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Abstract

Using quantum image representation algorithms as encoders for quantum neural net-
works(QNN), we explore the strengths and weaknesses of different ansatz and representa-
tions in terms of image classification. The designed quantum machine learning scheme is
based on an implementable quantum circuit. In this article, various experiments are con-
ducted to explore the factors that affect accuracy. The results derived from MNIST show
that brick-pattern entangler offers the best reliability and accuracy among other entangle-
ment structures. Regarding gray level alteration, an increase in gray level increases accuracy
for complex problems but decreases for simple ones. For image encoding methods, FRQI
demonstrated better stability and accuracy than NEQR. Readout from either position or
color qubit would not cause a significant difference from one another. We also found that
CRy gates are volatile in our trials, and are potentially caused by incompatibility with FRQI
and NEQR image representations.

Keywords: Quantum Neural Network, Quantum Image Representation, Handwritten Dig-
ital Classification, Loss Function
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1 Introduction

In recent years, both applications and performances of quantum computers have improved
greatly [HCS+20]with the development of theory and hardware[W+]. Compared with quantum
computers, traditional computers are in service for a longer period and are generally better
than quantum computers in terms of theoretical development, hardware manufacturing, and
commercial applications[NC10]. However, quantum computers are expected to have a break-
through in problems that are tough for conventional computers to solve and eventually surpass
the latter in all aspects[Aha99].

In this study, we want to show the methodology of QNN[SSP14], and how it can improve the
accuracy of handwritten digit classification. Our research demonstrates the influence of encoding
methods, entanglement structures, and image characteristics on classification accuracy. We also
examine the broader applications of quantum computing in various fields in the future.

Handwritten digit classification[LCJB+89] is a crucial issue in optical character recognition,
and it has been employed as a case study to evaluate theories of pattern recognition and ma-
chine learning algorithms[Den12]. Traditional conventional neural networks(CNN) with training
and improvement frameworks excel in this task [LJB+95]. Reference [LBD+89] reports a 1%
error rate due to the highly specialized and constrained back-propagation network. However,
CNN also has several state limits that have caused problems. These include high-performance
hardware, lots of memory, and time efficiency measures. Meanwhile, quantum computing of-
fers a new solution to these computational issues due to its characteristic of superposition and
entanglement[LZX+20].

This research investigates the impact of QNN on the accuracy and computational efficiency
of handwritten digit classification and presents a practical application of the QNN. Two quan-
tum image representation methods are utilized in this study. According to [KJL+23], a study
that focuses on quantum phenomena, research in quantum image processing uses a variety
of quantum image representation formats. The Flexible Representation of Quantum Images
(FRQI)[LDH11] method standardizes quantum computer images and encodes color and spatial
information. FRQI can determine the correlation property of multipartite quantum pictures, as
stated by [LDH11][LP23] in their studies. Another method, the Novel Enhanced Quantum Rep-
resentation (NEQR)[ZLGW13], uses the basis state of a series of qubits to store the gray-scale
value of individual pixels in an image instead of the probability amplitude used in FRQI. By
encoding gray-scale information with more qubits, the NEQR quantum image model improves
adaptability[ZLGW13].

Our study discusses the results of the experiments and determines the most successful com-
bination of encoding methods, entanglement structures, and image features, to significantly
enhance the accuracy of handwritten digit classification.

In this article, we focus on the advantages that quantum computing offers and study the
MNIST handwritten digit classification task based on quantum neural networks. We discuss the
progress of quantum computing and handwritten digital classification issues and provide quan-
tum computing background knowledge. Further, we offer the basic methodology in the QNN and
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present the outline and procedure of handwritten digit classification experiments. By evaluat-
ing the results of repeated experiments, the QNN approach’s classification accuracy, worst-case
and best-case scenarios for various entanglement structures, encoding methods, ansatzes, and
quantum gates are present. Finally, we investigate how the study improves digital handwritten
classification comprehension using QNN, evaluate its limitations, and encourage future quantum
computing research. The contribution of this work is separated into five parts:

• The “brick-pattern” structure, which is positioned before the parameterized layer, demon-
strates the highest performance.

• Entangler layer order rarely affects CX gate entanglement. The CX entangler after the
entangler layer enhances the “color-target” structure. The entangler’s position before CZ
gates profoundly impacts “color-control” and “color-target” systems. After the parame-
terized layer, the CH entangler usually performs better.

• CRy entangler results in slow and unstable convergence and overfitting in our model.

• In all cases, FRQI slightly outperforms NEQR.

• Readout from either the color qubit or the position qubit has little effect on QNN classi-
fication accuracy.

This paper is organized as follows. In section 2, we briefly outline the fundamental concepts
of quantum gate and quantum measurement upon which our method will be based. Then, in
section 3, We propose our quantum machine learning scheme for classifying handwritten digits,
consisting of three essential procedures: encoding framework, ansatz design, measurement, and
iteration. Next, in section 4, we demonstrate and compare the experiment results to illustrate
the effects of different encoding methods, different ansatz entanglement structures, different
digital pairs, and gray levels on classification. Finally, we end with a summary and outlook in
section 5.

2 Preliminaries

2.1 Quantum gate

The basic unit of quantum computing is qubit, which can be represented as |ψ⟩ = a|0⟩ + b|1⟩,
where a and b are complex numbers which satisfy |a|2 + |b|2 = 1. Qubit operations are unitary,
meaning they are reversible. The Pauli matrices can span a complex two-dimensional Hilbert
space, which includes the 2× 2 unitary matrices.

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

The single qubit operations also have rotation operators that rotate θ degrees around the x̂, ŷ,
ẑ axis, which can be described as:

Rx(θ) =

(
cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

)
, Ry(θ) =

(
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

)
, Rz(θ) =

(
e−

iθ
2 0

0 e
iθ
2

)
.

In fact, an arbitrary unitary operator can be demonstrated as a combination of rotation oper-
ators, which can be seen in the following theorem.
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Theorem 1 (ZYZ decomposition [NC10]) Suppose U is a unitary operation on a single
qubit. Then there exist real numbers α, β, γ and δ such that U = eiαRz(β)Ry(γ)Rz(δ).

The prototypical controlled operation is the controlled-X, often referred to as CNOT, is a
quantum gate with two input qubits, control and target qubits, respectively. The matrix of
controlled-X (CX) operation is represented below.

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


.

To simplify these operations in quantum circuits, we exhibit Rx, Ry, Rz, and CX gates as
below.

Rx(θ) Ry(θ) Rz(θ) •

2.2 Quantum measurement

Quantum measurement is usually placed at the end of the quantum circuit to extract and recover
information from the results of quantum state evolution, which can be described by the mea-
surement operator. For example, suppose the quantum state being measured is |ψ⟩ = a|0⟩+b|1⟩,
the measurement operators we use are M0 = |0⟩⟨0| and M1 = |1⟩⟨1|, thus the probability of

obtaining measurement outcome 0 and 1 is P (0) = ⟨ψ|M †
0M0|ψ⟩ = |a|2 and P (1) = |b|2, re-

spectively. So, the measurement result depends on the given probability distribution associated
with the being measured quantum state. The final result can be calculated by the expected
value of all the outcomes.

In this paper, we mainly use the projective measurement to extract information about
the evolved system, An observable M , a Hermitian operator on the state space of the observed
system, describes a projective measurement. The observable possesses a spectral decomposition,
M =

∑
mmPm, where Pm is the projector onto the eigenspace of M with eigenvalue m. For a

given quantum state |ψ⟩, the projective measurement average value is calculated:

E(M) =
∑
m

mp(m)

=
∑
m

m⟨ψ|Pm|ψ⟩

= ⟨ψ|(
∑
m

mPm)|ψ⟩

= ⟨ψ|M |ψ⟩
= Tr(M |ψ⟩⟨ψ|)

3 Method

Quantum machine learning mainly includes several parts: image preprocessing, image encoding,
ansatz design, measurement feedback, and iteration. First of all, the given classical data set is
preprocessed to make its size and pixel information meet the requirements of our experiment,
which can be done by using classical approaches and thus is not the focus of our discussion.
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Figure 1: Overview

Then, through image encoding, the classical information in the image is encoded into quantum
information, that is, the form of a quantum state. Next, the ansatz is designed to map the
prepared quantum state. The ansatz layer is composed of parameterized quantum gates, which
can be repeated several times. The number of repetitions should be adjusted according to the
experiment. The parameter set of this layer would be iteratively adjusted according to ansatz’s
performance. Finally, the quantum state is measured and its result can be evaluated according
to the loss function. The scheme would be iterated by updating the parameters until the model
converges and achieves better performance. The overview of our design is illustrated in Figure
1. In the following subsections, we will discuss these essential parts individually.

3.1 Encoding

Quantum computing has strong parallelism due to the effects of quantum superposition, quan-
tum entanglement, and quantum coherence, which often speed up classical computation. The
image itself contains sufficient information, such as position coordinates, pixel intensity, cur-
vature magnitude, geometric relationship, and so on. A well-designed encoder converts the
classical information of the image into quantum information, which is stored in the form of
quantum states. In recent years, various quantum image representation methods have been
proposed, that combine quantum computation with digital image processing. Meanwhile, the
number of qubits used in these quantum image representation formats, as well as the depth
of the corresponding quantum circuit, are also in polynomial order, which can be used for
NISQ(noisy intermediate-scale quantum computers) applications.

Le et al. put forward a flexible representation of quantum images (FRQI) [LDH11] in 2011,
which captures position information and color information by using angular encoding. Later,
the novel enhanced quantum representation (NEQR) of images was proposed in 2013 [ZLGW13],
which encodes the color information in the basis states of a sequence of qubits instead of a single
qubit in FRQI.

In our paper, we will adopt the two popular encoding schemes, FRQI and NEQR, to complete
the task of MNIST handwritten digit classification.

3.1.1 FRQI

The Flexible representation of quantum images (FRQI) [LDH11] scheme maps the gray-scale
value of each pixel to the amplitude while introducing a corresponding number of qubit sequences
to denote the position coordinate of each pixel. Then, the whole image is prepared into a
quantum superposition state as follows:

|I(α)⟩ = 1

2n

22n−1∑
i=0

|ci⟩ ⊗ |i⟩ = 1

2n

22n−1∑
i=0

(cosαi|0⟩+ sinαi|1⟩)⊗ |i⟩,

where αi ∈ [0, π2 ], i = 0, 1, · · · , 22n − 1. |ci⟩ is an angular expression of pixel color and |i⟩ is a
binomial expansion of pixel location, respectively.
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Given a 2n × 2n image, it can be generated using only 2n + 1 qubits, where 2n qubits is
needed for the position and one qubit for the color values. FRQI also guarantees that we can
efficiently transform the initial state |0⟩⊗2n+1 into the target state using a polynomial number
of quantum gates.

3.1.2 NEQR

Novel enhanced quantum representation (NEQR) [ZLGW13] scheme uses the basis state of
a qubit sequence to store the gray-scale value of each pixel in the image. Thus, NEQR is
useful for powerful intensity representation, which supports large images and reads intensity
determinedly. It is an algorithm based on the Espresso heuristic logic minimizer [BHMSV12],
providing a better logic gates compression rate in contrast to FRQI. NEQR also uses more
qubits to encode quantum images. For an image with a size of 2n × 2n and a gray-scale of 2q

(where q equals 8 in case of 256 intensity levels), the NEQR scheme uses a total of 2n+q qubits,
of which 2n qubits are used to encode the position and q qubits are used to encode the color.
The specific coding rules are as follows:

|I⟩ = 1

2n

2n−1∑
X=0

2n−1∑
Y=0

q−1⊗
i=0

|Ci
XY ⟩|XY ⟩,

where |Ci
XY ⟩ and |XY ⟩ are binomial expansions representing pixel intensity and position coor-

dinate respectively.

3.2 Ansatz

An ansatz in quantum computation is a parameterized circuit. It is usually used in variational
algorithms. A well-selected ansatz can improve the accuracy of computational results signifi-
cantly. We selected a hardware-efficient ansatz that follows the “Single-qubit gate + Entangler
+ Single-qubit gate + Entangler .....” pattern [KMT+17]. The hardware-efficient ansatz, in
contrast to the problem-inspired ansatz, is beneficial in the way that its qubit gates can be eas-
ily implemented in the aspect of hardware, and it requires less precision for the entangler. The
design of different ansatz is the core of quantum machine learning, which uses parameterized
quantum circuits to perform the unitary transformation on the encoded quantum states to real-
ize quantum superposition and entanglement, maximize quantum parallelism, and extract the
relevant information of images. Here, we employ some representative parameterized quantum
circuits, including downstairs (Figure 2), full-connected (Figure 3), color-control/target (Figure
4), brick-pattern (Figure 5). In fact, all these parameterized quantum circuits are composed of
two parts, namely, the unitary transformation layer and the entanglement layer. The unitary
transformation layer is based on ZYZ decomposition (Theorem 1) and the entanglement layer
is specially designed.

3.3 Measurement and iteration

After measurement, we can extract and determine the picture information, and then evaluate
the gap between the output result and the picture label through the loss function. Then, after
this evaluation, the feedback is fed into the parametric circuit to further update the parameters
of the next iteration. The above steps are repeated until the model converges and better
performance is achieved.

Loss function The loss function is a crucial part of the training process, which quantifies
the difference between the measurement output and the real result. Many loss functions can be
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y0 RZ RY RZ •

y1 RZ RY RZ •

x0 RZ RY RZ •

x1 RZ RY RZ •

c RZ RY RZ •

Figure 2: The downstairs structure. Each qubit in the entanglement layer will be connected
to its adjacent one, and the last will be connected to the first. In the example,Ry and Rz
are the parameter layers (CH, CRy, and CZ gates are also used for the entanglement layer in
experiments).

y0 RZ RY RZ • •

y1 RZ RY RZ • •

x0 RZ RY RZ • •

x1 RZ RY RZ • •

c RZ RY RZ • •

Figure 3: The full-connected structure. Every qubit is connected to all the other qubits, which
forms the representation (CX gate here is one of the ways, in the experiment we also used such
gates as CH, CRy and CZ).

y0 RZ RY RZ RZ RY RZ •

y1 RZ RY RZ RZ RY RZ •

x0 RZ RY RZ RZ RY RZ •

x1 RZ RY RZ RZ RY RZ •

c RZ RY RZ • • • • , RZ RY RZ

Figure 4: The color-control and color-target structure. All qubit connect to a color qubit(CX
gate here is one of the ways, in the experiment we also used gates such as CH, CRy and CZ.).
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y0 RZ RY RZ

U

RZ RY RZ U • U U

y1 RZ RY RZ

U

RZ RY RZ U U • U

x0 RZ RY RZ

U

= RZ RY RZ U • U U

x1 RZ RY RZ

U

RZ RY RZ U U • U

c RZ RY RZ RZ RY RZ U U U

Figure 5: The brick-pattern structrs. The parameter layer is similar to the parameter layer in
the previous structures. The entanglement layer consists of multiple brick-like units, as shown
in the figure. Each brick consists of a control gate and two U-gates on each side.

chosen to execute the classification task, which is based on the optimization approach, including
gradient descent, parameter shift, and so on. The two loss functions that are popular in QNN
are Mean Squared Error (MSE) and Binary Cross Entropy (BCE, also known as log loss). Here
we choose BCE to measure the distance between the generated label and the correct label. The
equation of BCE is as follows:

Binary Cross-Entropy(y, ŷ) = − (y · log(ŷ) + (1− y) · log(1− ŷ)) ,

where y is the true binary label (0 or 1), ŷ is the predicted probability of the positive class. BCE
is more fruitful in our case because it is specifically designed for binary classification problems,
and that it is sensitive to probabilistic distribution.

4 Experiment result

We conducted a series of experiments to assess the influence of various factors on the classifica-
tion performance of QNN. All experiments are performed using Python 3.9 and the quantum
computing package QuICT [oQCTCS23] for noiseless simulation of quantum systems. For cir-
cuits with a width larger than 7, we employ RTX3090 for GPU simulation, while CPU simulation
is used for the remaining cases.

Dataset We utilize the MNIST handwriting dataset [Den12, XRV17], which is a widely
used benchmark for image classification in machine learning. This dataset consists of 60,000
images of handwritten Arabic numerals ranging from 0 to 9. The task difficulty is moderate,
and the image resolution is only 28×28 pixels, making it suitable for image encoding in current
quantum systems. To ensure the credibility of our experiments, we select three pairs of numbers:
0 and 1 (low difficulty), 3 and 8 (high difficulty), and 2 and 5 (moderate difficulty). We use the
torchvision library to load the dataset, with approximately 85% of the images used for training
and the remaining 15% used for testing.

Image preprocessing In our work, image preprocessing consists of three main steps:

1. Downscale. The original image resolution of 28× 28 is too large for the current quantum
simulation. Additionally, both FRQI and NEQR only support images with resolutions of
2n × 2n(n ∈ N). Therefore, we resize the images to 16 × 16 using bilinear interpolation.
This resolution is clear enough to preserve image features effectively. The images after a
downsampling operation are shown in Figure 6.
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2. Change gray levels. The images in the MNIST dataset are grayscale images with 256
levels of gray. In some experimental settings, we reduce the number of gray levels by
setting uniform intervals and limiting the gray values to the edges of these intervals.

3. Remove conflicts. After applying step (2), a small portion of the images may be labeled
as belonging to both classes simultaneously. To ensure fairness in the experiments, we
remove all such ambiguous instances.

(a) Original Images

(b) Resize to 16× 16

(c) Change gray levels to 64

(d) Binary Images

Figure 6: Original images and preprocessed images of MNIST dataset.

Implementation details For the 4 entanglement structures, namely “downstairs,” (Fig-
ure 2) “full-connected” (Figure 3), “color-control” (Figure 4 left), and “color-target” (Figure 4
right), we utilize four types of 2-qubit gates to achieve different entanglement effects in accor-
dance with the requirements of the hardware-efficient ansatz. These gates include controlled X
gates (CX), controlled Z gates (CZ), controlled H gates (CH), and controlled RY gates (CRy).
It is worth noting that CRy gates are parameterized quantum gates that contain trainable
parameters. As for the “brick-pattern” structure (Figure 5), since it uses both 1-qubit param-
eterized quantum gates and 2-qubit gates, we employ two sets of combinations: Rz and CX
gates combined, and Rx and CZ gates combined.

Furthermore, we explore two different configurations for the entangler placement in relation
to the parameterized layer, as shown in Figure 7. Some works such as [KMT+17, NPST22]
position the entangler before the parameterized layer, while others, such as [BH23, DHL+21],
place the entangler after the parameterized layer. We experiment with both cases to evaluate
their impact on the classification performance of QNN.

Since the qubits used to encode position and color in both FRQI and NEQR have different
states, we attempt to read out the first position qubit and the first color qubit separately.

Besides, to ensure relatively stable convergence, we set the total number of training epochs
to 10. The batch size is set to 32, and the data order is shuffled and divided into batches before
each epoch of training to prevent the model from learning the order of the data.

The ansatz depth, denoted as d, is set to 5 to ensure the expressiveness of the model. We
calculate the binary cross-entropy loss of the classification results and update the parameters
using the Adam optimizer with a learning rate of 0.001.

Evaluation criteria We select the highest test accuracy of a certain epoch after the
convergence has become relatively stable as the final accuracy for an experiment. This approach
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y0 RZ RY RZ

Ent Ent

RZ RY RZ

y1 RZ RY RZ RZ RY RZ

x0 RZ RY RZ RZ RY RZ

x1 RZ RY RZ RZ RY RZ

c RZ RY RZ RZ RY RZ

Figure 7: Two configurations for the entangler placement: after (left) or before (right) the
parameterized layer.

helps to avoid accidental situations and ensures that the reported accuracy is a reliable measure
of the model’s performance.

4.1 Different entanglement structures

This set of experiments aims to compare the impact of different entanglement structures on
the performance of QNN classification. In these experiments, we employ FRQI encoding on
16 × 16 binary images and uniformly read out from the unique color qubit. In addition to
the “brick-pattern” structure, each experiment consists of 8 distinct entanglement structures,
including 4 types of 2-qubit gate entanglers and 2 entangler positions. The experiments re-
garding the “brick-pattern” structure consist of 4 entanglement structures, including 2 types
of gate combinations and 2 entangler positions. In order to effectively assess the influence of
each entanglement structure on the classification performance of QNN, we will comprehensively
compare their average accuracy, prediction stability, and performance for each entanglement
structure when classifying the 3 difficulty classification problems.

Based on the experimental results presented in Figure 8, it is evident that the “brick-
pattern” structure outperforms several other structures. Not only does it exhibit the highest
average accuracy, but it also demonstrates superior performance in both the best and worst
cases. In comparison to the other four structures, the “brick-pattern” structure is the most
stable, as the difference between the best and worst cases is minimal. The prediction stability
of the “color-control” structure is second only to the “brick-pattern” structure, but its prediction
accuracy is less likely to be high. Additionally, it has a slight advantage when classifying simple
problems. On the other hand, the “downstairs” and “full-connected” structures exhibit less
stability, with high accuracy in favorable cases but generally poor accuracy in unfavorable
cases. The “color-target” structure shows disadvantages in difficult classification problems.

4.2 Different entangler positions and entanglement effects of different gates

In this set of experiments, our objective is to assess the performance of different ansatz by
employing various 2-qubit gates or gate combinations for entanglement. Additionally, we aim
to investigate the influence of placing the entangler before or after the parameterized layer on
the overall performance. We define the classification performance of the two sets of experiments
as close if the difference in their accuracy is less than 1%. The experimental details remain the
same as mentioned above.

We present the previous experimental results in an alternative format, which is displayed in
Table 1. The blue background color indicates that placing the entangler after the parameterized
layer yields better results compared to placing it before. Conversely, the yellow background
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(a) (b)

Figure 8: (a) The performance of various entanglement structures on three groups of classifica-
tion problems. (b) The overall average performance of these different entanglement structures.

color indicates that placing the entangler before the parameterized layer yields better results.
The white background color indicates that the order in which the entangler is placed has little
effect on the results (<1%). The entry highlighted in bold red represents the highest accuracy
in classifying the corresponding pair of numbers, while the entry highlighted in bold green
represents the lowest accuracy.

It can be observed that in most cases, the order in which the entangler and the parameterized
layer are placed has little effect on the result when using CX gates for entanglement. However,
for the “color-target” structure, placing the CX entangler after the parameterized layer gener-
ally shows better performance. On the other hand, for the “color-control” and “color-target”
structures, the placement of the CZ entangler has a greater impact on the final result. It is
usually better to place it before the parameterized layer than after. Conversely, the results of
the CH entangler after the parameterized layer are usually better than those before. The con-
vergence of the model tends to be unstable when using CRy gates for entanglement. However,
occasionally, when the CRy entangler is placed before the parameterized layer, the results can
be significantly better (accuracy increased by about 1% to 4.5%). Conversely, when the CRy

entangler is placed after, the results often do not show much improvement (accuracy increased
by about 1% to 1.5%).

For the “brick-pattern” structure, the placement of the entangler has almost no impact on
the results when faced with simple and medium-difficulty classification problems. However,
for difficult problems, the entangler composed of the gate combination of Rx and CZ is better
placed after the parameterized layer, while the Rz and CX gate combination is better placed
before the parameterized layer.

In summary, the “brick-pattern” structure, which uses an entangler combining Rz and CX
gates and is placed before the parameterized layer, exhibits the best performance.

Entanglement with CRy gates We have observed that the utilization of CRy entanglers
in our model leads to slow and unstable convergence, and is also prone to overfitting. To
illustrate this, we randomly selected a set of experiments involving FRQI encoding on 16× 16
binary images, using a “downstairs” entanglement structure, and reading out from the first
position qubit to classify 3 and 8. We then plotted the validation loss and accuracy curves during
the training process, where various types of 2-qubit gates were employed for entanglement, as
shown in Figure 9. The figure clearly demonstrates that, in comparison to other 2-qubit gates,
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CX CZ CH CRy Rx - CZ Rz - CX
Entangler Structure

before after before after before after before after before after before after

downstairs 94.31 94.27 91.88 92.09 93.10 93.67 87.78 89.49
full-connected 93.69 93.65 90.04 91.04 93.76 94.31 88.63 90.50
color-control 92.60 92.47 92.91 90.55 92.44 93.00 92.19 92.21
color-target 91.17 92.47 92.91 90.55 89.97 93.29 88.98 89.98

Average

brick-pattern 93.99 94.20 94.69 94.67

downstairs 99.40 99.06 96.83 98.56 97.72 98.96 95.09 96.97
full-connected 98.86 98.41 97.02 96.78 98.91 98.61 98.91 97.62
color-control 99.21 98.81 98.81 96.92 98.86 97.67 99.06 98.71
color-target 97.32 99.55 98.81 96.92 98.91 98.86 95.14 98.61

1 and 0

brick-pattern 98.91 98.91 98.61 99.50

downstairs 94.11 94.64 91.77 91.72 94.17 93.23 84.84 89.38
full-connected 94.27 94.32 91.46 90.36 93.02 94.84 85.57 88.44
color-control 93.91 94.27 92.81 88.65 92.97 91.72 90.05 90.26
color-target 91.98 93.13 92.81 88.65 91.88 93.65 91.67 90.63

2 and 5

brick-pattern 94.90 94.17 94.43 94.79

downstairs 89.42 89.11 87.04 85.99 87.40 88.81 83.42 82.11
full-connected 87.95 88.21 81.65 85.99 89.36 89.47 81.40 85.43
color-control 84.68 84.32 87.10 86.04 85.48 89.62 87.45 87.65
color-target 84.22 84.73 87.10 86.04 79.13 87.35 80.14 80.70

3 and 8

brick-pattern 88.16 89.52 91.03 89.72

Table 1: Accuracy of QNN using various structures of hardware-efficient ansatz.

the model utilizing CRy entanglers exhibits minimal convergence in the initial epochs and
significant fluctuations in the final epochs. Conversely, models employing alternative entanglers
have already achieved stable convergence.

(a) Validation accuracy (b) Validation loss

Figure 9: QNN training curve.

It is important to note that this slow convergence and overfitting phenomenon is not solely
attributed to an increase in the number of parameters. As Table 2 shows, when employing the
“brick-pattern” structure, which also involves a substantial number of trainable parameters,
the model does not exhibit similar issues as observed with the CRy entangler. Based on this
observation, we infer that the entanglement provided by CRy gates may not be conducive to
effective classification for QNN when utilizing FRQI and NEQR encoding methods.
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Entangler Structure CX, CZ, CH CRy Rx - CZ, Rz - CX

downstairs 135 180
full-connected 135 315
color-control 135 175
color-target 135 175
brick-pattern 270

Table 2: The number of training parameters required for each entanglement structure when
using FRQI encoding.

4.3 Different encoding methods and gray levels

To the human eye, images with a higher number of gray levels are perceived to contain more
information and features. Therefore, the objective of this set of experiments is to investigate
whether classical image encoding methods based on quantum systems can effectively encode
different levels of grayscale information that can be captured by QNN and utilized as classifica-
tion features. By conducting these experiments, we can gain valuable insights into the potential
of quantum image encoding for enhancing the representation of grayscale information and its
applicability in QNN-based classification tasks.

The experiments are divided into two parts. In the first part, we utilize FRQI to encode
16×16 binary images, 64-level grayscale images, and 256-level grayscale images. And we employ
8 different “full-connected” structure entanglers. In the second part, we separately employ FRQI
and NEQR to encode images with these three gray levels. Among the 8 types of “downstairs”
entanglers, we select 2 with better performance, namely entangling with CX gates and CH gates.
These 2 entanglers are placed after the parameterized layer. In both parts of the experiments,
the resulting data is read out from the first position qubit.

From Figure 10, it is evident that increasing the number of gray levels can enhance the
average accuracy and stability of QNN classification, particularly for medium-difficulty classifi-
cation problems. However, for simple classification problems, the additional image information
provided by increasing the gray levels may disrupt the original “concise” features and confuse
the model, leading to a decrease in classification performance. Similarly, for difficult classifica-
tion problems, a significant increase in the number of gray levels can also reduce the stability of
model predictions. Table 3 demonstrates that increasing the number of gray levels does indeed
provide more information, resulting in a slight improvement in classification accuracy for both
FRQI and NEQR. Additionally, it is evident that encoding with FRQI outperforms NEQR in all
scenarios, although the difference between the two methods is not substantial. However, as the
gray level increases, NEQR significantly expands the circuit width and the number of training
parameters. This, in turn, requires more computing resources and prolongs the training time,
which may not be worth the marginal gain achieved.

Gray-levels Encoding 0 and 1 2 and 5 3 and 8

64
FRQI 96.78 95.73 89.16
NEQR 94.79 94.43 86.34

256
FRQI 96.78 95.78 89.26
NEQR 94.89 95.26 87.85

Table 3: Accuracy of FRQI and NEQR at different gray levels.
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(a) (b)

Figure 10: (a) The performance of various gray levels on three groups of classification problems.
(b) The overall average performance of these different gray levels.

4.4 Readout from position qubit and color qubit

When utilizing FRQI and NEQR for image encoding, the qubits are categorized into position
qubits and color qubits. These two types of qubits hold distinct meanings and statuses. To
examine the potential impact of the readout qubit on the classification outcome of QNN, we
conducted this experiment. First, we employed FRQI encoding on 16×16 binary images (FRQI
and NEQR produce identical outcomes when encoding binary images). Additionally, we utilized
two types of entanglers: the “downstairs” structure and the “full-connected” structure, each
consisting of 8 variations. Subsequently, we separately readout from the first position qubit and
the sole color qubit, respectively, and calculated the average accuracy.

From Table 4, it can be observed that the readout from both the position qubit and the
color qubit has a minimal impact on the classification accuracy of QNN (<1%).

Entangler structure position qubit color qubit

0 and 1
downstairs 97.90 97.82
full-connected 98.12 98.14

2 and 5
downstairs 92.25 91.73
full-connected 91.61 91.54

3 and 8
downstairs 85.97 86.66
full-connected 87.14 86.18

Table 4: Accuracy of readouts from different qubits.

5 Summary

In this paper, we experimented with QNN handwritten digit recognition based on the MNIST
handwritten digit database. Our results revealed that the brick-patterned structure is the best-
performance entanglement structure among the five structures. Besides, CRy gates are the
most unsuitable and simply over-fitting. In addition, when evaluating the grayscale values of an
image, an increase in the range of gray values can reduce the simplicity, accuracy, and stability
of the image. At the same time, it will improve the performance of moderately complex images
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but reduce the stability of highly complex images. Among the representation methods, FRQI
is better than NEQR, as the former demonstrated unparalleled efficiency; NEQR operates
with a wider circuit width and is poor in executing simple tasks. Lastly, accuracy is not
greatly affected by readout from color qubit or position qubit. In the future, our work can be
extended to designing more efficient encoding schemes, creating the higher performance ansatz,
exploiting QNN application in multi-classification, and investigating the performance of the
hybrid quantum-classical neural network to explore the potential of quantum neural network
and quantum computation.
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