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Abstract 

Drowning is one of the most important causes of unnatural death of children, 

and it often occurs in the scene of human negligence. The current fixed-camera-

based solutions introduce issues such as target occlusion and difficulty in 

tracking distant small targets. In order to provide better personalized care for 

parents or pool supervisors, this paper proposes a new swimmer-following 

vehicle to dynamically track swimmers' behavior and establish a cross-frame 

dynamic risk behavior model from the input video. (1) This paper builds a multi-

scene swimming pool behavior dataset, including indoor/outdoor, day/night and 

other scenes. Furthermore, this paper uses AIGC (AI-Generated Content) data 

augmentation to further enhance the generalization capability and protect the 

privacy of swimmer. (2) In order to provide better personalized care, this paper 

proposes a new swimmer following vehicle to dynamically track swimmers' 

behavior and establish a cross-frame dynamic risk behavior model from the input 

video. The vanishing point-based detection optimization to improve the likelihood 

of object detection during the Non-Maximum Suppression (NMS) process. 

Moreover, this paper uses Mosaic processing to prevent the leakage of swimmers' 

privacy in public pools. (3) To address the issue of limited computational 

resources on the vehicle, this paper incorporates components such as EIOU 

loss function, ACON-C activation function, and Ghostnet architecture to optimize 

the network. Furthermore, we propose two deployment solutions: local and 

distributed deployment. The distributed deployment offloads core algorithms such 

as state detection and modeling to an edge server with enhanced computing 

resources. The experiments indicate that through distributed deployment, the 

performance of state detection and modeling can reach up to about 30 FPS. This 

vehicle can be used by parents for remote monitoring of their children, or it can be 

temporarily rented at public swimming pools to assist parents seeking personalized 

care and support pool supervisors in issuing early warning alerts. We hope this 

vehicle contributes to creating a safe swimming environment for children. 

Keywords: Swimmer-Following Vehicle, Cross-Frame Modeling, Distributed Deployment, 

Drowning Warning 
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1. Background and Motivation 

1.1 Motivation 

According to the statistics from the Health Commission and the Ministry of Public 

Security, 57,000 people drown in China every year, among which children account 

for 56%, equivalent to 88 children are killed by drowning every day1. As one of the 

main summer sports for teenagers, swimming has a wide range of participation in 

both rural and urban areas. At the same time, with the improvement of Chinese 

economic level, in addition to the professional indoor swimming pool, many 

communities have also provided outdoor public swimming pool. However, due to 

human negligence or poor management, swimming pool drowning accidents occur 

from time to time.  

According to the "Review Report on the Injury status of Adolescents and 

Children in China" of the China Center for Disease Control and Prevention, 

drowning has replaced meningitis and HIV to become the primary cause of 

abnormal death of children in China2. According to media reports, a 7-year-old child 

drowned in a swimming pool in Leshan, Sichuan province, on July 7, 20223 (Figure 

1). From this report, "There were a lot of children swimming in the pool at the time. 

The boy drowned in the middle of the pool and the depth of the water is about 

150cm. There were six to eight lifeguards at the scene, but it seems that no one 

saw the child struggling to call for help". The tragedy could have been avoided if 

someone had seen and helped. However, human negligence often occurs; and the 

very short time that takes to drown (usually four to six minutes to cause death) has 

become a major hazard in pool safety. At the same time, other dangerous 

behaviors in the pool, such as running in the pool, diving from high places, etc., are 

also prone to various non-fatal accidents, which cannot be ignored. 

Figure 1. A 7-year-old Child Drowned in a Swimming Pool 

 
1 https://new.qq.com/rain/a/20210825A07YZW00 
2 https://www.thepaper.cn/newsDetail_forward_19201322 
3 https://www.163.com/dy/article/HBR0ISBU0552O6NO.html 

Drowning, but ignored  



Therefore, if the artificial intelligence assisted personalized care method can 

be adopted, through state detection and tracking, and modeling the state (such as 

staying underwater for a long time), dangerous behavior can be found in time. An 

early warning can be issued, and drowning or other accidents caused by the 

negligence of pool lifeguards or parents can be reduced, which is helpful to improve 

pool safety. In summary, this paper explores a new swimmer following vehicle to 

dynamically track swimmers' behavior and establish a cross-frame dynamic risk 

behavior model, which is helpful to provide a safer swimming environment for 

teenagers.  

1.2 Background & Related Works 

At present, there are three categories of related work in swimming pool detection, 

modeling and alarm: intelligent life saving system based on underwater camera [1, 

2, 17, 18, 21, 22, 23], drowning alarm based on wearable devices [3, 4], and 

drowning detection methods based on deep learning [5, 19, 20, 22] (as shown in 

Table 1). 

 

Table 1. Comparison of Related Works 

Research 

Methods 

Categories Deployment 

Cost 

Maintenance 

Cost 

Accuracy Capability 

• Underwater 

Camera 

• Underwater Life-Saving 

[1], Life-Saving 

Monitoring [2], 

Underwater Surveillance 

[17,18, 21, 23]  

• Not popular 

at present 

• Maintenance 

of underwater 

equipment is 

difficult 

• Medium • Mainly 

drowning 

detection 

• Wearable 

Devices 

• ZigBee[3], Arm anti-

drowning [4]  

• High • High regular 

maintenance 

• High • Drowning 

and Sudden 

Disease 

Detection 

• Image 

Detection 

• Deep learning 

(Foreground detection 

[5], Swimmer detection 

[19], Swimmer Counting 

[20], 5G network [22]) 

• Low • Low • Medium • Mainly 

drowning 

detection 

 

 

At present, underwater cameras are used in swimming pools (used in places 

such as the National Aquatics Center). The patent of Beijing Dolphin Light Wave 

Technology Development Co., Ltd. proposes an anti-drowning warning system 

based on underwater cameras [1]. Through images and data of swimmers, based 

on computer vision technology, this system can identify and detect underwater 

drowning and send alarm messages within 8 seconds. Roman Vestnikov et al. use 



neural networks directly to search (detect) the necessary objects on the frame to 

find people in the water [17]. Keshi Li proposes a swimming pool intelligent assisted 

drowning detection model based on Computer Feature Pyramid Networks [18]. The 

computer feature pyramid network is used to extract and detect the image features, 

and the YOLO principle is used to detect the drowning phenomenon in the water. 

A swimmer behavior recognition framework (BR-YOLOV4) proposed to detect the 

swimmer [21], using the spatial position relationship between the location 

information of the target and swimming/drowning area of swimming pool to further 

determine the swimmer’s behavior. Recently, a drowning detection video system 

with edge computing is proposed, and it can detect drowning events in swimming 

pools without any wearable devices [23]. However, the installation cost and 

maintenance requirements of underwater based cameras are high, and they have 

not been widely used. This paper intends to use the mobile vehicle, which is 

convenient to deploy, to assist lifeguards to improve their ability to spot accidents 

and avoid missing the rescue opportunity.  

The second category utilizes wearable devices that necessitate swimmers to 

wear specialized equipment for detecting drowning signals [3, 4]. These devices 

may include modules for monitoring swimmers' heart rates through ZigBee wireless 

positioning and heart rate monitoring, along with an integrated alarm button on the 

bracelet to initiate alarms proactively. However, there are some deployment and 

maintenance problems, such as the wearable device is easy to fall off in the water 

or underwater, or the signal transmission is difficult ("ensure that the bracelet is 

above the water " [3]), or the battery operation time is short. On the other hand, 

camera equipment is intended to be used in this paper, which does not require 

swimmers to wear specific equipment. At the same time, it can not only detect 

drowning, but also detect dangerous behaviors such as slipping and running, which 

has the characteristics of wide detection range and extensible warning types.  

At present, some artificial intelligence methods based on computer vision have 

been used to study drowning behavior, such as the Mask R-CNN method [5], but it 

is limited to single frame target detection and belongs to a pure computer vision 

classification method. However, "This study found that the spatio-temporal 

information of drowning detection is important, and we hope to explore more spatio-

temporal information in the future for more accurate drowning detection" [5]. Morten 

B. Jensen et al. train two convolutional neural networks, YOLOv2 and Tiny-YOLO, 

to detect swimmers in low quality video [19]. Moreover, a pool counting system was 

built using the YOLOv3 deep learning algorithm as an object detection algorithm 

[20]. In fact, "Accuracy value is influenced by the camera’s location against 

sunlight" [20]. An architecture dedicated to child drowning prevention with 5G 

network slicing has been presented in a recent study [22]. This research 

incorporated a thorough evaluation and implementation of three renowned CNN 

models: ResNet-50, VGG-19, and Inception-v3. These models were employed to 

identify distracted parents or caregivers and promptly notify them to redirect their 

attention towards actively supervising their children. 



However, the current video-based pool monitoring solutions, whether for indoor 

or outdoor surveillance, are based on fixed cameras (Figure 2). 

 

(a) Fixed camera      (b) Outdoor surveillance4       (c) Indoor surveillance5 

Figure 2. Current Swimmer Surveillance          

The current monitoring system presents several issues: 

1. Target Occlusion. Swimmers may be obstructed by other swimmers or 

objects like lifebuoys, as illustrated in Figure 2b where the swimmer in the 

lower right corner is obscured by a lifebuoy, making recognition difficult. 

Complex pool layouts, such as bridges (Figure 3a) and other obstructions, 

can also pose challenges to identification. 

2. Small Target Detection. Due to the expansive coverage of the 

surveillance system, swimmers appear relatively small (Figure 2c), 

increasing the risk of missed detections. 

3. Other dangerous behaviors. Apart from drowning, there are other 

dangerous behaviors in the swimming pool, such as running and diving 

along the poolside (Figure 3b). These are aspects that current target 

detection methods lack. 

4. Personalized Care. Parents desire close observation of swimmers to 

assess their condition, including checking for proper swimming posture or 

signs of fatigue. However, parents may not be physically present at the 

pool and rely solely on large screens or outdoor views (Figure 3c), which 

may not provide clear visibility. 

 (a)                     (b)                   (c)  

Figure 3. The Limitations of Current Swimmer Surveillance. (a) The view 

is obstructed by the bridge. (b) Other dangerous behaviors such as jump. (c) 

Parents outside the pool 

 
4 https://zhuanlan.zhihu.com/p/608107145 
5 http://www.sostech.cn/lm4/ 



This paper proposes a new swimmer following vehicle (Figure 4) to 

dynamically track swimmers' behavior, which provides a richer semantic model 

with spatio-temporal information, improves the detection accuracy and category, 

and facilitates the providing of a more intuitive abnormal behavior model. This 

vehicle can be utilized by parents for remote monitoring of their children, or it can 

be temporarily rented at public swimming pools to provide assistance to parents in 

need of personalized care, or to aid pool supervisors in issuing early warning alerts. 

 

                                       

 

 

 

 

 

 

 

 

Figure 4. The Swimmer Following Vehicle 

1.3 Our Contribution 

This paper explores a swimmer following vehicle, serving as an auxiliary monitoring 

device for parents or pool supervisors. It employs deep learning-based state 

modeling and autonomous swimmer tracking to offer a novel unmanned pool 

supervision method. It provides timely alerts for risky behaviors in the pool, 

contributing to a safer swimming environment for teenagers. The main work is as 

follows:  

(1) A multi-scene swimming pool behavior dataset is established, including 

indoor/outdoor, day/night and other scenes. The data are partly from the 

Internet and also from homemade live videos. Furthermore, to further enhance 

the generalization capability and protect the privacy of swimmer, we applied 

data augmentation based on AIGC (AI Generated Content) to the existing 

dataset.  

(2) The current fixed-camera-based solutions introduce issues such as target 

occlusion and difficulty in tracking distant small targets. In order to provide 

better personalized care, this paper proposes a new swimmer following 

vehicle to dynamically track swimmers' behavior and establish a cross-frame 

dynamic risk behavior model from the input video. The vanishing point-based 

detection optimization to improve the likelihood of object detection during the 

Non-Maximum Suppression (NMS) process. Furthermore, this paper uses 

Mosaic processing to prevent the leakage of swimmers' privacy in public pools. 

(3) This paper incorporats components such as EIOU loss function, ACON-C 

activation function, and Ghostnet architecture to optimize the network. 

Additionally, we introduce three network models, namely Baseline, Ghostnet+, 
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SOC Platform

Motion Controller

CameraWIFI Monitor Lidar



and BiFPN+CA, and conduct a comparative analysis with the latest YOLOv8 

model to evaluate the effectiveness of our optimizations. Specifically, we 

propose Ghostnet+ as an efficient object detection network model for state 

detection. 

(4) Due to the limited computing power and energy constraints of the vehicle, this 

paper proposes a distributed deployment to offload core algorithms such as 

state detection and modeling to an edge server with more abundant computing 

resources. The experiments show that the performance of state detection and 

modeling can reach up to about 30 FPS. 

  



2. Design and Implementation 

2.1 Design Principles 

In our design process, based on the actual scenario of swimmer following 

vehicle, we consider the following design principles:  

 

1. Cross-Frame Modeling. We want to dynamically track the swimmer's 

behavior and establish a cross-frame dynamic risk behavior model from the 

input video, which provides a richer semantic model with spatio-temporal 

information. We not only track the ID of the swimmers but also perform 

cross-frame tracking of this ID's state, enhancing recognition accuracy 

based on their movement direction and appearance characteristics.   

2. Distributed Deployment. Due to the limited computing power and energy 

constraints of the vehicle, we are considering to offload certain tasks such 

as target tracking and state modeling to an edge server with more abundant 

computing resources. The vehicle will primarily serve as a perception 

device (camera) and motion controller (wheel movement). This approach 

aims to enhance performance and make it suitable for embedded devices 

with limited computational capabilities, such as the Raspberry Pi platform. 

We also offer local deployment by deploying both tracking and modeling 

on the vehicle (such as Nvidia Jetson Nano). 

3. Lightweight Network Model. We found that on the Raspberry Pi, object 

detection alone takes approximately 2 seconds, which does not meet our 

requirements. Therefore, on computation-limited vehicle, it is necessary to 

use lightweight neural networks while ensuring a certain level of accuracy. 

Additionally, the recently popular Transformer-based neural networks have 

relatively high computational demands and are less suitable for the vehicle 

at the present time. 

4. Privacy Protection. Since swimming pools are mostly public spaces, data 

privacy of swimmers is a critical concern. Our approach involves pixelating 

the images of all swimmers unless users specifically request to view 

images of their own children swimming, thus preventing privacy breaches. 

During the monitoring process, no data will be stored. Furthermore, in 

dataset curation, we will exclude images that allow clear identification of 

swimmers and incorporate images generated by AIGC (AI-Generated 

Content, i.e., Midjourney 6 ) to avoid compromising the privacy of the 

swimmers. 

 

 
6 https://www.midjourney.com/ 



2.2 Overall Architecture 

The overall system architecture is depicted in Figure 5, divided into two 

components: offline processing and online processing. The offline processing 

component consists of three parts: the trained lightweight model of the state 

detection network, the model of swimming pool risk behaviors, and the planned 

vehicle movement path based on Lidar Mapping. The online processing component 

operates in a loop, taking input from the pool camera video, and then processing it 

through three stages: ① State Detection, ② Cross-Frame Modeling, and ③

Swimmer Following. It detects and locates the state and position of the swimmer. 

Then, the state of the swimmer was dynamically tracked across frames. We then 

model the state of the swimmer (e.g. staying underwater for a long time); Combined 

with environmental information, such as weather forecasts, dangerous behaviors 

are analyzed to alert pool managers or parents. At last, it sends motion instructions 

to control the vehicle's tracking of swimmers. 

Figure 5. Overall Architecture 

 

Two deployment approaches are used. The first is local deployment, where the 

core algorithm is deployed on the vehicle itself (Figure 6a). The second approach 

is distributed deployment, where the vehicle primarily sends camera video to the 

edge server (Figure 6b). The edge server runs the core algorithm and sends motion 

instructions to control the vehicle's movement. We will evaluate both deployment 

methods in Section 3. 
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(a) Local Deployment                  (b) Distributed Deployment 

Figure 6. Local and Distributed Deployment 

2.3 Customized Swimming Pool Dataset 

There is no publicly available dataset of swimming pool and dangerous behaviors, 

and we produced the dataset for this project by taking and annotating photo and 

video data from the web search. In order to have a wide range of adaptability, we 

collect data from typical scenes, including indoor/outdoor, day/night scenes, and 

also include multiple resolutions and different formats of pictures and videos.  

For continuous videos, the number of converted pictures is relatively large, so 

we only select pictures in typical states to maximize the coverage of data. 

Considering that the supervision of outdoor swimming pools is the weak link (there 

is a drowning accident in an outdoor swimming pool in a neighborhood around), we 

focus on the collection of outdoor live data (accounting for more than half of the 

dataset). After data collation and annotation, the current dataset consists of 1481 

images in the training set and 527 images in the validation set, with a total of 2008 

labeled typical scenes. To further enhance the generalization capability of the 

swimming pool dataset and protect the privacy of swimmers' data, we applied data 

augmentation based on AIGC (by Midjourney) to the existing dataset. This resulted 

in an addition of 76 images to the training set and 30 images to the test set. 

The current distribution of the dataset is as follows: 

Table 2. Dataset Distribution 

Category Train Set Test Set 

Outdoor (live video) 720 251 

Indoor (live video) 450 156 

Outdoor (from Internet) 145 55 

Indoor (from Internet) 166 65 

AIGC (by Midjourney) 76 30 

 



 

(a) Outdoor (from Internet)              (b) Indoor (from Internet) 

  

(c) Night scene (live video)             (d) Outdoor (live video) 

Figure 7. Multi-scenario pool behavior dataset 

 

We used Midjourney to generate images based on original picture (Figure 8a), 

creating variations in weather, scenarios, and resolutions (Figure 8b, c, d), thus 

expanding the dataset.  

    

(a)                 (b)                 (c)          (d) 

Figure 8. Data Augmentation based on AIGC. (a) is  original, and (b,c,d) are 

generated by Midjourney 

 

At present, the dataset will be labeled according to four typical states, namely 

"ok, underwater, jump and run" (Figure 9). Considering the special scene of the 

pool, staying underwater for a short time is a normal behavior that often occurs, 

and staying underwater for a long time is a possible dangerous behavior. Running 

in the pool is also a dangerous behavior, which also needs to be paid attention to. 

These states can be further expanded as needed in the future. This section is 

mainly about marking states, and the dynamic behavior tracking and modeling 

between states are detailed in Section 2.5. Note that compared to the current 

traditional object detection (Figure 2b), which only identifies swimmer as “people”, 

we not only identify swimmers here, but also identify the state of swimmers. 

 



 
(a) ok             (b)underwater       (c) run           (d) jump 

Figure 9. Dataset Labeling  

2.4 Lightweight YOLO Model 

There are many object detection algorithms based on deep learning. After 

investigation, we use the well-established YOLO [6] network model as the 

foundational method, given its maturity, superior generalization capabilities, and 

active community support. Specifically, we choose YOLOv5 as the state detection 

and use it as a pre-trained model. Aiming at the requirements of lightweight scene 

of pool detection, the following optimization is carried out, and compared with the 

recent YOLOv87. 

1. Loss and activation function improvements 

YOLOv5 uses CIOU loss function [7], which is defined as follows: 

L𝐶𝐼𝑂𝑈 = 1 − IOU +
ρ2(b,bgt)

c2 + αv     (1) 

Where IOU is the traditional Intersection over Union, which is expressed as 

the ratio of the intersection and union of the "predicted" and "true" bounding boxes. 

(ρ2 (b,bgt))/c2 is the square of the Euclidean distance between the predicted box b 

and the true target box bgt divided by the square of the diagonal length c of the 

minimum bounding box covered by the predicted and target boxes. 

ν =
4

π2 (arctan
wgt

hgt − arctan
w

h
)

2

         (2) 

   α =
ν

(1−IOU)+v
                     (3) 

Then αν measures the difference in aspect ratio. Reference [8] points out that 

ν in CIOU formula reflects the difference of aspect ratio, rather than the real 

difference of width and height with their confidence respectively. Once the aspect 

ratios of the predicted and target boxes scale linearly, the added loss term has no 

effect. To this end, the EIOU loss function [8] is proposed, which is calculated as 

follows: 

𝐿𝐸𝐼𝑂𝑈=𝐿𝐼𝑂𝑈 + 𝐿𝑑𝑖𝑠 + 𝐿𝑎𝑠𝑝 = 1 − IOU +
𝜌2(𝑏,𝑏𝑔𝑡)

(𝑤𝑐)2+(ℎ𝑐)2
+

𝜌2(𝑤,𝑤𝑔𝑡)

(𝑤𝑐)2
+

𝜌2(ℎ,ℎ𝑔𝑡)

(ℎ𝑐)2
     (4) 

 

 
7 https://github.com/ultralytics/ultralytics 



𝑤𝑐 and ℎ𝑐 are the width and height of the minimum bounding box covered by 

the predicted and target boxes, respectively. EIOU is divided into three types of 

losses, the overlap loss LIOU of predicted and target true boxes, the center 

distance loss Ldis of predicted and target boxes, and the width and high loss Lasp of 

predicted and target boxes. Therefore, the EIOU loss directly minimizes the 

difference between the width and height of the target box and the anchor box, which 

will have faster convergence speed and better localization results.  

ReLU activation function is a commonly used neural network activation function. 

Recently, Swish activation function (which can be seen as a smooth approximation 

of ReLU) found by network architecture search technology is also good. Literature 

[9] has studied this function and proposed a new activation function Family ACON 

Family. We can explicitly optimize parameter switching between nonlinear 

(activated) and linear (inactive), and outperform ReLU and Swish activation 

functions on tasks such as classification and detection. In particular: 

ACON − C: (𝑝1 − 𝑝2)x ∗ σ(β(𝑝1 − 𝑝2)x) + 𝑝2x     (5) 

Where 𝑝1 and 𝑝2 are the upper and lower limits of the responsible control 

function, which can be obtained by learning. The parameter β, which dynamically 

controls the linear/non-linear activation function, is learned by a small convolutional 

network. σ is the Sigmoid function. YOLOv5-6.1 source code has added the ACON-

C activation function, this project will replace the original Swish activation function 

with this activation function. 

2. Lightweight Network Improvements 

YOLOv5 has made many improvements in network lightweight and provides a 

variety of lightweight models. This paper intends to adopt Ghostnet [10] proposed 

by Huawei Noah's Ark Laboratory as a lightweight backbone network. 

 

Figure 10. Ghostnet Network Architecture [10] 

 

Based on MobileNetV3, the Ghostnet network divides the traditional 

convolution operation into two parts. The convolution operation with a small number 

of convolution kernels is used as the first part, and then the concat operation is 

performed with the second part of the Identity map (see Figure 10) and the 



lightweight per-channel convolution operation. The computational complexity of the 

network is greatly reduced while the accuracy is not decreased. This paper will 

analyze the impact of Ghostnet on the amount of network computation and 

evaluate whether it is suitable for pool detection. 

3. Feature Fusion and Coordinate Attention Mechanism 

YOLOv3 uses feature fusion and multi-scale prediction to effectively optimize 

the detection of small target objects. In the swimming pool scene, many swimmers' 

targets are small and most of them are underwater. Therefore, multi-scale feature 

fusion is an effective method for this scene. In this project, BiFPN (Bidirectional 

feature pyramid network) [11] is used to realize simple and lightweight multi-scale 

feature fusion. The traditional feature fusion method does not distinguish the input 

features, while BiFPN can learn the weight of each feature, which can detect small 

objects more effectively. The feature map obtained combines the features of the 

current layer and the upper and lower layers, a total of three layers (see Figure 11). 

In this project, it is added to the detection network to evaluate the impact on the 

detection effect of small objects. 

 
                     (a)                       (b) 

Figure 11. (a) traditional feature pyramid; (b) BiFPN (current layer and 

two layers above and below) [11] 

Attention mechanism is widely used in deep learning, so we try to introduce the 

spatial Coordinate Attention mechanism (CA) [12] to explore the application of 

attention mechanism in the pool scene. This method uses two one-dimensional 

global pooling operations to aggregate the input features along vertical and 

horizontal directions into two independent direction-aware feature maps, and then 

encodes the two feature maps with embedded direction-specific information into 

two attention maps, which capture the long-distance dependence of the input 

feature maps along a spatial direction respectively. However, in the pool scenario, 

the spatial position of the swimmer is a continuous state switch, so we try to 

introduce this mechanism to evaluate whether it is suitable for the pool scenario.  

YOLOv8 is further improved on the classic YOLOv5. On January 10, 2023, 

YOLOv8 was officially open sourced. YOLOv8 is an anchor-free model, which 

directly predicts the center of the object rather than the offset of the known anchor 



box, reducing the number of box predictions and accelerating the processing of 

NMS. Backbone is also improved, and the C3 module is replaced by the C2f 

module to further realize lightweight. It improves the overall speed and accuracy 

on the COCO benchmark. In this paper, YOLOv8 will be compared with the 

methods we mentioned earlier to evaluate which is more suitable for pool detection. 

2.5 Cross-Frame Modeling 

With object detection, we obtain the state and coordinates of the swimmer, and the 

corresponding Confidence. It lays a good foundation for further target state tracking 

and modeling. We also found that if the object detection is inaccurate, it will affect 

the object tracking or even lose the object. At present, the commonly used object 

tracking algorithms include SORT (Simple Online and Realtime Tracking) [13] and 

improved DeepSORT [14] based on deep learning. In this paper, the DeepSORT-

based algorithm is used to track the object state8. The SORT algorithm uses 

Kalman Filter [15] to predict the state of the object in the previous frame in the 

current frame. For the Mahalanobis distance based on appearance information, it 

calculates the cost matrix of the tracks of swimmers and the detections of the 

detections list. Hungarian algorithm [16] is used to match the predicted tracks and 

detections in the current frame (cascade matching and IOU matching), and the 

information of the matched pairs and unmatched pairs of swimmers in the current 

frame is obtained. For the matched swimmers, the mean vector and covariance 

matrix of the Kalman filter need to be updated.  

The main improvement of DeepSORT for SORT is that it borrows the deep 

learning model in the field of ReID (Re-identification) to extract appearance 

features (each swimmer extracts a one-dimensional feature vector with a total 

length of 512 bits), and calculates the similarity through the cosine distance of the 

feature vectors of two swimmers before and after frames. The similarity results are 

applied to the Hungarian algorithm used to match swimmers.  

Therefore, in the swimming pool scene, due to occlusion and diving, there will 

be situations where the swimmer does not appear in the current frame, so it is 

necessary to introduce a set of tracking algorithms that can handle occlusion and 

loss situations. Specifically, the swimmer in each frame of the monitoring video has 

obtained the state, position and confidence through the aforementioned object 

detection, and the feature vector extracted by the Re-ID module is used to 

determine whether the swimmer in the subsequent frame is the same person. If it 

is the same person, the corresponding ID does not change. If it is not the same 

person, if it appears in the preceding frame, it is marked with the ID of the 

occurrence, otherwise, the swimmer is given a new ID. 

 
8 https://github.com/dyhBUPT/StrongSORT 



Figure 12. Swimmer tracking based on DeepSORT algorithm 

With the state of the swimmer and the corresponding ID, the state model can 

be established to collect the pool risk behavior (such as underwater for a long time, 

running, etc.), and the risk behavior model can be established according to the 

dynamic object tracking. According to the behavior model, the swimmer can be 

tracked in real time and the risk behavior can be warned.  

For pool scenes, we introduce vanishing point-based detection optimization to 

enhance swimmer detection probability. Pools typically exhibit regular shapes, 

making vanishing point estimation feasible using OpenCV-based detection 

algorithms. As shown in Figure 13 below, the red dot represents the computed 

vanishing point. 

Figure 13. The vanishing point (red dot) computed by OpenCV 

 

In order to compute the vanishing point, we use cv2.GaussianBlur and 

cv2.Canny to detect edges in an image (Figure 14b). Then cv2.HoughLinesP is 

used to get the lines of this image. At last, we find and sort the intersection points 

of these lines to locate the vanishing point (Figure 14c). 

(a)                        (b)                     (c) 

Figure 14. The computation steps for the vanishing point  

 

vanishing 

point 



Now, we pass vanishingpoint to the function of non_max_suppression to adjust 

the confidence of detected target, according to the follow formula: 

  

            distance =  √(𝑥 − 𝑣𝑥)2 + (𝑦 − 𝑣𝑦)2                (6) 

dist_adj = torch. clamp ( 1 + 0.2 ∗ (1 −
distance

width
) , min = 1.0, max = 1.2)  (7) 

            confidence = confidence ∗ dist_adj                  (8) 

             iouthres = iouthres ∗ dist_adj                     (9) 

First, we compute the distance between the current swimmer (x, y) and the 

vanishing point (vx, vy) by Formula (6). Then we compute the confidence adjust 

factor dist_adj by Formual (7). This formula can be replaced by other computing 

method. Then we use this factor to adjust the every object’s confidence by Formula 

(8) and the iou_thres during during the Non-Maximum Suppression (NMS) process.  

Figure 15 shows the result of this adjustment. Figure 15a show the confidence 

without vanishing point. The confidence of the right swimmer is 0.85, but when 

adjusted as shown in Figure 15b, it increases to 0.92. The swimmer on the left is 

relatively far from the vanishing point, so there is a limited improvement in 

confidence. 

(a) (b) 

                (C)                                     (d)   

Figure 15. The difference of detection of without/with vanishing point 

 

In Figure 15c, with the optimization of vanishing point, we can identify 3 

swimmers (without this optimization, only 2 swimmers ) in the case of crowded 



people. Also, in Figure 15d, this optimization detect the swimmer ignored by the 

oringial version. Hence, based on the introduction of the vanishing point, we have 

increased the confidence in swimmer detection, thereby enhancing the likelihood 

of object detection during the NMS process 

It mainly tracks the status of swimmers, and sends "SOS" information and 

warning bell for more serious ones. If it is information that needs attention, a 

"Warning" signal is issued. In the future, the alarm module can further communicate 

with the social network App like Wechat and so on, and directly send the alarm 

information to the Wechat of lifeguards or parents.  

Through the semantic analysis of behaviors, this paper established the state 

table of cross-frame spatio-temporal continuous behaviors. At present, the 

following basic state model has been initially constructed (see Figure 16). If the 

swimmer has been in the "ok" state, it remains unchanged. If entering the 

"underwater", the timing will start. If it has timeout (such as 8 seconds, the time can 

be configured), the alarm "SOS" will be issued. If it is a long run, a warning message 

"warning" is issued. For simplicity, if a state switch occurs, it is retimed (this part of 

the state transition diagram is not shown). At present, it is mainly to verify the design 

scheme of this project, and can be further expanded according to the behavior in 

the future. 

Figure 16. Finite State Model 

 

 

 

Now, we propose Cross-Frame Modeling algorithm (Figure 17) to track the 

swimmer with spatio-temporal information. 

 

 

 

 



Algorithm: Cross-Frame Modeling 

Initialization:  

 Initialize the statemodel, which is key-value data structure, <id, (state, statedelay)>. statemodel is 

used to track every swimmer ID’s state and hold time in that state.  

Cross-Frame Modeling:   For the swimmer ID in every frame of the input video, we record this ID’s  

state and hold time statedelay in this state. Note: if state is changed, statedelay is reset to 0.  

1： while cmd != “quit” do 

2：    for every swimmer ID in the current frame do 

3：       switch (statemodel[id].state ): 

4：            case “ok” : // the current state is “ok” 

5：                 nothing to do, continue to track 

6：            case “underwater” : //  the current state is “underwater” 

7：                if statemodel[id]. statedelay  > SOSTIMEOUT  then //such as 8 seconds 

8：                     send the SOS warning alert!  

9：                 endif 

10：            case “jump” : //  the current state is “jump” 

11：                if statemodel[id]. statedelay  > JTIMEOUT  then //such as 3 seconds 

12：                     send the jump warning alert!  

13：                 endif 

14：             case “run” : //  the current state is “run” 

15：                if statemodel[id]. statedelay  > RTIMEOUT  then //such as 5 seconds 

16：                     send the running warning alert!  

17：                 endif 

18：          end switch 

19：      end for 

20：   end while 

 

Figure 17. Cross-Frame Modeling Algorithm 

 Figure 18 below tracks two swimmers distinguished by their IDs, even as their 

states change while their IDs remain the same. For example, Swimmer 1 is always 

"ok", but Swimmer 2 is sometimes over the water and sometimes underwater. If it 

is underwater, the timing starts. And once time out, a warning is issued according 

to the state model. 

Figure 18. Dynamic tracking of the swimmer's state 



2.6 Swimmer Following 

First, we utilize the vehicle's onboard Lidar to build the map of the swimming pool 

(Figure 19b), obtaining information about the pool's shape and any obstacles along 

its edges. Next, we manually mark the boundaries of the swimming pool to prevent 

the vehicle from leaving them.  

 

(a) The swimming pool         (b)  Lidar Mapping     (c) Observation points 

 

Figure 19. Lidar Mapping and Observation Points 

 

Afterward, we designate a series of observation points of the planned path on 

this map (Figure 19c), including their coordinates and observation angles. These 

observation points serve as navigation targets for the vehicle in the subsequent 

following algorithm.  

 

Regarding the Swimmer ID to be followed, in general, the vehicle is in one of 

three states: forward, stop, or backward (Figure 20). If the swimmer is shifted to the 

right and forward, we should let the vehicle to go to the next observation point (case 

1 in Figure 20, also see Figure 21a).  

 



Case 1：Moving Forward

 Forward 

Case 2 ：In the Middle

 Stop Moving 

Case 4： The blocked view

 Forward/Backward 

Case 3：Moving Backward

 Backward 

Planned Path

Observation point 

and direction

Motion Instructions

Pool border

Observation vehicle

 

Figure 20. Swimmer Following  

If the current observation position is exactly in the middle then we stop moving 

(case 2 in Figure 20, also see Figure 21b). If the tracked ID is disappeared (blocked 

by some objects, case 4 in Figure 20, also see Figure 21c), we wait for a while. If 

a timeout occurs, we adjust the vehicle's direction by moving forward or backward 

based on the previous motion direction, attempting to re-follow the target (Figure 

21d). If re-follow is unsuccessful, a warning message is issued. 

For our ROS2 (Robot Operating System) 9  based vehicle, the 

move_base_simple/goal is a ROS topic used for publishing simple messages of 

movement goals. It is of type geometry_msgs/PoseStamped, which contains pose 

information for the target location, including three-dimensional coordinates and 

quaternions. Every observation point includes the pose information for the target 

location. So we just simply publish this pose information to move_base_simple/goal 

to navigate the vehicle to the next target. 

 
9 https://docs.ros.org/ 



              (a) Moving Forward          (b) In the Middle“Stop Moving” 

               (c) The blocked view                (d) Re-follow the target 

Figure 21. Different Swimmer Following Cases  

 

The vehicle is equipped with the ROS2 runtime environment, which includes 

built-in navigation and obstacle avoidance algorithms. Based on the discussion 

above, Swimmer Following algorithm is proposed (Figure 22). When we provide 

the coordinates and angles of the target observation points, the vehicle's onboard 

navigation algorithm will move the vehicle to the desired location. If any obstacles 

are detected by Lidar, such as a person passing by, the navigation algorithm will 

automatically perform obstacle avoidance, simplifying our algorithm's design. 

Additionally, we intermittently move based on these observation points, meaning 

the vehicle is not constantly in motion. This reduces energy consumption and 

increases the vehicle's observation time. 

  



 

Algorithm: Swimmer Following 

Initialization:  

Load the Planned Path array poselist. 

According to the current position to determine the position index poseindex of the closest 

observation point (usually the poseindex is 0).   

 

Swimmer Following:  If the swimmer ID is specified to track, then for this ID in every frame of 

the input video, we record this ID’s movement center_position, movement direction, and hold 

time in that direction of movement Duration. 

1： while cmd != “quit” do 

2：     switch (center_position ): 

3：          case “forward” : // the center_position is shifted to the right and forward 

4：                poseindex = poseindex +1 //move forward to the next observation point 

5：                motioncontrol(“forward”, poseindex) 

6：          case “center” : // the center_position is in the middle of the frame 

7：                motioncontrol(“stop”) // The current observation position is exactly in            

8：                                //  the middle and we stop moving 

9：          case “backward” : // the center_position is shifted to the left and backward 

10：                poseindex = poseindex -1 //move backward to the observation point 

11：                motioncontrol(“backward”, poseindex) 

12：          case “blocked” : // the tracked ID is disappeared  (blocked by some objects) 

13：                if Duration > WaitTime  then // we wait for the seconds (WaitTime) 

14：                      if  direction == “forward” then 

15：                          poseindex = poseindex +1 //continue to move forward  

16：                          motioncontrol(“forward”, poseindex) 

17：                       else 

18：                           poseindex = poseindex -1 //continue to move backward  

19：                          motioncontrol(“backward”, poseindex) 

20：                        endif 

21：                   endif 

22：        end switch 

23：    end while 

 

Figure 22. Swimmer Following Algorithm 

2.7 Mosaic-based privacy protection 

For the output video (Figure 23a), using OpenCV, we apply Mosaic processing to 

each swimmer ID (Figure 23b). This prevents the leakage of swimmers' privacy in 

public pools. Depending on specific requirements, we can also adjust the 

granularity of the Mosaic processing. A coarser granularity results in more blurred 

images of swimmers. Furthermore, to meet the needs of personalized care form 



parents, we can designate the swimmers to be tracked for individual users, and 

their images will not undergo Mosaic processing separately (Figure 23c). This 

allows parents to promptly assess the state of the specified swimmer.  

 

(a) Native Image                 (b) All Mosaic             (c) Specified Swimmer 

 

Figure 23. Mosaic-based Privacy Protection 

  



3. Evaluation 

3.1 Edge Server & Vehicle Configuration  

To evaluate the system's performance under various computing configurations, we 

set up the experimental devices as detailed in Table 3. V2 does not have a laser 

radar and cannot navigate. This device is primarily used to evaluate the inference 

performance of embedded platforms. 

 

Table 3. Edge Server & Vehicle Configuration 

Edge 

Server 

 Configuration Vehicle Configuration 

S1: x86 

CPU+GPU 

Intel i7-

11700@2.5GHz, 

32GB RAM, NVIDIA 

RTX A2000 

V1: WHEELTEC R500 Jetson nano 4GB, 

ARM cortex-

A57@1.43GHz,4GB 

RAM, N10P Lidar 

  
S2: x86 

CPU only 

Intel i7-

8565U@1.8GHz, 

32GB RAM  

V2: RaspBerry Pi 4B RaspBerry Pi 4 

model B, 

ARM Cortex-

A72@1.5GHz, 8GB 

RAM 

S3: Apple 

M2 

ARMv8-

A64@3.5GHz, 16GB 

RAM 

3.2 Lightweight YOLO Model 

Since the DeepSORT-based algorithm does not involve the accuracy of the 

swimmer experimental data for the traditional algorithm (except for the ReID 

module, which uses a simple CNN inference network) and cross-frame modeling, 

its speed and calculation amount are also relatively fixed, and the effect of its 

performance depends on the accuracy and calculation amount of the lightweight 

target detection algorithm. So the YOLO model pays an important role in the whole 

framework. Therefore, three object detection models are mainly evaluated. The first 

Baseline model was trained by the predefined model of YOLOv5s. The second is 

a lightweight network (Ghostnet+) with the addition of EIOU loss function, ACON-

mailto:cortex-A57@1.43GHz,4GB
mailto:cortex-A57@1.43GHz,4GB
mailto:i7-8565U@1.8GHz
mailto:i7-8565U@1.8GHz
mailto:Cortex-A72@1.5GHz
mailto:Cortex-A72@1.5GHz
mailto:ARMv8-A64@3.5GHz
mailto:ARMv8-A64@3.5GHz


C activation function, and Ghostnet; The third is Ghostnet+ plus the 

aforementioned BiFPN feature fusion plus coordinate attention mechanism CA 

fusion model (BiFPN+CA), and the fourth and fifth are tiny and small models of 

recent YOLOv8, respectively. Here is the basic information for the five models (the 

first three were trained for 400 epochs each, and the last two were trained for 500 

epochs each according to the documentation. 

 

Table 4. Comparison of Different Network Models 

Model  

Type 

Size 

(MB） 

Layers Paramete

rs 

FLOPS P R mAP 

@.5 

Baseline 

(YOLOv5s) 

14.04 384 7,429,569 16.2   0.74 0.51 0.51 

Ghostnet+ 8.34 583 4,003,273 8.4 0.71 0.46 0.48 

BiFPN+CA 12.76 448 6,291,121 14.0 0.74 0.49 0.48 

Small（YOLOv8） 22.5 168 11,127,13

2 

28.4 0.73 0.491 0.489 

Tiny（YOLOv8）  6.2 168 3,006,428 8.1 0.437 0.644   0.485 

 

On the same training platform, in addition to the model parameters and 

network, it can be seen that the BiFPN+CA network is lighter than Baseline, but the 

model accuracy is about the same as Ghostnet+. The Small model of YOLOv8 is 

the largest and has a large amount of calculation, but the accuracy and recall rate 

are not improved. The Tiny model has the smallest model and the smallest amount 

of calculation, but the lowest accuracy and large loss. In general, while Ghostnet+ 

is the most lightweight and has little loss of accuracy, we mainly choose Ghostnet+ 

as our object detection network. We also focus on inference speed. The following 

table shows a comparison of Ghostnet+, Baseline, and YOLOv8 Small/Tiny models 

in terms of overall speed, including inference speed for object detection and 

processing speed for state tracking based on DeepSORT: 

 

Table 5. Comparison of Inference Speed  

Model Types Object Detection

（ms/FPS） 

State Tracking 

（ms/FPS） 

Baseline (YOLOv5s) 8.6/116.3 88.4/11.3 

Ghostnet+ 25/40 45.1/22.2 

Small（YOLOv8） 9.6/104.2 21.2/47.2 

Tiny（YOLOv8） 6.9/144.9 19.7/50.7 

It can be seen from the above table that at present the whole processing speed 

basically reaches more than 20FPS, which can meet the requirements for 

monitoring, while Ghostnet+ is slower in reasoning, but the overall processing 

speed is not slow. YOLOv8 has the advantage in speed, but Small model is large 

(the model size is 22.5MB), and YOLOv8 Tiny model is not accurate enough. So, 

we select Ghostnet+ as the object detection network at the present time. 

  



3.3 Local vs. Distributed Deployment 

According to the configuration of Table 3, the performance of both local and 

distributed deployment (Figure 6) are tested and summarized in Table 6. For local 

deployment, V1 (Jetson nano) has a relatively high computing power. Despite 

being an embedded platform, it has an NVIDIA Maxwell GPU. So the state 

detection and Cross-Frame Modeling require an average of 0.14 and 0.13 seconds, 

respectively. This results in a total speed of approximately 4 FPS, which only barely 

meets the requirements for swimmer tracking. However, for V2 (RaspBerry Pi), it 

relies primarily on CPU computation, resulting in a significantly lower speed of 

around 0.2 FPS. While reducing the image size to 320 (default is 640 for the 

camera) can increase the FPS to approximately 0.5, but this size has shown a 

decrease in accuracy. 

 For distributed deployment, if the Edge Server is S1 and we use the lightweight 

Ghostnet+ network, the total FPS approaches 30 FPS, resulting in a more effective 

swimmer tracking. From this, it is evident that distributed deployment offers 

superior performance and is suitable for scenarios where vehicle computing power 

is constrained. We observed that in certain scenarios, Ghostnet+ performed less 

effectively than the Baseline. We speculate that this may be due to suboptimal 

operators in the lightweight network, which could be explored as a potential 

direction for further research.  

 

Table 6. Local vs. Distributed Deployment (Default imgsize = 640) 

Deployment Types Detection

（s） 

Modeling 

（s） 

FPS 

 

 

 

Local 

V1  

(Jetson nano) 

Baseline 0.14 0.13 3.7 

Ghostnet+ 0.19 0.13 3.1 

V2  

(RaspBerry Pi)  

Baseline 5.1 0.55 0.18 

Ghostnet+ 5.6 0.55 0.16 

Baseline 

(imgsize = 320) 

1.35 0.55 0.53 

Ghostnet+ 

(imgsize = 320) 

1.55 0.56 0.47 

 

 

Distributed 

S1+V1 

(RTX A2000) 

Baseline 0.07 0.014 11.9 

Ghostnet+ 0.02 0.014 29.4 

S2+V1 

(CPU only) 

Baseline 0.69 0.17 1.16 

Ghostnet+ 0.6 0.17 1.3 

S3+V1 

(Apple M2) 

Baseline 0.143 0.014 6.34 

Ghostnet+ 0.16 0.014 5.75 

 

To further investigate the performance of the Raspberry Pi, we conducted 

separate tests with two target detection models: YOLOv5-lite, designed for 



embedded platforms (https://github.com/ppogg/YOLOv5-Lite), and ByteTrack, a 

fast end-to-end multi-object tracking model (https://github.com/ifzhang/ByteTrack).  

On the Raspberry Pi, under the same resolution, the performance of PyTorch-

based models is not very satisfactory. Only the state detection, which requires 

approximately 2 seconds, consumes about 2.9 GFLOPs. Similarly, running the 

end-to-end ByteTrack model yields slightly better results, with target detection and 

tracking combined taking around 2 seconds, which is an improvement compared 

to YOLOv5-Lite.  

From this observation, without optimization for embedded platforms, the 

detection speed remains relatively low and fails to meet the requirements. 

Therefore, we are considering the NCNN optimization library 10  , which is 

specifically designed for embedded platforms and utilizes C++ programming, 

providing faster performance compared to Python-based PyTorch. 

We conducted preliminary tests, and the built-in YOLO algorithm provided by 

the NCNN system exhibited excellent performance, as shown in Table 7 below. 

With optimization, we anticipate target detection to be under 100 milliseconds. 

 

Table 7. The performance of the NCNN library on the Raspberry Pi 

Model Types Min (ms) Max(ms) Average(ms) 

mobilenet_yolo 785.36 811.09 800.64 

yolov4-tiny 537.07 553.48 541.82 

nanodet_m 151.50 154.25 152.44 

yolo-fastest-1.1 94.88 101.02 95.94 

yolo-fastestv2 62.08 63.34 62.64 

vision_transformer 7140.38 7293.43 7206.64 

FastestDet 70.20 71.90 70.86 

 

From Table 7, it is evident that there are significant computational limitations 

on embedded platforms currently, and the computing requirements for 

Transformer-based object detection are even higher. Even with hardware 

optimizations like NCNN, it can only run very lightweight networks such as yolo-

fastest, often at the cost of reduced accuracy. Therefore, the current distributed 

deployment approach proves to be a more viable solution for swimmer tracking. 

3.4 Cross-Frame Modeling 

The actual effect analysis is carried out below. In a clear background, the 

status of the main task can be tracked and recorded, but the fourth ID in the figure 

is not recognized due to the small picture. The ID of the swimmer is also lost in 

tracking (but due to dynamic tracking, the temporarily lost ID will be found in the 

follow-up. For example, the swimmer ID lost in the second panel is retrieved in the 

 
10 https://github.com/Tencent/ncnn 



third panel and remains unchanged.) It can be seen that the state dynamic tracking 

of ID is basically realized, but there are still some flaws due to the accuracy of ReID 

and target detection, and the data set and model tracking algorithm need to be 

further improved. 

   

Figure 24. Swimming Pool Behavior Tracking 

I downloaded drowning videos from the Internet and used our system for 

analysis. When a swimmer is "underwater" for more than 10 seconds (this 

parameter can be modified), the system marks the swimmer as "SOS" and a 

warning bell is sounded to alert everyone.  

We conducted tests on drowning videos from the Internet to verify its 

dangerous behavior detection effect (Figure 1). The state of the swimmer 14 has 

gone through the process of "underwater" (at 14:18:13, Figure 25a) -> "underwater" 

(SOS timeout alarm, at 14:18:21, Figure 25b), which can track the state of 

swimmers. According to the state transition modeling, once the underwater timeout 

(tentatively 8 seconds here), the alarm can be reported in time, and the design goal 

has been initially achieved. 

  

(a) Underwater                    (b)  Underwater time-out alarm 

Figure 25. Swimming pool dangerous behavior detection effect 

 

In order to compare the effect of the Object Tracking algorithm (Figure 26), we 

also compared with the current end-to-end object tracking algorithm (ByteTrack11). 

 
11 https://paperswithcode.com/sota/multi-object-tracking-on-mot17 



 
Figure 26. Accuracy and speed comparison of the ByteTrack algorithm 

 

After practical testing, we find that its detection speed is much faster than the 

previous framework, with 900,000 parameters, only 3.99GFLOPS of computation, 

over 70FPS of inference speed, and 7.4MB model size.  

However, in terms of accuracy, the accuracy of small targets and occlusion, 

underwater and other time series is not ideal at present. For example, for the same 

detection video, it can be seen that the end-to-end tracking is easy to lose the target, 

the state of the target cannot be accurately tracked at present, and the effect 

recognition of small targets is not ideal. For example, as shown in Figure 27, some 

small targets are lost. For the tracking of the swimmer at different times, its ID is 

lost and a switch occurs. However, for our method ID is not lost, and it also keeps 

the ID when the state is switched, which can track the state of the swimmer more 

accurately. For end-to-end tracking, we will also further track according to the 

optimization of the data set and algorithm. After all, its detection speed is much 

higher than that of the regular model, which may be more convenient to use in 

lightweight occasions. 

 

   (a) Our Method                  (b) ByteTrack  

Figure 27. Comparison of our method with ByteTrack Tracking Method 



4. Limitations & Discussions  

The current solution has not yet addressed the charging of the vehicle. This can be 

addressed by adopting a similar approach to that of robotic vacuum cleaners, which 

use Lidar-based localization to periodically return to a charging station for 

recharging.  

Furthermore, the current distributed deployment primarily offloads core 

algorithms to an edge server. It can be extended to have a single edge server to 

control multiple vehicles for more efficient pool monitoring. Additionally, the 

integration of vehicles and fixed cameras can be explored as a complementary 

approach. If fixed cameras have limited visibility, vehicles can be moved closer to 

the area of interest for better observation. 

The current approach utilizes 2D radar mapping, but there is potential for future 

exploration into 3D point cloud mapping for state detection and behavior modeling 

based on 3D point clouds. Currently, after radar mapping, observation points are 

manually set, but in the future, autonomous navigation routes can be self-

determined based on the map, reducing the need for manual intervention. 

Additionally, integration with fixed cameras can be considered, where fixed 

cameras can identify the pool and vehicle positions and plan observation routes. 

Experimental findings suggest that the dataset plays a crucial role in target 

detection. For some specific scenarios, we found that the Precision of our object 

detection is 0.849, Recall is 0.9, and mAP@.5 is 0.909. The dataset collected for 

this paper is not yet extensive, and there is room for further expansion. In the future, 

the dataset can be expanded through methods such as pool simulation and AIGC 

to enhance the generalization capability of target detection. 

The paper also discusses the inference performance issues on embedded 

devices. In addition to further improving lightweight networks, such as using neural 

architecture search (NAS), neural network model quantization, model compression, 

etc., exploring performance optimization methods based on hardware acceleration 

is another future direction for exploration. 

Another interesting direction for improvement is enhancing human-machine 

interaction. Currently, alert notifications primarily rely on monitors and sounds. In 

the future, there is room for diversifying alert mechanisms. For instance, a 

swimming pool could incorporate a Swimming-ring launcher. In the event of a 

drowning alert, the system could launch a Swimming-ring, attracting the attention 

of everyone and facilitating the prompt identification of potential drowning victim. 

5. Conclusion 

This paper introduces a novel swimmer following vehicle designed to dynamically 

track swimmers' behavior. The integration of swimmer tracking via deep learning 

and risk alerts using cross-frame modeling establishes an early warning system. 

Compared with existing deep learning methods based on object detection from 



fixed cameras, we add dynamic behavior modeling of cross-frame spatio-temporal 

information semantics on a mobile vehicle, to address the issues like target 

occlusion and the tracking of distant small targets. This vehicle can be used by 

parents for remote monitoring of their children, or it can be temporarily rented at 

public swimming pools to assist parents seeking personalized care and support 

pool supervisors in issuing early warning alerts. We hope this vehicle contributes 

to creating a safe swimming environment for children.   
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别，例如跳水、奔跑等。 因此，本文提出了能够跟随游泳者的智能小车,有别于传

统的基于固定摄像头的监控方法，通过小车摄像头移动采集视频，采用深度学习来

识别游泳者的状态，并通过状态建模，对泳池的危险行为进行预警（例如水下时间

长、奔跑等）。 

同时，根据游泳者的运动方向，控制小车按照预定的观测点进行移动（事先通

过激光雷达建图），这样能够近距离跟踪游泳者，避免固定位置的摄像头引起的遮

挡或目标太小的问题，并能够通过网络将游泳者的实时图像传送（可以近距离观测

小孩的状态，例如是否疲惫）。因此，这个小车可以帮助家长照看小孩，甚至可以远

程看管小孩。为了避免公共场合的隐私泄露， 将不是跟踪目标的其他游泳者打上马

赛克。这个小车也可以放在公共泳池，供泳池管理人员临时出租给家长，方便不方

便进入泳池的家长也可以看管小孩。 
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的无偿指导。 

4. 他人协助完成的研究成果 

泳池的溺水行为调查得到了多家泳池救生员的仔细答复，在此表示感谢！ 特别

感谢我的弟弟，暑期长期泡在游泳池里面，为本文的泳池建模和小车调试提供了实
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