Ej%: J:/Fﬁﬁ&l\ Ej%

ERMIX . PE

TES A4, Zhi-Qi Cheng
TES AN EAL: Carnegie Mellon University

WA H: ChartLLM: Unlocking the Multimodal
Potential of LLMs for Chart Comprehension

ChartLLM: Unlocking the Multimodal Potential of LLMs for Chart
Comprehension

Qiyuan Gu
Shanghai World Foreign Language Academy

phoenix_1203@icloud.com

Abstract

Charts are vital for explaining and communicating intricate data in research. Although Large Language Models (LLMs)
like GPT-3.5/4 excel at text, their chart comprehension is inadequate. Despite claims about GPT-4’s chart handling, its
utility is constrained by lack of interfaces. Moreover, existing techniques often remain confined to narrow tasks, impeding
adaptability. This predicament necessitates sophisticated, universally applicable chart comprehension techniques.

We propose ChartLLM, an end-to-end pipeline for chart data extraction and question-answering. Our specialized keypoint
detection module employs recursive Hourglass networks across multiple scales to localize chart components. We unify diverse
annotation formats into consistent keypoint representations. A Transformer encoder then models relationships for grouping.
This facilitates interpretable structured data extraction. For question answering, we fine-tune TS5 on the extracted data using
special tokens to associate questions and answers.

Extensive experiments on 3 datasets demonstrate state-of-the-art accuracy exceeding 90% on FigureQA and DVQA, re-
vealing consistent improvements over ChartQA’s TS5 approach. However, performance on ChartQA’s real-world charts
remains constrained by extraction limitations for complex visuals like dense line charts. We also instantiate our solution in a
real-world application, substantially reducing manual analysis.

Our work marks significant progress toward universal chart comprehension. It also enables seamless integration with
LLMs like TS, expanding their scope. Our code is publicly available on GitHub. This technique could profoundly en-
hance scientific communication and discovery. The source code and mode are available at https://github.com/
phoeniiix1203/ChartLLM.

Keywords: chart question answering, multimodal, large language model, data extraction, Transformer

https://github.com/phoeniiix1203/ChartLLM
https://github.com/phoeniiix1203/ChartLLM

Contents
1. Introduction

2. Related Work
2.1.Chart-QA Task e e e e e
22.Table-QA Task e e
2.3. Chart-to-Table Task e e e e e e
2.4. SOTA Detection Methods e e e e
2.5.Large Language Models L e e e

3. Our Porposed ChartLLM
3.1.DataPreparation L L e e e e e e e e
3.2. Center/Key Point Detection e e e e e
3.3. Center/Key Point Grouping L
34. Integration of OCR L
3.5. Table Formation e e e
3.6. Chart Question ANSWEIING« . . . v v v vttt e e e e e e

4. Evaluation
5. Conclusion

A Featured Source Code
A.l. Model Backbone L e e e e
A.2 Implementation Details e e

B Acknowledgement

14

15

17
17
24

25

1. Introduction

Charts serve as important tools for research by explaining and communicating intricate data. However, despite their
prowess in language tasks, Large Language Models (LLMs) like GPT-3.5/4 demonstrate inadequate chart comprehension
abilities. Their text-centric architecture precludes processing visual data like charts. This deficiency severely limits their
applicability, as charts have become ubiquitous across academia, business, and media for summarizing complex data. More-
over, ChartQA poses distinct challenges versus Visual QA on ordinary images, including out-of-vocabulary terms, demanding
precision, and complex reasoning.

While charts are difficult for LLMs to understand, tables are more understandable for LLMs. As tabular representations
of underlying data, tables organize information systematically across rows, columns, and headers. This explicit structure
facilitates locating and reasoning about data to answer questions. Moreover, LLMs are already trained extensively on tasks
involving structured text. Therefore, ”derendering” charts into tables could enable capitalizing on innate LLM capabilities.

We introduce ChartLLM, an end-to-end pipeline for extracting chart data as tables and fine-tuning LLMs for question
answering. Our specialized keypoint detection module employs Hourglass networks to localize components across scales. We
unify annotations into consistent representations. Next, a Transformer encoder models relationships for grouping keypoints.
This structured data extraction precludes predefined heuristics. For question answering, we fine-tune TS5 on the extracted
tables using special tokens.

Experiments on FigureQA, DVQA and ChartQA demonstrate over 90% accuracy on synthetic data but also limitations
generalizing to complex real charts. We have instantiated our solution in an application, substantially reducing manual chart
analysis. Our work marks significant progress in unlocking LLMs for multimodal comprehension. By effectively “deren-
dering” charts into digestible tables, our technique finally unlocks the latent capability of LLMs for chart comprehension.
It expands their scope beyond pure text, enhancing scientific communication and discovery. This work only scratches the
surface of how LLMs could integrate vision and language - further multimodal expansions could profoundly augment their
utility.

In addition, we have made our training, analysis, and visualization code publicly available on GitHub: https://
github.com/phoeniiix1203/ChartLLM. We have also made a simple demonstration interface for our model, as
shown in Fig. | and Fig. 2 below. It’s worth noting that while the current implementation focuses on the three most common
chart types—bar, line, and pie charts—the framework is designed to be easily extensible to accommodate new chart types,
such as whisky charts, thereby enhancing its utility and applicability.

(4 Chart Ap " ueiosenne 7 X

approche

Query

Please input your query here.

In 2014, what are the names of the bars that has the highest and second highest Aps?

Model

Please choose the model you want to use.

[ew L s

Figure 1. User input interface of demonstration

https://github.com/phoeniiix1203/ChartLLM
https://github.com/phoeniiix1203/ChartLLM

(3 Detected Key Points (Blue) and Center Points (Red) mteedeoe ao 2014 L

Ap %
25
22,2%

14,6%

10,2%

10
5
2,6%
0 -

pour le logement pour lesdéplacements pouraumoinsune pour les deux
approche approches

Xerr Q Ticdtr nsoeeuenéiiinu.
Eeioene | Nrém, lonlqueigun re sn télsepspné (DP), dsnnl:n spm enn iuasdep senstex es tnianan (CIXS) as ettuane Itnuséuipué
tndits;Ip (EAO) et 2008 E LEfP | Liou

Converted Table

151101223 &

pour le logement | pour les deplacements | pour au moins une pourles deux | approche approches &
Chart Type: Bar &

Title: Enqouuxliu st rtgesue ue guetoegsn ne larstteopdsbs taamteedeoe ao 2014 &

X Axis Title: None &

Y Axis Title: Ap &

Answer

pour le logement pour au moins une pourles deux

Figure 2. Output interface of demonstration

Overall, our research offers the following four significant contributions:

1. End-to-End Framework for Chart Data Extraction and LLM Enhancement: We introduce a groundbreaking
end-to-end framework tailored for extracting chart data and refining LLMs to adeptly handle question-answering tasks.
This innovative approach facilitates efficient interpretation and analysis of visual data representations.

2. Specialized Keypoint Detection and Relation Modeling: Our methodology incorporates a unique keypoint detection
module leveraging Hourglass networks in tandem with a Transformer encoder. Together, these technologies ensure
precise and unified chart component localization, and they sophisticatedly model relationships between keypoints.
This design eliminates the dependence on predefined heuristics.

3. Empirical Performance and Practical Implementation: Our framework exhibits remarkable accuracy in chart inter-
pretation, achieving over 90% on synthetic datasets such as FigureQA and DVQA. Furthermore, we have successfully
implemented our solution in real-world applications, markedly reducing the demand for manual chart interpretation.

4. Insight into Future Directions: Committed to propelling the field forward, we have made our code publicly available,
promoting community collaboration and aiding future research. We also offer an exhaustive analysis of the existing
limitations of our approach and outline avenues for potential improvements. This transparency aims to spur further
advancements in multimodal comprehension using LLMs.

In summary, while this work takes the crucial first step of equipping LLMs with basic chart comprehension skills, there
remain extensive opportunities to build on this foundation across extraction, reasoning, generation, evaluation, and archi-
tecture. Fulfilling the immense promise of multimodal LLMs will require continuing this trajectory. We are excited and
optimistic about future innovation in this direction.

2. Related Work

This section provides an exhaustive review of the literature pertinent to the domain of chart interpretation and under-
standing. Specifically, this review encompasses seminal works focused on a multitude of areas including, but not limited
to, chart-based question-answering (Chart-QA), chart-to-table conversion, component detection within charts, table-based
question-answering, and the role of large language models in these contexts.

2.1. Chart-QA Task

While some previous approaches have attempted to tackle the Chart Question Answering (ChartQA) task, their adapt-
ability to various types of chart data remains a challenge: Methods by Kahou et al. [2] and Kafle et al. [5] primarily focus
on employing convolutional neural networks (CNN) and long short-term memory (LSTM) architectures. These techniques
excel at visual and simple temporal data processing but are less effective in dealing with intricate linguistic aspects in charts
and does not support open-vocabulary question-answering on charts. As a result, end-users are constrained to posing ques-
tions based on a narrow set of pre-defined templates, thus significantly impeding the practical applicability of these systems.
Alternatively, the PreFIL model with two parallel Q+I fusion branches [0] has also emerged as a sophisticated approach
for handling both text and visual elements. However, its complexity makes it less straightforward to integrate as a modular
extension to existing language models, especially for more generalizable solutions. In light of these challenges, we advo-
cate for the development of a hybrid methodology that can convert charts into a format more conducive to interpretation by
large language models. Such an approach would amalgamate the specialized techniques seen in ChartQA systems with the
expansive natural language processing capabilities intrinsic to large pre-trained models.

2.2. Table-QA Task

In the initial stages of research, weakly-supervised semantic parsing for table-based question-answering (Table QA)
largely relied on hand-crafted features and prescriptive grammar rules [4]. Subsequently, extractive methodologies emerged,
focusing on the direct selection of token spans from linearized tables as potential answers or evidential material. Notable
among these is the TAPAS model by Herzig et al. [3], which adapts the Transformer architecture for table-centric tasks.
Similarly, the work by Yin et al. utilizes a neural programmer to interpret queries and generate responses based on tabular
data. In a more recent development, large language models such as TS [13] have been tailored for Table QA. These adapta-
tions employ specialized training paradigms that integrate table structures into the model’s understanding, thereby yielding
promising results [12]. These advances indicate transformer-based architecture, including large language models, can excel
in interpreting and querying tabular data.

2.3. Chart-to-Table Task

One compelling avenue for implementing the aforementioned hybrid approach involves transforming Chart-QA tasks into
Table-QA tasks. However, existing efforts in this direction are fraught with inherent limitations. Kim et al. [7] were among
the pioneers in this domain. They convert chart questions into table-based questions, leveraging the capabilities of the Sempre
TableQA algorithm. This approach is valuable but highly limiting, as it assumes the availability of the underlying table for
each chart, making it less practical for real-world applications where such tables are often missing.

To address this, Methani et al. [10] and Masry et al. [9] employ techniques like Faster R-CNN and Tesseract OCR to extract
tabular data directly from charts. They further utilize TableQA models such as T5 and TAPAS for processing. While more
versatile, these approaches are tailored for specific chart types—Ilike bar, line, and pie charts—and rely on heuristic methods.
This fragmentation requires separate training models for each chart type, thereby complicating the model architecture and
operational processes. We argue that the limitations inherent in existing methodologies impede the advancement of a unified,
flexible framework capable of comprehensively understanding charts. To address this lacuna, our research concentrates
on leveraging diverse chart data types to train a model that autonomously learns to identify various chart components.
Importantly, our approach obviates the need for pre-defined heuristic rules for differentiating among chart components.

2.4. SOTA Detection Methods

This subsection delves into contemporary techniques for detecting chart components, a critical phase in the conversion of
charts to tables. These methodologies can be broadly categorized into two paradigms: bounding box detection and key-point
detection.

(1) Bounding Box Detection. The initial, and perhaps more intuitive, methodology is bounding box detection. In this
approach, rectangular boxes are superimposed on objects within an image to demarcate their spatial location and scale.

These bounding boxes can either be manually annotated, as exemplified in studies like [2], or algorithmically generated
through techniques utilized in research such as [5], [10], and [14]. While simple to understand, bounding boxes are sensitive
to scale and aspect ratio. Therefore, multiple chart component classes that may appear in various sizes and orientations make
creating bounding box rules that effectively isolate each class complex and time-consuming. In addition, for components
with irregular shapes, such as the pie parts in pie graphs, a bounding box can be an inefficient representation because it may
include a lot of “empty” space that doesn’t contain the object.

(2) Key-point Detection.On the contrary, our research adopts the second prevalent methodology, which is key-point-based
object detection. This methodology involves identifying specific points in the object that describe its features or geometry.
Studies like [8] and [9] have also employed this technique. The key-point-based methodology offers several advantages.
Primarily, it reduced the need for object-specific rules, as once key points are identified, they can often be used universally
across similar types of objects. For example, if the key points for one type of bar chart are identified, those key points might
be applicable to other types of bar-like objects in charts without many modifications. Secondly, the key-point-based approach
can potentially improve the accuracy of element detection, as key points often encapsulate critical information about the data
elements they represent. Lastly, the key-point-based approach is slightly more computationally efficient, as it focuses on
fewer, more meaningful points rather than scanning and processing large bounding areas.

In our work, we employ Hourglass networks [11] to detect key points. Hourglass networks have demonstrated efficacy
in key-point detection tasks, notably in human pose estimation. The symmetric, multi-scale, top-down design of hourglass
networks allows them to capture both global and local features effectively. This makes them well-suited for detecting key
points in charts, where understanding the relationship between local elements and the overall structure is crucial.

2.5. Large Language Models

Large language models like GPT (Generative Pre-trained Transformer) [1] and TS5 (Text-To-Text Transfer Transformer)
[13] are neural network based models trained on extensive textual datasets. These models typically feature an architecture
based on the Transformer, which was initially introduced by Vaswani et al [15]. The Transformer architecture is composed of
multiple layers of self-attention mechanisms and feed-forward neural networks, facilitating the efficient learning of long-term
dependencies in text. GPT models utilize a decoder-only architecture, while T5 employs an encoder-decoder framework
that allows it to be fine-tuned for a broader range of tasks. Despite their complexity and capabilities, these models are
fundamentally designed to process text. They lack native modules for handling non-textual data types like images or audio.

3. Our Porposed ChartLLM

In this section, we first delineate the procedures for dataset amalgamation and data format transformation to optimize them
for our training tasks. Subsequently, we delve into the specifics of our key-point detection and grouping strategies for chart
component identification. Following this, we elaborate on the design of an Optical Character Recognition (OCR) module,
proposed for the extraction of textual elements from charts. This OCR module is then integrated with previously identified
chart components, forming a cohesive system to de-render charts into table formats. Finally, we discuss the deployment of
large language models in conjunction with the generated tables to facilitate the chart question-answering task.

3.1. Data Preparation

We opt to utilize the ExcelChart400K dataset as the foundational basis for our training data, a dataset originally introduced
by the authors of ChartOCR [&]. ExcelChart400K contains chart images sourced by crawling publicly available Excel sheets
on the internet. This data collection strategy ensures that the dataset closely mirrors charts as they are used in real-world
scenarios, lending a high degree of practical applicability to our model.

However, the structure of the original data set is problematic for our training process. ExcelChart400K is organized into
separate subsets, each specifically tailored for bar, line, pie charts. This format was originally designed to train distinct,
type-specific information extraction models. However, such a structure is not conducive to the training of our unified model,
which aims to handle multiple types of charts simultaneously.

To rectify this, we undertook several modifications to the dataset:

(1) Data Filtering. Firstly, we scrutinized the dataset to identify images that exclusively contain annotations for primary chart
elements—Ilike bars, lines, or pies—but lack annotations for other crucial components such as titles and axis labels. While
these images may be useful for training specialized detection models, they are not suitable for our holistic approach. As a
result, we pruned these images from our dataset. After this filtering process, our revised dataset comprises 115,776 images
for training, 3,695 images for validation, and 4,078 images for testing.

(2) Annotation Relabeling. Next, we restructured the annotation system to clearly distinguish between different types of
chart components. In the original dataset, the ’category id’ was uniformly set to zero for all component types. To address
this, we introduced custom category labels ranging from 1 to 7, each uniquely identifying a specific type of chart component.
These labels are detailed in Table Tab. 3 in the Appendix. Note that in the original dataset, there exist two additional
categories termed ’inner/outer areas.” As these two categories are not pertinent to our model’s scope, we have opted to
remove any annotations related to them for enhanced clarity.

(3) Unifying Representation. In the ExcelChart400K dataset, the annotations associated with different types of chart com-
ponents exhibit notable inconsistencies and are tailored to the specificities of each chart type. For example, in line charts, the
annotations are delineated as data points constituting the line, while in pie charts, they consist of a center point accompanied
by two edge points that define a particular sector. In the case of bar charts and similar types of visualizations, the annotations
are rendered as bounding boxes, specifying both the x and y coordinates of the top-left corner, as well as the dimensions of
the box in terms of its width and height. Given these discrepancies, it becomes imperative to harmonize these annotations
into a standardized format. Our approach focuses on converting these disparate annotation types into a unified representation,
which consistently specifies key points and center points for each chart component.

To unify these disparate annotation formats, we define the pivot points on the lines in line charts, the center points plus the
intersection points on the arc of pies in pie charts, and the upper left and lower right corners of other types of components as
key points p,. We also define the position centers of all kinds of components as center points p.. As shown in Fig. 3, Fig. 4
and Fig. 5, the blue dots represent the key points, and the red dots represent the center points. The black line joining key
points and center points shows that they belong to the same component. Note that under such definition, a single key point
often forms a group with different center points simultaneously. For instance, as shown in Fig. 4 and Fig. 5, the same key
point may be grouped with adjacent center points on either side.

40,000

35,000

Azknz+da ssbe+ iz

30,000
25,000

c
20,000
15,000

10,000

5,000

o

Figure 3. Key points and center points in bar chart. Blue: Key Points. Red: Center Points.

T,

25 7

20 4

£y 10 4 ‘\‘w\’—ency

Q"’\94”'\9'\?’%"%"&&’@Q@"@Qé"@@o&

Figure 4. Key points and center points in line chart. Blue: Key Points. Red: Center Points.

Given these definitions, the conversion from original annotations to this unified center/key point format is straightforward.
For bars in bar charts and the three title components, the coordinate of the center point is calculated by averaging the

7%

Whalesale costs

13%
W Environfental and social
obligationgosts

W Supplier operating costs
7%
AT

Pre-tax margin

Figure 5. Key points and center points in the pie chart. Blue: Key Points. Red: Center Points.

coordinate of the top left and bottom right key points. For lines in line charts, the coordinate of the center point is calculated
by averaging the coordinate of the starting point and the coordinate of the ending point of each line segment. For pies in pie
charts, the calculation of coordinates of the center point is a bit more complex, we define a function called get _center,
which takes as input the coordinates of three points a, b, and c. These points correspond to the center of the pie sector and its
two edges respectively.

Algorithm 1 Calculate Center of a Triangle

1: procedure GET_CENTER(a, b, ¢)

2: ca < [c[0] — a]0], c[1] — a[1]]

3 cb « [c[0] — b[0], c[1] — b[1]]

4: cross_z < cal0] x cb[1] — ca[1] x ¢b0]
5: if cross_z > 0 then

6 conter, « COLHOLCD)

o centery « el

8 return (center,, center,)

9: else
10: center, < 2 x ¢[0] — w
11: center, < 2 x ¢[1] — ﬂl]"’—bgl]ﬁm
12: return (center,, center,)
13: end if

14: end procedure

The function begins by calculating two vectors, ¢a and cb, which represent the vectors from point a to point ¢ and from
point b to point c respectively.

¢t = [cy — ag, ¢y — ay]
b = [ca — by, cy — by]

Next, we compute the cross product ¢a X cb. The sign of this cross product indicates the direction of the angle between
ca and cb.

€t X cb = cag - cby — cay - cby

If ca x cb is non-negative, we compute the centroid of the triangle formed by a, b, and c as follows:

Center — az+bx+cz’ay+by+cy
3 3
Otherwise, we choose another point as the center, calculated as:
e +by+cg b :
Alternate Center = (2035 - %, 2¢, — W)

In addition, for lines in line charts, we introduce an additional step to ensure uniformity. We identify the line with the
maximum length in our dataset and pad all other lines to match this length. This normalization is critical for maintaining
consistency when applying algorithms sensitive to input dimensions.

After transforming the annotation into the key point and center point format, the next step in our pipeline is data augmenta-
tion, which improves the generalizability and robustness of the model. We initially considered employing random cropping,
a technique that extracts a smaller, random section from an original image, and using this ”crop” for training, as part of our
data sampling process. However, we observed that this approach was unsuitable for line charts. Random cropping led to
the elimination of a significant number of data points in lines, introducing errors in subsequent steps. To compensate for
the absence of random cropping, we employed Gaussian bump. Gaussian bump is a technique that involves modifying the
intensity of data points based on a Gaussian distribution. This means that, unlike random cropping, Gaussian bump does
not alter the position of key points but rather introduces variations in their attributes, allowing the model to generalize better
without losing critical information.

3.2. Center/Key Point Detection

(1) Preliminary Stage of Center/Key Point Detection. In the initial stage of key point detection, we first input the image
into a preprocessing layer to obtain an intermediate representation, denoted as inter. This preprocessing layer consists of two
primary components: a 7 X 7 convolutional layer and a residual block. Both components have a stride of 2, meaning they
skip over input data with a step size of 2. The convolutional layer has 128 output channels, facilitating multi-dimensional
feature extraction from the input image. This configuration aims to reduce the image dimensions while retaining sufficient
relevant information.

(2) Specialized Module for Key Point Detection. Next, we design a specialized module for keypoint detection, as shown
in Figure 6. This module employs a five-level recursive structure, enabling the module to identify key points at different
scales and levels of detail. Within this module, the input x is passed through an upsampling layer and a max-pooling layer,
producing upl and max1, respectively.

upl has a larger feature map size, which aids in retaining more spatial details, thereby improving key point localization
accuracy. max 1, with a smaller feature map size, facilitates the extraction of global features, enhancing the model’s robustness
to key point detection under various conditions.

Then, max1 undergoes a feature transformation through an Hourglass layer, generating lowl. The Hourglass layer is a
symmetrical structure made up of multiple residual modules. It allows multi-scale feature fusion while maintaining high
image resolution, effectively capturing the structural information of the target.

The recursive structure comes into play here. If the bottom level of recursion is reached, low1 is directly transformed into
low2 through another Hourglass layer. Otherwise, low1 proceeds to the next level of recursion, using the return value of the
next level as low2.

Subsequently, low2 undergoes another feature transformation through a reverse Hourglass layer, generating low3. Unlike
the standard Hourglass layer, the reverse Hourglass layer is an asymmetric structure. It is still made up of multiple residual
modules, but its design aim is to guide high-resolution local feature extraction using low-resolution global features.

The final step involves feature fusion of upl and low3 to produce the final output. This fusion operation enhances the

diversity and expressiveness of features, further improving the performance of the key point detection module.
(3) Formal Stage of Center/Key Point Detection. We observed that previous ChartOCR models employed a one-dimensional
convolution layer and a pooling layer to further process features detected by the Hourglass Network. Specifically, for bar
charts, ChartOCR used a center pooling layer, while for pie charts and line graphs, a corner pooling layer was utilized. How-
ever, our experiments showed that the corner pooling layer performed poorly for pie charts without obvious corner points. To
unify the detection across the three types of charts, we discarded these pooling layers in our model.

In the formal stage of key point detection, we first initialize an empty list, outs, to store various outputs. During two
iterations, several key steps occur: we first input the intermediate representation (known as inter) into the aforementioned

10

Input

Max Pooling

Hourglass Layer

Recursive KP
Upsampling Module or
Hourglass Layer

Reverse
Hourglass Layer

Unpool Layer

Feature
Fusion

Output

Figure 6. Self-defined Key Point/Center Point Detection Module

key point detection module. This module includes a detection layer for computing key points, denoted as kp. Next, we
apply a convolutional layer to kp, obtaining a new representation, cnv. We then apply specialized key point and center point
convolutions to cnv, generating key_cnv and cnter_cnv, respectively. For both key_cnv and cnter_cnv, we compute key_heat,
center_heat, key_regr, and center_regr through center point and key point heatmap layers, as well as center point and key point
regression layers. Subsequently, we transpose and extract features from key_regr and center_regr. Finally, these values are
added to the outs list.

If the current iteration is not the final one, we need to update inter. We process inter and cnv through separate convolutional

and batch normalization layers. The processed inter and cnv are then concatenated and further processed through a ReLU
activation and a residual block to update inter. Through this detailed sequence of steps, we ultimately obtain feature maps
of the same size as the original image. Each pixel value in each feature map represents the probability of a center point/key
point existing at the corresponding image location.
(4) Loss Functions for Center/Key Point Detection. We combine Smooth L1 Loss and Focal Loss as our loss function
for keypoint detection. Each of these loss functions addresses specific challenges: Focal Loss deals with class imbalance in
classification tasks, while Smooth L1 Loss is used for regression tasks. Combining them allows us to leverage the benefits
of both. Addition is the most common way to combine different loss functions, primarily because the additive operation
maintains differentiability—a requirement for optimization algorithms like gradient descent. Additionally, it is also easier to
analyze and understand compared to other more complex operations.

In object detection and segmentation tasks, there is often a significant imbalance between negative samples (i.e., back-
ground or non-target objects) and positive samples (i.e., target objects). This imbalance may lead the model to allocate more
computational resources to learning the negative samples, thereby neglecting the fewer but more important positive samples.
To address this, we employ Focal Loss, a modified version of the standard cross-entropy loss with an added modulation fac-
tor. This factor decreases as the model’s confidence in classifying a sample increases, thereby mitigating the class imbalance

11

issue in object detection tasks.
The mathematical expression for Focal Loss is:

Focal Loss = —a(1 — p)” log(p)

where p is the model’s prediction, and « and ~y are hyperparameters (set to 4 and 2 in this study, respectively) that control
the allocation of weights.
Smooth L1 Loss is designed to alleviate some of the limitations of both L1 loss (|«|) and L2 loss (z?). Its mathematical
expression, where x is the difference between the predicted and actual values, is:
9 .
Smooth L1 Loss(z) = {0.533 if el < !
|x| — 0.5 otherwise

When prediction errors are very small, the gradient of the L2 loss may become exceedingly large, leading to model
instability. L1 loss is non-differentiable at zero, which can cause issues during optimization. Smooth L1 Loss mitigates these
issues by employing a squared term near zero, maintaining differentiate without being as insensitive to outliers as pure L1
loss.

3.3. Center/Key Point Grouping

In contrast to traditional chart recognition models such as ChartOCR, which employ a variety of complex heuristic rules
to group detected key points, our research directly utilizes neural networks to predict the relationship between key points and
center points. This approach eliminates the influence of human factors during the grouping stage, providing a more unified
and accurate framework for chart information extraction.

In terms of model architecture, we first pre-train our model on the task of keypoint detection and subsequently fine-
tune it for key point grouping. This combined approach of pre-training and fine-tuning is superior to training a model that
simultaneously performs both key point detection and grouping. Through pre-training, the model learns general features
for keypoint detection that can easily transfer to the task of key point grouping, thereby enhancing the model’s overall
performance.

Specifically, the initial phase of our model aligns with the key point detection model previously described. The image
first undergoes preprocessing and passes through an Hourglass network module to generate feature maps for key points and
center points

Feature | | Positional | Type | Feature | | Positional | Type
Embedding Embedding Embedding (1) Embedding Embedding Embedding (0)
[| J [| J

Center Point Key Point
Embedding Embedding
Encoder

Classifier

Linear

Figure 7. Key Point/Center Point Grouping Model (Above Structures are the Same as Key Point/Center Point Detection Model)

(1) Embedding Vectors for Key Points and Center Points. After obtaining the feature maps, as shown in Fig. 7, we further
enrich the data by forming embedding vectors. Taking the center points as an example, we first extract their features from a
specific batch to create feature embeddings. Next, based on the index of each center point, we compute its precise position
within the image to generate position embeddings. Subsequently, we create a type embedding filled with ones to indicate that

12

these are center points. Ultimately, these three types of embeddings—feature, position, and type—are concatenated to form
a complete embedding vector. The treatment for key points is similar, except that the type tensor is filled with zeros in this
case.

(2) Transformer Encoder for Grouping. These embedding vectors are then fed into a Transformer encoder consisting of six
layers, each having 260 model dimensions, four attention heads, and 1024 feed-forward network dimensions. The final step
involves making predictions through a classification layer. In this layer, the 260-dimensional input is first transformed into
64 dimensions via a linear layer. This is then followed by a non-linear activation using a ReLU function. Finally, through a
second linear layer, we obtain a 2-dimensional output that serves as the prediction for whether the points belong to the same
group or not.

Given that the majority of the code for the center/key point detection model is subsumed within the center/key point
grouping model, we have opted to economize on page length by only including the backbone of the center/key point grouping
model in the Appendix.

(3) Loss Functions for Center/Key Point Grouping. During the training process, we employ the same two types of loss
functions used in the key point detection phase to calculate the loss at the detection stage. These losses are then combined
with the cross-entropy loss from the grouping results to form a composite loss function for the key point grouping task.

Cross-entropy loss is commonly used for classification problems. It measures the ’distance’ between two probability
distributions: the distribution predicted by the model and the actual *ground truth’ distribution. If the model’s predictions are
accurate, the cross-entropy loss will approach zero. Conversely, if the model’s predictions are far from the true labels, the
cross-entropy loss will be significant.

Assuming there are N samples and C classes, if the model predict that the i*" sample belongs to the 5" class is Pij, and
the true labels are represented by y;; (where y;; = 1 indicates that sample ¢ belongs to class j, and y;; = 0 otherwise), the
cross-entropy loss is defined as:

N C
1
Cross Entropy Loss = N Z Zyij log(pi;) + (1 — ys5) log(1 — pij)

i=1 j=1
3.4. Integration of OCR

For the extraction of textual information within the charts, specifically for the titles of the value axis, the overall chart title,
and the titles of the category axis (categories 5-7), we employ TesseractOCR version 5.3.0 (https://github.com/
tesseract-ocr/tesseract), with the Page Segmentation Mode (psm) parameter set to 12. This particular setting is
employed to indicate that the image consists of text with sparse regions.

Notably, prior to text extraction, we use the OpenCV library (cv2) to condition the image for optimal text extraction.
The initial transformation to grayscale via the cv2.cvtColor function simplifies the image, thereby reducing computational
complexity while retaining the essential features necessary for text recognition. This is followed by the application of Otsu’s
thresholding method using the cv2.threshold function to generate a binary image. The thresholding serves to differentiate
textual elements from the background, essentially segmenting the regions of interest. Finally, we employ Fast Non-Local
Means Denoising through the cv2.fastNIMeansDenoising function to reduce noise artifacts in the image. This denoising step
enhances the clarity of textual elements, mitigating the likelihood of OCR errors. These preprocessing steps collectively serve
to improve the quality of the input image, thereby facilitating more accurate and efficient text extraction using TesseractOCR.

3.5. Table Formation

Finally, we utilize the information obtained from both the component detection and OCR part to form the underlying table
of the chart image. To obtain the data values in the chart, we employ the algorithm described in ChartOCR. This algorithm
capitalizes on the consistent observation that y-axis numerical values are exclusively positioned on the left-hand side of
the chart. Leveraging this observation, we compute the value represented by each chart component using their respective
coordinates in conjunction with the coordinates of the y-axis numerical values.

The first segment of the resulting table contains the information on the independent variable depicted in the chart, with
each data point separated by a vertical bar (”|”). Following this, the dependent variable(s) are also recorded, again separated
by vertical bars.

To enrich the table with more contextual information, we incorporate additional metadata. This includes the type of the
chart, which could be bar, line, or pie, the title of the chart, and the titles of the X and Y axes.

It is noteworthy that if a component is undetected during the process, the corresponding table value will be registered as
None. An example of the obtained data table of Fig. 3 is shown in the Appendix.

13

https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract

3.6. Chart Question Answering

In the final question-answering on the table extracted step, we fine-tune the large pre-trained network T5 [13] following
the similar practice described in the orginal ChartQA paper.

To elaborate on the specifics, the input fed into the encoder is formatted in a sequential manner, beginning with a [CLS]
token, followed by the question tokens, and terminating with a [SEP] token and the chart content tokens. Similarly, the
input for the decoder is structured to commence with a [CLS] token, succeeded by the answer tokens, and concluding with
a [SEP] token and chart content tokens, as illustrated in Fig. 8. The architecture is configured to directly generate answers
based on this input format.

1.07 Years 1991
Answer Answer Chart Chart
(ek= ‘ Tok 1 | Tok 2 | il | Tok 1 | Tok 2 ‘ |

A

Large Language Models (e.g. T5)

N T YN SN SO S S—

Question Question Chart Chart
‘ [cEl Tok 1 Tok 2 | 7 | Tok 1 ‘ Tok 2 | |
What is Years 1991

Figure 8. Fine-tuning large language models using table obtained

4. Evaluation

We fine-tune and evaluate ChartLLM on three existing datasets, Tab. 1 compares these datasets. These datasets have
been chosen to represent a broad spectrum of complexity and real-world relevance. Early datasets include FigureQA [2] and
DVQA [5], both contain a large corpus of synthetic data. FigureQA features approximately 100,000 charts along with 1.6
million questions. The questions are generated using 15 predefined templates and generally elicit yes/no answers. DVQA
contains about 300,000 charts and a staggering 3.4 million questions. These questions are designed based on 25 templates and
include answers that incorporate the 1,000 most common nouns from the Brown Corpus, as well as 500 vocabulary items that
are not present in the charts. The most recent dataset in our evaluation, ChartQA [9], includes two distinct subsets. ChartQA-
H contains 4,800 charts and 9,600 questions penned by crowdsourced workers. ChartQA-M, on the other hand, features
17,100 charts and 23,100 questions. These questions are generated by a TS model based on human-written summaries,
allowing for a more open vocabulary and nuanced interpretation of charts.

Name Data Types Chart Types Question Types Answer Types
FigureQA Synthetic Synthetic bar/line/pie charts ~ Template-based Yes/no

DVQA Synthetic Synthetic bar charts Template-based Fixed vocabulary
ChartQA Real-world Real-world bar/line/pie charts Mixed Open vocabulary

Table 1. Comparison between Existing CQA Datasets

For all the datasets under consideration, we employed the Adam optimizer with an initial learning rate of 5 x 1074,
The chart question-answering component of our model was subjected to training over 20 epochs, utilizing a linear learning
rate scheduler to adjust the learning rate dynamically. For a more rigorous comparative analysis between our approach and
the previous state-of-the-art (SOTA) methods, we adopt the identical evaluation metric as outlined in ChartQA [9]. In this
schema, a numerical answer is deemed correct if it falls within a 5% range of the gold standard answer. Conversely, for non-
numeric responses, an exact match with the gold standard is requisite for the answer to be classified as correct.The empirical
results of this configuration are summarized in Table 2.

Overall, our TS model exhibited a slight advantage over the ChartQA version of T5 model when evaluated on FigureQA
and DVQA datasets. However, the model’s efficacy diminished when tested on the more intricate ChartQA dataset. Upon

14

Model FigureQA DVQA ChartQA

Val 1 Val2 Test-Familiar Test-Novel Val Test
FigureQA 72.54% 72.40% - - - -
DVQA - - 56.48% 56.62% - -
T5(ChartQA) 87.97% 87.83% 89.01% 76.89% 40.15% 41.04%
T5(Ours) 91.50% 90.02% 91.75% 85.30% 29.72% 27.55%

Table 2. Evaluation results

dissecting the sources of errors, we ascertained that the primary source of errors stems from the chart data extraction compo-
nent.

A closer inspection of misclassified samples revealed that our model performed notably worse on line charts compared
to bar and pie charts. This divergence in performance may be attributed to the inherent geometrical complexities associated
with line segments in line charts, complicating the model’s ability to generalize detection rules across different chart types.
Another limitation surfaced in scenarios where the charts contained densely clustered components, causing the keypoint
detection model to falter.

5. Conclusion

In this paper, we introduced ChartLLM, a novel pipeline aimed at enhancing the multimodal capabilities of large language
models in processing chart images. By employing a two-stage approach comprising of key point detection using an hourglass
network and table-based question answering via TS models, we managed to convert intricate chart information into a more
digestible table format. This in turn allows for more efficient and accurate chart question-answering capabilities for large
language models.

We extensively evaluated ChartLLM on a range of datasets, both early and recent. Our evaluation showcased the model’s
capability to handle a diverse array of chart types and questions, thereby confirming its robustness and versatility. A dis-
tinguishing aspect of our approach lies in the uniformity of our chart information extraction mechanism. Unlike prior
frameworks, such as ChartOCR [&], which necessitate distinct models for diverse chart types, our pipeline sidesteps this
complexity. Leveraging an optimized key-point detection algorithm, we obviate the need for intricate, type-specific heuris-
tics. Consequently, our single, unified model can handle a wide range of chart categories seamlessly.

However, there is room for future enhancements. One possible direction would be to extend the pipeline to more complex,
multi-faceted chart types, or to integrate it with other types of visual data like maps and infographics. The other possible
direction is to use the adapter method instead of fine-tuning the whole model, reducing computational cost for training.

In conclusion, ChartLLM represents a step forward in improving the ability of large language models on the interpret of
charts and lays the groundwork for further exploration and improvements in the field of multimodal machine learning.

15

References

(1]

(2]

(3]

(4]

(]

(6]

(7]

(8]
(9]
(10]
(11]

[12]

[13]

(14]

[15]

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav
Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language
models are few-shot learners, 2020. 7

Samira Ebrahimi Kahou, Adam Atkinson, Vincent Michalski, Akos Kadar, Adam Trischler, and Yoshua Bengio. Figureqa: An
annotated figure dataset for visual reasoning. In Visually grounded interaction and language workshop, NIPS 2017, December 2017.
6,7, 14

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas Miiller, Francesco Piccinno, and Julian Eisenschlos. TaPas: Weakly supervised
table parsing via pre-training. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages
4320-4333, Online, July 2020. Association for Computational Linguistics. 6

Nengzheng Jin, Joanna Siebert, Dongfang Li, and Qingcai Chen. A survey on table question answering: Recent advances, 2022. 6
Kushal Kafle, Brian Price, Scott Cohen, and Christopher Kanan. Dvga: Understanding data visualizations via question answering. In
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5648-5656, 2018. 6, 7, 14

Kushal Kafle, Robik Shrestha, Scott Cohen, Brian Price, and Christopher Kanan. Answering questions about data visualizations
using efficient bimodal fusion. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV),
March 2020. 6

Dae Hyun Kim, Vidya Setlur, and Maneesh Agrawala. Towards understanding how readers integrate charts and captions: A case
study with line charts. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, CHI 21, New York,
NY, USA, 2021. Association for Computing Machinery. 6

Junyu Luo, Zekun Li, Jinpeng Wang, and Chin-Yew Lin. Chartocr: Data extraction from charts images via a deep hybrid framework.
In 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), pages 19161924, 2021. 7, 15

Ahmed Masry, Do Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. ChartQA: A benchmark for question answering about
charts with visual and logical reasoning. In Findings of the Association for Computational Linguistics: ACL 2022, pages 2263-2279,
Dublin, Ireland, May 2022. Association for Computational Linguistics. 6, 7, 14

Nitesh Methani, Pritha Ganguly, Mitesh M. Khapra, and Pratyush Kumar. Plotqa: Reasoning over scientific plots. In 2020 IEEE
Winter Conference on Applications of Computer Vision (WACV), pages 1516-1525, 2020. 6, 7

Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hourglass networks for human pose estimation, 2016. 7

Barlas Oguz, Xilun Chen, Vladimir Karpukhin, Stan Peshterliev, Dmytro Okhonko, Michael Schlichtkrull, Sonal Gupta, Yashar
Mehdad, and Scott Yih. Unik-qa: Unified representations of structured and unstructured knowledge for open-domain question
answering, 2022. 6

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter Liu.
Exploring the limits of transfer learning with a unified text-to-text transformer, 10 2019. 6, 7, 14

Hrituraj Singh and Sumit Shekhar. STL-CQA: Structure-based transformers with localization and encoding for chart question answer-
ing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 3275-3284,
Online, Nov. 2020. Association for Computational Linguistics. 7

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin.
Attention is all you need, 2023. 7

16

A. Featured Source Code
A.l1. Model Backbone

class kp_module(nn.Module):
def __init__(
self , n, dims, modules, layer=residual ,
make_up_layer=make_layer, make_low_layer=make_layer,
make_hg_layer=make_layer, make_hg_layer_revr=make_layer_revr,
make_pool_layer=make_pool_layer , make_unpool_layer=make_unpool_layer,
make_merge_layer=make_merge_layer, sxkwargs

):
super (). __init__ ()
self .n =n
curr_mod = modules[0]

next_.mod = modules[1]

curr_dim = dims[0]
next_dim = dims|[1]
self .upl = make_up_layer(

3, curr_.dim, curr_dim, curr_mod,
layer=layer , xxkwargs

self .max]l = make_pool_layer(curr_dim)

self .lowl = make_hg_layer(
3, curr_dim, next_dim, curr_mod,
layer=layer , xxkwargs

)

self .low2 = kp_module (
n — 1, dims[1:], modules[1l:], layer=layer,
make_up_layer=make_up_layer ,
make_low_layer=make_low_layer ,
make_hg_layer=make_hg_layer,
make_hg_layer_revr=make_hg_layer_revr,
make_pool_layer=make_pool_layer,
make_unpool_layer=make_unpool_layer ,
make_merge_layer=make_merge_layer ,
xxkwargs

) if self.n > 1 else \

make_low_layer (
3, next_dim, next_dim, next_mod,
layer=layer , =xxkwargs

)

self .low3 = make_hg_layer_revr (
3, next_dim, curr_dim, curr_mod,
layer=layer , =xkwargs

)

self .up2 = make_unpool_layer(curr_dim)

self .merge = make_merge_layer(curr_dim)

17

def forward(self, x):
upl = self.upl(x)

max1l = self.maxl(x)

lowl = self.lowl (maxl)
low2 = self.low2(lowl)
low3 = self.low3(low2)

up2 = self.up2(low3)
return self.merge(upl, up2)

class kp_group(nn.Module):
def __init__(

self , n, nstack, dims, modules, out.dim, pre=None, cnv_dim=256,
make_cnv_layer=make_cnv_layer, make_heat_layer=make_kp_layer,
make_regr_layer=make_kp_layer,
make_up_layer=make_layer, make_low_layer=make_layer ,
make_hg_layer=make_layer, make_hg_layer_revr=make_layer_revr ,
make_pool_layer=make_pool_layer , make_unpool_layer=make_unpool_layer,
make_merge_layer=make_merge_layer, make_inter_layer=make_inter_layer ,
kp_layer=residual

super (kp_group, self).__init__ ()
self.nstack = nstack
self. _decode = _decode_group
curr_dim = dims[0]
self .pre = nn.Sequential(
convolution (7, 3, 128, stride=2),
residual (3, 128, 256, stride=2)
) if pre is None else pre
self .kps = nn.ModuleList ([
kp_module (
n, dims, modules, layer=kp_layer,
make_up_layer=make_up_layer,
make_low_layer=make_low_layer ,
make_hg_layer=make_hg_layer,
make_hg_layer_revr=make_hg_layer_revr ,
make_pool_layer=make_pool_layer ,
make_unpool_layer=make_unpool_layer,
make_merge_layer=make_merge_layer

) for _ in range(nstack)
D
self .cnvs = nn.ModuleList ([

make_cnv_layer (curr.dim, cnv_.dim) for _ in range(nstack)
D
self.key_cnvs = nn.ModuleList ([

make_cnv_layer(cnv_dim, cnv_dim) for _ in range(nstack)
D
self .center_cnvs = nn.ModuleList ([

make_cnv_layer(cnv_dim, cnv_dim) for _ in range(nstack)
D

self . key_heats = nn.ModuleList ([

18

def

make_heat_layer(cnv_.dim, curr_.dim, out.dim) for _ in range(nstack)

D
self.center_heats = nn.ModuleList ([

make_heat_layer(cnv.dim, curr_.dim, out.dim) for _ in range(nstack)
D

for key_heat, center_heat in zip(self.key_heats, self.center_heats):
key_heat[—-1].bias.data. fill_(-2.19)
center_heat[—1].bias.data. fill_(-2.19)

self .inters = nn.ModuleList ([

make_inter_layer(curr_dim) for _ in range(nstack - 1)
D
self.inters_ = nn.ModuleList ([
nn. Sequential (
nn.Conv2d(curr_dim, curr_.dim, (1, 1), bias=False),
nn . BatchNorm2d (curr_dim)
) for _ in range(nstack - 1)
D
self .cnvs_ = nn.ModuleList ([
nn. Sequential (
nn.Conv2d(cnv_dim, curr_dim, (1, 1), bias=False),
nn.BatchNorm2d (curr_dim)
) for _ in range(nstack - 1)
D
self.key_regrs = nn.ModuleList ([
make_regr_layer(cnv_dim, curr_.dim, 2) for _ in range(nstack)
D
self.center_regrs = nn.ModuleList ([
make_regr_layer(cnv_.dim, curr_.dim, 2) for _ in range(nstack)
D

self.relu = nn.ReLU(inplace=True)

encoder_layer = nn.TransformerEncoderLayer(d_-model=260, nhead=4,
dim_feedforward = 1024)

self .transformer_encoder = nn.TransformerEncoder(encoder_layer , num_layers
=6)

self .classifier = nn.Sequential(

nn. Linear (260, 64),
nn.ReLU(inplace=True),
nn. Linear (64, 2)

)

_train (self , xxs):
image = xs[0]
key_inds = xs[1]
center_inds = xs[2]

19

key_lens = xs[3]

center_lens = xs[4]
inter = self.pre(image)
outs = []

layers = zip(
self .kps, self.cnvs,
self.key_cnvs, self.center_cnvs,
self.key_heats, self.center_heats,
self . key_regrs, self.center_regrs

)
for ind, layer in enumerate(layers):
kp-, cnv_ = layer[0:2]
key_cnv_, center_cnv._ = layer[2:4]
key_heat_, center_heat_. = layer[4:6]
key_regr_, center_regr_ = layer[6:8]
kp = kp-(inter)
cnv = cnv_(kp)
key_cnv = key_cnv_(cnv)
center_cnv = center_cnv_(cnv)
key_heat, center_heat = key_heat_(key_cnv), center_heat_(center_cnv)
key_regr, center_regr = key_regr_(key_cnv), center_regr_(center_cnv)
#print (f”Shape of key_regrs {key_-regrs.shape}”)
key_regr = _transpose_and_gather_feat(key_regr, key_-inds)
center_regr = _transpose_and_gather_feat(center_regr, center_inds)

outs += [key_heat, center_heat, key_regr, center_regr]
if ind < self.nstack - 1:

inter = self.inters_[ind](inter) + self.cnvs_[ind](cnv)
inter = self.relu(inter)
inter = self.inters[ind](inter)

batch_size = key._cnv.shape[O0]

_, -, height, width = key_cnv.size ()

key_feat = _transpose_and_gather_feat(key.-cnv, key_inds)
center_feat = _transpose_and_gather_feat(center_cnv, center_inds)

group_preds = []
for b_ind in range(batch_size):

if center_lens[b_ind] == 0 or key_lens[b_ind] == 0: continue
cen_len = min(center_lens[b_ind], 40)

cen_emb = center_feat[b_ind][:cen_len, :]

tmp_inds = center_inds[b_ind]J[:cen_len]. float ()

cen_pos = torch.stack ([(tmp_inds % width) / width , (tmp_inds // width
) / height]).transpose (0,1)
cen_type = torch.ones((cen_pos.size(0),1)).float().cuda()

cen_.emb = torch.cat((cen_emb, cen_pos, cen_type), 1)
cen_type2 = torch.eye(cen_emb.size (0)).unsqueeze(—1).cuda()
cen_emb = cen_emb.unsqueeze(l).repeat(l,cen_emb.size(0),1)
cen_emb = torch.cat((cen_.emb, cen_type2), -1)

key_emb key_feat[b_ind]J[: key_lens[b_ind], :]

tmp_inds = key_inds[b_ind][: key_lens[b_ind]]. float ()

key_pos = torch.stack ([(tmp_inds % width) / width , (tmp_inds // width
) / height]).transpose(0,1)

key_type = torch.zeros ((key_pos.size(0).,2)).float().cuda()

20

key_emb torch.cat ((key_.emb, key_pos, key_-type), 1)
key_emb = key_emb.unsqueeze(l).repeat(l, cen_len, 1) # key_len =
cen_len (batch_len) * featdim

src = torch.cat((cen_emb, key_emb), 0)
out = self.transformer_encoder(src).transpose (1,0)
out = self.classifier (out)

group_preds .append(out.reshape(-1,2))
return (outs, tuple(group_preds))

def _test(self, =xs, ssxkwargs):

image = xs[0]
inter = self.pre(image)
outs = []

layers = zip(
self . kps, self.cnvs,
self . key_cnvs, self.center_cnvs,
self.key_heats, self.center_heats,
self.key_regrs, self.center_regrs

)

for ind, layer in enumerate(layers):
kp-, cnv_ = layer[0:2]
key_cnv_, center_cnv_ = layer[2:4]
key_heat_, center_heat_. = layer[4:6]
key_-regr_, center_regr. = layer[6:8]

kp = kp-(inter)
cnv = cnv_(kp)

if ind == self.nstack - 1:
key_cnv = key_cnv_(cnv)
center_cnv = center_cnv_(cnv)

key_heat, center_heat = key_heat_(key_cnv), center_heat_(
center_cnv)

key_regr, center_regr = key_regr_(key.-cnv), center_regr_(
center_cnv)

outs += [key_heat, center_heat, key_regr, center_regr]

if ind < self.nstack - 1:

inter = self.inters_[ind](inter) + self.cnvs_[ind](cnv)
inter = self.relu(inter)
inter = self.inters[ind](inter)

detections_key , detections_cen , key-inds, center_inds , key_scores,

center_scores = self._decode(xouts[—-4:], =xkwargs)
b_ind = 0
_, -, height, width = key_cnv.size ()
key_feat = _transpose_and_gather_feat(key_-cnv, key_inds)

21

center_feat = _transpose_and_gather_feat(center_.cnv, center_inds)

key_len = (key_scores[b_ind] > 0.4) .sum()

cen_len = (center_scores[b_ind] > 0.4).sum()

if key_len == 0 or cen_len == 0: return detections_key , detections_cen ,
torch.zeros ((1,1))

cen_emb = center_feat[b_ind][:cen_len, :]

tmp_inds= center_inds[b_ind]J[:cen_len]. float ()

cen_pos = torch.stack ([(tmp_inds % width) / width , (tmp_inds // width) /
height]).transpose (0,1)

cen_type = torch.ones((cen_pos.size(0),1)).float().cuda()

cen_.emb = torch.cat((cen.emb, cen_pos, cen_type), 1)
cen_type2 = torch.eye(cen_emb.size (0)).unsqueeze(—1).cuda()
cen_emb = cen_emb.unsqueeze(1l).repeat(l,cen_emb.size(0),1)
cen_.emb = torch.cat((cen_emb, cen_type2), -1)

key_emb key_feat[b_ind J[: key_len, :]

tmp-inds = key_inds[b_ind J[: key_-len]. float ()

key_pos = torch.stack ([(tmp_inds % width) / width , (tmp_inds // width) /
height]).transpose (0,1)

key_type = torch.zeros ((key_pos.size(0),2)).float().cuda()

key_pos torch.cat ((key_pos, key_type), 1)

key_-emb = torch.cat((key_emb, key_pos), 1)

key_emb = key_emb.unsqueeze (1) .repeat(l, cen_emb.size(l), 1)

src = torch.cat((cen_emb, key_emb), 0)

out = self.transformer_encoder(src).transpose (1,0)
out = self.classifier (out)

out = nn.functional.softmax (out, dim = -1)

out = out[:,:, 1]

return detections_key , detections_cen , out

def forward(self, =xs, sxkwargs):
if len(xs) > 1:
return self. _train(xxs, =xxkwargs)
return self. _test(xxs, =xkwargs)

class GroupinglLoss(nn.Module):
def __init__(self, lambda_, lambda_b, regr_weight=1, focal_loss=_neg_loss):
super (GroupingLoss, self). __init__ ()

self .regr_weight = regr_weight

self.focal_loss = focal_loss

self .regr_loss = _regr_loss

self .lambda_ = lambda_

self .lambda_b = lambda_b

self . group_loss = nn.CrossEntropyLoss ()
def forward(self, outputs, targets):

stride = 4

outs , group_preds = outputs

key_heats = outs[0:: stride]

22

center_heats = outs[1::stride]
key_regrs = outs[2::stride]
center_regrs = outs[3::stride]
gt_key_heat = targets[0]
gt_center_heat = targets[1]
gt_key_mask = targets[2]
gt_center_mask = targets [3]
gt_key_regr = targets [4]
gt_center_regr = targets[5]
group_targets = targets [6]

tag_lens_center = targets[7]

tag_lens_key = targets[8]

focal_loss = 0

key_heats = [_sigmoid(t) for t in key_heats]
center_heats = [_sigmoid(b) for b in center_heats]

focal_loss += self.focal_loss(key_heats, gt_key_heat, self.lambda_, self.
lambda_b) / 2

focal_loss += self.focal_loss(center_heats , gt_center_heat, self.lambda_,
self .lambda_b)

regr_loss = 0

for key.regr, center_regr in zip(key_regrs, center_regrs):
regr_loss += self.regr_loss (key_regr, gt_key_regr, gt_key_mask)
regr_loss += self.regr_loss(center_regr, gt_center_regr,

gt_center_mask)

regr_loss = self.regr_weight % regr_loss
group_targets_trim = []
for b_ind in range(group_targets.size(0)):
cen_len = min(tag_lens_center[b_ind], 40)
tmp = group_targets[b_ind]J[:cen_len, :tag_lens_key[b_ind]]
tmp = torch.cat((torch.zeros((cen_len,cen_len)).cuda().long(), tmp),
1)
if tmp.reshape(-1).size(0) == 0: continue

group_targets_trim .append(tmp.reshape(-1))

group-loss = 0
for b_ind in range(len(group_targets_trim)):
group_loss += self.group_loss(group_preds[b_ind], group_targets_trim/|
b_ind])
group_loss = 10 % group_loss # Ir = 0.000025

if group_loss ==

loss = (focal_loss + regr_loss) / len(key_heats)
else:

loss = (focal_loss + regr_loss + group_loss) / len(key_heats)
return loss.unsqueeze (0)

from .py_utils import kp_group, GroupingLoss, _neg_loss, residual
from .model_utils import make_pool_layer, make_hg_layer

class Model (kp_group):
def __init__(self, db):

23

n =35

dims = [256, 256, 384, 384, 384, 512]
modules = [2, 2, 2, 2, 2, 4]

out_dim = 10

super (Model, self). __init__(
n, 2, dims, modules, out_dim,
make_pool_layer=make_pool_layer,

make_hg_layer=make_hg_layer,
kp-layer=residual , cnv_dim=256

loss = GroupingLoss(focal_loss=_neg_loss , lambda_=4, lambda_b=2)

A.2. Implementation Details

Table 3. Custom Category Labels for Chart Components

Label Number | Chart Component

1 Bars in bar charts
Lines in line charts
Pies in pie charts
Legends
Title of the values axes
Title of the entire chart
Title of the category axes

~N OB WN

Listing 1. Output table of the example bar image

Aakna + da aebe + /wla | Huiri/a+als/ | D | I | E | A | EO | +KA &
34321 | 33192 | 32473 | 23898 | 15099 | 12003 | 9873 | 8897

Chart Type: v_bar_categorical

Title: None

x_axis_title: None

y-Axis_Title: aDI

24

B. Acknowledgement

In December 2022, every single day brought a deluge of news reports covering various topics, flooding my social media
feeds. These reports often included charts illustrating important data, such as the weekly COVID-19 infection rates, annual
CPI trends in the U.S., or price fluctuations for specific products over five-year spans. I sought to find a tool that could
summarize these news reports effectively. To my surprise, I discovered that while existing models like ChatGPT, T5, and
BART were proficient at answering text-based questions, they were not equipped to handle chart images. This glaring gap in
existing technology drove me to delve deeper into this subject matter.

In the journey of completing this paper, I am first deeply indebted to Dr. Zhiqi Cheng from Carnegie Mellon University,
whose unparalleled expertise and keen insights were instrumental in shaping this research. His constructive critiques and
continuous encouragement fostered both a robust research methodology and my own intellectual growth. Dr. Cheng’s
dedication to teaching goes beyond mere academic guidance; it serves as a lifelong lesson in perseverance and excellence. 1
am truly grateful for the invaluable mentorship he has provided.

I owe immense gratitude to my parents, who have ceaselessly nurtured my interests in information technology and artificial
intelligence. Their encouragement and belief in me have played an instrumental role in my quest to become a computer
scientist.

I’d also like to acknowledge the Center for High Performance Computing at Shanghai Jiao Tong University, which pro-
vided the computational resources for this paper. The calculations were performed on the 7 2.0 (or Siyuan-1) cluster, which
greatly aided the progress of this research.

Lastly, I would like to express my heartfelt thanks to the S.T. Yau Science Award for offering me an incredible opportunity
and platform to showcase my research. This experience has been integral in my academic development and has provided me
with the visibility to engage with a broader scientific community.

25

	. Introduction
	. Related Work
	. Chart-QA Task
	. Table-QA Task
	. Chart-to-Table Task
	. SOTA Detection Methods
	. Large Language Models

	. Our Porposed ChartLLM
	. Data Preparation
	. Center/Key Point Detection
	. Center/Key Point Grouping
	. Integration of OCR
	. Table Formation
	. Chart Question Answering

	. Evaluation
	. Conclusion
	. Featured Source Code
	. Model Backbone
	. Implementation Details

	. Acknowledgement

