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Abstract

Visually impaired individuals face great challenges with independently navigating
dynamic environments because of their inability to fully comprehend the environ-
ment and actions of surrounding people. Conventional navigation approaches like
Simultaneous Localization And Mapping (SLAM) rely on complete scanned maps
to navigate static, fixed environments. With Vision Language Navigation (VLN),
agents can understand semantic information to expand navigation to similar envi-
ronments. However, both cannot accurately navigate dynamic environments con-
taining human actions. To address this challenge, we propose a novel cross-modal
transformer-based Action-Aware VLN system (AAVLN). Our AAVLN Agent Al-
gorithm is trained using Reinforcement Learning in our Environment Simulator.
AAVLN’s novel cross-modal transformer structure allows the Agent Algorithm to
understand natural language instructions and semantic information for navigat-
ing dynamic environments and recognizing human actions. For training, we use
Reinforcement Learning in our action-based environment simulator. We created
it by combining an existing simulator with our novel 3D human action generator.
Our experimental results demonstrate the effectiveness of our approach, outper-
forming current methods on various metrics across challenging benchmarks. Our
ablation studies also highlight that we increase dynamic navigation accuracy with
our Vision Transformer based human action recognition module and cross-modal
encoding. We are currently constructing 3D models of real-world environments,
including hospitals and schools, for further training AAVLN. Our project will be
combined with Chat-GPT to improve natural language interactions. AAVLN will
have numerous applications in robotics, AR, and other computer vision fields.

Keywords: Scene Understanding, Cross-modal Transformer, Computer Vision, Vision
Language Navigation
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1 Introduction

1.1 Background and Motivation

Visual impairment is a growing global concern, affecting more than half a billion individuals
with varying degrees of visual acuity, from mild to severe. The World Health Organization
identifies macular degeneration, uncorrected refractive error, cataract, and age-related visual
impairments as some of the leading causes of vision loss [1]. The challenges that visually
impaired people face have led to their heavy reliance on guardians for navigating and under-
standing their surroundings.

Since 2020, we have been teaching visually impaired children English. Through our com-
munication, we learned about their difficulties with navigating and understanding their en-
vironments. To further understand the difficulties and needs of visually impaired people, we
designed and conducted a joint survey with the visually impaired students that we have taught
and with low vision doctors from Fudan University’s Affiliated Hospital. They expressed great
interest in this project as they found it meaningful, especially for the visually impaired pop-
ulation. Through our survey, we found that over 75% of visually impaired people do not go
out alone daily due to their top 3 difficulties of navigation, human action recognition, and
road sign recognition. Currently over 65% of people rely on the company of parents or fam-
ily members to navigate and understand their environment when navigating outdoors. This
illustrates the critical challenges visually impaired people face with independent navigation.
For action recognition, over 65% of visually impaired people want to recognize hand gestures,
over 55% want to recognize head movements, and over 45% want to recognize upper body
movements. When navigating in general, 60% are concerned about the accuracy and efficiency
of their navigation route and over 70% are concerned about running into others. While we
often believe visually impaired people face more difficulties with outdoor navigation, 50% of
the survey respondents expressed they found indoor and outdoor navigation to be equally
difficult, if not indoor navigation being even more difficult. Finally, over 50% of people ex-
pressed they often find it difficult to navigate a variety of environments, mainly hospitals,
shopping malls, restaurants, and metro stations.
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Figure 1: Survey results from our joint survey with visually impaired people and low vision doctors.
(a) Over 75% of visually impaired people do not go out alone daily, and 44.83% never indepen-
dently navigate outdoors. (b) The top 3 difficulties visually impaired people face are road sign
recognition, navigation, and human action recognition. This causes them to encounter challenges
and safety risks when independently navigating and understanding dynamic environments.



Last year, we developed a scene text recognition system to assist the visually impaired in
recognizing curved and distorted scene text, including road signs, restaurant signs, package
labels, etc. Through this project, we gained access to various opportunities where we received
feedback and suggestions for upcoming steps. After winning Global Grand Award in Intel’s Al
Competition, our scene text recognition system was demonstrated at the China International
Import Expo (CIIE). There, we encountered multiple Al experts in the field of Computer
Vision who offered positive comments for our project, along with suggestions to leverage
more recent technological advancements, including Transformers, in upcoming projects. We
also received the opportunity to communicate with more visually impaired users and low
vision doctors. For the people with visual impairments, they believe this project could bring
great value for them, and wished there could be a system that could further help them
navigate complex environments more independently. For the expert doctors in the field of low
vision, they expressed their interest in providing support for my upcoming developments with
this project. Similarly, during the 2022 Yau Shing Tung High School Science Competition,
I received positive feedback from the professors and Al experts about my project, winning
Bronze Award in Computer Science. They also suggested I can expand the system to assist
visually impaired people in more ways. This inspired me to develop a new project that could
help them navigate and understand dynamic environments.

Currently, accurate navigation in dynamic environments and human action recognition
remain a critical issue. Aside from heavily relying on help from family members or guardians
to navigate outdoors, visually impaired people only have a minimal number of potential Al
systems to assist them. Unfortunately, these systems can only help with accurately navigating
static environments or simply recognize text and objects. They cannot accurately navigate
dynamic environments containing human actions by planning a route based on the user’s
destination while recognizing the actions of people along the path. This presents a crucial
need to develop an Al system that can effectively navigate environments while taking into
account the actions of surrounding people.

1.2 Contributions

In this paper, we aim to address these difficulties by introducing a novel navigation system
for embodied Al. Our Reinforcement Learning framework for AAVLN comprises two main
components: the Agent Algorithm and the Environment Simulator. The Agent Algorithm
is trained in our virtual action-based simulator that contains generated 3D human actions.
Our proposed system leverages a cross-modal transformer structure to comprehend natural
language instructions, current environmental views, historical observations, and human action
sequences to understand and navigate dynamic environments.

There are 4 main contributions of our paper:

1) We develop a novel Agent Algorithm through innovatively adding an action recognition
module module into the Agent Algorithm’s Vision Language Navigation architecture for cross-
modal transformer. This novelty expands the original navigation system’s ability by giving it
awareness of surrounding actions. Consequently, our system can holistically consider different
modalities when calculating the agent’s next step to their destination. Agents can then both
accurately navigate dynamic environments, and also recognize human actions.

2) We develop a novel action-based simulator through innovating a self-supervised Human
Action Generator that creates a broad selection of 3D human actions. Then, we integrate
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these generated actions into our chosen environment simulator to provide a dynamic training
environment to achieve better performance and generalization abilities.

3) We define a novel benchmark for measuring action-aware navigation performance with
the Completeness and Accuracy metrics. Our novel benchmark measures both the accuracy
of the navigation path and also the accuracy of the action recognition results.

4) Our system based on cloud-client architecture can solve the critical challenge of helping
the visually impaired understand and navigate the world. The client end contains our user-
friendly mobile APP connected to a pair of ordinary glasses with a small camera attached to
it. The client end then calls on the cloud end, which contains our AAVLN algorithm deployed
onto a cloud server.

Our system can be applied to smart glasses to solve the critical challenge of helping the
visually impaired understand and navigate the world.

2 Related Works

Existing papers discuss various aspects of navigation and action recognition algorithms, and
environment simulators for Reinforcement training.

Previous works in the navigation field include graph-based SLAM (Simultaneous Local-
ization and Mapping) [2], Visual SLAM [3], Vision-and-Language Navigation (VLN) [4], re-
current vision-and-language BERT for navigation [5], VLN with self-supervised auxiliary rea-
soning tasks [7], learning to navigate unseen environments [8], and learning a generic agent
for vision-and-language navigation [9].

Related action recognition algorithms [10] include video action recognition in sports [11]
and representation learning for human skeleton-based action recognition [12], [13].

Environment simulators and human action generation works include SceneNN [14], Mat-
terport3D [15], skinned multi-person linear models [16], and generating 3D people in scenes
[17], [18].

2.1 Navigation Solutions

Since there are minimal developed navigation methods for visually impaired people, we first
analyzed the current navigation solutions for robots. There are two main categories: Visual
Simultaneous Localization and Mapping (VSLAM) [3] and Vision Language Navigation (VLN)
[4].

Visual Simultaneous Localization and Mapping (VSLAM), is a technique used by robots
to navigate an environment using 3D vision to determine their position, orientation and create
a completely scanned map of their surroundings (Figure 2a). This is achieved by tracking
set points in successive camera frames. However, VSLAM is restricted to specific, scanned
environments and does not contain scene understanding of semantic information.

Vision Language Navigation (VLN), is a technique used by robots to navigate an environ-
ment by understanding semantic information and natural language navigation instructions
given by an oracle (Figure 2b). The current challenge with VLN algorithms is that they have
only been trained on simulators with static environments and cannot recognize human actions.
We propose an Action-Aware Vision Language Navigation system with Action Recognition
to address this.



(a) Visual Simultaneous Localization
and Mapping (VSLAM)

(b) Vision Language Navigation (VLN)

Leave bedroom, enter kitchen.

Figure 2: (a)VSLAM visualization. A map of the surroundings is created with obstacles localized in
the environment. However, there are no labels for each object, so the agent cannot fully understand
its surroundings.[3]. (b) Vision Language Navigation. Natural language instructions for navigation
with the destination are given to the algorithm. The algorithm comprehends the instruction then
directs the agent to travel in the environment based on the algorithm's understanding of the
environment’s semantic information in relation to the instructions.[4].

2.2 Training Simulators

We also investigated current simulators, such as SceneNN [14] and Matterport3D [15], to use
for Reinforcement training. However, these simulators do not contain human actions and are
often restricted to single rooms, such as SceneNN. While Matterport3D provides floor plans
and semantic annotations, it does not contain human actions. We aim to simulate human
actions in the virtual environment for Reinforcement training of the Agent Algorithm.

Figure 3: Matterport3D simulator environments are all static and do not contain 3D human
actions.[15].

3 Design and Implementation of AAVLN

The Action-Aware Vision Language Navigation (AAVLN) system introduces a novel approach
enabling agents to navigate and comprehend dynamic environments containing human actions.



3.1 Overview of the AAVLIN System

To address visually impaired people’s needs, we develop an assistance system based on cloud-
client architecture. There is a user-friendly mobile APP on the client side and our AAVLN on
the server side (Figure 4). AAVLN helps people understand and navigate dynamic environ-
ments containing human actions, meeting visually impaired people’s needs. Other recognition
functions are available as well on the server end, including text, object, currency, and face
recognition.

In the client end, the mobile APP obtains the image and performs image-processing before
sending the image to cloud for AI inference. The results are returned to the client end and
go through json parse. Finally, they are displayed on the APP screen and speech synthesis
reads aloud the results.

In the cloud end, the service API consists of our main service AAVLN, which is imple-
mented onto a Flask Web Framework. Other services call on Third Party’s Al servers (Figure
4).
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Figure 4: System Architecture of AAVLN

Our AAVLN system assists visually impaired people in 5 steps as depicted in the flowchart
below. First, users open the camera on their phone or attached to their glasses. Secondly,
users verbally input their navigation directions through speech recognition, and our app cap-
tures it. Thirdly, our user-friendly mobile app calls on our AAVLN system that is deployed
onto cloud. Fourthly, AAVLN calculates and returns the navigation and action recognition
results. Finally, users hear the results from their devices to navigate dynamic environments
and understand human actions (Figure 5).
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Figure 5: Action-Aware Vision Language Navigation (AAVLN) Flowchart. This flowchart illus-
trates how our AAVLN can be applied to help the visually impaired with navigation and recognition.

3.2 AAVLN Reinforcement Learning Framework

To develop our AAVLN agent algorithm, we innovatively combine a Vision Language Naviga-
tion algorithm and an action recognition module for cross-modal encoding. To train the algo-
rithm, we use Reinforcement Learning with our action-based simulator, which we developed
by combining our novel human action generator with the existing recognized Matterport3D

simulator.
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Figure 6: AAVLN Reinforcement Learning Framework.
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training in dynamic environments.



3.3 AAVLN: Agent Algorithm

AAVLN system contains an agent algorithm capable of both navigation and action recognition
in environments. We integrate a Vision Transformer (ViT)-based action recognition branch
[20] into History Aware Multimodal Transformer (HAMT), a Vision Language Navigation
(VLN) algorithm [6]. This integration allows the two algorithms to efficiently share the
same backbone for cross-modal encoding. Our proposed model can jointly interpret natural
language text, history observations, current view, and action videos for navigation while
simultaneously achieving action recognition.
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vision-and-language navigation. Advances in Neural Information Processing Systems, 34, 5834-5847.

Figure 7: Agent Algorithm Blueprint: Seamless integration of the Vision Transformer-based action
recognition with the History Aware Multi-modal Transformer [6] Vision Language Navigation
approach for optimized cross-modal encoding.

3.3.1 Navigation: History-Aware Multimodal Transformer (HAMT)

The core of our AAVLN system, the HAMT, has a transformer-based architecture for VLN.
The HAMT architecture achieves multimodal decision-making by encoding text, long-horizon
history, and observation inputs together through unimodal encoders.
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Figure 8: Depiction of the History Aware Multi-modal Transformer: Integrated unimodal encoders
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The textual input component embodies natural language instructions, the historical data
encompasses previously navigated views, while the present observations spotlight current
views. A hierarchical encoding structure within the History unimodal encoder first encodes
individual images using a ViT. Following this, it models the spatial relationships between
the images in each panorama, and eventually captures the temporal correlations spanning
panoramas throughout history. This web of data then undergoes a cross-modal transformer
encoder to capture the multimodal relationships.

Experiments conducted on various datasets with fine-grained instructions, high-level in-
structions, and dialogues demonstrate that HAMT outperforms other VLN algorithms and
achieves state-of-the-art performance on both previously seen and unseen environments. Thus,
HAMT was the selected and optimized navigation algorithm in this project.

R2R Task Result Comparison

70

65
60
55 I
50
SR SPL

u HAMT RecBERT
PREVALENT RelGraph

Figure 9: Comparative analysis illustrating the proficiency of different Vision Language Navigation
models on the Room-to-Room dataset. Metrics employed include Success Rate (SR) and Success
rate normalized by Path Length (SPL). Higher percentage indicates better performance, so HAMT
was selected as our Vision Language Navigation algorithm.

3.3.2 Action Recognition: Novel Integration of ViT into HAMT

The proposed system innovatively incorporates an Action Recognition module to assist the
agent in navigating and recognizing actions in dynamic environments. Initially, we intended
to integrate the skeleton-based method ST-GCN [19] into HAMT for its strong generalization
capability with action recognition. It recognizes actions through extracting the skeleton struc-
ture of each person and determining the action category based on the skeleton movements.
However, ST-GCN did not achieve a high action recognition accuracy in our action-based
simulator, reaching only 59%.
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Figure 10: Preliminary design leveraging the skeleton-driven ST-GCN methodology for human
action recognition. ST-GCN encompasses pose estimation followed by action categorization [19].
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After further comparison, we selected a ViT-based Action Recognition module for its high
accuracy and efficiency. The ViT-based recognition module outperforms other skeleton-based
methods in our action-based simulator, achieving a 76% accuracy. Its selection was further jus-
tified by HAMT’s pre-existing ViT structure. Therefore, we integrate this action recognition
module into the existing HAMT algorithm so both components share a common backbone.
This allows navigation and action recognition to be achieved with a greater efficiency.
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Figure 11: Design schematics of the Vision-Transformer (ViT) Action Recognition module, now
seamlessly fused with the HAMT navigational algorithm [20].

3.4 AAVLN: Environment Simulator

To train the agent algorithm with Reinforcement Learning, we use a virtual environment
simulator. For the environment simulator, we selected the recognized Matterport3D. Since
existing simulators for Reinforcement training do not contain human actions, we innovate an
action generator to create 3D human action videos that we integrate into our novel action-
based environment simulator.

3.4.1 Virtual Simulator: Matterport 3D

The Matterport3D simulator consists of virtual environments for the Reinforcement Training
of Vision Language Navigation tasks. The simulator dataset contains 90 buildings and 43,200
environment images. It features annotator-specified floor plans and instance-level semantic
annotations, which offer a significant advantage for training agents. However, one of the major
limitations of the Matterport3D environment simulator is it lacks human actions, a common
limitation among existing simulators. This means they can not effectively train Action-Aware
agent algorithms with Reinforcement Learning.

3.4.2 Action Generator

To train the agent’s action recognition module using Reinforcement Learning, we introduce an
innovative Action Generator that generates 3D human actions for the environment simulator.
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We proposed a self-supervised Action Generator based on Variational Autoencoder (VAE)
[21] and Skinned Multi-Person Linear Model (SMPL) [16].

The VAE, with its self-supervised nature, offers the advantage of generating a more diverse
set of action skeletons within a single category. SMPL then generates 3D human actions with
variations in size and poses for each action category based on the VAE’s output. The Action
Generator successfully generates 3D human skinned bodies performing 52 distinct types of
actions with over 20,000 poses.

Human Action Generator

Skeleton Reconstruction Loss

Datasets: l L= le-2] Socted acton Action based Simulator
UESTC Action "
Humanpose12 ’ﬁ‘ Lot N ction Action-based
Waist S [ g O o _— Simulator
Rotation e L. Scene Scene
SMPL ¥ Discriminator —— Fusion
Scene
LS s (B)]
t Selected
Skinned Body Reconstruction Loss Viewpoint
. . . Existing Sil
Action Generator: Variational Autoencoder (VAE) and Skinned (Matterport 3D) - - - i
Multi-Person Linear Model (SMPL) to generate 3D virtual Action based Simulator: Combine our novel action
skinned bodies generator with a virtual simulator

Figure 12: The self-supervised Action Generator based on a Variational Autoencoder (VAE) and
the Skinned Multi-Person Linear Model (SMPL) has the capability to produce virtual 3D human
models. Its integration into our environment simulator paves the way for a dynamic environment
for Reinforcement training.

The synthesis of our human action generator and the acclaimed Matterport3D simula-
tor creates an action-centric simulator tailored for the agent’s Reinforcement training. Key
components in this integration include the Scene Discriminator, which determines the opti-
mal trajectories for the incorporation of generated actions; the Scene Fusion then seamlessly
weaves these actions into the simulator. This process successful integrates 3D human actions
across 1,050 viewpoints, which is over 10,000 images. The Scene Discriminator and Scene
Fusion ensure that the action sequences are harmoniously combined into the environment.

Figure 13: A visual representation of the integration of human actions, created by our novel
Action Generator, into the virtual environment simulator for Reinforcement training. We success-
fully included 3D human figures doing different poses from different perspectives. This allows our
action-based simulators to simulate the variations that can occur in real-world dynamic environ-
ments to train our agent's navigation and action recognition abilities accordingly.
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4 Evaluation

4.1 Panoramic Demonstrations

After training our AAVLN in our action-based simulator for over 200,000 iterations, we ob-
tained panoramic demonstrations of our agent traversing through a given environment. These
panoramic images are from the agent’s perspective. The box within the two red lines indicate
the agent’s current view of the environment when looking directly forward. In each panoramic
image, the top left ”Instruction” is the natural language navigation instructions given by the
user to AAVLN, informing the Al system of its destination. Each arrow indicates the direction
that AAVLN computes and returns to the user, guiding them to their destination. The top
right ” Observation” in each image is the action recognition results returned by AAVLN after
observing the surrounding people (simulated by the generated 3D blue figures).

Figure 14: Panoramic demonstrations of our AAVLN Agent Algorithm navigating in our action-
based simulator to the destination.

4.2 Evaluation Metrics

The main evaluation metrics adopted include Success Rate (SR) and Success weighted by
Path Length (SPL). SR computes the proportion of trajectories that successfully reach their
destination within a 3-meter margin of error from the target. On the other hand, SPL stan-
dardizes the success rate by considering the ratio of the optimal path length to the predicted
path’s length [3], considering the efficiency of the algorithm. The Action-Aware Vision Lan-
guage Navigation (AAVLN) system underwent training on our novel 3D human action-based
simulator for over 200,000 iterations. We compared its performance with prevailing VLN algo-
rithms using the Room-to-Room navigation dataset (R2R) [15], which was co-developed with
the Matterport3D simulator. This dataset features 7189 paths (average length: 10 meters),
containing 21,567 navigation instructions with an average word count of 29. For training and
validation (seen), we employed 61 scenes, with 14,025 and 1020 instructions, respectively. For
validation in unseen environments, we used 11 scenes (2349 instructions). Finally for testing,
we used 18 scenes (4173 instructions).
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4.3 Experiment I: Evaluation of AAVLN on R2R Task

In the pursuit of evaluating navigation algorithms’ proficiency in dynamic environments, we
present Experiment I to benchmark the performance of our novel AAVLN system against
traditional VLN algorithms. This experiment was conducted using our novel action-based
simulator with dynamic 3D human actions.

Table 1: A Comparative Analysis of R2R Task Performance in our Action-Based Simulator (Brack-
eted Values Indicate Original R2R Task Results in Static Environments).

Method | SR Seen(?) SPL Seen(f) SR Unseen(t) SPL Unseen(?)
PREVALENT [22] 50.342. 47 8510 39.2425 345508
(69) (65) (58) (53)
RGIGI‘&ph [23] 49. 1429 46.4+1.6 372417 34.0x2.0
(67) (65) (57) (53)
RecBERT [5] 52.5+2.7 48 2418 41.6+1.3 37.2+0.0
(72) (68) (63) (57)
HAMT (WithOllt mask) [6} 54.T+15 950.942.1 455418 41.2411
(76) (72) (66) (61)
HAMT (With mask) [6] 61.3+25 59.1+1.7 492415 43.8+1.3
(76) (72) (66) (61)
Ours 73.2+1.0 69.5+1.3 62.0+1.1 58.8+1.6

The above table demonstrates how our AAVLN outperforms the baseline HAMT on both
the SR and SPL metrics in seen and unseen environments (Table 1). Compared to existing
prominent VLN algorithms, our AAVLN achieves an average of 11.9% to 22.9% improvement
in SR for seen environments, 21.7% to 14.4% improvement in SPL for seen environments,
12.8% to 22.8% improvement in SR for unseen environments, and 15% to 24.3% improvement
in SPL for unseen environments.

It is worth highlighting the divergence in performance between traditional VLN algorithms
and AAVLN. Notably, when exposed to the dynamic action-based environment of our simula-
tor, conventional VLN algorithms demonstrate a marked decrease in efficacy. This is depicted
by their decrease in accuracy from the bracketed values to those above it. In contrast, the
AAVLN system exhibits exemplary navigation capabilities. This superior navigation perfor-
mance in ever-evolving surroundings is principally due to the cross-modal transformer that
gives AAVLN the ability to understand dynamic human actions while navigating.
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Figure 15: A Visual Comparison of Baseline (HAMT) and Our Proposed AAVLN Method. AAVLN

outperforms our baseline HAMT by achieving a higher navigation accuracy on both SR and SPL
metrics in seen and unseen environments.
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Figure 16: Comparison of HAMT (with mask) and our method. Over the 200,000 iterations,
AAVLN consistently outperforms baseline HAMT.

This graph further demonstrates that throughout the 200,000 iterations, our AAVLN
constantly maintains a higher navigation accuracy in dynamic environments than the baseline
HAMT. Even as the graphs begin to plateau, our AAVLN remains more accurate. This is
due to HAMT’s lack of ability to understand dynamic environments when navigating. Even
though HAMT achieves exceptional performance when navigating static environments, its
performance will severely decrease when unfamiliar obstacles are presented along navigation
paths, such as dynamic actions. There is a significant difference between actions and static
objects, but traditional VLN algorithms such as baseline HAMT have not been previously
trained to understand dynamic actions.

4.4 Experiment II: Evaluation of Action Recognition and Cross-
modal Encoding on Navigation

In Experiment II, we conducted ablation studies to investigate the effect of various action
recognition methods and the usage of cross-modal encoding on navigation performance in our
action-based simulator.
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Our first ablation study’s findings indicate that the integration of ViT-based action recog-
nition as a proxy task significantly improved both navigation and action recognition accuracy.
Compared to the combination of HAMT with other action recognition modules, our AAVLN
combines HAMT with a ViT-based recognition module, achieving an average improvement
of 1.8% to 7.8% in SR for seen environments, 1.3% to 11.2% improvement in SPL for seen
environments, 0.3% to 9.7% improvement in SPL for unseen environments, and 0.7% to 12.3%
in SPL for unseen environments. This highlights the pivotal role of considering action recogni-
tion in the context of navigation, and the potential for ViT-based action recognition methods
to enhance overall performance. Without the ability to understand and recognize human ac-
tions, it is difficult for an algorithm to navigate dynamic environments because the difference
between moving actions and static objects is drastic.

Table 2: Ablation Studies of Navigation Performance Without Cross-Modal Encoding. Our
AAVLN based on HAMT and ViT outperforms other combinations of HAMT and other action
recognition modules in navigation.

Action Encoding | SR Seen(t) SPL Seen(1) SR Unseen(f) SPL Unseen(?)
HAMT(B&SGHHG) 61.3x25 55.1+1.7 49 2+15 43.8+1.3
HAMT + STRNN 66.2+2.3 63.9+1.2 56.8+1.5 53.4+16
HAMT + InfoGCN 66.8+1.7 64.1+15 57.3x08 54.0+1.3
HAMT + STGCN 67.3+2.1 65.0+2.3 58.6+1.9 55.4+0.7
HAMT + ViT (OURS) 69.1+2.2 66.3=1.5 58.9+1.1 56.1+1.0

Our second ablation study demonstrates that the utilization of cross-modal information
between navigation and action recognition significantly increases navigation accuracy. Com-
pared to without using cross-modal encoding, our AAVLN with cross-modal encoding achieves
a 4.1% improvement for SR in seen environments, 3.2% higher for SPL in seen environments,
3.1% improvement for SR in unseen environments, and 2.7% higher accuracy for SPL in un-
seen environments. This cross-modal information allows agents’ navigation decisions to be
influenced by their consideration of surrounding actions, thus increasing navigation accuracy
in dynamic environments.

Table 3: Comparison of AAVLN performance with and without cross-modal encoding

Cross-modal: HAMT & ViT | SR Seen(t) SPL Seen(t) SR Unseen(t) SPL Unseen(?)

Without 69.142.2 66.3+1.5 58.9+1.1 56.1+1.0
With 73.2+1.9 69.5+1.3 62.0x1.1 58.8 +1.6
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4.5 Experiment III: Evaluation of Action-Aware Navigation
on novel benchmark

In Experiment III, we create a new benchmark for Action-Aware Navigation by adding 3D
human actions as ground truth. Our novel task not only tests navigation performance, but
also the accuracy of action observations along the path, making it a more challenging and
comprehensive evaluation. Completeness (Com) measures the percentage of complete ob-
servations along the path. Accuracy (Acc) measures the correct action observations along
the path. The results of the experiment show that AAVLN exhibits high accuracy in both
seen and unseen environments, as measured by our Completeness (Com) and Accuracy (Acc)
evaluation metrics. This indicates that the system is capable of effectively navigating environ-
ments while accurately recognizing human actions, making it a promising solution for robots
and AR systems.

Table 4: AAVLN performance on our novel evaluation metrics. AAVLN demonstrates high accu-
racy based on our Completeness and Accuracy metrics.

Method | Com Seen(1) Acc Seen(t) Com Unseen(1) Acc Unseen(?)
AAVLN | 91 79 78 73

5 Discussion

The potential applications and enhancements of the Action-Aware Vision Language Naviga-
tion (AAVLN) system span various dimensions. A roadmap of these advancements, collabo-
rations, and adaptations is discussed herein.

Augmenting the Simulator Dataset: To improve this system’s practicality, we are
broadening the simulator dataset to further train AAVLN with more realistic environment
models. We are currently constructing 3D models of real-world environments, with specific
emphasis on diverse public spaces in which visually impaired people wish to receive navi-
gation assistance, such as schools, hospitals, and more (see survey results in Introduction).
We’ve employed the Matterport3D APP and Insta360 camera to build models of the Fudan
University Affiliated Hospital and the Shanghai American School library.

Figure 17: 3D Model of Shanghai American School Library.
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We are collaborating with Fudan University Affiliated Hospital’s low vision specialists
to encapsulate their clinical environments with our 3D models. These expansions lay the
groundwork for training AAVLN, empowering it to adeptly navigate more complex, realis-
tic environments. This could be instrumental in catering to the needs of those with visual
impairments.

Figure 18: 3D Model of Fudan University's Affiliated Hospital.

User Interface for AAVLN: To streamline and improve access to the AAVLN system,
we developed a user-friendly mobile application. This APP can recognize the navigation desti-
nation said by the user, then invoke the AAVLN. After AAVLN computes the navigation and
recognition results, users can independently navigate based on the directions and descriptions
of their surrounding dynamic environments.

Figure 19: User-Centric Mobile APP Rendering AAVLN Accessible.

Extending AAVLN to Robotic Assistants: A promising horizon for the AAVLN is
its adaptation to robotic caregivers. While current robotic aides in public spaces and medi-
cal facilities offer limited functionalities, the integration of AAVLN could be transformative.
As illustrated, robots equipped with AAVLN would not only be able to navigate static en-
vironments, but also navigate dynamic environments with an understanding of surrounding
actions, then perform their tasks accordingly.

Additionally, envisioning AAVLN’s utility in autonomous vehicles [24], we recognize its
underlying cross-modal transformer encoding and Reinforcement Learning mechanisms as po-
tential aids for varied vehicular types. This could minimize accident probabilities by enhancing
navigation and action recognition capacities.
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Enhancing Natural Language Interactions: For a holistic and user-friendly expe-
rience, we propose combining AAVLN with ChatGPT. Such an integration can refine the
natural language instructions, optimizing their comprehensibility for the underlying HAMT
Vision Language Navigation model. Moreover, it can provide users with a more descriptive,
natural narration of their surroundings, making interactions between visually impaired useres
and AAVLN more organic and insightful.

Agent Algorithm

Figure 20: Synergy of Chat-GPT with AAVLN Enhancing Natural Language Interactions

In summary, the trajectory of AAVLN, as mapped in this discussion, reflects a blend of
technological advancements, human-centric designs, and collaborations. As we forge ahead,
our emphasis remains on creating a system that is not only sophisticated in its functionalities
but also inclusive in its applications.

6 Conclusion

In this research, we developed the Action-Aware Vision Language Navigation (AAVLN) sys-
tem, a cross-modal transformer-based system for navigating and understanding dynamic en-
vironments accurately.

Our novel AAVLN agent algorithm optimizes existing VLN algorithms by integrating a
distinct action recognition branch, enhancing the algorithm’s performance so it can navigate
dynamic environments with an understanding of its surroundings. For its Reinforcement
Training, we enhanced conventional simulators with 3D human actions generated by our
novel action generator for a dynamic environment simulator. The results of our evaluations
have shown that our AAVLN system outperforms state-of-the-art methods in both navigation
and action recognition tasks, making it a major advancement in the field. Through trials with
visually impaired users and doctors in the field of low vision, we received positive feedback
as they expressed this system could greatly improve the convenience for visually impaired
people’s daily independent navigation.
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