods, which both significantly enhance the 

reasoning capabilities of the LLMs. Designing the right 

prompts can yield much better results. In this project, we 

believe it is possible to take advantage of LLMs with well-

designed strategies to achieve neural geometry intuition. 

3. Our Method 

Our method addresses complex geometry problems that 

require auxiliary constructions. As shown in Figure 2, we 

propose a closed-loop method to emulate human cognition 

to boost the accuracy and generalization of proofs. There are 

three key functions in this method. 

Diagram and Text Parsing. We parse diagrams and 

convert geometric figures into language descriptions using 

our parsing tool based on GeoGebra, and then transform 

these descriptions into formal definitions of points, lines, and 

edges using GPT-4 [4]. Such formalization of spatial 

relationships will benefit for later auxiliary construction and 

logical reasoning. 

Auxiliary Construction. We explore the capability of 

LLMs trained via a huge language dataset to generate neural 

intuition to construct auxiliaries. We draw inspiration from 

humans, who solve mathematical problems through repeated 

practice. We hope that LLMs also exhibit this kind of ability 

by digesting big data. We propose a novel technology called 

MoT to generate neural intuition in the LLMs.  

Geometry Reasoning. We formulate geometry 

reasoning as a forward chaining process and utilize Clingo 

[20] to verify the auxiliary proposals in the previous stage. 

If the goal (i.e., geometry theorem) is reached, the proof is 

completed. If the proof does not derive the goal, our method 

will turn back to searching for alternative auxiliaries until the 

proof succeeds.  

 

3.1 Diagram and Text Parsing 

Understanding the problem statement is the first step to 

solving problems. In geometry proofs, humans start by 

sketching the diagram. Such visualization gives them a 

holistic grasp of the problem and assists them in associating 

the conditions in the textual description. This depicts the 

diagram and text parsing process in our method.  

It should be noted that directly using LLMs such as GPT-

4 cannot achieve such parsing due to its lack of capability of 

spatial perception. LLMs often make mistakes even in the 

most basic relationships between vertices, line segments, 

and angles. A failure case is as follows: when reading a 

prompt that contains the condition BD=DF, LLMs would 

perceive that B, D, and F are collinear, and D is the midpoint 

of BF, which is not necessarily the case. 

To address these types of challenges, we develop a 

Geogebra-based parsing tool to first identify the relative 

positions of points and lines. This endeavor involves parsing 

diagrams and facilitates later interaction with LLMs, 

boosting spatial perception and accuracy in problem 

comprehension. As depicted in Figure 3, when the user 

draws the geometry diagram 𝑑, the parsing tool based on 

Geogebra automatically generates textual paradigm 

description 𝑙 that characterizes the geometry elements and 

relationships in 𝑑. 

𝑙 ← 𝐺𝑒𝑜(𝑑) 

Then, we utilize LLMs to transform 𝑙  into 𝑠, which is the 

prompt diagram in formal language. 

𝑠 ← 𝐿𝐿𝑀𝑠(𝑙) 

This method incorporates the language generative 

capability of LLMs, ensuring the accurate representation of 

key geometric information and providing a reliable basis for 

auxiliary construction and geometry reasoning.  

Figure 3: Diagram and Text Parsing. Parsing tool based on 

GeoGebra first extracts geometry elements from the user’s 

diagram to language descriptions, and then LLMs convert such 

descriptions into formal language in the Prolog format. 
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3.2  Neural Geometry Intuition for Auxiliary 

Construction 

Once the problem statement is parsed into formal language, 

deriving neural intuition becomes the key to constructing 

auxiliary lines. Human thinking is characterized by intuition. 

Practice allows humans to recognize geometry components 

in new problems that are analogous to those they’ve 

encountered in past problems. This helps them establish an 

intuition for the direction of their proof. The more the 

practice, the better the intuition. Thus, the two main aspects 

of the educational value of Euclidean geometry are the 

ability to form neural intuition and reason logically. 

Although LLMs are trained with vast amounts of 

linguistic data that likely includes a lot of materials on 

reasoning and theorem proving, they still do not possess 

accurate intuition in geometry problem-solving, as shown in 

Figure 4, To address this challenge, we propose a novel 

prompting and search strategy, i.e., MoT, to guide LLMs in 

deriving effective auxiliaries.  

3.2.1 Mixture-of-Thought 

MoT comprises three primary components: tactic design, 

tactic selection, and tactic mapping. Tactic design involves 

deriving auxiliary patterns/templates from problem samples. 

Tactic selection involves LLMs’ choice of a template 

proposal by leveraging linguistic intuition. Tactic mapping 

involves LLMs’ decision of how to utilize these abstract 

templates for specific problems.  

Tactic Design. LLMs lack fixed strategies and 

experience in auxiliary construction. Therefore, we need to 

induce strategies – a set of stored patterns - from samples to 

guide LLMs. The design of these strategies has two 

challenges: proposing auxiliary patterns and expressing 

these patterns in a clear representation (for LLMs to 

understand) that captures the relationship between geometry 

elements for LLMs to understand. 

We designed auxiliary patterns by observing 40 

geometry problems, identifying the similarities in their 

auxiliaries, and summarizing them into basic figures. These 

basic figures are symbolic abstractions that serve as a bridge 

between the conditions in the prompt and the final goal we 

ought to prove. To systematically organize these abstractions, 

we classified them according to their geometry features. 

Figure 5 describes four basic structures that involve 

midpoints.  

 

We use template (D) as an example to illustrate the 

effective description and application of these templates. To 

identify figures in problems that are structurally similar to 

this template, we first need to clearly represent the template. 

Through extensive experiments, we propose to use 

conditions that specify the relationships of key vertices in the 

template structure. The detailed formal language 

representation of template (D) is outlined in 4 steps, as 

follows. 

 

Template (D) Double the length of a Median  

Goal: Construct congruent triangles to establish the relations 
of segments in different triangles  
 
Description:  
Point(Q). 
Point(X). 
Point(Y). 
Point(Z). 
#Condition 1: point Q lies on line segment XY 
pointLiesOnLine(point(Q), line(X,Y)). 
#Condition 2: point Q is the midpoint of segment XY 
isMidpointOf(point(Q), line(X,Y)). 
#Condition 3: point Z is not on line XY 
not(pointLiesOnLine(point(Z), line(X,Y))  
#Condition 4: there exists line segment ZQ or QZ in the prompt 
line(Z,Q). 

Figure 4: The LLM’s performance on Example 1. Its auxiliary 

construction and proof are both incorrect. 

Figure 5: Four templates about midpoints. (A) Median on the 

base of Isosceles Triangles; (B) Median on the hypotenuse of 

Right Triangles; (C) Mid-segment of a Triangle; (D) Double 

the length a Median  
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Then, we guide LLMs to search for the structure in 

Template (D) in problems. Figure 7 shows four examples 

that can use Template (D).  It should be noted that, when 

searching for template (D) in the same problem, there 

sometimes exist multiple sets of auxiliary lines, as shown in 

Figure 6 Example 1-A and 1-B. 

After introducing the design of the templates, we will 

introduce how they are applied to problems by the MoT. The 

procedural overview of the MoT could be found in Figure 7. 

 
Tactic selection. As shown in Figure 7, the input of MoT can 

be represented as a tuple (𝑡, 𝑠, 𝑂), where 𝑡 is the problem in 

natural language, s is the formal language representation of 

the diagram, and 𝑂  is the option set O = {o1,o2,. . . on,} for 

auxiliary line features, where each option can be represented 

by a set of geometry elements oi = {ei1,ei2,. . . ein } . The 

tuple (𝑡, 𝑠, 𝑂) is then composed as a language sequence and 

sent to LLMs, where each x[i] is a token, so that 

𝑝𝜃(𝑥) = ∏ 𝑝𝜃(𝑥[𝑖]

𝑇

𝑖=1

| 𝑥[1. . . 𝑖 − 1]) 

where 
p  denotes a pre-trained LLM with parameters 

representing the parameters of LLMs[15]. Then LLMs 

select templates from the template library 
( )nmmmM ...2,1=  

and sort them: 

))(|()( xpromptmpmrank ii   

here, )(xprompt  wraps input x with task instructions. 

This process of template selection is a heuristic for our 

search algorithm. We let LLMs to decided which and in what 

order templates are applied due to their flexibility and 

linguistic comprehension. LLMs’ decisions are made with a 

holistic understanding of the prompt due to their language 

characteristics. Among templates that are applicable the 

prompt, they can prioritize those that matches the best. In 

Example 3 shown in Figure 8, the problem statement 

contains the geometry features: triangle, right angle, and 

midpoint. LLMs were able to prioritize the template 

"Median on the hypotenuse" (involving all three features) 

over “Double the length crossing a Median” (involving 

triangle and midpoint). 

We observe that LLMs judgments are highly accurate, 

most of the time claiming the correct template as its first 

choice and occasionally ranking it as its second and third 

choice.  

Tactic Mapping. After selecting templates, the challenge 

becomes to apply these abstract templates to specific 

problems. For simple geometry figures, we can quickly 

Figure 7. Demonstration of the MoT. Step 1: Tactic 

Selection. Step 2: Tactic Application 

 

Figure 6. Template (D) and its usage on four problems. There 

are two possible matches of Template (D) in Example 1 

Figure 8. Demonstration of MoT on Example 3.  
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identify the key geometry elements for the basis of auxiliary 

constructions. However, for complex geometric figures 

containing multiple basic shapes, effectively mapping 

template to the problem is more challenging. These two 

types of problems vary by difficulty and therefore have 

different levels of requirements. For simple figures, we can 

use Chain-of-Thought (CoT) [18] to construct a solution 

path. While for complex figures, we need to search the 

problem’s solution space using the Tree-of-Thought (ToT) 

strategy [19]. MoT combines the advantages of both CoT 

and ToT by generating a flexible searching structure, either 

chain or tree. 

The selected templates are traversed from highest to 

lowest rank. As shown in Figure 7, the application of each 

template can be accomplished in three steps: vertices 

mapping, self-evaluation, and auxiliary construction. For 

each template 𝑚𝑖, the new input to LLMs is the language 

sequence 𝑥, composed by the tuple (𝑡, 𝑠, 𝑚𝑖).  

Step 1: Vertices Mapping. Given the input 𝑥 , LLMs 

search for a set of vertices combinations 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑗} 

in the problem (described by t and s) that map with the 

template. 
 

{𝑐1, 𝑐2, … , 𝑐𝑗}  ← 𝑝𝜃({𝑐1, 𝑐2, … , 𝑐𝑗} | 𝑝𝑟𝑜𝑚𝑝𝑡(𝑥)) 
 

each  𝑐𝑖   is a vertices combination, and 𝑗  is the number of 

combinations generated from the given template.  

     As shown in Figure 8, LLMs detected several 

combinations for Template (B). 𝑐1 : Triangle ADC and 

Midpoint D, and 𝑐2: Triangle ADB and Midpoint F. However, 

it is evident that some of the combinations are incorrect.  

     Step 2: Self-Evaluation. To boost efficiency and rule out 

incorrect combinations, we included the self-evaluation step 

for LLMs to verify their results.  
 

𝐶′ ← 𝑝𝜃(𝐶′| 𝐶) 
 

the revised set 𝐶′  contains only the correct combinations. 

This step is another heuristic for our MoT search algorithm, 

keeping only the combinations that satisfy all conditions in 

the template. Heuristics are typically either programmed (e.g. 

DeepBlue) or learned (e.g. AlphaGo) [21]. However, LLMs 

can evaluate states and are especially adept at giving 

feedback, possessing higher flexibility than the typical 

means [21].  As shown in Figure 8, the mistakes in the 

vertices mapping are detected via self-evaluation.  

Step 3: Auxiliary Construction. After generation and 

evaluation, only the correct vertices combinations 𝐶′ remain. 

For each combination, an operation on the relationship of the 

vertices is conducted to construct auxiliary lines 𝐴 =

{𝑎1, 𝑎2, … , 𝑎𝑛} 
 

{𝑎1, 𝑎2, … , 𝑎𝑛} ← 𝑝𝜃({𝑎1, 𝑎2, … , 𝑎𝑛} | 𝑝𝑟𝑜𝑚𝑝𝑡(𝐶′)) 
 

Each 𝑎𝑖 is the auxiliary constructed from combination 𝑐′𝑖 , 

and 𝑛  is the number of auxiliaries. This step is a strict 

deduction from the combinations and will not lead to any 

errors. As shown in Figure 8, for template (B), the auxiliary 

is directly constructed by connecting two vertices in the 

combination. 

The whole procedure of MoT is described above, and it 

can be seen that unlike typical inductive methods that start 

from problem conditions and branch out to all possible 

outcomes, our MoT prompting is goal oriented. The way 

MoT characterizes and applies templates engenders LLMs’ 

neural intuition. 

3.3 Forward Chaining for Geometry Reasoning 

After constructing auxiliaries, since LLMs fail to perform 

long-term complex logical reasoning, we adopt a forward 

chaining algorithm for geometry reasoning. Forward 

chaining starts from known geometric conditions (axioms, 

theorems, constructions, etc.) and derives new intermediate 

results and theorems. This process is repeated until the goal 

is reached. However, it tends to produce an extensive 

number of redundant intermediate results and steps, 

requiring effective control over the unfolding process and 

mechanisms to judge results to obtain the simplest proof. It 

should be pointed out that, although backward chaining - 

starting from the ultimate goal and backtracking to the initial 

conditions - can also be a choice for logical reasoning, we 

find that this is very time-consuming for existing backward-

chaining tools, e.g., Prolog. We hypothesize that geometry 

theorem proving may generate a vast set of subgoals that fail 

Prolog to backtrack. Therefore, we adopt Clingo for forward 

reasoning. 

Clingo is an Answer Set Programming (ASP) system. 

Answer Set Programming (ASP) is a form of declarative 

programming that performs well in knowledge 

representation and reasoning, especially with combinatorial 

search problems. Combinatorial search problems involve 

searching through extensive possible solutions to find those 

that satisfy specific criteria.  

Our case of geometry theorem proving is a combinatorial 

search problem. Clingo generates new results from the basic 

facts, the extended facts from auxiliary lines, geometry 

axioms, and some basic rules. If our goal is among these 

generated results, then we have successfully proved the 

problem. The reasoning process is demonstrated in Figure 9.  

 

Basic Facts and Extended Facts. All the facts for a 

geometry proof are separated into basic and extended facts. 

The basic facts are the initial problem statements in formal 

language, as we have introduced in Section 3.1. The 
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extended facts are from the constructed auxiliaries, also 

represented in formal language, generated by LLMs 

introduced in Section 3.2. The facts contain all the geometry 

elements – points, line segments, and angles – and geometry 

relationships – points on lines, midpoints, identical lines – in 

the prompt. However, as mentioned before, not all problems 

are solvable solely with basic facts, some require auxiliary 

constructions), which are generated by LLMs. These facts 

are presented as extended facts. We illustrate Example 1’s 

basic facts and extended facts of Example 1 in Table 2 and 

Table 3, respectively.  
 

 

 

Proof Goal. Here we give an example of the proof goal for 

Example 1 in the Prolog format in Table 4.  

Geometry Axioms. We collect the majority of geometry 

axioms about triangles, parallel lines, and other related 

geometry elements in the Prolog format. Several axiom 

examples are shown in Table 5, e.g., Side Angle Side 

Theorem (SAS) for congruent triangles. 

 

\ 

 

 

Basic Rules. There exists symmetry, permutation invariant 

properties in the majority of geometry elements. For 

example, line(a,b) and line(b,a) are equivalent, the triangles 

with any order of point a, point b and point c are the same 

triangle, point a lying on line(b,c) is equivalent to point a 

lying on line(c,b), etc. We construct a set of basic rules to 

bridge the facts and geometry axioms. Several examples are 

shown in Table 6. 

 
Clingo for Geometry Reasoning. Given these facts, 

geometry axioms, and basic rules, Clingo starts its reasoning 

which consists of two main phases: grounding and solving.  

In the grounding phase, the input is transformed into a 

ground (variable-free) representation. All variables are 

replaced by the constants in the facts. In our example, the 

variables in the rules and axioms are replaced with the 

vertices and line segments in the facts. The solver then 

reasons based on the propositional statements and searches 

for answer sets (solutions) in the ground program. Modern 

ASP solvers rely upon advanced conflict-driven search 

procedures, pioneered in the area of satisfiability testing 

(SAT). In our example, if the proof goal appears in the 

Table 2. Excerpt of Basic Facts for Example 1. 
 

Basic Facts for Example 1   

point(a). 
point(b). 
line(a,b). 
line(b,c). 
... 
pointLiesOnLine(d,line(b,c)). 
pointLiesOnLine(e,line(a,c)). 
isMidpointOf(point(e),line(a,c)). 
pointLiesOnLine(f,line(a,b)). 
measureOf(angle(f,e,d)) == 90. 
... 

Table 3. Excerpt of Extended Facts for Example 1. 

 

Extended Facts for Example 1 

extendLine(line(d,e),line(d,g)). 
equals(lengthOf(line(d,e)),lengthOf(line(e,g))). 
line(g,a). 
line(g,f). 

Table 4. Proof Goal for Example 1. 

 

Proof Goal for Example 1 

greater(sumOf(lengthOf(line(c,d)),lengthOf(line(a,f))),lengthOf(
line(d,f)). 

Table 5. Examples of Geometry Axioms. 

 

Example of Geometry Axioms 

%Congruent Triangles 
%Side Angle Side Theorem (SAS): Two triangles are congruent if 
they have two sides and their included angle equal. 
congruent(triangle(A,B,C),triangle(D,E,F)):-
triangle(A,B,C),triangle(D,E,F),equals(lengthOf(line(A,B)),length
Of(line(D,E))),equals(lengthOf(line(B,C)),lengthOf(line(E,F))),eq
uals(measureOf(angle(A,B,C)),measureOf(angle(D,E,F))), not 
same_triangle(triangle(A,B,C),triangle(D,E,F)). 
.... 

Table 6. Examples of Basic rules to Bridge Facts and Geometry 

Axioms. 

 

Example of Rules 

line(A, B) :- line(B, A). 
pointLiesOnLine(A, line(B,C)) :- pointLiesOnLine(A, line(C,B)). 
... 
isMidpointOf(point(D),line(B,C)) :-
isMidpointOf(point(D),line(C,B)). 
equals(lengthOf(line(B,D)),lengthOf(line(D,C))) :- 
isMidpointOf(point(D),line(B,C)). 
... 

Figure 9. The End-to-End Flow of ASP System Clingo. It 

puts facts, rules, and the quest into grounding and conducts 

forward-chaining based on the ground program. 
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ground program, we have proved the theorem and finished 

the task. 

4. Experiments 

First, we analyze existing datasets and introduce our task-

specific dataset. Then, we evaluate the effectiveness of both 

our core MoT prompting and our whole method with 

quantitative and qualitative experiments. The results have 

proven that our design enlightens the potential of LLMs, 

simulates the human cognitive process, and improves the 

effectiveness of automated geometry theorem proving.  

4.1 Datasets 

Most of the existing research on geometry problem solving 

involves relatively few proof problems, and even fewer 

problems requiring auxiliary constructions. For example, the 

GEOS dataset [22] contains 186 SAT problems, all of which 

are simple problems without auxiliary lines. The GEOQA 

dataset [23] contains 4,998 geometric problems but are all 

multiple-choice and mostly simple computational problems. 

Table 7. Examples from Question Dataset 

Diagram Problem Type level Auxiliary line 

 

In quadrilateral ABCD, E is the midpoint of BC， 

AB is parallel to CD, If AE bisects angle BAD, 
Prove: AD = AB + DC. 

Quadrilateral 2 

 

 

Triangle ABC, C is a right angle,AC = BC, D is the 

midpoint of AB. DE⊥DF, points E, F are on AC, 

BC. Prove: DE = DF 

Triangle 2 

 

 

In triangle ABC, AD is the median on BC. E is a 
point on AD such that BE=AC. 

Triangle 3 

 

 

In quadrilateral ABCD, ∠ABC = ∠ADC = 90. M 

and N are the midpoints  of AC and BD. Prove: 
BM = DM. 

Quadrilateral 4 

 

 

In △ABC, ∠C = 90°, D is a point on side BC, circle 

O with diameter DB passes through the 
midpoint E of AB, intersects the extension of 

AD at F, connect EF. Prove:∠1 = ∠F. 

Circle 4 

 

 

In triangle ABC, D is on AC such that BD⊥AC at 

D, E is on AB such that CE⊥AB at E. M and N 

are the midpoints of BC and DE. Prove: MN⊥

DE 

Triangle 4 

 

 

In trapezoid ABCD, CD//AB, DQ=BQ, AP=CP, 
extend QP to intersect AD at M. Prove AM=DM. 

Quadrilateral 5 
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Matsuda et al. [10] collected 23 geometry-proof problems 

requiring auxiliary construction, and Wang et al. [11] 

collected 77 geometry-proof problems, but these datasets 

and proof procedures are not publicly released. There are 

other unpublished datasets as well [6,24]. 

Therefore, we carefully built a new geometry-proof 

problem test set containing 40 problems, of which 35 require 

auxiliary lines. These data are collected from various sources, 

with Chinese geometry exercise books [25] being the main 

source. Others are from related studies such as [10] [12]. We 

manually collected the prompt, diagram, and correct proof 

for each problem and classified them according to difficulty 

and geometry figures. The difficulty criterion comes 

primarily from the annotations in the exercise books. Some 

examples from our dataset are shown in Table 7.  

On one hand, we use these problems to test and analyze 

the logical reasoning abilities and vulnerabilities of LLMs. 

On the other hand, we analyze patterns of auxiliary 

constructions through the answers to these problems. For a 

typical example, we summarized four midpoint-related 

templates and selected 21 questions with midpoints from the 

dataset to evaluate our method, using success rate as the 

evaluation metrics.  

4.2 Evaluation Methods 

We conducted 2 types of experiments: a comparison 

experiment focusing on the performance of our MoT-

centered mechanism, and a step-by-step analysis holistically 

analyzing the effectiveness of each step in our approach. 

Regarding to comparison with other existing methods, some 

of the methods mentioned in related works either do not 

reveal their code, such as IGeoTutor[11] and GRAMY[10], 

or do not address geometry proof problems with auxiliary 

constructions, such as GeoQA[23]. Therefore, we compare 

our method with the reproducible prompting methods in the 

comparison experiments.  

The comparison experiment assesses the MoT-centered 

mechanism by comparing it with existing prompting 

methods. The capability of LLMs largely depends on the 

prompt, which requires extensive experiments to optimize. 

Their performances can be improved by simply providing a 

few examples (few-shot), describing the task (zero-shot) 

[26], and in more advanced cases, guiding step-by-step (CoT) 

[17]. Therefore, in this experiment, we used the GPT-4 to 

evaluate its performance with our MoT centered mechanism, 

compared to three other common prompting methods, zero-

shot, zero-shot-CoT, few-shot-CoT. 

The second experiment involves a step-by-step analysis 

tracking every part of our complicated method, which is 

divided into eight tasks. The purpose and intermediate result 

of each task is assessed. 

4.3 Experiment Results 

Comparison Experiment. We take Example 1 as the typical 

example to illustrate the difference among results of zero-

shot, zero-shot-CoT, few-shot-CoT, and our methods in 

Figure 10. MoT was able to construct two sets of correct 

auxiliaries while all other three prompting methods failed.  

 However, the other methods failed to different extents, 

and it is worth mentioning how the increasing specificity of 

the prompting has led to improvement in the auxiliary 

constructions. The Zero-Shot construction failed to focus on 

the key information in the prompt: E is the midpoint of AC. 

However, it shows a hint of intuition; GPT-4 was able to 

connect FC to form a triangle CDF since CD and DF are in 

the goal, suggesting that its performance would improve if 

its intuition is guided on the right track. The Zero-Shot-CoT 

construction was able to notice the key information and 

constructed an auxiliary related to midpoint E. Its error is 

due to a lack of patterns. The Few-shot-CoT provided such 

a pattern in the form of an example, which led to a partially 

correct construction: Extending DE to G. However, its lack 

of precision and generalization caused the error of the two 

other auxiliary lines. Finally, our MoT, with patterns that 

acquire precision from the clear-cut conditions and 

flexibility from the abstraction of vertices, was able to 

correctly construct two sets of auxiliaries, each containing 

three lines.  

The same procedure shown in Figure 10 is applied to 

prove 21 selected questions with midpoints using our 4 

midpoint-related templates. The experiment result is shown 

in Table 8 with success rate as the evaluation metric. Our 

method achieved a significantly higher success rate than all 

other prompting means, suggesting that MoT-based neural 

intuition plays a key role in improving the success rate of 

auxiliary construction. Most of the failure cases of our 

method can be attributed to two types of errors: template 

matching and auxiliary construction. Template matching 

errors occur mainly when there are many misleading 

conditions. In such case, multiple templates are applicable, 

and LLMs might have trouble in prioritization.  Auxiliary 

construction errors occur when the right template is selected 

but there are too many related vertices in the prompt that 

LLMs are baffled. Example of both errors are shown in 

Appendix B. 

 

Table 8. Performance of Our Method Compared to Other 

Prompting Methods 

 

Method 
No. of Successful 

Case 
Success Rate 

Zero-Shot 0 0% 

Zero-Shot-CoT [26] 2 9% 

Few-Shot-CoT [17] 8 38% 

Our Method 14 66% 
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Step-by-Step Analysis. We validate the effectiveness of our 

method via step-to-step tracking with intermediate results 

checked. In figure 11, we take Example 1 as the typical 

example to demonstrate the intermediate result of each step 

in our method. We break down a complex task with a long 

logical chain into 8 steps. Each step has its own purpose and 

Figure 10. Comparison of MoT’s performance with existing prompting methods demonstrated with Example 

1. Blue: Prompting. Yellow: LLMs’ auxiliary constructions. Red: Errors. (a) Zero-shot. Both the auxiliary 

construction and proof are incorrect.  (b) Zero-shot-CoT. Both the auxiliary construction and proof are 

incorrect. (c) Few-shot-CoT. The auxiliary construction is partially correct: extending DE to G. The 

connections from the new point to other vertices are wrong. (d) MoT. Two sets of auxiliary constructions, 

each set consisting of a correct extension and two correct connections.  
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is included to solve an issue encountered in the proving 

process.  

        ① enhances our model’s spatial perception – critical in 

solving geometry problems – by clarifying the relative 

positions of points, lines, and edges. ② is the heuristic of our 

search algorithm, determining which templates are related to 

the problem and which to apply first. ③ is critical in our 

method, boosting the precision and extending the flexibility 

of auxiliary constructions by searching for structures in the 

problem that match the template, which is characterized by 

vertices and their relationships. ④ is another heuristic, 

allowing LLMs to evaluate its results in ③, improving both 

the accuracy and efficiency in searching. ⑤ generates the 

auxiliary lines and is the output of MoT.⑥and⑦ 

complement the MoT by finishing the proof with Clingo’s 

strict logical reasoning, which is assisted by rules and 

theorems. Finally, ⑧ closes the loop of neural intuition and 

logical reasoning by returning to ② if our goal is not reached; 

it emulates the human trial-and-error problem-solving 

thought process.  

The generalization ability of our model is shown in 

Figure 12. We sticked to one example throughout our paper 

Figure 11. Holistic demonstration of our model in 8 steps on Example 1: (1) Diagram and Text parsing (2) Template 

selection. (3) Template mapping. (4) LLM Self-evaluation. (5) Auxiliary Construction. (6) Facts and Rules provided 

to Clingo. (7) Forward Chaining from the conditions to formulate proof. (8) Backtracking to auxiliary construction 

if proof failed.  
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for clarification. However, each template can solve a large 

variety of problems. In Figure 12, four examples of problems 

Template (B) can solve are displayed. Details of the 

performance of all midpoint-related templates on a variety 

of problems are illustrated in Appendix B.  

5. Conclusions 

Automated geometry theorem proving is a critical pursuit in 

the extension and exploration of the reasoning capabilities of 

artificial intelligence. In this project, we proposed a closed 

loop of neural intuition and logical reasoning to address 

auxiliary construction and reasoning in geometry theorem 

proving. The neural intuition is derived from our novel 

design of the MoT prompting method, which engenders the 

neural intuition capabilities of Large pre-trained Language 

Models, such as GPT-4, to construct auxiliary construction. 

The logical reasoning is derived from our resort to traditional 

knowledge-based artificial intelligence, using a forward 

chaining algorithm to accomplish the rigorous proofs that 

LLMs are not able to achieve. These two critical parts of 

geometry proofs forms a closed-loop when we emulated 

humans’ trial-and-error problem-solving approaches, 

iterating between auxiliary construction and logical 

reasoning until the final goal is proven. The effectiveness of 

our method is verified with a 66% accuracy performance on 

a complex geometry-proof dataset.  

      To take advantage of our method’s keen relationship to 

the human thought process, our future efforts would focus 

on further improving our design and implementing it in real-

world tutoring. First, we plan to revise and summarize more 

templates to cover the vast majority of geometry proof 

problems. Next, we aim to develop an AI geometry tutor to 

assist students in geometry studying. Since a big part of 

learning geometry is back-and-forth guidance and 

discussion - just like how we guided LLMs - interactive AI 

would be suitable for this role. It can communicate and 

provide feedback, addressing the biggest fear most students 

face in geometry: constructing auxiliary lines. 
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APPENDIX A. 

 

Source of the selected topic, research background: 

The topic of this project comes from the combination of my 

personal interest and the current research trend in artificial 

intelligence. Auxiliary constructions have once been one of 

my biggest headaches when learning geometry. However, 

my skills largely improved as I communicated with my 

teachers. I gradually started to gain an instinctual sense of 

the direction of auxiliary constructions. From there, I 

realized the beauty and intricacy of geometry intuition. 

When the newest LLM (GPT-4) emerged and demonstrated 

striking human-like abilities, I wondered whether it 

possessed this capability and whether it could communicate 

with users, assisting them in geometry theorem proving. 
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APPENDIX B. 

Appendix B contains the experimental results of our method. 

B.1 Examples of MoT’s performance on auxiliary constructions. 

Template 1 

 Step 1 Template Selection 

Here are the keywords of several templates for making auxiliary constructions. According to 

the matching of the prompt and each of these keywords, choose three templates and sort them 

from best match to worst match 

Keywords: 

Template 1: Midpoint 

Template 2: Right Triangle and Midpoint 

Template 3: Isosceles triangle 

Template 4: Two or more midpoints 

Template 5: Equilateral triangle 

Template 6: Congruent triangles 

Template 7: Circle 

Template 8: Quadrilateral 

 
Step 2 Template Mapping 

for template 1, find ALL POSSIBLE four vertice combinations in the prompt to x,y,z, and 

m that satisfy the following: 

#condition 1: point m lies on line segment xy 

pointLiesOnLine(point(m), line(x,y)). 
#condition 2: point m is the midpoint of segment xy 

isMidpointOf(point(m), line(x,y)). 

#condition 3: point z is not on line xy 

not(pointLiesOnLine(point(z), line(x,y))  

#condition 4: there exists line segment zm or mz in the prompt 

line(z,m). 

Output in the format: 

Combination ?: m = ?x  = ?y = ?z = ? 

 
Step 3 Self-verification 

Check if all your combinations satisfy conditions in the template. 
 

Step 4 Auxiliary Construction 
For each combination, do the following to construct auxiliary lines: 

Extend zm to n such that zm = mn. Connect n to x and y. By intuition, you may also connect 

n to other vertices in the prompt that would help solving the problem. 

(x,y,z,m match to the vertices that you claimed in your combination, n is a new point you 

created) 

1    

In quadrilateral ABCD, E is the midpoint of BC， AB is parallel to CD, If AE bisects angle 

BAD, Prove: AD = AB + DC. 

Step 1 Template 1 (Midpoint) - The midpoint of BC was used to show BE = EC. 

Template 8 (Quadrilateral) - Properties of the given quadrilateral ABCD were used. 

Template 2 (Right triangle and midpoint) - Not used since no right triangles. 

Step 2 Combination 1:m = E  x = B  y = C  z = A 

Combination 2:m = E  x = C  y = B  z = D 

Step 3 Combination 1:m = E  x = B  y = C  z = A  

Does m lie on line segment xy? Yes, E lies on line segment BC. 

Is m the midpoint of xy? Yes, E is the midpoint of BC. 



  

 

2 

 

Is z not on line xy? Yes, A is not on line BC. 

Does line segment zm exist? Yes, AE exists. 

This combination satisfies all conditions.  

Combination 2: m = E x = C y = B z = D 

Does m lie on line segment xy? No, E does not lie on line segment CB. 

Is m the midpoint of xy? No, E is not the midpoint of CB. 

Is z not on line xy? Yes, D is not on line CB. 

Does line segment zm exist? No, DE does not exist. 

This combination does NOT satisfy all the conditions. 

In conclusion, the only valid combination based on the given conditions is: 

m = E  x = B  y = C  z = A    

Step 4 

 

Construction: 

Extend AE to n such that AE = En ,Connect n to B, Connect n to C, Connect n to D . 

The constructed auxiliary lines are: 

Line En such that AE = En, Line nB, Line nC, Line nD     

2     

In triangle ABC,P is the midpoint of BC. Prove: AP < 1/2(AB + AC). 

Step 1 Template 1  Midpoint: Since P is already the midpoint of BC, this keyword is directly relevant 

to the problem. 

Template2 Right Triangle and Midpoint: This can be relevant because using a right triangle 

might give us relationships between sides that can help prove the inequality. 

Step 2 Condition 1: point m lies on line segment xy. 

Condition 2: point m is the midpoint of segment xy. 

Condition 3: point z is not on line xy. 

Condition 4: there exists a line segment zm or mz in the prompt. 

Let's examine the possible combinations: 

Combination 1:m = P (as P is the midpoint of BC)  x = B y = C  

z = A (since A is not on line BC, and AP exists in the triangle) 

Step 3 All the conditions are satisfied for Combination 1. 

Step 4 

 

We have extended line segment AP to a new point n, such that AP = Pn. 

We have drawn lines from point n to B and C.  

3   

In triangle ABC, AD is the median on BC. E is a point on AD such that BE=AC.  

Extending BE intersects AC at F. prove that AF= EF 

Step 1 Template 1: Midpoint 

Template 3: Isosceles triangle 

Step 2 Combination 1:m = D    x = B    y = C    z = E 

Combination 2: m = E    x = D    y = B    z = A 

Combination 3:m = E    x = D   y = C   z = F 

Step 3 Combination 1:  Does not satisfy Template 1 fully since D is not constructed as a midpoint, 

it is given 

Combination 2： :m = E  x = D    y = B   z = A  Satisfies conditions 1-4 

Satisfies Template 1: E is constructed as midpoint of DB 



 3 

Combination 3: m = E  x = D  y = C  z = F  Satisfies conditions 1-4 

Satisfies Template 1: E is constructed as midpoint of DC 

Step4 

 

Combination 2:Extend EA to N such that EA = EN. Connect N to D and B. Also connect N 

to C.  

Combination 3:Extend EF to N such that EF = EN.  Connect N to D and C.  Also connect N 

to B.  

4    

In triangle ABC, D is on AB, E is the midpoint of AC. BE and CD intersect at F. BD = DF. 

Prove: AB = CF. 

 

Step1 Template 1: Midpoint - This is clearly relevant since E is given as the midpoint of AC. 

Template 3: Isosceles triangle - Given that BD = DF, the idea of an isosceles triangle (a 

triangle with two sides of equal length) seems to fit with the information provided. 

Step2 Combination 1:m = E   x = A   y = C   z = B 

Step3 #condition 1: E lies on AC.  This is true as E is the midpoint of AC. 

#condition 2: E is the midpoint of AC. This is also true as stated in the prompt.  

#condition 3: B is not on AC. True, B is a vertex distinct from the line segment AC. 

#condition 4: BE exists. Yes, the line segment BE is mentioned in the prompt. 

It seems that all conditions are satisfied for this combination. 

Step4 

 

Extend BE to a point N such that BE = EN. 

Connect N to A. 

Connect N to C.       

5   

In triangle ABC, D is on BC, F is on AB. E is the midpoint of AC. DE⊥EF. Prove: CD + 

AF > DF 

Step 1 Template 2: Right Triangle and Midpoint - This template seems the most relevant since it 

combines two key elements mentioned in your problem: the right triangle and midpoint. 

Template 1: Midpoint - The concept of a midpoint is directly mentioned in your problem, 

and this template would undoubtedly be of use. 

Step 2 Template 2: Combination 1:  m = E  x = D  y = E   z = F  

Template 1: 

Combination 1:m = E   x = A    y = C   z = F 

Combination 2:m = E   x = A    y = C   z =D 

Step 3 Template 2: Using the above data, the vertices can be matched as:Combination 1:  m = E  x 

= D  y = E   z = F 

Template 1: 

:m = E   x = A    y = C    z = D or F   

Condition 1: m lies on xy.       E lies on AC. This condition is met. 

Condition 2: m is the midpoint of xy.  E is the midpoint of AC. This condition is met. 

Condition 3: z is not on line segment xy.     

If we take z = D, then D lies on BC and is not on AC. This condition is met. 

If we take z = F, then F lies on AB and is not on AC. This condition is met. 

Condition 4: There exists a line segment zm or mz.    

For z = D, we have DE. This condition is met. 

For z = F, we have EF. This condition is met. 

Step 4 Template 2: Following the new instruction:  Connect ym.  

However, since y and m are the same point (E), connecting y to m doesn't result in a new 

line. They are already the same point, so there's no line to be drawn between them in this 
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combination. 

Template 1:  

For z = D 

Constructing Auxiliary Lines: 

Extend DE to a point N such that DE = EN. This implies DE = EN. 

Connect N to A and C. So, we have lines NA and NC. Connect  GF  

For z = F 

Constructing Auxiliary Lines: 

Extend FE to a point N such that FE = EN. Connect N to A and C. So, we have lines NA and 

NC., Connect  GD  

6  

In trapezoid ABCD, CD//AB,  Q is the midpoints of BD, P is the midpoints of AC, extend QP 
to intersect AD at M. Prove AM=DM 

Step 1 Template 1: Midpoint - Directly relates to the given conditions. 

Template 8: Quadrilateral - The whole figure is a trapezoid which is a type of quadrilateral. 

Template 2: Right Triangle and Midpoint - Midpoints are relevant, and while right triangles 

aren't explicitly mentioned, they might be involved in the solution. 

Step 2 Condition 1: m lies on segment xy. This means m is between points x and y. 

Condition 2: m is the midpoint of segment xy. This directly indicates two possibilities from 

the problem - Q is the midpoint of BD and P is the midpoint of AC. 

Condition 3: z is not on the line xy. 

Condition 4: There exists a segment zm or mz in the problem statement. Based on the 

problem, we have segments AQ, QP, PK, and PA. 

Using these conditions, let's identify the combinations: 

Using Q as midpoint:   m = Q   x = B   y = D 

For z, the possibilities based on the segments given are A (since AQ exists). So, A cannot lie 

on line BD. 

Combination 1: m = Q   x = B  y = D   z = A 

Using P as midpoint:  m = P  x = A  y = C 

For z, the possibilities based on the segments given are D (since PK exists) and A (since PA 

exists). However, A lies on AC which contradicts Condition 3. So, only D remains as a valid 

option. 

Combination 2: m = P   x = A  y = C  z = D 

Step 3 Combination 1: m = Q  x = B  y = D  z = A 

Combination21: m = P  x = A   y = C   z = D 

On re-evaluation, these remain as the only two combinations that fit the given conditions 

from the problem 

Step 4 

 

 

Combination 1: m = Q  x = B  y = D  z = A 

Extend AQ to a point  n such that AQ = Qn.  Connect n to B and D.  

Combination 2: m = P  x = A  y = C  z = D  

Extend DP to a point  n  such that DP = Pn.   Connect n to A and C.  

Template 2 

 Step 1 Template Selection 

Here are the keywords of several templates for making auxiliary constructions. According to 
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the matching of the prompt and each of these keywords, choose three templates and sort them 

from best match to worst match 

Keywords: 

Template 1: Midpoint 

Template 2: Right Triangle and Midpoint 

Template 3: Isosceles triangle 

Template 4: Two or more midpoints 

Template 5: Equilateral triangle 

Template 6: Congruent triangles 

Template 7: Circle 

Template 8: Quadrilateral 
 

Step 2 Template Mapping 

for template 2, match ALL POSSIBLE four vertice combinations in the prompt to x, y, z, 

and m that satisfy the following:  

#Important properties: 

1. In triangle xyz, 

a)If ∠xyz is the right angle, xz is the hypotenuse 

b)If ∠yxz is the right angle, yz is the hypotenuse 

c)If ∠xzy is the right angle, xy is the hypotenuse 

2.The intersection of two diagonals is not necessarily the midpoint of the diagonals 

#Condition 1: xyz is a right triangle, ∠xyz is the right angle, xz is the hypotenuse 

triangle(x,y,z). 

measureOf(angle(x,y,z)) = 90 

line(x,z) #output this hypotenuse 

#Condition 2: point m lies on hypotenuse xz and is the midpoint of xz 

isMidpointOf(point(m), line(x,z)).  

Output in the format:Combination ?: m = ? x  = ? y = ? z = ? 
 

Step 3 Self-verification 

Check if all your combinations satisfy conditions in the template. 
 

Step 4 Auxiliary Construction 
For each combination, do the following to construct the auxiliary line: 

Connect ym. (y,m match to the vertices that you claimed in your combination) 

7   

In triangle ABC, AD⊥BC, F is the midpoint of AB. DC=BF, DE⊥CF at E, prove that 

CE=EF. 

Step1 
1. Template 2 (Right Triangle and Midpoint) - This is the best match because the prompt 

mentions right angles and a midpoint. 

2. Template 1 (Midpoint) - The midpoint is a key element of the prompt so this template is 

relevant 

Step2 Combination 1: m = F   x = A  y = D  z = B 

Combination 2: m = F  x = A  y = D  z = C 

Step3 Looking at the prompt again, the only right angle specified is ∠ADB. So for the vertex 

combinations to satisfy the conditions: 

x and z must be A and B in some order, since AB is the hypotenuse 

y must be D since ∠ADB is the right angle 
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m must be F since F is the midpoint of AB 

The vertex combinations satisfying all conditions are: 

Combination 1:m = F x = A y = D z = B 

Step4 

 

Connect DF  

8  

Triangle ABC, C is a right angle,AC = BC, D is the midpoint of AB. DE⊥DF, points E, F 

are on AC, BC, respectively. Prove: DE = DF 

Step1 Template 2: Right Triangle and Midpoint - Relevant because ABC is a right triangle and D 

is the midpoint of AB. 

Template 1: Midpoint - Relevant because D is the midpoint of AB. 

Template 3: Isosceles triangle - Relevant because AC = BC, making ABC an isosceles 

triangle. 

Step2 Combination 1:  m = D     x = A    y = C   z = B 

Step3 #Condition 1: 

Considering the right angle at C, the combinations for xyz can be: Combination 1:x = B  y = 

C  z = A 

With BC being the side opposite the right angle, and BA is the hypotenuse. 

#Condition 2: 

Point m lies on hypotenuse xz and is the midpoint of xz. 

For the above combination, xz corresponds to BA. And D is the midpoint of BA. 

Thus, this combination satisfies both conditions: Combination 1: m = D  x = B  y = C  z = A 

Step4 

 
 

Connect C to D.  

9   

In quadrilateral ABCD, ∠ABC = ∠ADC = 90. M and N are the midpoints  of AC and BD, 

respectively. Prove: BM = DM. 

 

Step1 Template 2：Right Triangle and Midpoint: This seems to be the most relevant template 

because we have a quadrilateral with two right angles and we are also dealing with midpoints 

(M and N). This is likely to provide tools or steps relevant to the problem. 

Template 1 :Midpoint: The problem involves the midpoints of diagonals of a quadrilateral. 

Therefore, any template focused on midpoints might offer insight or steps towards a solution, 

but it might be less specific than the "Right Triangle and Midpoint" template. 

Step2 Combination 1 (Triangle ABC):m = M     x = A  y = B  z = C  

Combination 2 (Triangle ADC):m = M    x = A   y = D  z = C 

Step3 For triangle ABC: 

y = B (Because the right angle is at vertex B, which is ∠ABC)   x = A    z = C 

So, AC (xz) would be the hypotenuse. 

For triangle ADC:  y = D (Because the right angle is at vertex D, which is ∠ADC)  x = A  z 

= C 
So, AC (xz) would be the hypotenuse. 
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Condition 2: point m lies on hypotenuse xz and is the midpoint of xz. 

Given, M is the midpoint of AC. 

For triangle ABC:   m = M (Since M is on AC) 

For triangle ADC:   m = M (Since M is on AC) 

Now, combining the above results: Both the combinations indeed satisfy the conditions in 

the template: 

Step4 

 
 

Auxiliary Line 1: BM  

Auxiliary Line 2: DM  

10  

In triangle ABC, D is on AC such that BD⊥AC at D, E is on AB such that CE⊥AB at E. M 

and N are the midpoints of BC and DE, respectively. Prove: MN⊥DE. 

Step1 Template 2: Right Triangle and Midpoint This seems like the best match since the prompt 

mentions right angles, midpoints, and perpendicular lines which suggests working with right 

triangles and midpoints. 

Template 1: Midpoint Midpoints are mentioned directly in the prompt so this is likely useful. 

Template 3: Isosceles triangle While not directly mentioned, it's possible isosceles triangles 

could be constructed as part of a proof. 

Step2 Let's break it down step by step. 

For Condition 1: 

"xyz is a right triangle, ∠xyz is the right angle, xz is the hypotenuse". 

Given the prompt: 

We have ∠BDC = 90 and ∠CEB = 90. 

Considering the right angle at BDC, BD or DC could be the legs of the triangle, making BC 

the hypotenuse. 

Similarly, for the right angle at CEB, CE or EB could be the legs, making CB the hypotenuse 

again. 

For Condition 2: 

"point m lies on hypotenuse xz and is the midpoint of xz". 

From the prompt: 

M is the midpoint of BC. 

Now, considering the above, let's try to match the conditions to the given triangle: 

Combination 1: 

Given the triangle BDC with the right angle at BDC: 

m = M (Midpoint of BC)  x = B   y = D   z = C 

Combination 2: 

Given the triangle CEB with the right angle at CEB:  

m = M (Midpoint of BC)  x = C  y = E  z = B 

Step3 Condition 1:xyz is a right triangle, ∠xyz is the right angle, xz is the hypotenuse. 

Condition 2:point m lies on hypotenuse xz and is the midpoint of xz. 

Considering the triangle ABC: 

Combination 1: 

For the triangle BDC with ∠BDC as the right angle:   x = B   y = D  z = C 

Thus, BC (or equivalently z-x) would be the hypotenuse. 
For the midpoint condition, M is the midpoint of BC. So m = M satisfies Condition 2. 

Combination 2: 
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For the triangle CEB with ∠CEB as the right angle: x = C   y = E  z = B 

Thus, CB (or equivalently z-x) would be the hypotenuse. 

For the midpoint condition, M is the midpoint of BC. So m = M satisfies Condition 2. 

Upon re-evaluation, both combinations do indeed satisfy the conditions provided in the 

template. 

Step4 

 

Thus, for the two combinations, we have: 

In the first combination, the auxiliary line is DM.  

In the second combination, the auxiliary line is EM.  

11   

In △ABC, ∠C = 90°, D is a point on side BC, circle O with diameter DB passes through 

the midpoint E of AB, intersects the extension of AD at F, connect EF. Prove:∠1 = ∠F. 

Step1 

 

Template 2: Right Triangle and Midpoint - this involves a right triangle and midpoint, both 

of which are given 

Template 7: Circle - a circle is given 

Template 1: Midpoint - the midpoint of AB is used 

Step2 Combination 1:m = E  x = A    y = B  z = C 

Step3 Combination 1 fully satisfies the conditions laid out for Template 2 

Step4 

 

To construct the auxiliary line:   Connect ym 

y = A   m = E 

Therefore, the auxiliary line construction is:  Connect AE  

 

B.2 Examples for two types of typical failure cases 

 

Template Matching Error 

 

In triangle ABC, D is on BC , E is on AD  such that ∠ACE = ∠B, CE=CD, M is the midpoints 

of AC, MN//AB ,N is on DE. Prove: EN=DN. 

Step1 Based on the keywords given in the prompt, here is how I would rank the template matches from 

best to worst: 

 

Template 1 (Midpoint) - The prompt directly mentions constructing the midpoint M of AC, so 

this template is the best match. 

Template 4 (Two or more midpoints) - The prompt only mentions one midpoint, but this template 

could still be useful as we can construct more midpoints as needed. 

Template 8 (Quadrilateral) - The prompt mentions quadrilateral ABCD which we can use 

properties of. 

The other templates don't seem applicable since the prompt does not mention right triangles, 

isosceles triangles, equilateral triangles, congruent triangles, or circles. 

 

So in summary, the best to worst template matches are: 

 

1  Midpoint  
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4  Two or more midpoints  

8  Quadrilateral  

Auxiliary  Construction  Error 

 

In right triangles BDC and BEC, ∠BDC = 90°, ∠BEC = 90°. M and N are midpoints of line 

segments BC and DE respectively. Prove: MN⊥DE. 

Step1 Here is how I would rank the template keywords from best match to worst match for this 

geometry proof prompt: 

1. Template 4: Two or more midpoints 

This template matches directly with the given information that M and N are midpoints. Using 

properties of midpoints would likely be useful. 

2. Template 2: Right triangle and midpoint  

This template matches the right triangles given in the prompt. Midpoint properties could still be 

useful with right triangles. 

3. Template 1: Midpoint 

This template broadly matches that midpoints are mentioned, though does not account for 

multiple midpoints or right triangles. 

The other template keywords do not seem directly relevant to this specific proof prompt 

involving midpoints and perpendicularity. So I would rank templates 3-8 as worse matches than 

the top 3 templates. 

 

Step2 Here are the possible matches for the vertices in the prompt to the variables x, y, z, and m in the 

template, satisfying the given conditions: 

Combination 1: m = M  x = B y = D z = C 

Combination 2: m = M  x = C y = B z = D 

Combination 3: m = N x = D y = B z = E 

Combination 4: m = N x = E y = D z = B 

The explanations are: 

- BDC and BEC are specified as right triangles, so B, D, C and B, E, C can match x, y, z in a 

right triangle combination. 

- M is specified as the midpoint of BC and N is the midpoint of DE. So M and N can match the 

midpoint m in the template. 

- The hypotenuses identified using the right angle properties are BC for BDC, and EB for BEC. 

- This covers the 4 possible combinations of mapping the givens to the template variables. 

Step3 You're right, let me re-check my combinations against the conditions: 

Combination 1: m = M  x = B y = D z = C 

This satisfies the conditions. BDC is a right triangle with right angle at D. BC is the hypotenuse 

with M as its midpoint. 

Combination 2: m = M  x = C y = B z = D 

This does NOT satisfy the conditions. BDC has right angle at D, not at B. 

Combination 3: m = N x = D y = B z = E 

This does NOT satisfy the conditions. BEC has right angle at B, not at E. 

Combination 4: m = N x = E y = D z = B 

This satisfies the conditions. BEC is a right triangle with right angle at B. EB is the hypotenuse 

with N as its midpoint.So you're correct, only Combinations 1 and 4 fully match the template 

conditions.   
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B.3. LLMs’ ability to solve geometry problems. 

Our early extensive experiments on the two LLMs GPT-4 and Claude 2 showed that they have poor spatial ability. After 

simple prompting, the LLMs’ ability was significantly improved, indicating the prompting is the key to improving LLM’s 

mathematical abilities. However, this is only for fundamental spatial abilities and LLMs are tested on simple 

computational problems. Solving complicated geometry theorem proving problems that require auxiliary lines demands 

intricate prompting methods such as our MoT. Following are some of our experiments:  

Zero-shot 

Example 1 Q: Triangle ABC，∠B=1/3∠C, ∠ACB=90,  solve ∠BAC 

GPT-4 Given triangle ABC where: 

Let's use the sum of the angles in a triangle, which is always 180°. 

Let x be the measure of ∠C in degrees. According to the problem, ∠B = (1/3)x. 

Thus:∠A + ∠B + ∠C = 180° 

∠A + (1/3)x + x = 180° (since ∠ACB = ∠A = 90°)  

90° + (1/3)x + x = 180°Now, combine like terms: 

(1/3)x + x = 90°Multiplying every term by 3 to clear the fraction: 

x + 3x = 270  4x = 270  x = 67.5°So, ∠C = 67.5° and ∠B = (1/3)(67.5°) = 22.5° 

∠BAC = 180° - 90° - 22.5° = 67.5°  

Claude2 Okay, let's solve this step-by-step: 

 ∠B = 1/3 ∠C ，∠ACB = 90 degrees (right angle) 

* Angles in a triangle sum to 180 degrees   So ∠B + ∠C + 90 = 180  

* ∠B + ∠C = 90 (rearranging)   We know: ∠B = 1/3 ∠C 

 ∠C = 60 degrees   Since ∠B = 1/3 ∠C, ∠B = 1/3 * 60 = 20 degrees 

Therefore, ∠BAC = 180 - 90 - 20 = 70 degrees 

IFlytek 

Spark 
∠B = 1/3 ∠C，∠B + ∠C = 90 ，∠C=67.5∘,∠BAC = 180° - 90° - 22.5° = 67.5°  

Error   ∠ACB=∠A 

Few-shot 

Example 1 Pay attention to the equivalence relations between the angles: ∠XYZ=∠ZYX=∠Y, 

solve：Triangle ABC，∠B=1/3∠C, ∠ACB=90, solve ∠BAC 

GPT-4 Given: 

1. Triangle ABC with ∠ACB = 90° (Right triangle) 2. ∠B = 1/3∠C 

3. The equivalence relation between the angles: ∠XYZ = ∠ZYX = ∠Y. 

We know the sum of angles in a triangle is 180°.∠A + ∠B + ∠C = 180°  ...........(i) 

Given ∠ACB (or ∠C) = 90°Substitute this value in equation (i):  

∠A + ∠B + 90° = 180° 

∠A + ∠B = 90°   ...........(ii) 

Also, given that ∠B = 1/3∠C: ∠B = 1/3 * 90°,∠B = 30° 

Now, substitute the value of ∠B in equation (ii): ∠A + 30° = 90°; ∠A = 60° 

Therefore, ∠BAC (or ∠A) = 60°  

Claude2 Okay, let's break this down step-by-step: 

Given: ∠XYZ = ∠ZYX = ∠Y (Angle relationships)  

ΔABC ∠B = 1/3 ∠C  ∠ACB = 90° (Right angle) ，We need to solve for ∠BAC 

Using the fact that ∠B = 1/3 ∠C, we can write:∠B = 1/3 ∠C 

And since ∠ACB is a right angle, ∠C = 90°  

Substituting:∠B = 1/3 (90°)  ∠B = 30° 

Now using the fact that the sum of angles in a triangle is 180°, we can write:  

∠B + ∠BAC + 90° = 180°   30° + ∠BAC + 90° = 180° 

∠BAC = 180° - (30° + 90°)   ∠BAC = 60° 
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Therefore, the measure of ∠BAC is 60°.  

IFlytek 

Spark 
∠AYX=∠BXZ  ∠AZY=∠CXY；∠AYX+∠X+∠AXY=180∘...  

 

 

Zero-shot 

Example 2 Q:AB is 5 units long. BC is 3 units long. Triangle ABC is a right triangle. ∠C is the right angle. What is 

tan(∠B) ? 

GPT-4 A:  From the Pythagorean theorem for right triangles:
222 ABBCAC +=  

3453 222 =+=AC  (tan(∠B) =frac{opposite side}{adjacent side} 

For angle B, the opposite side is AB and the adjacent side is BC. 

tan(∠B) = AB/BC   So, (tan(∠B) =5/3. 

Claude2 A:  AB is 5 units long, BC is 3 units long, Triangle ABC is a right triangle,Angle C is the right angle,We 

want to find tan(angle B) 

In a right triangle, tan(angle) = opposite side / adjacent side 

The opposite side of angle B is BC, which is 3 units 

The adjacent side of angle B is AB, which is 5 units 

So, tan(angle B) = BC/AB = 3/5  Therefore, tan(∠B) = 3/5. 

IFlytek 

Spark 
A:  Since ∠C  is the right angle, we know that tan(∠ B) =BC/AB， Since AB = 3 units and BC = 3 

units, we have: tan(∠B) = 3/5 

Analyze The problem gives a right angle, but the LLM cannot distinguish between the hypotenuse and the adjacent 

side to ∠B. 

Few-shot 

Example 2 Pay attention to the  relations in a right triangle:  

If Triangle XYZ is a right triangle, Note the relationship between the side and the right angle: 

   1、If ∠X is a right angel, so YZ is is the hypotenuse. 

2、The opposite side of ∠Y is XZ 

 3、 The adjacent side of ∠Y is XY 

Solve: AB is 5 units long. BC is 3 units long. Triangle ABC is a right triangle. ∠C is the right angle. 

What is tan(∠B) ? 

GPT-4 AB is the side opposite to ∠C, and BC is the side adjacent to ∠C.  

Using the relationships given: 

1. If ∠C is the right angle, then AB is the hypotenuse. 

2. For ∠B, BC is the side opposite ∠B and AC (not mentioned, but by deduction) is the side adjacent to 

∠B. However, you've provided the lengths for AB and BC, and not for AC.  

- Side adjacent  to ∠B = BC = 3 units 

- Side opposite to ∠B = AC. We can find AC using the Pythagorean theorem: 

Given,  

AB (hypotenuse) = 5 units BC = 3 units  
\( AC^2 \) + \( BC^2 \) = \( AB^2 \) AC = 4 unitsThus,  
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\( \tan(∠B) \) = 4/3  

Claude2 Okay, let's go through this step-by-step:- Triangle ABC is a right triangle  

- AB is the hypotenuse and is 5 units long 

- AC is the side opposite to ∠B  - BC is the side adjacent to ∠B  and is 3 units long 

- tan(∠B) = opposite side / adjacent side - tan(∠B) = BC / AC  

- Since we don't know the length of AC, we can use the Pythagorean theorem: 

 - AC^2 + BC^2 = AB^2  - AC^2 + 3^2 = 5^2 

- AC^2 = 25 - 9 = 16 - AC = 4 units  

Therefore, tan(∠B) = BC / AC = 4 /3  

IFlytek 

Spark 

222 ABBCAC += , 3453 222 =+=AC ,tan(∠ B) =AC/BC   
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