
 

- 1 - 

 

 

An integrated optimization methodology for minimizing operating 

costs of home delivery services in the O2O retail era 

 

Abstract 

In O2O (online-to-offline) retail, customers place orders online and the O2O retailer delivers products 

from stores to customers within the commitment time. The online orders usually fluctuate more sharply 

during peak periods: like lunchtime and dinner time, which may significantly affect the operating cost. 

Therefore, this paper transforms the blended workforce-staffing problem of O2O home delivery service into 

dynamic vehicle routing, fleet sizing, and workforce type assignment. And then, an integrated optimization 

model is proposed to minimize the delivery and employment cost of delivery services, which considers the 

dynamic features of online orders and heterogeneous drivers. Multi-period capacity vehicle routing problem 

with time window (MP-CVRP-TW), fleet sizing problem (FSP), and workforce type assignment problem 

(WTAP) are integrated into the model in a subtle way. To solve the integrated model, we develop an efficient 

hybrid algorithm, which blended the memetic algorithm, Hopcroft Karp algorithm, and branch-and-cut 

algorithm. The experiment results based on a leading Chinese O2O retailer indicate that our algorithm is 

more applicable for MP-CVRP-TW, which could obtain a high-quality solution with less time spent 

compared with Gurobi solver. An innovative constructing algorithm is proposed to generate directed acyclic 

graphs (DAG), and then Hopcroft Karp algorithm is applied to solve FSP. We also conduct a comprehensive 

simulation to present the improvements in total cost, with the different settings of commitment delivery time 

and workforce allocation strategy. The theoretical and numerical results would shed light on the delivery 

management of the O2O on-demand services. 
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1 Introduction 

A novel online-to-offline (O2O) retail mode is currently popular in China. Alibaba’s Hema Fresh (Hema 

2021), which was established in 2017 and is a pioneering example of the O2O retail mode in China, has more 

than 200 brick-and-mortar stores and offers more than 7,000 high-quality items to 25 million customers. The 

O2O retail mode implements both offline sales and online sales in an offline store. Online customers place 

orders and are offered instant delivery services, while traditional offline customers pick up the goods by 

themselves and check out at cashier desks (Chen, Fan et al. 2022). O2O instant delivery service is an 

important pillar to support the rapid growth of O2O retail mode. The number of instant delivery orders 
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reaches 24.37 billion in 2020, and the average annual growth rate exceeds 30% (Dianwoda and iResearch 

2019). Recently, the O2O retail mode has been quickly introduced by retailers. 

However, the high cost of O2O instant delivery service is the bottleneck for the rapid development of 

O2O retail mode. The main components of costs in O2O instant delivery service are the transportation cost 

and employment cost (Dai and Liu 2020). Transportation cost make up the majority of the total logistics cost 

(Azi, Gendreau et al. 2012, Ulmer, Mattfeld et al. 2018, Zhang, Gu et al. 2021), which are mainly influenced 

by the route planning (Ritzinger, Puchinger et al. 2016, Peng, Zhang et al. 2020). With the increase in labor 

costs, employment cost is becoming a larger proportion of total logistics costs. It is necessary to consider the 

cost of employing delivery drivers in the actual operation. Therefore, how to minimize transportation and 

employment costs is a huge challenge for O2O retailers.   

The problem is compounded by the dynamic features of the online order and the heterogeneous of 

workforces in the O2O retail. Firstly, online orders placed by customers fluctuate dramatically, with two 

distinct peak periods: lunch time and dinner time. If too much capacity is allocated to complete the orders 

during peak hours, there will be a lot of idle capacity during low hours (Dong and Ibrahim 2020). Secondly, 

there are three types of workforces that could be employed, which are in-house drivers, outsourcing drivers 

and crowdsourcing drivers. The different type drivers are heterogeneous in terms of service quality, delivery 

capability, and salary structure. To the best of our knowledge, few studies comprehensively analyzed the 

impact of the dynamic features of the online order and the heterogeneous of workforces on the cost of O2O 

instant delivery services (see the literature review in Section 2). 

In addition, the commitment delivery time promised to customers by O2O instant delivery services is a 

key factor affecting the transportation cost and employment cost. In current practice, O2O retailers divide 

their business hours into segments at 30-minute intervals, and customers within a 3km radius of the retailer 

could select in which segments their orders would be delivered (Hema 2021). The 30 minutes is the delivery 

time promised to the customer by the retailer and is referred to as the commitment time. If the commitment 

delivery time is too long, it is not enough to attract customers, and if the commitment time is too short, it will 

spend a lot of logistics costs to ensure that the order is delivered on time. Different O2O retailers will set 

different commitment times, but how to trade-off the relationship between commitment time and logistics 

costs is ambiguous. To the best of our knowledge, few studies have delved into the relationship between 

commitment delivery time and logistics costs for the O2O retail.  

Therefore, this paper puts forward an integrated optimization model to minimize the transportation and 

employment cost of O2O instant delivery services. In this methodology, an innovative integrated model is 

proposed, which integrated the model of the multi-period capacity vehicle routing problem with time window 

(MP-CVRP-TW), fleet sizing problem (FSP), and workforce type assignment problem (WTAP) in a subtle 

way to formulate the dynamic features of the online order and the heterogeneity of workforces in O2O retail. 

To solve the integrated model, an efficient hybrid algorithm is developed, which blended the memetic 

algorithm, Hopcroft Karp algorithm, and Branch-and-cut algorithm. In the case study, the experimental 
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results validate the effectiveness of these algorithms. And the relationship between commitment delivery 

time and total cost of the O2O instant delivery services are revealed. 

The contributions of this research are summarized as follows. 

(1) We transform blended workforce-staffing problem of O2O instant delivery service into dynamic vehicle 

routing, fleet sizing, and workforce type assignment. Then construct an integrated model considering 

dynamic features of online orders and heterogeneous drivers to minimize transportation cost and 

employment cost of O2O instant delivery service. The integrated model neatly integrates multi-period 

capacity vehicle routing problem with time window (MP-CVRP-TW), fleet sizing problem (FSP), and 

workforce type assignment problem (WTAP). 

(2) We put forward an efficient integrated algorithm incorporating memetic algorithm, Hopcroft Karp 

algorithm, and branch-and-cut algorithm, which could solve blended workforce-staffing problem 

effectively. Several efficient operators are proposed in memetic algorithm to solve MP-CVRP-TW, 

which could obtain the high-quality solution with less time spending comparing with Gurobi solver. An 

innovative constructing algorithm is proposed to generate directed acyclic graphs (DAG), and then 

Hopcroft Karp algorithm is applied to solve FSP. 

(3) This paper draws the conclusion that employment costs represent a significant portion of total costs. 

O2O retailers should pay more attention to employment costs. Heterogeneous drivers could reduce 

employment costs effectively, but this would lead to a decline in service quality. Managers should trade-

off cost and service quality when hiring heterogeneous drivers. More importantly, choosing the 

reasonable commitment delivery time could reduce total cost significantly. Gradually increasing 

commitment delivery time could reduce total cost significantly, but exceeding certain thresholds would 

be counterproductive and increase the risk of losing customers. 

The remainder of this paper is organized as follows. Section 2 presents the related literature. Section 3 

introduces the new methodology which includes the minimum path cover method and integer programming 

model, and hybrid algorithm including the Hopcroft-Karp algorithm and Branch-and-cut algorithm. Section 

4 is the numerical study and sensitivity analysis. Section 5 provides some managerial implications for the 

O2O retailer. Section 6 concludes with final remarks and directions for future research. 

 

2 Literature review 

Individual studies on how to reduce the transportation cost and employment cost are productive nowadays, 

but not much have been achieved by integrating these issues together. Moreover, in the O2O retail, the 

dynamic features of the online order and the heterogeneity of workforces, making it more complicated to 

optimize the transportation cost and employment cost. In this paper, we propose an integrated optimization 

methodology to minimize the transportation and employment cost of O2O instant delivery services, which 

neatly integrate the model of the MP-CVRP-TW, FSP, and WTAP. The design of the integrated methodology 

draws great inspiration from dynamic vehicle route planning and fleet sizing, which are presented below. 
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As online orders are generated randomly in the O2O instant delivery services, dynamic vehicle route 

planning (DVRP) is an effective way to reduce transportation cost (Ojeda Rios, Xavier et al. 2021, Soeffker, 

Ulmer et al. 2022). Multi-period static programming is an effective strategy to address DVRP, which 

transformed DVRP into multiple static vehicle routing problems. In current practice, O2O retailers divide 

their business hours into segments at commitment-time intervals. For each commitment-time interval, this is 

a static capacity vehicle routing problem. Dai, Tao et al. (2019) provided a systematic method for the O2O 

platforms to optimize order assignment and routing. Chen, Fan et al. (2022) developed an online instant 

delivery scheduling model that considers the dynamic online order, decides the start time of deliveries and 

assigns riders to deliver online orders is proposed. And an online delivery scheduling algorithm is designed 

by introducing delivery rules with feasible delivery time windows. In this paper, we also apply the multi-

period static programming to address DVRP. 

For the fleet sizing problem (FSP), productive results from homogeneous fleet sizing issues. Vazifeh, 

Santi, Resta, Strogatz, and Ratti (2018) addressed the minimum fleet problem in on-demand urban, they 

provided a network-based solution to the following 'minimum fleet problem'. Santi et al. (2014) analyzed the 

optimal fleet sizing of the taxis in a city based on historical data. Green, Savin, and Savva (2013), and W.-Y. 

Wang and Gupta (2014) analyzed the nurse staffing problem, considering the random patient census rate and 

uncertain capacity due to nurses’ absenteeism. Bidhandi, Patrick, Noghani, and Varshoei (2019) adopted the 

queueing network to analyze the capacity planning for a community care service network with a given 

capacity. Jing Dong (2020) applied the queuing model to analyze the cost-minimizing staffing decisions in 

service systems, including flexible agents and fixed agents. In addition, these researches focused on the fleet 

sizing problem are also based on homogeneous drivers (Azi, Gendreau, & Potvin, 2012; Voccia, Campbell, 

& Thomas, 2019; Yildiz & Savelsbergh, 2019). In this paper, we put forward a method according to Vazifeh 

et al. (2018) to solve the fleet sizing problem arising in O2O retailing.  

Moghaddam, M., et al. (2020) proposed a model for solving the container drayage operations problem 

with heterogeneous fleet, multi-container sizes. In this paper, an integer programming model of the WATP 

is developed. 

For the WTAP, the aim’s to decide the number of heterogeneous workforces with minimal employment 

costs. Bhandari, Scheller-Wolf, and Harchol-Balter (2008) solved the constrained dynamic operator staffing 

problem that involves determining the number of permanent and temporary operators in a call center and 

provided an efficient algorithm to solve the problem. Pac, Alp, and Tan (2009) analyzed the integrated 

workforce capacity planning for the manufacturing sector. They proposed to hire contingent capacity to face 

the uncertainty and a certain number of workers to guarantee daily operations. Ata, Lee et al. (2016) address 

the volunteer staffing problem in a fresh food gleaning operation, which considers both uncertain food 

(demand) and labor supply. With the application of Internet technology in human resources, a new type of 

human resource, crowdsourcing resources, has been activated. Arslan, Agatz, Kroon, and Zuidwijk (2019) 

analyzed the parcel delivery service in a crowdsourced platform, considering full-time drivers and 

crowdsourced drivers. Yildiz and Savelsbergh (2019) employed queueing theory and approximation in 
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instant meal delivery platforms to analyze the impact of service areas and service quality on capacity planning 

with crowdsourced couriers and company-employed drivers. Scherr, Neumann Saavedra, Hewitt, and 

Mattfeld (2019) proposed a service network design problem for the tactical planning of parcel delivery with 

autonomous vehicles. They considered a heterogeneous infrastructure where such vehicles may only drive in 

feasible zones but need to be guided elsewhere by manually operated vehicles in platoons. Zhao (2017) 

proposed a model for solving the location-routing problem with a heterogeneous fleet. In this paper, an 

integer programming model of the WATP is developed considering the heterogeneity of different types of 

drivers in terms of service quality, delivery capability, and salary structure. 

Some studies integrating vehicle routing and fleet sizing have also given us great insight. Dai, Tao et al. 

(2019) provided a systematic method for the O2O platforms to optimize order assignment and routing. de 

Bittencourt, Seimetz Chagas et al. (2021) proposed a solution framework for the integrated problem of cargo 

assignment, fleet sizing, and delivery planning in logistics. Shehadeh, Wang et al. (2021) investigated the 

fleet sizing and allocation problem for the on-demand last-mile transportation systems. Dožić, Jelović et al. 

(2019) focused on the problem about the fleet sizing and fleet assignment in the case of single fleet (only one 

type of aircraft) and proposed a metaheuristic approach based on the variable neighborhood search 

methodology to solves both fleet sizing problem. Li, Li et al. (2019) analyze the order fulfillment problem 

for online retailers, which integrate order combination and vehicle routing problem. In this paper, an 

innovative graph-based approach is adopted to neatly integrate route planning and fleet sizing problems. 

To the best of our knowledge, few studies has integrating these issues together to optimize the 

transportation cost and employment cost of O2O home delivery services. Moreover, existing optimization 

models are not applicable to this scenario due to the dynamic features of the online order and the 

heterogeneity of workforces in the O2O retail. In addition, the commitment delivery time promised to 

customers by O2O home delivery services is a key factor affecting the total cost, few studies have delved 

into the impacts of commitment delivery time on total logistics costs arising in O2O retail.  

Therefore, this paper proposes an integrated optimization methodology to minimize the total cost of 

O2O home delivery services, which integrated the model of MP-CVRP-TW, FSP, and WTAP in a subtle 

way, and designed an efficient hybrid algorithm to solve the integrated model. The model and algorithm are 

provided in the following sections. 

 

3 Model and algorithm 

3.1 Problem description 

The delivery process of a well-known Chinese O2O retailer is described here, which provides the basic 

foundation to construct the integrated model. This retailer has more than 200 offline stores in China and over 

400,000 online orders per day. We took one of these stores as the subject of our study. 

In current practice, the O2O retailer is available from 8:30 to 22:00. The business hours are divided into 

multiple segments with fixed time intervals. These online customers within a 3km radius of the retailer could 
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choose a specific segment to receive their orders. The fixed time interval is the delivery time promised to the 

customer by the retailer and is referred to as the committed delivery time. Different O2O retailer has different 

committed delivery time, such as Costco in the U.S. promises same-day delivery, and Hema Fresh in China 

promises 30-minute delivery. To reduce transportation costs, these online orders within the committed 

delivery time are combined to generate several super orders by optimizing the vehicle routing plan. And then 

each super order is assigned to a driver. Drivers pick up goods at the stores and deliver them to their 

destination within the committed delivery time. Each driver should return to the stores at the end of the 

delivery. In O2O retail, three types of the workforce can be employed to fulfill orders, which are in-house 

drivers, outsourcing drivers, and crowdsourcing drivers. Different types of workforce have different service 

quality, delivery capability, and salary structure (Tao, Dai et al. 2020). Reasonable fleet sizing and workforce 

type allocation scheme could bring significant economic benefits to O2O retailers. In addition, motorcycles 

are the main transport tools for the O2O home delivery services. Motorcycles have limited loading capacity. 

For O2O retailer, they have strict standards for the quality of O2O home delivery service.  

For the convenience of modeling, we make the following assumptions which are common in the 

literature in the O2O retail industry. 

Assumption 1: For each type of driver, the average speed obtained from the historical orders is adopted 

to represent their delivery ability. If the driver's delivery speed is faster, then its delivery ability is stronger. 

Assumption 2: For each type of driver, the average service score obtained from the customer review in 

historical orders is adopted to represent their service quality. If the customer’s rating is higher, then its service 

quality is better 

Assumption 3: There exists a requirement for the minimum average service score due to the customer 

requirement, platform strategy, and competition among platforms.  

To make the models easier to understand, the mathematical notation and description in this paper are 

presented in Table 1. 

Table 1 Notations  

Set Description 

W Set of the workforce’s type, W={1,2,…r}. 

G (V,E) Set of vertex V and edge E in graph G, V={𝑣1, 𝑣2 … 𝑣𝑛}, E={𝑒1, 𝑒2 … 𝑒𝑚}. 

P Set of the minimum path cover, P={𝑝1, … 𝑝𝑖 … 𝑝𝑠}. 

𝑝𝑖  Set of the vertices that the ith path covered, 𝑝𝑖  ={𝑣𝑗 … 𝑣𝑛}. 

O Set of orders in a typical day, O={𝑜1,…𝑜𝑖…, 𝑜𝑛 }. 

S Set of super orders, S={𝑠1,…𝑠𝑖…, 𝑠𝑛}. 

Parameters Description 

𝑏𝑖 The number of orders in the 𝑝𝑖 , 𝑝𝑖∈P. 

𝑟𝑖𝑘 The kth vertex in the ith path, 𝑘∈𝑀𝑖, i∈P. 

𝑢𝑖𝑗 Number of time-out orders when the 𝑝𝑖  is assigned to jth type of workforce, i∈P, j∈W. 

𝑞𝑗  Average service quality of the jth type workforce, 𝑗∈W. 

𝑎𝑗  Average delivery ability of the jth type workforce, 𝑗∈W. 

𝑡𝑖
𝑔

 Generation time of the ith order; 𝑖∈O. 
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𝑡𝑖
𝑐 Completion time of the ith order; 𝑖∈O. 

𝑡𝑖
𝑒 The earliest arrival time of the ith order; 𝑖∈O. 

𝑡𝑖
𝑙 The latest arrival time of the ith order; 𝑖∈O. 

𝑙𝑖
𝑝
 The pick-up location of the ith order; 𝑖∈O. 

𝑙𝑖
𝑑 The drop-off location of the ith order; 𝑖∈O. 

𝑚𝑖 The customer rating of the ith order; 𝑖∈O. 

𝑑𝑖𝑗  Distance between the ith order and jth order, 𝑖, 𝑗∈O. 

𝑡𝑖𝑗 Travel time between the ith order and jth order, 𝑖, 𝑗∈O. 

𝑓𝑐𝑗 Fixed cost per day for the jth type workforce, 𝑗∈W. 

𝑜𝑐𝑗 Payment per order for the jth type workforce, 𝑗∈W. 

ct Commitment time of home delivery service promised to the customer by the retailer. 

bt Business hours of the retail company. 

β The maximum capacity of the vehicle. 

Ɵ Transportation costs per kilometer 

ℛ Service time for driver delivery orders. 

y The minimum number of paths for the DAG. 

α Minimum average service score requirements for the retail company. 

ԑ Minimum on-time order rate requirements for the retail company. 

Variables   Definition 

𝑦𝑖𝑗
𝑘  If the kth route contains the ith order and the jth order, 𝑦𝑖𝑗

𝑘 = 1; otherwise, 0. i,j∈O, k∈S. 

𝑣𝑖 Arriving time of the ith order, i∈O  

𝑥𝑖𝑗  If the ith path is assigned to jth type of workforce, 𝑥𝑖𝑗 = 1;otherwise, 0. i∈P, j∈M. 

 

3.2 Objective function 

The aim of the integrated model is to minimize the transportation cost 𝑇𝐶 and employment cost 𝐸𝐶 as 

follows.  In this case, we test one operational day cost of O2O home delivery services. 

Min C = TC +EC 

Based on the O2O business process, we propose the calculation method of TC for one operational day. 

O2O retailers divide their whole day’s business hours bt into segments with the fixed commitment time ct, 

so the business hours are divided to T periods, where T = bt/ct. The whole day’s online orders O are also 

categorized into multiple periods based on their time window, O = {𝑂1,…𝑂𝑡…, 𝑂𝑇 }. In each time period, 

the model of MP-CVRP-TW is applied to minimize the transportation cost  𝑇𝐶𝑡. Therefore, the calculation 

formula of the one-day transportation cost is shown as follows. The detail calculation formula of 𝑇𝐶𝑡 in each 

period and EC will be introduced in the 3.3.1 and 3.3.3. 

𝑇𝐶 =  ∑ 𝑇𝐶𝑡
𝑡∈𝑇                                   

 

3.3 Integrated model 

We transform blended workforce-staffing problem of O2O home delivery service into dynamic vehicle 

routing, fleet sizing, and workforce type assignment. Then construct an integrated model considering 
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dynamic features of online orders and heterogeneous drivers to minimize transportation cost and employment 

cost of O2O home delivery service. 

The integrated model neatly combines the model of MP-CVRP-TW, FSP, and WTAP by applying the 

graph theory. Specifically, the model of MP-CVRP-TW is developed to minimize the transportation cost. 

And then, we convert the FSP to a minimum path cover problem (MPCP) on the directed acyclic graphs 

(DAG) based on the graph theory. The novel DAG constructed method is proposed, which could adopt the 

output of MP-CVRP-TW to construct the DAG. It subtly combines the two models and make it possible to 

obtain the optimal fleet size for the whole day. Then, an integer programming model of WTAP is developed 

to determine the types of each drivers, which consider the heterogeneities of drivers in terms of service quality, 

delivery capability, and salary structure. Each sub-model of the integrated model is introduced as follows.  

3.3.1 Model of MP-CVRP-TW 

The model of MP-CVRP-TW is the sub-model of the integrated model, which is developed to minimize 

the transportation cost. The classical model of MP-CVRP-TW could be found in these literatures (Larrain, 

Coelho et al. 2019, Neves-Moreira, Amorim-Lopes et al. 2020). Considering the characteristics of the O2O 

retail, we modify the classical model of MP-CVRP-TW and show it below instead. 

Min 𝑇𝐶𝑡 = ∑ ∑ 𝑑𝑖𝑗𝑦𝑖𝑗
𝑘

(𝑖,𝑗)∈𝑂𝑡𝑘∈𝑆 ∗ Ɵ                                                                                           (1) 

s.t.   

    ∑ 𝑦0𝑗
𝑘

(0,𝑗)∈𝑂𝑡 =  1 ∀𝑘 ∈ 𝑆 (2) 

    ∑ 𝑦𝑖,𝑛+1
𝑘

(𝑖,𝑛+1)∈𝑂𝑡 =  1 ∀𝑘 ∈ 𝑆 (3) 

    ∑ ∑ 𝑦𝑖,𝑗
𝑘

(𝑖,𝑗)∈𝑂𝑡𝑘∈𝑆 =  1 ∀𝑖, 𝑗 ∈ 𝑂𝑡 (4) 

    ∑ 𝑦𝑖,𝑗
𝑘

(𝑖,𝑗)∈𝑂𝑡 ≤  𝛽 ∀𝑘 ∈ 𝑆 (5) 

    𝑣𝑖 +  𝑡𝑖𝑗 +  ℛ − 𝑀(1 − 𝑦𝑖𝑗)≤𝑣𝑗 ∀𝑖, 𝑗 ∈ 𝑂𝑡 (6) 

    𝑡𝑖
𝑒 ≤ 𝑣𝑖 ≤ 𝑡𝑖

𝑙 ∀𝑖 ∈ 𝑂𝑡 (7) 

    ∑ 𝑦𝑖𝑗
𝑘

(𝑖,𝑗)∈𝑂𝑡 − ∑ 𝑦𝑗𝑖
𝑘

(𝑗,𝑖)∈𝑂𝑡 =  0 ∀𝑘 ∈ 𝑆 (8) 

    𝑦𝑖𝑗
𝑘 ∈ {0,1} ∀i, j ∈ 𝑂𝑡, k ∈ S. (9) 

    𝑣𝑖 ≥ 0 ∀𝑖 ∈ 𝑂𝑡 (10) 

The objective function (1) aims to minimize the transportation cost for the tth time period. Constraints 

(2) and (3) indicate that the vehicle starts and ends at the depot. Constraint (4) represents that every order 

must be served. Constraint (5) indicates the sum of the capacities of all orders in the super order could not 

exceed the capacity of the vehicle. Constraints (6) and (7) show the arriving time of the order must be within 

the time windows. Constraint (8) is the flow balance constraint. Constraints (9) and (10) denote the range of 

values of the decision variables. 

For the tth time period, the output of the model results in multiple routes, each covering multiple orders. 

In this paper, we refer to each route as a super order. After collecting the output of the model for each time 

period, we could obtain a complete set of super orders which contains the orders for the whole day. These 

super orders will be adopted as vertex to construct the directed acyclic graphs (DAG) for the model of FSP 
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3.3.2 Model of FSP 

The model of FSP is the sub-model of the integrated model, which aims to find the minimum number 

of drivers required to fulfill the whole day’s online orders. We transform the FSP problem into a minimum 

path cover problem according to the graph theory. The main reason is that the FSP is NP-hard, these accurate 

methods based on mathematical programming model can’t handling large-scale cases (Vazifeh, Santi et al. 

2018, Yu, Redi et al. 2020). Therefore, this paper employed the graph theory to solve FSP. 

The minimum path cover problem is formally defined as follows. In a graph G = (V, E), define a path 

𝑝𝑖  in G to be a sequence of vertices 𝑝𝑖  = {𝑣𝑖 … 𝑣𝑘} and the P = {𝑝1, … 𝑝𝑖 … 𝑝𝑠} to be a set of paths which can 

cover the graph G where the vertex is covered only once. The objective of the minimum path cover problem 

is to find a set P with minimum number of paths to cover all vertices. In this scenario, the minimum number 

of paths indicates the minimum number of drivers required to fulfill these orders. The vertices covered by 

each path are the orders that the driver needs to deliver.  

Since the minimum path cover problem could be solved efficiently on directed acyclic graphs (DAG) 

(Boesch and Gimpel 1977), we propose a novel method to construct the DAG for the FSP in O2O retail . The 

traditional method for constructing a DAG is shown in Figure 1. In the general DAG, each order is 

represented as a vertex, and the arcs between these vertices are obtained according to specific criteria. 

However, the traditional method of constructing a DAG ignore the order combination characteristics of O2O 

home delivery services. Therefore, in our proposed method, the super orders obtained from the output of MP-

CVRP-TW are used as vertices of the DAG. And the criterion for determining whether an arc exists is 

proposed (see the Hopcroft Karp algorithm in Section 3.4.2). The novel method establishes a connection to 

the rich applied mathematics and computer science field of graph algorithms. 

Orders Data Directed acyclic graphs Minimum path cover

Arcs Data

 

Figure 1 The traditional method for constructing a DAG 

The output of the model is the minimum drivers required to fulfill these super orders, which be adopted 

to construct the labor resource constraint in the model of WTAP.  
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3.3.3 Model of WTAP  

The model of WTAP is the sub-model of the integrated model, which aims to minimize the employment 

cost. In O2O retail mode, there are three different type workforces could be employed. The heterogeneity of 

three type drivers is reflected in working period, salary, service quality, and delivery ability, as shown in 

Table 2. 

  

Table 2 The employee cost of different driver types 

Workforce 

type 

Working 

period 
Wage components 

Service 

quality 

Delivery  

ability 

In-house  
Full 

time period 
𝑓𝑐1 ∗ ∑ 𝑥𝑖1

𝑖∈𝑃
+ 𝑜𝑐1 ∗ ∑ 𝑏𝑖 ∗ 𝑥𝑖2

𝑖∈𝑃
 𝑞1 𝑎1 

Outsourcing   
Specified 

 time period 
𝑓𝑐2 ∗ ∑ 𝑥𝑖2

𝑖∈𝑃
+ 𝑜𝑐2 ∗ ∑ 𝑏𝑖 ∗ 𝑥𝑖2

𝑖∈𝑃
 𝑞2 𝑎2 

Crowdsourcing   
Random 

time period 
𝑜𝑐3 ∗ ∑ 𝑏𝑖 ∗ 𝑥𝑖3

𝑖∈𝑃
 𝑞3 𝑎3 

 

In-house and the outsourcing workforce have the fixed working hours, while the working hours of 

crowdsourcing workforce is flexible. Their wage components are shown in the third column, which are 

adopted to construct the objective function. The service qualities are represented in the fourth column, which 

are applied to construct constraints. The fifth column is the delivery ability. The delivery ability is represented 

by the average speed obtained from the historical orders, and this data is adopted to predict whether an order 

is overdue (Liu, Jiang et al. 2020, Liu, He et al. 2021). Based on the above analysis, the model of WTAP is 

shown as follow: 

Min 𝐸𝐶 = 𝑓𝑐1 ∗ ∑ 𝑥𝑖1𝑖∈𝑃 + 𝑓𝑐2 ∗ ∑ 𝑥𝑖2𝑖∈𝑃 + 𝑜𝑐2 ∗ ∑ 𝑏𝑖 ∗ 𝑥𝑖2𝑖∈𝑃 + 𝑜𝑐3 ∗ ∑ 𝑏𝑖 ∗ 𝑥𝑖3𝑖∈𝑃                    (11) 

s.t 

    ∑ 𝑥𝑖𝑗𝑗∈𝑊 = 1 ∀𝑖 ∈ 𝑃 (12) 

    (∑ ∑ 𝑞𝑗 ∗ 𝑏𝑖 ∗ 𝑥𝑖𝑗𝑖∈𝑃𝑗∈𝑊 )/ ∑ 𝑏𝑖𝑖∈𝑃 ≥ 𝛼  (13) 

    (∑ 𝑏𝑖𝑖∈𝑃 − ∑ ∑ 𝑢𝑖𝑗 ∗ 𝑥𝑖𝑗𝑖∈𝑃 )/ ∑ 𝑏𝑖𝑖∈𝑃 ≥𝑗∈𝑊 ԑ  (14) 

    𝑥𝑖𝑗 = {0,1}  (15) 

The objective function (11) aims to minimize the employment cost. Constraints (12) indicates each path 

must be served. Constraints (13) represents the average service score should be no less than the minimum 

service score requirement 𝛼. Constraints (14) indicates the on-time rate of orders should be no less than the 

requirement on-time rate. Constraints (15) represents the value of decision variables. 

 

3.4 Hybrid algorithm 

The hybrid algorithm is devised to solve the integrated model, which blended the memetic algorithm, 

Hopcroft Karp algorithm, and Branch-and-cut algorithm. The framework of the Hybrid algorithm is provided 
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in Fig.2. For each tth time period, the function Memetic_algorithm (𝑂𝑡) minimize the transportation cost and 

output the super orders 𝑠𝑖 for the tth time period. After the loop is end, the set of super orders S for the whole 

day are generated (see lines 1-4, Algorithm 1). The set of super orders S is inputted into the function 

Construct_algorithm (S) to generate the DAG, so the function Hopcroft_algorithm(G) could determine 

the minimum number of drivers required to satisfy the whole day’s online orders. Then, the function 

Branch_and_bound_algorithn(P) determine the type of workforce of each driver. The optimal solution for 

dynamic vehicle route planning, driver size and the type of each driver could be obtained. 

Algorithm 1 The hybrid algorithm 

1:  for t ← 1 to T do 

2:      𝑠𝑖 ← Memetic_algorithm(𝑂𝑡) 

3:      S ← S∪𝑠𝑖 

4:  end for 

5:  DAG ← Construct_algorithm(S) 

6:  y ← Hopcroft_algorithm(DAG) 

7:  Solution ← Branch_and_bound_algorithm(y) 

8:  return Solution 

Figure 2 the framework of the Hybrid algorithm 

3.4.1 Memetic algorithm 

The framework of the memetic algorithm could be summarized in four steps (Peng, Zhang et al. 2020). 

The first step is the initial population that aims to generate feasible individuals. The second step is the solution 

selection. The third step is the local search to improve the quality of the individual. The fourth step is the 

population updating. Each step is described in detail below.  

1) Initial population 

A two-stage procedure is used to compose a set of solutions. The first stage is inspired by the cluster-

first-route-second method, which divides customers into groups using the sweep algorithm (Miller 1974). In 

the second stage, the TSP solver is applied to optimize the vehicle route for each group. And if the capacity 

and the time is not enough to serve the customer, a new vehicle is employed. The more feasible solution can 

be generated by rotate the polar coordinate of the sweep algorithm. 

2) Solution selection 

The tournament selection strategy (Zhang, Qin et al. 2020) is adopted to select the solution, which 

involves running several “tournaments” among individuals chosen at random from the population and selects 

the winner. The selected solution will be inputted to the local search operators to improve its quality by 

searching its neighborhood area. 

 3) Local search operators 

Four operators are applied to improve the selected solution. The first operator is the swap operator, 

which exchanges the positions of any two customers to obtain a new solution. Then, the second one is the 
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move operator, it moves the customer from its current position to another position. The third one is the two-

opt operator. This operator exchanges the segment within two vehicle routes. Finally, the last one is the 

reverse operator, which used to reverses the order of the specific segment. To sum up, if the new solution is 

feasible and has the better quality, the operators are conducted.  

4) Population updating 

In each iteration, new solutions are generated by the local search operators. The new population is update 

by these new solutions. To maintain the diversity of the population, the probability of crossover and mutation 

operators are applied in the population. 

3.4.2 Constructing algorithm to generate DAG 

1) Determine the Vertex of DAG  

The set of super order S are output by the memetic algorithm. Since these super orders are applied to 

construct the directed acyclic graphs (DAG), the information of each super order si (𝑇𝑖
𝑒, 𝑇𝑖

𝑙, 𝑇𝑖
𝑐) should be 

determined. The earliest arrival time 𝑇𝑖
𝑒   and the latest arrival time 𝑇𝑖

𝑙 are the time windows of the super order, 

which are equivalent to the time windows of the tth period. The completion time is noted as 𝑇𝑖
𝑐 , which 

corresponds to the time when the driver returns to the warehouse.  

2) Determine the arcs of DAG  

If there is an edge between two vertices in the DAG, it means that one driver can fulfill these two super 

orders. A driver can serve only one super order at one time, and the driver has to deliver the next super order 

after fulfilling previous super order. We adopt the following criterion to determine if there is an edge between 

any two vertices, as shown in the formula (16). Only when the criterion holds, there will be an edge between 

two vertexes, and finally a DAG of the O2O home delivery service is formed.  

𝑇𝑖
𝑐 ≤ 𝑇𝑖+1

𝑒  (16) 

3.4.3 Hopcroft Karp algorithm 

After constructing the DAG, this paper applies the Hopcroft Karp algorithm to solve the minimum path 

cover problem. The problem of finding the minimum path cover on general graphs is NP-hard, but it can be 

solved efficiently on directed acyclic graphs (Boesch and Gimpel 1977) using the Hopcroft–Karp algorithm 

for bipartite matching  (Hopcroft 1973). Hopcroft algorithm is a mature and efficient algorithm, the pseudo-

code of the algorithm is shown in this article  (Hopcroft 1973), so we not make redundant claims here. 

3.4.4 Branch-and-cut algorithm 

This paper adopts the Branch-and-cut algorithm to solve the model of WTAP. Branch-and-cut algorithm 

is an efficient method to solve the integer programming model. It’s derived from the divide and conquer 

approach which break the problem into a series of smaller sub-problems, solve the smaller sub-problems, 

and then combine all local solutions of those sub-problems to form the optimal solution for the original 

problem.  

In the Branch-and-cut algorithm, a typical way to represent such a divide and conquer approach is via 

an enumeration tree. Let C = min {cx: x𝜖𝑆 }. Let S= 𝑆1 ∪ … ∪ 𝑆𝑘 be a decomposition of S into smaller sets, 
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and let 𝐶𝑘 = 𝑚𝑖𝑛{𝑐𝑥: xϵ𝑆𝑘} for k=1,…,K. then C = min 𝑐𝑘. However, complete enumeration branch of 𝑆𝑘 is 

totally impossible for this problem. So the bound information could be applied to prune branches. 

Let S= 𝑆1 ∪ … ∪ 𝑆𝑘 be a decomposition of S into smaller sets, and let 𝐶𝑘 = 𝑚𝑎𝑥{𝑐𝑥: xϵ𝑆𝑘} for k=1,…,K, 

𝐶k be an upper bound on 𝐶𝑘 and 𝐶k be a lower bound on 𝐶𝑘. Then 𝐶 = max 𝐶k is an upper bound on 𝐶𝑘 and 

𝐶 = max 𝐶k is a lower bound on 𝐶𝑘. 

Here we list the standard criterion of pruning branches as the following: 

(1) Pruning by optimality: 𝐶𝑡 = max{𝑐𝑥: xϵ𝑆𝑡} has been solves. 

(2) Pruning by bound: 𝐶t ≤ 𝐶. 

(3) Pruning by infeasibility: 𝑆𝑦= ∅. 

To decide on which variable should be branched, we calculate the relaxation optimal solution from the 

linear relaxation model of the original problem; and then select the variable which is closest to the integer to 

branch from the relaxation optimal solution. In addition, we adopt the depth-first strategies to search the node.  

 

4 Case study 

4.1 Data and parameters setting 

In this research, we collect data from an offline store of a leading O2O retailer in China. The offline 

store locates in the Yubei district of Chongqing, China, from 8:30-22:00. We chose orders from a typical 

operational day as the experimental data to validate our approach. The experiment data contains 2380 online 

orders. Each order has these critical information {𝑡𝑖
𝑔

, 𝑡𝑖
𝑐, 𝑡𝑖

𝑒, 𝑡𝑖
𝑙, 𝑙𝑖

𝑝
, 𝑙𝑖

𝑑, W, 𝑚𝑖}, as shown in Table 3.  

 

Table 3 The information of historical orders 

 

The temporal and spatial distributions of these orders are shown in Fig. 3. It’s obvious that the online 

orders fluctuate more sharply during peak periods: like lunchtime and dinner time. The demand for capacity 

is higher during peak periods, however, the demand for capacity during low periods is lower.  

 

Num 𝒕𝒊
𝒈

 𝒕𝒊
𝒄 𝒕𝒊

𝒆 𝒕𝒊
𝒍 𝒍𝒊

𝒑
 𝒍𝒊

𝒅 W 𝒎𝒊 

1 8:12 8:52 8:30     9:00 [106.539375,29.592201] [106.531681, 29.576249] 1 100 

2 8:08 8:56 8:30 9:00 [106.539375,29.592201] [106.531811, 29.584772] 2 95 

3 8:08 8:58 8:30 9:00 [106.539375,29.592201] [106.532845, 29.589659] 1 100 

… … … … … … … … … 

2378 21:19 21:51 21:30 22:00 [106.539375,29.592201] [106.533968, 29.589057] 3 80 

2379 21:26 21:52 21:30 22:00 [106.539375,29.592201] [106.537291, 29.589327] 1 95 

2380 21:27 21:43 21:30 22:00 [106.539375,29.592201] [106.534673, 29.580077] 1 100 
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 (a) Temporal distributions of orders 

 

(b) Spatial distributions of orders 

Fig.3 Temporal and Spatial distributions of orders 

 

Besides, the parameter settings are shown in Table 4. 

 

Table 4 Parameter settings 

Parameters Description Unit Value 

W Type of workforce. -- [1,2,3] 

𝑞1 Average service quality of in-house drivers. Score 97 

𝑞2 Average service quality of outsourcing drivers. Score 93 

𝑞3 Average service quality of crowdsourcing drivers. Score 90 

𝑎1 Average delivery ability of in-house drivers. m/s 11 

𝑎2 Average delivery ability of outsourcing drivers. m/s 10 

𝑎3 Average delivery ability of crowdsourcing drivers. m/s 9 

𝑓𝑐1 Fixed cost per day for in-house drivers. CNY 80 
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𝑓𝑐2 Fixed cost per day for outsourcing drivers. CNY 30 

𝑓𝑐3 Fixed cost per day for crowdsourcing drivers. CNY 0 

𝑜𝑐1 Payment per order for in-house drivers. CNY 1 

𝑜𝑐2 Payment per order for outsourcing drivers. CNY 1.5 

𝑜𝑐3 Payment per order for crowdsourcing drivers. CNY 2 

β The maximum capacity of the vehicle. Orders 8 

ct Commitment time of the O2O retail  Minute 30 

bt Business hours of the retail company Minute [8:30-22:00] 

Ɵ Transportation costs per kilometer CNY 0.4 

ℛ Service time for driver delivery orders Minute 3 

α Minimum average service score requirements Score 95 

ԑ Minimum rate of on-time orders Percent 95% 

 

4.2 Experimental Results  

To verify the effectiveness of our proposed integrated optimization methodology, the hybrid algorithm 

is coded in Python 3.9, and run in Windows 10 with Intel Core i5-8250U CPU, with 1.80 GHz and 8.00 GB 

RAM. The Branch-and-cut algorithm is called from the Gurobi solver. The experiment results are provided 

in this section. 

 4.2.1 Minimal transportation costs 

To evaluate the efficiency of the hybrid algorithm for solving the MP-CVRP-TW model, we also adopt 

the optimization solver Gurobi to solve the model. In Gurobi, the gap of the optimal solution is set to 5%, 

which could save the computation time. In addition, we adopt the hybrid algorithm to solve the MP-CVRP-

TW model, recording the average results of ten calculations. These results are shown in Table 5. 

In Table 5, the first column represents the order of the time intervals. The second and third columns 

show the time windows of the time intervals. The fourth column represents the results of the Gurobi solver 

for solving the MP-CVRP-TW model, which includes the minimum transportation cost in CNY, the gap of 

the optimal solution, and the computation time in seconds. The fifth column records the results of the hybrid 

algorithm for solving the model, which also includes the minimum transportation cost, the gap of the optimal 

solution, and the computation time. The last two rows statistics the average and total dada of these indices. 

According to the results, the hybrid algorithm is highly applicable to solve the MP-CVRP-TW model. 

For example, the average gap of Gurobi solver is 2.56%, but the average computation time is nearly 786 

seconds. The computation time is too long for O2O home delivery service. Although the average gap of 

hybrid algorithm is 4.87%, the average computation time is only 89 seconds. The quality and the time 

consumption for generating the solution is more acceptable. Therefore, the hybrid algorithm is effective for 

solving the dynamical vehicle routing problem of O2O home delivery services. Furthermore, these results 

also confirm the validity of our proposed MP-CVRP-TW model. 
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Table 5 Results of MP-CVRP-TW 

I 𝒕𝒆 𝒕𝒍 Gurobi Hybrid algorithm 

Cost Gap Time Cost Gap Time 

1 8:30 9:00 11.07  0.50% 284 12.07 9.58% 88  

2 9:00 9:30 11.46  2.80% 324 11.54 3.61% 89  

3 9:30 10:00 13.57  4.30% 408 13.81 6.36% 95  

4 10:00 10:30 8.90  0.80% 512 9.04 2.44% 73  

5 10:30 11:00 12.90  3.00% 968 13.4 7.12% 100  

6 11:00 11:30 13.15  2.70% 1080 13.17 2.92% 103  

7 11:30 12:00 19.10  4.70% 1848 19.12 5.03% 154  

8 12:00 12:30 16.85  3.30% 1352 17.23 5.73% 132  

9 12:30 13:00 20.74  0.70% 1632 20.77 0.84% 169  

10 13:00 13:30 20.33  2.90% 1224 20.71 4.90% 144  

11 13:30 14:00 7.24  4.60% 528 7.73 11.85% 89  

12 14:00 14:30 6.80  4.30% 912 6.88 5.74% 41  

13 14:30 15:00 5.96  1.60% 360 6.03 2.24% 14  

14 15:00 15:30 11.47  0.80% 780 12.04 5.79% 84  

15 15:30 16:00 13.40  1.00% 332 13.49 1.69% 90  

16 16:00 16:30 7.98  0.60% 504 8.01 0.83% 62  

17 16:30 17:00 11.42  2.70% 632 11.53 3.75% 72  

18 17:00 17:30 8.01  3.90% 708 8.05 4.64% 36  

19 17:30 18:00 18.37  1.10% 1528 18.51 1.91% 156  

20 18:00 18:30 22.57  4.40% 1368 22.95 6.35% 139  

21 18:30 19:00 21.67  4.10% 1280 21.72 4.54% 136  

22 19:00 19:30 15.00  2.50% 1016 15.13 3.49% 114  

23 19:30 20:00 11.79  1.40% 792 11.85 1.96% 78  

24 20:00 20:30 4.98  3.80% 296 5.12 6.96% 50  

25 20:30 21:00 7.24  1.50% 280 7.35 3.04% 42  

26 21:00 21:30 5.09  4.70% 232 5.2 7.16% 31  

27 21:30 22:00 2.04  0.50% 44 2.26 11.12% 25  

Average -- 2.56% 786 -- 4.87% 89 

Total 329.01 -- -- 334.67 -- -- 

 

In each time interval, the super order is generated by the MP-CVRP-TW model, which would be applied 

to construct the DAG. After the calculation for each time interval was completed, 2380 orders were combined 

into 338 super orders. To show the super orders in different time intervals more visually, we select the super 

orders generated in 8:30-9:00 and 12:00-12:30, and present in Figure 4. In Figure 4, the point represents the 

location of the online order, and the cycle represents the route with the minimum distance to visit the orders. 

In other word, each cycle is a super order in Figure 4. 
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(a) Routing of super orders generated in 8:30-9:00

 

(b) Routing of super orders generated in 12:00-12:30 

Figure 4   Routing of super orders generated in different time intervals 

 

The necessary information of these super orders is obtained from the constructing algorithm, which is 

shown in Table 6. The first column represents the order of these super orders. The second and third column 

represent the time windows of each super order. The fourth column represent the complete time of the super 



 

- 18 - 

 

orders. The fifth and sixth column represent the distance in km and the cost in CNY of each super order. The 

last column records the orders included in the super order. According to the information of super orders in 

the Table 6, the arc data of DAG could be obtained by the formula (16). Therefore, the DAG is constructed 

by the information of super orders and the arc data. 

 

Table 6 The information of super orders 

I 𝑻𝒆 𝑻𝒍 𝑻𝒄 Distance Cost Orders 

1 8:30 9:00 8:58 6.90 2.76 [28, 18, 15, 52, 55, 65] 

2 8:30 9:00 8:56 1.53 0.61 [66, 16, 53, 9, 46, 6, 43, 5] 

3 8:30 9:00 8:56 1.66 0.66 [7, 44, 8, 45, 13, 50, 51, 22] 

… … … … … … … 

335 21:00 21:30 21:15 2.57 1.03 [2361, 2347, 2366, 2352] 

336 21:00 21:30 21:27 2.61 1.04 [2362, 2348, 2359, 2345, 2354, 2368, 2367, 2353] 

337 21:30 22:00 21:42 2.51 1.00 [2370, 2369, 2375] 

338 21:30 22:00 21:58 3.13 1.25 [2372, 2378, 2377, 2371, 2380, 2374, 2373, 2379] 

 

4.2.2 Minimal fleet size 

The hybrid algorithm is also applied to solve the FSP which are converted to a minimum path cover 

problem. The results of the minimum path cover problem are shown in Table 7. The first column represents 

the order of the path. The second shows the number of super orders of the path. The third column represents 

the number of orders included in the path. The fourth and fifth columns show the duration and the workload 

for delivering the orders in the path. The sixth column represents the total free time in the path. The last 

column shows the super orders included in the path.  

To provide the minimum cover path more visually, the information of the path is shown in Figure 5. In 

Figure 5, each point represents a super order, and the number close to the point is the serial number of the 

super order. Each row indicates a path, and the super orders in the row are covered by the path in minute. 

Each column indicates the super orders generated in the specific time interval. The number of the minimum 

cover path is 22, it means that 22 drivers are needed to fulfil these orders. 
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Figure 5 The minimum drivers needed to fulfil the whole day’s online orders 
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Table 7 Results of the minimum path cover set

Path Nums Numo Duration Workload Free time(min) Super orders included in the path 

1 19 140 8:30-19:30 660 90 [5, 11, 23, 37, 52, 71, 76, 96, 118, 140, 158, 184, 194, 205, 213, 236, 259, 274, 307] 

2 16 109 8:30-21:00 750 270 [10, 12, 32, 36, 47, 70, 79, 105, 133, 150, 246, 268, 293, 297, 324, 329] 

3 15 106 8:30-19:00 630 180 [4, 13, 24, 40, 59, 61, 78, 106, 132, 151, 157, 186, 242, 251, 278] 

4 24 162 8:30-21:00 750 30 [6, 14, 26, 42, 50, 68, 83, 100, 130, 154, 160, 169, 182, 193, 200, 214, 222, 230, 255, 272, 304, 318, 322, 328] 

5 18 131 8:30-20:00 690 150 [1, 15, 34, 43, 51, 63, 81, 134, 137, 187, 195, 201, 216, 221, 231, 257, 279, 319] 

6 20 145 8:30-21:00 750 150 [7, 16, 30, 41, 48, 67, 74, 112, 129, 144, 161, 166, 175, 178, 245, 254, 281, 296, 312, 331] 

7 14 109 8:30-20:30 720 300 [3, 17, 28, 38, 49, 60, 85, 99, 128, 244, 262, 292, 298, 326] 

8 19 124 8:30-21:30 780 210 [9, 18, 33, 46, 53, 62, 80, 108, 114, 153, 185, 196, 207, 215, 235, 267, 282, 300, 336] 

9 20 144 8:30-19:30 660 60 [2, 19, 25, 44, 54, 65, 77, 101, 121, 136, 159, 168, 199, 206, 211, 226, 243, 253, 276, 301] 

10 23 153 8:30-22:00 810 120 [8, 20, 27, 45, 57, 72, 73, 104, 125, 152, 156, 197, 203, 209, 237, 266, 290, 303, 311, 325, 327, 333, 337] 

11 15 108 9:00-19:00 600 150 [22, 29, 56, 64, 84, 95, 117, 139, 172, 181, 190, 202, 241, 270, 275] 

12 15 111 9:00-21:30 750 300 [21, 31, 58, 66, 75, 98, 126, 138, 164, 240, 261, 277, 306, 317, 335] 

13 13 82 9:30-19:00 570 180 [35, 39, 55, 69, 82, 113, 116, 145, 218, 228, 232, 269, 291] 

14 13 103 11:30-19:00 450 60 [89, 94, 122, 148, 155, 167, 177, 180, 191, 219, 238, 260, 289] 

15 11 72 11:30-19:30 480 150 [92, 97, 120, 146, 163, 220, 225, 233, 250, 280, 310] 

16 16 107 11:30-21:30 600 120 [86, 102, 123, 141, 198, 204, 212, 227, 239, 256, 283, 309, 321, 323, 330, 332] 

17 11 78 11:30-22:00 630 300 [91, 103, 131, 135, 170, 247, 265, 287, 305, 334, 338] 

18 14 103 11:30-20:00 510 90 [87, 107, 115, 142, 188, 189, 208, 210, 224, 229, 264, 286, 308, 315] 

19 13 92 11:30-20:00 510 120 [90, 109, 127, 147, 173, 174, 217, 223, 234, 258, 284, 295, 313] 

20 11 79 11:30-20:00 510 180 [88, 110, 124, 143, 162, 165, 179, 248, 252, 285, 316] 

21 13 90 11:30-20:00 510 120 [93, 111, 119, 149, 171, 176, 183, 192, 249, 263, 273, 302, 320] 

22 4 29 18:00-20:00 120 0 [271, 288, 299, 314] 
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4.2.3 Minimal employment costs 

In this case, we consider three labor allocation strategies arising in the O2O retail. The strategy 1 is that 

the O2O retailer just hire the in-house drivers. The strategy 2 is that the O2O retailer could hire the in-house 

drivers and outsourcing drivers. And the strategy 3 is that the three types of drivers are hired. For each strategy, 

the Branch-and-cut algorithm is applied to solve the WTAP which aims to minimize the employment cost.  

The results are shown in Table 8. The first column represents the three labor allocation strategies. And 

the next three columns record the number of drivers in the optimal solution. The fifth column records the 

minimal employment cost in CNY. The sixth column represents the average score to fulfil these orders. The 

last column records the on-time rate of these orders. 

 

Table 8 Results of the blended workforce-staffing 

Strategy In-house Outsourcing Crowdsourcing E.Cost A.Score Rate 

Strategy 1 22 - - 4140 97 100% 

Strategy 2 16 6 - 4069 96.4 98.5% 

Strategy 3 17 4 1 4058 96.1 98.1% 

 

In Table 8, no matter the O2O retailer choose which labor allocation strategy, the minimum number of 

drivers is 22. If more cheap type labors are available to delivery these online orders, its benefit to decrease 

the employment cost. Such as the strategy 3 could reduce the employment cost to 4058 CNY by hiring the 

17 in-house drivers, 4 outsourcing drivers, and 1 crowdsourcing driver. However, the average score and on-

time rate of the delivery service in the strategy 2 and 3 are lower than the strategy 1. The blended workforce-

staffing scheme could cut the employment cost down, while compromising the quality of O2O instant 

delivery service. 

4.3 Sensitivity analysis 

Sensitivity analysis are presented in this section, which reveal the impact of commitment delivery time 

on transportation cost and employment cost under three different labor allocation strategies.  

In this test, the commitment delivery times were set to [15, 20, 25, 30, 35, 40, 45] in minutes. And then, 

based on the completed time of the 2380 historical orders to divide them into the corresponding time intervals. 

As shown in Figure 6, the line graph shows the number of online orders in each time interval.  
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Figure 6 The distribution characteristics of online orders with different commitment delivery time 

 

It is obvious that the commitment delivery time is larger, and the number of online orders fluctuates more 

sharply during the lunch and dinner time. When the commitment time is set to 45 minutes, online orders 

exceed 250 in the peak period and below 50 in the low period. However, when the commitment delivery time 

is set to 15 minutes, online orders is 120 in the peak period and below 50 in the low period. 

4.3.1 The impact of the commitment delivery time on the transportation cost  

To analyze the impact of the commitment delivery time on the transportation cost, the hybrid algorithm 

is applied to solve the MP-CVRP-TW model with different commitment delivery time. The experimental 

results are shown below.  

 

 

Figure 7 The impact of the commitment delivery time on the transportation cost 

 

In Figure 7, we would draw the conclusion that the longer the commitment delivery time set by the O2O 

retailer, the lower of transportation cost. When the commitment delivery time is set to 45 minutes, the 
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transportation cost is only about 300 CNY, which is just half of the transportation cost when the commitment 

delivery time is set to 15 minutes. 

However, when we revisit the issue from the customer's perspective, customers’ behaviors would 

change when setting a longer commitment delivery time. Therefore, increasing the commitment delivery time 

could reduce transportation costs, but there may be a risk of losing customers. 

4.3.2 The impact of the commitment delivery time on the employment cost  

To analyze the impact of the commitment delivery time on the employment cost, the hybrid algorithm 

is applied to solve the integrated model with different labor allocation strategies arising from the O2O retail. 

Strategy 1 is that the O2O retailer just hire the in-house drivers. Strategy 2 is that the O2O retailer  could 

hire in-house drivers and outsourcing drivers. And strategy 3 is that the three types of workforce are available. 

The experimental results are shown below. 

 

 

Figure 8 The impact of the commitment delivery time on the employment cost 

 

In Figure 8, each line graph shows the impact of commitment delivery time on the employment cost 

with different labor allocation strategy. When the commitment delivery time gradually increases from 15 to 

30 minutes, the employment cost decreases significantly. When the commitment delivery time exceeds 30 

minutes, the employment cost increases dramatically. If the commitment delivery time is set relatively short, 

the total number of orders in each period will become smaller. However, the too-short commitment delivery 

time caused too few orders to be carried by each driver, the capacity of delivery tools would not be utilized 

sufficiently, and a large number of drivers would be needed to fulfill those orders.  If the commitment delivery 

time is set too long, and long-time interval would accumulate more online orders. Although the capacity of 

delivery tools would be utilized sufficiently, a large number of drivers are still needed to fulfill these huge 

orders. 
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In this case, if the commitment delivery time is set to 30 minutes, which could obtain the minimum 

employment cost. In addition, cheaper workforce could effectively lower employment costs. Such as, the 

employment cost of strategy 3 would be reduced to nearly 4100 CNY.  

 

4.3.2 The impact of commitment delivery time on total cost  

The impact of the commitment delivery time on total cost, which is composed of transportation cost and 

employment cost, are investigated in this section. In Figure 9, it is obvious that the share of transportation 

cost is low in the total cost, and that transportation cost decrease with increasing commitment time. 

Employment cost is a major component of total cost approaching 90%. 

 

Figure 9 The impact of the commitment delivery time on the total cost with strategy 1 

 

 In Figure 10, each line graph represents the impact of commitment time on total cost with different 

labor allocation strategy. It is obvious that the labor allocation strategy has a significant impact on the total 

cost. It indicates that if O2O retailers have more types of cheaper drivers such as outsourcing drivers and 

crowdsourcing drivers, it would reduce labor costs significantly.  
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Figure 10 The impact of commitment delivery time on total cost with different labor allocation 

strategy 

 

In addition, commitment delivery time has a significant impact on total cost. In this case, when 

commitment delivery time gradually increases from 15 to 30 minutes, total cost decreases significantly. When 

commitment delivery time exceeds 30 minutes, total cost increases dramatically. From Figure 10, we could 

draw the conclusion that the optimal commitment delivery time for the O2O retailer is 30 minutes, which has 

the minimum total cost with about 4500 CNY. 

5 Conclusion  

In this paper, we propose an integrated optimization methodology to minimize transportation costs and 

employment costs of HDS in the O2O retail industry. In this methodology, an innovative integrated model is 

proposed, which integrates the model of MP-CVRP-TW, FSP, and WTAP in a subtle way to consider the 

dynamic features of online orders and the heterogeneity of workforces in the O2O retail industry. And an 

efficient hybrid algorithm is developed. In the case study, the real data collected from a Chinese leading O2O 

retailer is adopted to verify the effectiveness of our methodology. The hybrid algorithm is more applicable 

for solving the dynamical vehicle routing problem arising in the O2O retail industry by comparing it with the 

Gurobi solver. And the experiment indicates that our methodology could efficiently reduce the operating 

costs of HDS.  

More importantly, some valuable managerial implications are proposed in the sensitivity analysis.  

(1) To minimize transportation costs, it is an effective measure to extend the committed delivery time. 

However, when the committed delivery time is extended beyond 30 minutes, the employment cost increases 

dramatically. How to set an appropriate committed delivery time is the key point. 

(2) To minimize the employment costs, it is a valuable attempt to hire more types of drivers. It has to be 

stressed that the effectiveness of this method depends on the salary structure of different types of drivers. 

More types of cheap workforce could reduce employment costs effectively, such as outsourcing drivers and 

crowdsourcing drivers, but this would lead to a decline in service quality.  
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(3) To minimize the total costs, setting an appropriate committed delivery time is an effective measure. 

Based on our proposed method can help O2O retailers find the appropriate committed delivery time for their 

company. In this case, if the committed delivery time is set to 30 minutes, which could obtain the minimum 

operating costs of HDS with 4392 CNY. 

Although this paper proposes an effective integrated optimization model to help O2O retailers minimize 

the total costs of HDS, there are still some limitations. More varieties of salary structures should be 

considered in future studies, which have a stronger impact on employment costs. Although the transportation 

cost is a relatively small part of the total cost, developing more efficient heuristic algorithms to obtain low-

cost path planning solutions is still an effective way to reduce transportation costs. More heterogeneous 

features affecting the quality of delivery services should be considered, such as the difference in work shifts, 

rest breaks, and the length of work hours. 
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