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MODULAR RELATIONS FOR HURWITZ ZETA FUNCTIONS AND DIRICHLET L-SERIES

PARTH CHAVAN

Abstract

We undertake a comprehensive study of Ramanujan’s famous identity for odd zeta values from

the perspective of Hurwitz zeta functions. We obtain several new transformation formulae whose

specializations produce new and interesting identities, as well as recover several other well-known

identities from the literature, such as the transformation formula for the logarithm of the Dedekind

eta function and the convolution of the Riemann zeta function at odd and even integer arguments

by Dixit et al. Our method of deriving transformation formulae can also be applied to other

Dirichlet series. In particular, we illustrate this phenomenon by applying our method to Dirichlet

L-series and thereby producing some new transformation formulae involving the convolution

Dirichlet L-series at positive integer arguments as the residual term.

Keywords: Hurwitz zeta functions, Mellin transform, Dirichlet L-series, Lambert series.
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1. Introduction andMotivation

The Riemann zeta function ζ(s), defined by the series

∞∑
n=1

1
ns ,

for ℜ(s) > 1, is undoubtedly one of the most paramount functions in analytic number theory

as it plays a crucial role in studying the distribution of primes and has applications in various

branches of physics, probability theory, applied mathematics, and statistics. While the critical

strip 0 < R (s) < 1 is indeed the most important region in the complex plane on account of

the unsolved problem regarding the location of non-trivial zeros of ζ(s), namely, the Riemann

Hypothesis, the right-half plane R (s) > 1 also has its own share of interesting unsolved problems

to contribute to; such as the algebraic nature of ζ(s) at integer arguments.

Over the past few centuries, the zeta values and their algebraic behaviour have been studied

extensively by many mathematicians. In 1734, Euler established an explicit formula for ζ(2n) in

terms of powers of π and Bernoulli number B2n. In particular, he proved that that, for all n ∈N,

ζ(2n) = (−1)n+1 (2π)2n B2n

2 (2n)!
,

which immediately implies that all even zeta values are transcendental due to the well-known fact

that π is transcendental and Bernoulli numbers are rational. However, no such explicit formula

is known to exist for ζ(2k + 1), as a result of which, its arithmetic nature still remains largely

mysterious and open. Only in 1978 did Apéry [2] famously prove the irrationality of ζ(3).

In this direction, Lerch [20], in 1901, proved that, for all m ∈N,

ζ(4n + 3) = π4n+324n+2
2n+2∑
k=0

(−1)k+1 B2k

(2k)!
B4n+4−2k

(4n + 4 − 2k)!
− 2

∞∑
k=1

1
k4n+3(e2πk − 1)

.(1.1)

On account of the rapid convergence of the infinite series in (1.1), we can deduce that ζ(4n + 3) is

“almost a rational multiple π”, as recently stated by Berndt and Straub [6].

Ramanujan [21, p. 173, Ch. 14, Entry 21(i)], who made many intriguing discoveries in his short

life of 32 years, obtained the following elegant generalization of Lerch’s identity (1.1).

Theorem 1.1 (Ramanujan’s formula for ζ(2n + 1)). Let α, β ∈ R+ such that αβ = π2. Then, for all

n ∈ Z \ {0}, the following identity holds.

α−n

1
2
ζ(2n + 1) +

∞∑
m=1

m−2n−1

e2αm − 1

 − (
−β

)−n

1
2
ζ(2n + 1) +

∞∑
m=1

m−2n−1

e2βm − 1


6



= 22n
n+1∑
k=0

(−1)k−1 B2k B2n−2k+2

(2k)! (2n − 2k + 2)!
αn−k+1βk,(1.2)

where, as usual, Bn denotes the n-th Bernoulli number.

Over the decades, this identity took the attention of many mathematicians, and several gener-

alizations of Theorem 1.1 of different kinds were studied. To know more about the history of this

formula and its further generalizations, we refer the reader to [6, 13, 18].

A. Dixit et. al. [14] recently asked whether a Ramanujan-type identity exists for the Hurwitz

zeta functions. We answer this question positively in this work via Theorem 3.2 and also provide

Hurwitz zeta generalization and analogs of several other identities from the literature. Moreover,

our method of proving and obtaining these results can also be applied to other exotic Dirichlet

series, say, the Dirichlet L-series for instance, which we talk about later in the manucript.

Notice that Ramanujan’s identity (1.2) can also be interpreted as a quasimodular transformation,

a transformation of the form F (z) = F
(
−

1
z

)
+R (z), where R (z) is the residual term given by the con-

volution of Bernoulli numbers. Toward this end, the following notable extension of Ramanujan’s

formula was provided by Grosswald [16].

Theorem 1.2 (Grosswald [16]). Let z ∈ h and let

Fk (z) =
∞∑

n=1

σk (n)
nk

e2iπnz.

Then, we have

F2k+1 (z) − z2kF2k+1

(
−1
z

)
=
ζ(2k + 1)

2
(z2k
− 1) +

(2iπ)2k+1

2z
R2k+1 (z) .

This formula is important due to the fact that it relates Ramanujan’s formula with Eisenstein

series E2k (z) over the full modular group SL2(Z) since the Fourier expansion of E2k (z) is given by

E2k (z) = 1 −
4k
B2k

F1−2k (z) .

1.1. Organisation of the manuscript. We devote Section 2 to compiling basic properties of Hur-

witz zeta functions and Mellin transforms. In Section 3, we state some of our main results and

obtain several transformation formulae involving convolution of Hurwitz zeta functions. The

primary method of proving these results is straightforward and involves standard techniques in

complex analysis. In Section 4, we apply this methodology to Dirichlet L-series and thereby gen-

erate similar transformation formulae. Finally, in section 5, we provide detailed proofs of all our

results.
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2. Prelimnaries

The Mellin transform of a function φ(t) is defined by

φ̃(s) =
∫
∞

0
ts−1φ (t) dt.

For some c ∈ R, denote by ∫
ℜ(s)=c

F (s) ds =
∫

(c)
F (s) ds.

We can recover the original function φ(t) from the following result.

Theorem 2.1. Let φ̃(s) be a function of the complex variable s = σ + it such that it is holomorphic in the

strip S = {s | a < σ < b} and |φ̃(s)| → 0 as ℑ(s) → ∞ uniformly in the strip a − η ⩽ σ ⩽ b − η for any

arbitrary small 0 < η. Then if ∫
∞

−∞

∣∣∣φ̃(σ + it)
∣∣∣ dt

is finite for each σ ∈ (a, b), and if a function φ(t) is defined by

φ (t) =
1

2iπ

∫
(c)

t−sφ̃ (s) ds,

for t > 0 and some fixed c ∈ (a, b), then

φ̃ (s) =
∫
∞

0
ts−1φ (t) dt.

The Bernoulli polynomials Bn(x) are defined through their generating function as

(2.1)
text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
,

where |t| < 2π. The Bernoulli numbers Bn are defined by Bn = Bn(0).

The Hurwitz zeta function for complex variable s withℜ(s) > 1 and a ∈ C/Z⩽0 is defined by

(2.2) ζ(s, a) =
∞∑

n=0

1
(n + a)s .

The Hurwitz zeta function has the integral representation [3, p. 251]

(2.3) ζ (s, a) =
1
Γ(s)

∫
∞

0

xs−1e−ax

1 − e−x ds,

valid forℜ(s) > 1. Moreover, it can be analytically continued to a meromorphic function via the

following contour integral [23]:

(2.4) ζ(s, a) = −
Γ(1 − s)

2iπ

∫
C

(−z)s−1e−az

1 − e−z dz,

8



whereC is the Hankel contour counterclockwise around the positive real axis and principal branch

of logarithm is used. The integral (2.4) defines ζ(s, a) for all s ∈ C, with a single pole at s = 1 and

corresponding residue 1. The value of Hurwitz zeta function at negative integers is given by

ζ(−n, a) = −
Bn+1(a)
n + 1

.

The Laurent series expansion of Hurwitz zeta centered at s = 1 is given by

(2.5) ζ(s, a) =
1

s − 1
+

∞∑
n=0

(−1)n

n!
γn(a) (s − 1)n ,

where γn(a) are the generalized Stieltjes constants. Note that γ0(a) = −ψ(a).

3. Hurwitz zeta functions

In this Section, we undertake a comprehensive study of Ramanujan-type identities from the

perspective of Hurwitz zeta functions. Moreover, we also rederive several other identities from

the literature as special cases of our general formulae. Note that most results from this section

(except Theorem 3.12) have been published by the author in [9].

The function 1
e2πx−1 , as seen in Theorem 1.1, also appears in several of Ramanujan’s identities

and has the following integral representation:

1
e2πx − 1

=
1

2iπ

∫
(c)

ζ (1 − s)

2 cos
(
πs
2

)x−sds,

where (c) denotes the vertical line ℜ(s) = c with c an arbitrary real number such that 1 < c < 2.

This representation can be deduced by simply realizing that

Γ(s)ζ(s) =
∫
∞

0

xs−1

ex − 1
dx,

and using Mellin inversion. We call this function Ramanujan’s kernel throughout the rest of the

manuscript. We now introduce a two-parameter generalization of Ramanujan’s kernel. One reason

to study this new kernel is to obtain more information on the arithmetic nature of the odd zeta

values. By including a free parameter a, one can derive other results involving the zeta function

by differentiating or integrating with respect to a.

Ramanujan’s kernel has simple poles at x = 0 and x = ±in,n ∈ N with residue 1
2π at 0,±in, and

thus has the partial fraction expansion

1
e2πx − 1

= −
1
2
+

1
2πx
+

x
π

∞∑
n=1

1
n2 + x2 .
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In this manuscript, we generalize this result to a meromorphic function with simple poles at

x = 0, x = e
(2 j+1)iπ

2k (n + a) , (n ∈N, a ∈ C) ,

where j ∈ {0, 1, . . . , 2k − 1}, with residue 1
2kπ at e

(2 j+1)iπ
2k (n + a) defined as follows.

Definition 3.1. Let x ∈ R+, a ∈ C and k ∈N. Define the Hurwitz kernel by

Ψ (x, a; k) B
1

2iπ

∫
(c)

ζ (1 − s, a)

2k cos
(
π(s+k−1)

2k

)x−sds

=
2a − 1
2πx

−
1

2k cos
(
π(k−1)

2k

) + 1
π

∞∑
n=0

x2k−1

x2k + (n + a)2k
,(3.1)

where c ∈ (1, 2).

The second equality in equation (3.1) can be derived by shifting the line of integration to negative

infinity and collecting the residues at corresponding poles. Note that Ψ(x, 1; 1) is Ramanujan’s

kernel. A. Dixit et al. ask in [14] whether a Ramanujan type identity for Hurwitz zeta function

exists and we answer this question positively in this work.

Denote by Ψα(x, a; k) = Ψ
(
α
πx, a; k

)
. Observing the analogy between Ramanujan’s kernel and

Hurwitz kernelΨ(x, a; k) we derive a Ramanujan-type formula involvingΨ(x, a; k) as follows.

Theorem 3.2. Let α, β ∈ R+ such that αβ = π2 and let k,N ∈N. Then, we have

βk(N+1)−1

 ∞∑
n=0

Ψα(n + b, a; k)

(n + b)2k(N+1)−1
+
ζ(2k (N + 1) − 1, b)

2k cos
(
π(k−1)

2k

) 
= (−1)N αk(N+1)−1

 ∞∑
n=0

Ψβ(n + a, b; k)

(n + a)2k(N+1)−1
+
ζ(2k (N + 1) − 1, a)

2k cos
(
π(k−1)

2k

) 
+

N+1∑
p=0

(−1)p+1 ζ(2kp, a) ζ(2k
(
N − p + 1

)
, b)αkp−1βk(N+1−p)−1.(3.2)

Ramanujan’s identity gives an expression for the convolution of Riemann zeta at even argu-

ments. In the same spirit it can be asked whether such an expression exists for the convolution of

Riemann zeta at odd arguments. This was positively answered in [12]:

Theorem 3.3. Let α and β be two complex numbers such thatℜ(α) > 0,ℜ(β) > 0 and αβ = 4π2. Let ψ

denote the digamma function. Then for m ∈N, we have

(
−β

)−m

2γζ(2m + 1) +
∞∑

n=1

1
n2m+1

(
ψ

(
ınβ
2π

)
+ ψ

(
−
ınβ
2π

))
10



+ α−m

2γζ(2m + 1) +
∞∑

n=1

1
n2m+1

(
ψ

(
ınα
2π

)
+ ψ

(
−
ınα
2π

))
= −2

m−1∑
k=1

(−1)k ζ(2k + 1) ζ(2m − 2k + 1)αk−mβ−k.

We claim that Theorem 3.3 is related to the integral kernel

(3.3)
1

2iπ

∫
(c)

ζ (1 − s) x−s

2 sin
(
πs
2

) ds,

where 1 < c < 2. This will be proved as a special case of Theorem 3.5. We now proceed to provide

a series expansion of the integral in equation (3.3) by shifting the line of integration to negative

infinity and collecting the residues at corresponding poles.

Consider rectangular the contour determined by the line segments [c − iT, c + iT], [c + iT, c′ +

iT], [c′ + iT, c′ − iT], [c′ − iT, c − iT] where c′ = 1 − c. Inside this contour,

ζ (1 − s) x−s

2 sin
(
πs
2

) ,
has a pole of order 2 at s = 0. It can be calculated

Res

ζ (1 − s) x−s

2 sin
(
πs
2

) 
s=0

=
log(x) + γ

π
.

Thus by Cauchy’s residue Theorem, we have

1
2iπ

[∫ c+iT

c−iT
+

∫ c′+iT

c+iT
+

∫ c′−iT

c′+iT
+

∫ c−iT

c′−iT

]
ζ (1 − s, a) ζ(2kN + 2k − 1 + s, b)

2k cos
(
π(s+k−1)

2k

) (
α
π

)−s
ds

=
log(x) + γ

π
.

From Lemma 5.1 and equation (5.2), it can be seen that as T → ∞, the integrals along horizontal

segments tend to zero. Thus we have,

1
2iπ

∫
(c)

ζ (1 − s) x−s

2 sin
(
πs
2

) ds =
log(x) + γ

π
+

1
2iπ

∫
(c′)

ζ (1 − s) x−s

2 sin
(
πs
2

) ds.

On account of absolute convergence of the series representing ζ(s) forℜ(s) > 1, we have,∫
(c′)

ζ (1 − s) x−s

2 sin
(
πs
2

) ds =
∞∑

n=1

∫
(c′)

ns−1x−s

2 sin
(
πs
2

) ds.

On shifting the line of integration to negative infinity and using Cauchy’s Residue Theorem, we

get the following equality for |x| < 1
11



(3.4)
1

2iπ

∫
(c′)

ns−1x−s

2 sin
(
πs
2

)ds =
∞∑

i=1

Res

 ns−1x−s

2 sin
(
πs
2

)
s=−2i

=
1
π

∞∑
i=1

(−1)i x2i

n2i+1
= −

1
π

x2

n (x2 + n2)
.

Noticing that the integral on the left-hand side of equation (3.4) is analytic in the planeℜ(x) > 0,

we conclude that equation (3.4) holds for all x ∈ C satisfyingℜ(x) > 0. Thus, the following equality

holds for all x ∈ R+

1
2iπ

∫
(c)

ζ(1 − s)x−s

2 sin
(
πs
2

) ds =
log(x) + γ

π
−

x2

π

∞∑
n=1

1
n(x2 + n2)

.

We now give an alternate expression of the above series in terms of the Digamma function ψ(x).

The Digamma function satisfies the following identities [1]:

ψ(x + 1) = ψ(x) +
1
x
,

ψ(x + 1) = −γ +
∞∑

n=1

(
x

n(n + x)

)
, x < {−1,−2,−3, . . .}.

Using the above two well-known formulas for the digamma function ψ(x), we conclude that

1
2iπ

∫
(c)

ζ(1 − s)x−s

2 sin
(
πs
2

) ds =
log(x) + γ

π
−

x2

π

∞∑
n=1

1
n(x2 + n2)

=
1
π

(
log(x) −

ψ(ix) + ψ(−ix)
2

)
.

This suggests defining a similar analog of the Hurwitz kernel.

Definition 3.4. Let x ∈ R+, a ∈ C and k ∈N. Define the odd Hurwitz kernel by

Φ(x, a; k) B
1

2iπ

∫
(c)

ζ (1 − s, a)

2k sin
(
πs
2k

)x−s ds

=
log(x) − ψ(a)

π
−

x2k

π

∞∑
n=0

1
(n + a)((n + a)2k + x2k)

,(3.5)

As before, denote by Φα(x, a; k) = Φ
(
α
πx, a; k

)
. Observing the analogy between the analog of

Ramanujan’s kernel and the odd Hurwitz kernel, we now state a generalization of Theorem 3.3.

Theorem 3.5. Let α, β > 0 and αβ = π2. Then, the following identity holds

βkm

 ∞∑
n=0

Φα(n + b, a; k)
(n + b)2km+1

−
1
π

(
ζ(2km + 1, b)

(
log

(
α
π

)
− ψ(a)

)
−
∂
∂s
ζ(2km + 1 + s, b)

∣∣∣
s=0

)
= (−1)m α

km

π

(
ζ(2km + 1, a)

(
log

(
β

π

)
− ψ(b)

)
−
∂
∂s
ζ(2km + 1 + s, a)

∣∣∣
s=0

)
12



+ (−1)m+1 αkm
∞∑

n=0

Φβ(n + a, b; k)

(n + a)2km+1
+

1
π

m−1∑
i=1

(−1)i ζ(2ki + 1, a)αkiζ(2k(m − i) + 1, b) βk(m−i).(3.6)

Finally, the following result [11] answers the question of determining a formula relating the

convolution of Riemann zeta at odd and even arguments:

Theorem 3.6. For α, β > 0 with αβ = π2 and m ∈N, we have

β−(m− 1
2 )

1
2
ζ(2m) +

∞∑
n=0

n−2m

e2nβ − 1

 − m−1∑
k=0

(−1)k+1 ζ(2k)ζ(2m − 2k + 1)
π2k

β2k−m− 1
2

= (−1)m+1 α−(m− 1
2 )

γπζ(2m) +
1

2π

∞∑
n=1

n−2m
(
ψ

( inα
π

)
+ ψ

(
−inα
π

)) .(3.7)

As before, we now state an elegant generalization of this result to the convolution of Hurwitz

zeta function at odd and even arguments, which also relates Φ(x, a; k) withΨ(x, a; k).

Theorem 3.7. Let α, β > 0 and αβ = π2. Then, we have

πβkm

 ∞∑
n=0

Φα(n + b, a; k)
(n + b)2km

−
1
π

(
ζ(2km, b)

(
log

(
α
π

)
− ψ(a)

)
−
∂
∂s
ζ(2km + s, b)

∣∣∣
s=0

)
= (−1)m π2αkm−1

 ∞∑
n=0

Ψβ(n + a, b; k)

(n + a)2km
+
ζ(2km, a)

2k sin
(
π
2k

) + m∑
i=1

(−1)i αkiζ(2ki + 1, a)βk(m−i)ζ(2k(m − i), b).

Ramanujan’s identity (1.2) has the following specialization, namely, for α, β > 0 with αβ = π2,

(3.8) αm+1
∞∑

n=1

n2m+1

e2αn − 1
− (−β)m+1

∞∑
n=1

n2m+1

e2βn − 1
=

(
αm+1

− (−β)m+1
) B2m+1

4m + 1
,

with m > 1, which can be found in [21]. The following result provides a generalization of the

above identity, that is, equation (3.8) involving the Hurwitz kernelΨ(x, a; k).

Theorem 3.8. Let α, β ∈ R+ such that αβ = π2 and B j(x) denote Bernoulli polynomials. Then, we have

αkm+1
∞∑

n=0

(n + b)2km+1

Ψα(n + b, a; k) −
m∑

p=1

B2kp+1(a)

2kp + 1

(
π
α

)2kp+1
 .

= (−1)m+1 βkm+1
∞∑

n=0

(n + a)2km+1

Ψβ(n + a, b; k) −
m∑

p=1

B2kp+1(b)

2kp + 1

(
π
β

)2kp+1


+
αkm+1B2km+2(b)

4k(km + 1) cos
(
π(k−1)

2k

) + (−1)m βkm+1B2km+2(a)

4k (km + 1) cos
(
π(k−1)

2k

) + m∑
p=0

(−1)p
B2kp+1(a) βkpB2k(m−p)+1(b)αk(m−p)(

2kp + 1
) (

2k
(
m − p

)
+ 1

) .

As a special case, plugging in a = b = 1 in Theorem 3.8 yields the following interesting identity.
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Proposition 3.9. Let α, β > 0 and αβ = π2. Then, the following identity holds

αkm+1

 ∞∑
n=1

Ψα(n, 1; k)
n−2km−1

−
B2km+2

4k(km + 1) cos
(
π(k−1)

2k

)(3.9)

= (−1)m+1 βkm+1

 ∞∑
n=1

Ψβ(n, 1; k)

n−2km−1
−

βkm+1B2km+2

4k(km + 1) cos
(
π(k−1)

2k

) .
Moreover, substituting in α = β = π with m = 2p in Proposition 3.9 produces

(3.10)
∞∑

n=1

Ψπ(n, 1; k)
n−4kp−1

=
B4kp+2

4k
(
2kp + 1

)
cos

(
π(k−1)

2k

) ,
which is a generalization of Glaisher’s famous identity [15]

(3.11)
∞∑

n=1

n4m+1

e2πn − 1
=

B4m+2

2(4m + 2)
.

Notice that we recover equation (3.8) as a special case k = 1 of Proposition 3.9.

As a companion of Theorem 4.3, we have the following intriguing identity for Φ(x, a; k).

Theorem 3.10. Let α, β > 0 and αβ = π2. Then, the following identity holds

αkm
∞∑

n=0

(n + b)2km−1

Φα(n + b, a; k) −
m∑

p=1

B2kp(a)

2kp

(
π
α

)2kp


+
αkm

π

(
B2km(b)

2km

(
log

(
α
π

)
− ψ(a)

)
+
∂
∂s
ζ(s − 2km + 1, b)|s=0

)

= (−1)m+1βkm
∞∑

n=0

(n + a)2km−1

Φβ(n + a, b; k) −
m∑

p=1

B2kp(b)

2kp

(
π
β

)2kp


+
(−1)m+1βkm

π

(
B2km(a)

2km

(
log

(
β

π

)
− ψ(b)

)
+
∂
∂s
ζ(s − 2km + 1, a)

∣∣∣
s=2km

)

+
1
π

m−1∑
p=1

(−1)p
B2kp(a) βkpB2k(m−p)(b)αk(m−p)(

2kp
) (

2k
(
m − p

))(3.12)

Ramanujan also gave the transformation formula for the logarithm of the Dedekind eta function

in the following form.

Theorem 3.11. If α, β are positive reals such that αβ = π2, then
∞∑

m=1

1
m(e2αm − 1)

−

∞∑
m=1

1
m(e2βm − 1)

=
1
4

log
(
α
β

)
−
α − β

12
.

We now provide a generalization of this formula in our context.
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Theorem 3.12. If α, β are positive reals such that αβ = π2, then

∞∑
m=0

Ψα(m + b, a; 1)
m + b

−

∞∑
m=0

Ψβ(m + a, b; 1)
m + a

=
1
4

(
log

(
α
β

)
+ 2(ψ(b) − ψ(a))

)
+

(2a − 1)ζ(2, b)
2α

+
(1 − 2b)ζ(2, a)

2β
.

Plugging in a = b produces

∞∑
m=0

Ψα(m + a, a; 1)
m + a

−

∞∑
m=0

Ψβ(m + a, a; 1)
m + a

=
1
4

log
(
α
β

)
+

(2a − 1)ζ(2, a)
2

(
β − α

π2

)
.

3.1. Sketch of the proofs. In this Subsection, we briefly render a rough outline of the proof of our

results. In particular, we highlight the common element when proving and obtaining such results.

For the sake of argument, we ignore the constants and convergence conditions. However, further

details of all the proofs in rigor can be found in Section 5.

Let

ζx,a(s) =
∞∑

n=1

an

xs
n
, ζ(y, b) =

∞∑
n=1

bn

ys
n
,

and let P(Γ(s), k) denote some product of Gamma functions with rational linear combinations of

s, k as their arguments. It can be noticed that all of our results involve expressions of the form

∞∑
n=1

anΦy(xnz, k)

xN
n

,(3.13)

where N ∈N and

Φy(z, k) =
1

2iπ

∫
ℜ(s)=c

ζy,b(1 − s)

P(Γ(s), k)
z−sds,

for some c ∈ R. By suitably shifting the line of integration beyond the abscissa of convergence of

ζ(s, a) we can interchange summation and integral in equation (3.13), and it can be rewritten as

∞∑
n=1

anΦy(xnz, k)

xN
n

+ R1(z) =
1

2iπ

∫
ℜ(s)=d

ζy,b(1 − s)ζx,a(N + s)

P(Γ(s), k)
z−sds.(3.14)

Now assuming that

ζy,b(1 − s)ζx,a(N + s)

P(Γ(s), k)
z−s,

decays exponentially as ℑ(s)→∞, we can shift the line of integration toℜ(s) = −c−N+ 1 and use

the residue theorem from complex analysis to write

1
2iπ

∫
(d)

ζy,b(1 − s)ζx,a(N + s)

P(Γ(s), k)
z−sds = R2(z) +

1
2iπ

∫
(−d−N+1)

ζy,b(1 − s)ζx,a(N + s)

P(Γ(s), k)
z−sds,(3.15)
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where R2(z) is the sum of residues of the integrand inside the strip S = {s ∈ C | −N−d+1 <ℜ(s) < d}.

Now if P(Γ(s), k) is invariant up to a constant under the change of variable s→ −s −N + 1, we can

apply the same change of variable to write

∫
(−d−N+1)

ζy,b(1 − s)ζx,a(N + s)

P(Γ(s), k)
z−sds = zNc1

∫
(d)

ζx,a(1 − s)ζy,b(N + s)

P(Γ(s), k)
zsds,(3.16)

for some constant c1. Noticing the similarity between equations (3.14) and (3.16), upon shifting

the line of integration beyond the abscissa of convergence of ζy,b(N + s), we can write

∫
(d)

ζx,a(1 − s)ζy,b(N + s)

P(Γ(s), k)
z−sds = R3(z) +

∞∑
n=1

bnΦx(ynz, k)

yN
n

.(3.17)

Upon combining all these equations we obtain

∞∑
n=1

anΦy(xnz, k)

xN
n

+ R1(z) − zNc1

R3(z) +
∞∑

n=1

bnΦx
( yn

z , k
)

yN
n

 = R2(z).(3.18)

Notice that this method can be specialized to obtain reciprocity relations for any Dirichlet series.

An astute reader would notice that a similar method was obtained by Bochner in his seminal

work [7] which enables one to obtain reciprocity relations. Note that in general, we do not need

P(Γ(s), k) to be invariant under some change of variable. This situation will be illustrated via proof

of Theorem 3.7.

4. Dirichlet-L series

In this Section, we state several new reciprocity formulae for Dirichlet L-series. These formulae

can be considered analogs of formulae from the previous section.

We first provide a primer on Dirichlet L-series.

4.1. Background. Given a fixed positive integer m, a Dirichlet character χ of modulus m is a

complex-valued arithmetic function χ : Z→ C that satisfies the following conditions

(1) χ(1) = 1.

(2) χ(ab) = χ(a)χ(b) for all a, b ∈N.

(3) χ(a +m) = χ(a).

(4) χ(a) = 0 for gcd(a,m) > 1.
16



The value of the minimal period of χ is called as the conductor of χ and is denoted by fχ. The

simplest Dirichlet character of modulus m is called the principal character and is defined by

χ(n) =


1 gcd(m,n) = 1

0 gcd(m,n) > 1.

Given a Dirichlet character χ and a complex number s satisfying ℜ(s) > 1, the corresponding

Dirichlet L-series is defined as

L(s, χ) =
∞∑

n=1

χ(n)
ns .

Dirichlet L-series can be analytically continued on the whole complex plane to a meromorphic

function and are also called Dirichlet L-function. Let φ(n) denote Euler’s totient function. For the

principal character χ1 of modulus m, the analytic continuation of L(s, χ1) has a simple pole at s = 1

with corresponding residue φ(m)
m whereas L(s, χ) can be analytically continued to an entire function

for all non-principal characters χ.

Let δ ∈ {0, 1} be defined by χ(−1) = (−1)δ. A Dirichlet character χ is even if δ = 0 and odd if

δ = 1. A Dirichlet character of modulus m is said to be primitive if fχ = m and imprimitive otherwise.

In what follows, we assume χ to be primitive. Given a character of modulus m, the Laurent series

expansion of L(s, χ) is known to be

L(s, χ) =
δχ

s − 1
+

∞∑
k=0

(−1)nγn(χ)
n!

(s − 1)n

where

δχ =


φ(m)

m χ is principal

0 otherwise.

The generalized Bernoulli numbers attached to a character χ are defined by

Fχ(t) :=
1

e f t − 1

fχ∑
a=1

χ(a) teat =

∞∑
n=0

Bn,χ

n!
tn,

which converges for |t| < 2π
fχ

. By means of analytic continuation, it can be deduced that

L (−n, χ) = −
Bn+1,χ

n + 1
.

The Gaussian sum g(χ) associated to a character χ is defined as

g (χ) =
fχ∑

a=1

χ(a) exp
(

2iπa
fχ

)
.

The following result can be used to calculate special values of L(s, χ) at positive integers [4]
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Theorem 4.1. Let k be a natural number. If χ (−1) = (−1)k, then the special value of L(k, χ) is given by

L (k, χ) =
(−1)k−1 (2iπ)k

2k! f k
χ

g (χ) Bk,χ.

The above theorem implies

(1) If χ is even, then for all integers n ⩾ 1 we have

L (2n, χ) = −
(2iπ)2n

2 (2n)! f 2n g (χ) B2n,χ.

(2) If χ is odd, then for all integers n ⩾ 1 we have

L (2n + 1, χ) =
(2iπ)2n+1

2 (2n + 1)! f 2n+1
g (χ) B2n+1,χ.

Example. Let χ4 be the alternating character of modulus 4. The associated L-series is

L(s, χ4) =
∞∑

n=0

(−1)n

(2n + 1)s .

This series is also called Dirichlet Beta function. The corresponding Gauss sum is

g(χ4) =
4∑

a=1

χ(a) exp
( iπ

2

)
= 2i,

and the corresponding generalization of Bernoulli numbers is

1
e4t − 1

4∑
a=1

χ(a)teat =
t(et
− e3t)

e4t − 1
=

−t
et + e−t .

It is well known that
2

et + e−t =

∞∑
k=0

Ek
tk

k!
,

where Ek are Euler numbers. Thus

Bk,χ4 =


0 k = 0

−
kEk−1

2 k ≥ 1.

Since χ4 is odd, invoking Theorem 4.1 we obtain

L(2n + 1, χ4) = (−1)n E2n

2(2n)!

(
π
2

)2n+1
.(4.1)

We now introduce analogs of Hurwitz and Odd Hurwitz kernels in the context of the Dirichlet

L-series. Given a complex number z ∈ C, an integer k > 0 and a Dirichlet character χ, define

Ψ (z, χ; k) B
1

2iπ

∫
(c)

L(χ, 1 − s)

2k cos
(
π(s+k−1)

2k

)z−sds,
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and

Φ (z, χ; k) B
1

2iπ

∫
(c)

L(χ, 1 − s)

2k sin
(
πs
2k

)z−sds.

Next, we evaluateΨ(z, χ; k). Let

F (s, χ; k) =
L(χ, 1 − s)

2k cos
(
π(s+k−1)

2k

)z−s.

From equation (5.3) and lemma 5.1 we get that |F(s, χ; k)| decays exponentially as ℑ(s) → ∞. This

allows us to shift the line of integration to the left. We now shift the line of integration to negative

infinity and collect residues at corresponding poles. The integrand has simple poles at −2km + 1

where m ∈N≥0. It also has a simple pole at s = 0 if χ is principal. The residues are

R0 =
−φ(m)

2km cos
(
π(k−1)

2k

)
R−2km+1 = (−1)m+1 L(χ, 2km)

π
z2km−1.

Let h(χ) = R0 if χ is principal or zero otherwise. Using residue theorem we have

Ψ (z, χ; k) = h(χ) −
1
πz

∞∑
m=0

(−1)m L (2km, χ) z2km.

Next, we use the fact that B2 j+1,χ = 0 for j ≥ 1 when χ is even to write

Ψ (z, χ; 1) = h(χ) −
L(0, χ)

2πz
−

1
πz

∞∑
m=1

(−1)mL(2m, χ)z2m

= h(χ) −
L(0, χ)

2πz
+

g(χ)
2πz

∞∑
m=1

B2m,χ

(2m)!

(
2πz

f

)2m

= h(χ) −
L(0, χ)
πz

+
g(χ)
2πz

(
Fχ

(
2πz

f

)
− B0,χ − 2πzB1,χ

)
.

For instance, when χ is the principal character of modulus one, we recover

Ψ(z, χ; 1) =
1

e2πz − 1
.

A similar method can be employed to evaluate Φ(z, χ; k). The funtion L(1−s,χ)
2k sin( πs

2k )z−s has simple

poles at s = −2km where m ∈ N. It also has a simple or double pole at s = 0 depending upon χ.

The corresponding residues are

R0 =


1
π

(
φ(m) log(z)

m + γ0(χ)
)
χ is principal

L(1,χ)
π otherwise.

R−2km = (−1)m L(χ, 2km + 1)
π

z2km.
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Let

h2(χ) =


1
π

(
φ(m) log(z)

m + γ0(χ)
)
χ is principal,

L(1,χ)
π otherwise.

Using a similar argument as before we deduce

Φ(z, χ; k) = h2(χ) +
∞∑

m=1

(−1)m L(χ, 2km + 1)
π

z2km.

Upon substituting χ = χ4 and k = 1 we obtain

Φ(z, χ; k) =
L(1, χ4)
π

+
1
π

∞∑
m=1

(−1)mL(χ4, 2m + 1)z2m

=
1
4
+

1
4

∞∑
m=1

E2m

(2m)!

(
πz
2

)2m

=
1

4 cosh
(
πz
2

) .(4.2)

Finally, we are now ready to state our main results. We begin by providing the following elegant

generalization of Ramanujan’s identity.

Theorem 4.2. Let χ1, χ2 be Dirichlet characters of moduli m1,m2 respectively and let µ ∈ h. Then, we have

∞∑
n=0

χ2(n)Ψ
(
µn, χ2; k

)
n2km−1

+ (−1)mµ2km−2
∞∑

n=1

χ1(n)
n2km−1

Ψ

(
n
µ
, χ2; k

)

= h (χ1, k) + h (χ2, k) +
1
π

m∑
p=0

(−1)p+1 L
(
χ1, 2k(m − p)

)
L
(
χ2, 2kp

)
µ2kp−1,

where

h (χ1, k) = −
δχ1L(2km − 1, χ2)

2k cos
(
π(k−1)

2k

) , h (χ2, k) = (−1)m−1 δχ2L(2km − 1, χ1)

2k cos
(
π(k−1)

2k

) µ2km−2.

We now provide an analog of Theorem 3.7 in this context.

Theorem 4.3. Let χ1, χ2 be Dirichlet characters of moduli m1,m2 respectively and µ ∈ h. Then,

∞∑
n=1

χ1(n)Φ(µn, χ2; k)
n2km

− (−1)mµ2km−1
∞∑

n=1

χ2(n)
n2km

Ψ

(
n
µ
, χ1; k

)

= h (χ1, k) + h (χ2, k) +
1
π

m∑
p=1

(−1)p L
(
χ1, 2k(m − p)

)
L
(
χ2, 2kp + 1

)
µ2kp,
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where

h(χ1) =


δχ2
π

(
L(2km, χ1) log(µ) − ∂

∂s L(2km + s, χ1) |s=0

)
+
γ0(χ2)
π L(2km, χ1) χ2 is principal

L(1,χ2,)L(2km,χ1)
π otherwise,

h(χ2) = (−1)m δχ1L(2km, χ2)µ2km−1

2k sin
(
π
2k

) .

Substituting k = 1 yields the following.

Corollary 4.4. Let N ∈N and χ1, χ2 be Dirichlet characters of moduli m1,m2 respectively. Then, we have
∞∑

n=1

χ1 (n)
n2N Ψ

(
µn, χ2; 1

)
−

(
−µ2

)N
∞∑

n=1

χ2 (n)
n2N Φ

(
n
µ
, χ1; 1

)

= h (χ1) + h (χ2) +
1
π

N∑
k=1

(−1)k L (2N − 2k, χ1) L (2k + 1χ2)µ2k.

where where

h(χ1) =


δχ2
π

(
L(2m, χ1) log(µ) − ∂

∂s L(2m + s, χ1) |s=0

)
+
γ0(χ2)
π L(2m, χ1) χ2 is principal

L(1,χ2,)L(2m,χ1)
π otherwise,

h(χ2) = (−1)m δχ1L(2m, χ2)µ2km−1

2
.

On substituting χ1 to be the principal character of modulus one, χ2(n) = χ4 and µ = α/π in

corollary 4.4 we recover the following result by Bradley [8, Corollary 4].

Corollary 4.5. Let N ∈N and let α, β ∈ R+ such that αβ = π2. Then, the following identity holds

α
1
2−N

β(2N)
2
+

∞∑
n=0

(−1)n(2n + 1)−2N

e(4n+2)α − 1

 − (−1)N

4
β

1
2−N

∞∑
n=1

n−2N

cosh
(nβ

2

)
= 22N−3

N∑
k=0

(−1)k E2kB2N−2k

24k (2k)! (2N − 2k)!
αN−kβk+ 1

2 .

Substituting χ1, χ2 to be the principal characters of modulus one and µ = α/π in corollary 4.4

we recover the following identity by A. Dixit et. al. [11].

Corollary 4.6. Let N ∈N and let α, β ∈ R+ such that αβ = π2. Then, the following identity holds

β−(m− 1
2 )

1
2
ζ(2m) +

∞∑
n=0

n−2m

e2nβ − 1

 − m−1∑
k=0

(−1)k+1

π2k
ζ(2k)ζ(2m − 2k + 1) β2k−m− 1

2

= (−1)m+1 α−(m− 1
2 )

γπζ(2m) +
1

2π

∞∑
n=1

1
n2m

(
ψ

( inα
π

)
+ ψ

(
−inα
π

)) .
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Lastly, we provide an analog of Theorem 3.5

Theorem 4.7. Let χ1, χ2 be dirichlet characters of moduli m1,m2 respectively. Then, we have
∞∑

n=1

χ(n)
n2km+1

Φ(µn, χ2, k) − (−1)mµ2km
∞∑

n=1

χ2(n)
n2km+1

Φ

(
n
µ
, χ1; k

)

= h(χ1, k) + h(χ2, k) +
1
π

m−1∑
p=1

(−1)pL(χ1, 2k(m − p) + 1)L(χ2, 2kp + 1)µ2kp,

where

h1(χ1) =


δχ2
π

(
log(µ)L(2km + 1, χ1) − ∂

∂s L(2km + s + 1, χ1) |s=0

)
+
γ0(χ2)
π L(2km + 1, χ1) χ2 is principal

L(1,χ2)L(2km+1,χ1)
π otherwise,

and, when χ2 is principal

h2(χ2) = (−1)m−1µ2km
(
δχ2

π

(
log(µ)L(2km + 1, χ1) −

∂
∂s

L(2km + s + 1, χ1) |s=0

)
+
γ0(χ2)
π

L(2km + 1, χ1)
)
,

otherwise we have

h2(χ2) = (−1)mµ2km L(1, χ1)L(2km + 1, χ2)
π

.

Substituting k = 1,χ1 = χ2 = χ4, and µ = 4α
π we recover the following result by Berndt [5].

Corollary 4.8. Let N > 0 and αβ = π2/16. Then

α−N
∞∑

n=0

(−1)n

(2n + 1)2N+1 cosh(2(2n + 1)α)
+ (−β)−N

∞∑
n=0

(−1)n

(2n + 1)2N+1 cosh(2(2n + 1)β)

= 22N−2π
N∑

j=0

(−1) j E2 j

(2 j)!
E2N−2 j

(2N − 2 j)!
αN− jβ j.

5. Proofs

Before proving these results we state an important inequality that we will use throughout the

proofs. Stirling’s formula for the gamma function on a vertical strip states that for a ⩽ σ ⩽ b and

|t| ⩾ 1,

(5.1) |Γ(σ + it)| = (2π)
1
2 |t|σ−

1
2 e−

π
2 |t|

(
1 +O

( 1
|t|

))
.

The reflection formula for the gamma function is Γ(1 − z)Γ(z) = π
sinπz , z < Z Thus as ℑ(s) → ∞

using the reflection formula and equation (5.1) we have the inequality

(5.2)
1∣∣∣∣sin
(
πs
2k

)∣∣∣∣ = 2 exp
(
−π
2

∣∣∣∣∣ℑ(s)
k

∣∣∣∣∣) (1 +O
(

1
|ℑ(s)|

))
.
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A variant of the reflection formula for the gamma function is Γ
(

1
2 + z

)
Γ
(

1
2 − z

)
= π

cos(πz) , z < Z−
1
2 .

Thus asℑ(s)→∞ using the variant of reflection formula and equation (5.1) we have the inequality

(5.3)
1∣∣∣∣cos

(
π(s+k−1)

2k

)∣∣∣∣ = 2 exp
(
−π
2

∣∣∣∣∣ℑ(s)
k

∣∣∣∣∣) (1 +O
(

1
|ℑ(s)|

))
.

The next result gives an upper bound on growth rate of the Riemann zeta function.

Lemma 5.1. For σ > σ0, there exists a constant C(σ0) such that

|ζ(σ + iT)| ≪ |T|C(σ)

as |T| → ∞.

Proof. The proof can be found in [22, p. 95]. ■

Most of the proofs follow a similar structure and thus some of them can be skipped. However,

we provide complete proofs of all our results for the convinience of the reader.

5.1. Proof of Theorem 3.2. On account of the absolute convergence of the Hurwitz zeta function

forℜ(s) > 1 we have
∞∑

n=0

Ψα (n + b, a)

(n + b)2kN+2k−1
=

1
2iπ

∫
(c)

ζ (1 − s, a) ζ(2kN + 2k − 1 + s, b)

2k cos
(
π(s+k−1)

2k

) (
α
π

)−s
ds.

We now evaluate this integral by shifting the line of integration. Consider rectangular the contour

determined by the line segments [c − iT, c + iT], [c + iT, d + iT], [d + iT, d − iT], [d − iT, c − iT] where

d = −c − 2kN − 2k + 2. Inside this contour, the integrand has simple poles at 0,−2kN − 2k + 2 and

at the integers −2kp + 1 where p ∈ {0, 1, . . . ,N + 1}. The residues at these poles are

R0 =
−ζ(2kN + 2k − 1, b)

2k cos
(
π(k−1)

2k

) ,

R−2kN−2k+2 =
(
α
π

)2kN+2k−2 ζ(2kN + 2k − 1, a)

2k cos
(
π(−2kN−k+1)

2k

) ,
R−2kp+1 = (−1)p+1

(
α
π

)2kp−1
ζ(2kp, a)ζ(2k(N + 1 − p), b).

Thus by Cauchy’s Residue Theorem, we have

1
2iπ

∫ c+iT

c−iT
+

∫ d+iT

c+iT
+

∫ d−iT

d+iT
+

∫ c−iT

d−iT

 ζ (1 − s, a) ζ(2kN + 2k − 1 + s, b)

2k cos
(
π(s+k−1)

2k

) (
α
π

)−s
ds

= R0 + R−2kN−2k+2 +

N+1∑
p=0

R−2kp+1.
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From Lemma 5.1 and equation (5.3), it can be seen that as T → ∞, the integrals along horizontal

segments tend to zero. Under the change of variables s→ −s − 2kN − 2k + 2 we have∫
(d)

ζ (1 − s, a) ζ(2kN + 2k − 1 + s, b)

2k cos
(
π(s+k−1)

2k

) (
α
π

)−s

= (−1)N
(
α
π

)2kN+2k−2 ∫
(c)

ζ(1 − s, b)ζ(2kN + 2k − 1 + s, a)

2k cos
(
π(s+k−1)

2k

) (
β

π

)−s

,

which completes the proof of Theorem 3.2. ■

5.2. Proof of Theorem 3.5. On account of the absolute convergence of the series representing

ζ(s, b) forℜ(s) > 1 we have

(5.4)
∞∑

n=0

Φα(n + b, a; k)
(n + b)2km+1

=
1

2iπ

∫
(c)

ζ (1 − s, a) ζ(2km + 1 + s, b)

2k sin
(
πs
2k

) (
α
π

)−s
ds

where 1 < c < 2. We now evaluate this integral by shifting the line of integration and using the

residue Theorem. Consider the rectangular contour determined by the line segments [c − iT, c +

iT], [c+ iT, d+ iT], [d+ iT, d− iT], [d− iT, c− iT] where d = −2km−c. Inside this contour, the integrand

has poles of order two at 0,−2km and simple poles at the integers −2ki where i ∈ {1, . . . ,m− 1}. The

residues at these poles are

R0 =
1
π

(
ζ(2km + 1, b)

(
log

(
α
π

)
− ψ(a)

)
−
∂
∂s
ζ(2km + 1 + s, b)

∣∣∣
s=0

)
R−2km =

(−1)m

π

(
α
π

)2km
(
−ζ(2km + 1, a)

(
ψ(b) + log

(
α
π

))
+
∂
∂s
ζ(2km + 1 + s, a)

∣∣∣
s=0

)
R−2i = (−1)i

(
α
π

)2ki ζ(2ki + 1, a)ζ(2k(m − i) + 1, b)
π

Thus we have

1
2iπ

∫ c+iT

c−iT
+

∫ d+iT

c+iT
+

∫ d−iT

d+iT
+

∫ c−iT

d−iT

 ζ (1 − s, a) ζ(s + 2km + 1, b)

2 sin
(
πs
2k

) (
α
π

)−s
ds

= R0 + R−2km +

m−1∑
i=1

R−2ki

From Lemma 5.1 and equation (5.3), it can be seen that as T → ∞, the integrals along horizontal

segments tend to zero. Under the change of variables s→ −2km − s we have∫
(d)

ζ (1 − s, a) ζ(s + 2km + 1, b)

2k sin
(
πs
2

) (
α
π

)−s
ds

=
(
α
π

)2km
(−1)m

∫
(c)

ζ(1 − s, b)ζ(s − 2km − 1, a)

2k sin
(
πs
2k

) (
β

π

)−s

ds
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which gives us the desired result. ■

5.3. Proof of Theorem 3.7. On account of the absolute convergence of ζ (s, a) for ℜ(s) > 1, k > 1

we have
∞∑

n=0

Φα(n + b, a; 1)
(n + b)2km

=
1

2iπ

∫
(c)

ζ (1 − s, a) ζ(2km + s, b)

2k sin
(
πs
2k

) (
α
π

)−s
ds

We now evaluate this integral by shifting the line of integration and using Cauchy’s Residue

Theorem. Consider the contour determined by the line segments [c− iT, c+ iT], [c+ iT, d+ iT], [d+

iT, d − iT], [d − iT, c − iT] where d = −c − 2km + 1. Inside this domain, the integrand has a simple

pole at −2km+ 1 due to ζ(2km+ s, b) and a pole of order two at s = 0. It also has simple poles at the

integers −2ki where i ∈ {1, . . . ,m} due to sine term in the denominator. The residues at these poles

are

R0 =
1
π

(
ζ(2km, b)

(
log

(
α
π

)
− ψ(a)

)
−
∂
∂s
ζ(2km + s, b)

∣∣∣
s=0

)
,

R−2km+1 =
(
α
π

)2km−1 (−1)mζ(2km, a)

2 sin
(
π
2k

) ,

R−2ki = (−1)i
(
α
π

)2ki ζ(2ki + 1, a)ζ(2k(m − i), b)
π

.

Thus by Cauchy’s Residue Theorem, we have

1
2iπ

∫ c+iT

c−iT
+

∫ d+iT

c+iT
+

∫ d−iT

d+iT
+

∫ c−iT

d−iT

 ζ (1 − s, a) ζ(s − 2km − 1, b)

2k sin
(
πs
2k

) (
α
π

)−s
ds

= R0 + R−2km+1 +

m∑
i=1

R−2ki.

From Lemma 5.1 and equation (5.2), it can be seen that as T → ∞, the integrals along horizontal

segments tend to zero. Under the change of variables s→ −s − 2km + 1 we have∫
(d)

ζ (1 − s, a) ζ(2km + s, b)

2k sin
(
πs
2k

) (
α
π

)−s
ds

=
(
α
π

)2km−1
(−1)m

∫
(c)

ζ(2km + s, a)ζ(1 − s, b)

2k cos
(
π(s+k−1)

2k

) (
β

π

)−s

ds.

However,

1
2iπ

∫
(c)

ζ(2km + s, a)ζ(1 − s, b)

2k cos
(
π(s+k−1)

2k

) (
β

π

)−s

ds =
∞∑

n=0

Ψβ(n + a, b; k)

(n + a)2m ,

which completes the proof of Theorem 3.7. ■
25



5.4. Proof of Theorem 3.8. On account of the absolute convergence of ζ (s, a) forℜ(s) > 1 we have

∞∑
n=0

(n + b)2km+1

Ψα(n + b, a; k) −
m∑

p=1

B2kp+1(a)

2kp + 1

(
π
α

)2kp+1


=
1

2iπ

∫
(d)

ζ (1 − s, a) ζ(s − 2km − 1, b)

2k cos
(
π(s+k−1)

2k

) (
α
π

)−s
ds,

where 2km + 2 < d < 2km + 3, since∫
(c)

ζ (1 − s, a)

2k cos
(
π(s+k−1)

2k

)x−sds =
∫

(d)

ζ (1 − s, a)

2k cos
(
π(s+k−1)

2k

)x−sds −
m∑

p=1

B2kp+1(a)

2kp + 1
x−2kp−1.

We now evaluate this integral by shifting the line of integration and using the Cauchy’s Residue

Theorem. Consider the rectangular contour determined by the line segments [d − iT, d + iT], [d +

iT, e+ iT], [e+ iT, e− iT], [e− iT, d− iT] where e = 2km+ 2− d. Inside this contour, the integrand has

simple poles at 0, 2km+ 2 and at integers 2kp+ 1 where p ∈ {0, 1, . . . ,m}. The residues at these poles

are

R0 =
B2km+2(b)

2k(2km + 2) cos
(
π(k−1)

2k

) ,
R2km+2 = (−1)m

(
π
α

)2km+2 B2km+2(a)

2k(2km + 2) cos
(
π(k−1)

2k

) ,
R2kp+1 = (−1)p

(
π
α

)2kp+1 B2kp+1(a)B2k(m−p)+1(b)

π
(
2kp + 1

) (
2k

(
m − p

)
+ 1

) .
Thus by Cauchy’s Residue Theorem, we have

1
2iπ

∫ d+iT

d−iT
+

∫ e+iT

d+iT
+

∫ e−iT

e+iT
+

∫ d−iT

e−iT

 ζ (1 − s, a) ζ(s − 2km − 1, b)

2k cos
(
π(s+k−1)

2k

) (
α
π

)−s
ds

= R0 + R2km+2 +

m∑
p=0

R2kp+1.

From Lemma 5.1 and equation 5.3, it can be seen that as T → ∞, the integrals along horizontal

segments tend to zero. Under the change of variables s→ 2km + 2 − s we have∫
(e)

ζ (1 − s, a) ζ(s − 2km − 1, b)

2k cos
(
π(s+k−1)

2k

) (
α
π

)−s
ds

=
(
α
π

)−2km−2
(−1)m+1

∫
(d)

ζ(1 − s, b)ζ(s − 2km − 1, a)

2k cos
(
π(s+k−1)

2k

) (
β

π

)−s

ds

which proves Theorem 4.3. ■
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5.5. Proof of Theorem 3.10. On account of absolute convergence of ζ (s, a) forℜ(s) > 1 we have

∞∑
n=0

(n + b)2km−1

Φα(n + b, a; k) −
m∑

p=1

B2kp(a)

2kp

(
π
α

)2kp


=
1

2iπ

∫
(d)

ζ (1 − s, a) ζ(s − 2km + 1, b)

2k sin
(
πs
2k

) (
α
π

)−s
ds,

where 2km < d < 2km + 1 since

∫
(c)

ζ (1 − s, a)

2k sin
(
πs
2k

)x−sds =
∫

(d)

ζ (1 − s, a)

2k sin
(
πs
2k

)x−sds −
m∑

p=1

B2kp(a)

2kp
x−2kp.

We now evaluate this integral by shifting the line of integration and using the Residue Theorem.

Consider the contour determined by the line segments [d − iT, d + iT], [d + iT, e + iT], [e + iT, e −

iT], [e − iT, d − iT] where e = 2km − d. Inside this countour, the integrand has poles of order two at

0, 2km and simple poles at the integers 2kp where p ∈ {1, . . . ,m− 1}. The residues at these poles are

R0 =
−1
π

(
B2km(b)

2km

(
log

(
α
π

)
− ψ(a)

)
+
∂
∂s
ζ(s − 2km + 1, b)|s=0

)
R2km =

(−1)m

π

(
π
α

)2km
(

B2km(a)
2km

(
log

(
α
π

)
+ ψ(b)

)
−
∂
∂s
ζ(s − 2km + 1, a)

∣∣∣
s=2km

)
R2kp = (−1)p

(
π
α

)2kp B2kp(a)B2k(m−p)(b)

π
(
2kp

) (
2k

(
m − p

)) .
Thus we have

1
2iπ

∫ d+iT

d−iT
+

∫ e+iT

d+iT
+

∫ e−iT

e+iT
+

∫ d−iT

e−iT

 ζ (1 − s, a) ζ(s − 2km + 1, b)

2k sin
(
πs
2k

) (
α
π

)−s
ds

= R0 + R2km +

m−1∑
p=1

R2kp.

From Lemma 5.1 and equation 5.3, it can be seen that as T → ∞, the integrals along horizontal

segments tend to zero. Under the change of variables s→ 2km − s we have∫
(e)

ζ (1 − s, a) ζ(s − 2km − 1, b)

2k sin
(
πs
2k

) (
α
π

)−s
ds

=
(
α
π

)−2km
(−1)m−1

∫
(d)

ζ(1 − s, b)ζ(s − 2km − 1, a)

2k sin
(
πs
2k

) (
β

π

)−s

ds

which proves Theorem 3.10. ■
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5.6. Proof of Theorem 3.12. Using the line integral representation ofΨ and on account of conver-

gence of ζ(s, b) forℜ(s) > 1, we obtain
∞∑

m=0

Ψα(m + b, a; 1)
m + b

=
1

2iπ

∫
(c)

ζ(1 − s, a)ζ(1 + s, b)

2 cos
(
πs
2

) (
α
π

)−s
ds.

We now shift the line of integration to ℜ(s) = −c. From Lemma 5.1 and equation 5.3, it can be

seen that as ℑ(s)→∞, the integrand decays exponentially and thus vanishes over horizontal line

segments. The poles inside the contour are at 1, 0,−1 with corresponding residues

R1 = −
ζ(0, a)ζ(2, b)

α
,

R0 =
1
4

log
(
α
β

)
+
ψ(b) − ψ(a)

2

R−1 =
ζ(0, b)ζ(2, a)

β
,

Since the integral over horizontal line segments vanishes, using the residue theorem we obtain

1
2iπ

∫
(c)

ζ(1 − s, a)ζ(1 + s, b)

2 cos
(
πs
2

) (
α
π

)−s
ds = R1 + R0 + R−1 +

1
2iπ

∫
(c)

ζ(1 − s, a)ζ(1 + s, b)

2 cos
(
πs
2

) (
α
π

)−s
ds.

Upon using the substitution s→ −s we get∫
(c)

ζ(1 − s, a)ζ(1 + s, b)

2 cos
(
πs
2

) (
α
π

)−s
ds =

∫
(c)

ζ(1 − s, b)ζ(1 + s, a)

2 cos
(
πs
2

) (
β

π

)−s

ds.

Putting all things together gives us the desired result. ■

5.7. Proof of Theorem 4.2. On account of the absolute convergence of the Dirichlet L-series for

ℜ(s) > 1 we have
∞∑

n=0

χ2(n)Ψ
(
µn, χ2; k

)
n2km−1

=
1

2iπ

∫
(c)

L (1 − s, χ1) L(2km + s − 1, χ2)

2k cos
(
π(s+k−1)

2k

) µ−s ds.

We now evaluate this integral by shifting the line of integration. Consider rectangular the contour

determined by the line segments [c − iT, c + iT], [c + iT, d + iT], [d + iT, d − iT], [d − iT, c − iT] where

d = −c− 2km+ 2. Inside this contour, the integrand has simple poles at the integers −2kp+ 1 where

p ∈ {0, 1, . . . ,m}. It also has simple poles at 0,−2km + 2 is χ1, χ2 are principal. The residues at these

poles are

R0 =
−δχ1L(2km − 1, χ2)

2k cos
(
π(k−1)

2k

) ,

R−2km+2 = (−1)m−1 δχ2L(2km − 1, χ1)

2k cos
(
π(k−1)

2k

) µ2km−2,
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R−2kp+1 =
(−1)p+1

π
L(2kp, χ1)L(2k(m − p), χ2)µ2kp−1.

Thus by Cauchy’s Residue Theorem, we have

1
2iπ

∫ c+iT

c−iT
+

∫ d+iT

c+iT
+

∫ d−iT

d+iT
+

∫ c−iT

d−iT

 ζ (1 − s, a) ζ(2kN + 2k − 1 + s, b)

2k cos
(
π(s+k−1)

2k

) µ−sds

= R0 + R−2kN−2k+2 +

m∑
p=0

R−2kp+1.

From Lemma 5.1 and equation (5.3), it can be seen that as T → ∞, the integrals along horizontal

segments tend to zero. Under the change of variables s→ −s − 2km + 2 we have∫
(d)

L (1 − s, χ1) L(2km + s − 1, χ2)

2k cos
(
π(s+k−1)

2k

) µ−s

= (−1)m−1µ2km−2
∫

(c)

L(1 − s, χ2)L(2km + s − 1, χ1)

2k cos
(
π(s+k−1)

2k

) µsds.

Sinceℜ(2km + s − 1) > 0, we obtain

1
2iπ

∫
(c)

L(1 − s, χ2)L(2km + s − 1, χ1)

2k cos
(
π(s+k−1)

2k

) µsds =
∞∑

n=1

χ1(n)Ψ
(

n
µ , χ2; k

)
n2km−1

.

Substituting this, we get the desired result. ■

5.8. Proof of Theorem 4.3. On account of absolute convergence of L(χ, s) forℜ(s) > 1 we have

∞∑
n=0

χ1(n)Φ(µn, χ2; k)
n2km

=

∫
(c)

L(2km + s, χ1)L(1 − s, χ2)

2k sin
(
πs
2k

) µ−sds.

We now shift the line of integration to −c − 2km + 1. As before, due to the exponential decay

of the denominator, the integrals over horizontal segments vanish. Inside this strip, the integrand

has poles at −2kp where p ∈ {1, 2, . . . ,m}. It also has poles at 0,−2km + 1 if χ1, χ2 are principal. The

corresponding residues are

R−2kp =
(−1)p

π
L(2k(m − p), χ1)L(2kp + 1, χ2)µ2kp

R0 =


δχ2
π

(
L(2km, χ1) log(µ) − ∂

∂s L(2km + s, χ1) |s=0

)
+
γ0(χ2)
π L(2km, χ1) χ2 is principal,

L(1,χ2)L(2km,χ1)
π otherwise,

R−2km+1 = (−1)m δχ1L(2km, χ2)µ2km−1

2k sin
(
π
2k

)
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Next, using the residue theorem we obtain∫
(c)

L(χ1, 2N + s)L(χ2, 1 − s)

2 sin
(
πs
2k

) µ−sds

= R0 + R−2km+1 +

m∑
k=1

R−2k +

∫
(−c−2km+1)

L(χ1, 2N + s)L(χ2, 1 − s)

2 sin
(
πs
2k

) µ−sds,

Plugging in s→ −s − 2km + 1 produces∫
(−c−2km+1)

L(χ1, 2km + s)L(χ2, 1 − s)

2 sin
(
πs
2k

) µ−sds = (−1)mµ2km−1
∫

(c)

L(χ2, 2km + s)L(χ2, 1 − s)

2 cos
(
π(s+k−1)

2k

) µsds,

Due to absolute convergence of the series representation L(χ2, s) for ℜ(s) > 0, this can be

rewritten as ∫
(c)

L(χ2, 2km + s)L(χ1, 1 − s)

2 cos
(
π(s+k−1)

2k

) µsds =
∑
n⩾0

χ2(n)Ψ
(

n
µ , χ1; k

)
n2km

.

Substituting these produces the desired result ■

5.9. Proof of Theorem 4.7. On account of the absolute convergence of L(s, χ) for ℜ(s) > 1 we

obtain
∞∑

n=1

χ(n)
n2km+1

Φ(µn, χ2, k) =
1

2iπ

∫
(c)

L(1 − s, χ2)L(2km + 1 + s, χ1)

2k sin
(
πs
2k

) µ−sds.

We now shift the line of integration to −c − 2km + 1. As before, due to the exponential decay

of the denominator, the integrals over horizontal segments vanish. Inside this strip, the integrand

has simple poles at −2kp where p ∈ {1, 2, . . . ,m− 1}. It also has poles of order two at 0,−2kp if χ1, χ2

are principal and simple poles otherwise. The corresponding residues are

R0 =


δχ2
π

(
log(µ)L(2km + 1, χ1) − ∂

∂s L(2km + s + 1, χ1) |s=0

)
+
γ0(χ2)
π L(2km + 1, χ1) χ2 is principal,

L(1,χ2)L(2km+1,χ1)
π otherwise.

R−2kp =
(−1)i

π
L(2kp + 1, χ2)L(2k(m − p) + 1, χ1),

and when χ1 is principal,

R−2km = (−1)m−1µ2km
(
δχ2

π

(
log(µ)L(2km + 1, χ1) −

∂
∂s

L(2km + s + 1, χ1) |s=0

)
+
γ0(χ2)
π

L(2km + 1, χ1)
)
,

otherwise, we have

R−2km = (−1)mµ2km L(1, χ1)L(2km + 1, χ2)
π

.
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Next, using the residue theorem we obtain∫
(c)

L(2km + 1 + s, χ1)L(1 − s, χ2)

2k sin
(
πs
2k

) µ−sds = R0 + R−2km +

m−1∑
p=1

R−2kp

+

∫
(−c−2km+1)

L(2km + 1 + s, χ1)L(1 − s, χ2)

2k sin
(
πs
2k

) µ−sds.

On substituting s→ −s − 2km we have∫
(−c−2km+1)

L(1 − s, χ2)L(2km + s, χ1)

2 sin
(
πs
2k

) µ−sds = (−1)mµ2km
∫

(c)

L(2km + s, χ2)L(1 − s, χ1)

2k sin
(
πs
2k

) µsds.

Due to absolute convergence of the series form of L(χ2, s) forℜ(s) > 0, this can be rewritten as∫
(c)

L(2km + s, χ2)L(1 − s, χ1)

2k sin
(
πs
2k

) µsds =
∑
n⩾0

χ2(n)
n2km+1

Φ

(
n
µ
, χ1; k

)
.

Substituting these we get the desired result ■

6. Concluding Remarks and Further Research

In this work, we design a procedure geared towards obtaining reciprocity relations involving

convolution of specified Dirichlet series as the residual term and use it to obtain several new

reciprocity relations for Hurwitz zeta functions and Dirichlet L-functions. An elementary method

was recently obtained by the author and collaborators [10] to prove such identities. However,

unlike the other method, the procedure employed in this work comes with rigorous convergence

conditions. The current method can also be used to generate results like Theorem 3.8, Theorem

3.10, and Theorem 3.12 which cannot be proved otherwise by borrowing tools from [10].

In a recent paper A. Dixit and R. Gupta [13] found a Ramanujan-type identity for squares of the

Riemann zeta function at even arguments by considering the kernel

Ω(x) =
1

2iπ

∫
(c)

ζ(1 − s)2

2 cos
(
πs
2

)x−s ds,

which they call Koshliakov kernel first introduced by N.S. Koshliakov in [19]. The transformation

is stated as follows:(
−β2

)−N
ζ2 (2N + 1)

(
γ + log

(
β

π

)
−
ζ′ (2N + 1)
ζ (2N + 1)

)
+

+∞∑
n=1

τ0(n)
n2N+1

Ω

(
β2n
π2

)
−

(
α2

)−N
ζ2 (2N + 1)

(
γ + log

(
α
π

)
−
ζ′ (2N + 1)
ζ (2N + 1)

)
+

+∞∑
n=1

τ0(n)
n2N+1

Ω

(
α2n
π2

)
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= 24Nπ
N+1∑
j=0

(−1) j
B

2
2 jB

2
2N+2−2 j((

2 j
)
!
)2 ((

2N + 2 − 2 j
)
!
)2

(
α2

) j (
β2

)N+1− j
.(6.1)

We have restated their transformation in terms of the Koshliakov kernelΩ(x), which has equivalent

expressions given in [13].

By considering the generalized Koshliakov kernel

Ω(x, a; k) =
1

2iπ

∫
(c)

ζ (1 − s, a)2

2k cos
(
π(s+k−1)

2k

)x−s ds,

one can obtain a two-parameter generalization of equation (6.1). However, ζ (1 − s, a)2 does not

have simple coefficients so we consider the special case a = 1
n where n ∈N. Similar to the odd zeta

kernel one can define a new kernel

Θ (x, a; k) =
1

2iπ

∫
(c)

ζ (1 − s, a)2

2k sin
(
πs
2k

) x−s ds,

to find an identity analogous to Theorem 3.5 for Hurwitz zeta squares at odd arguments. Finally

we can provide a relation between the kernels Ω (x, a; k) and Θ (x, a; k) analogous to Theorem 3.7.

A comprehensive study of reciprocity relations was undertaken by Bochner in his seminal

work [7]. His results imply the equivalence between modular relations and the functional equation

satisfied by the Dirichlet series. We briefly state an equivalent formulation of Bochner’s results

adopted from [17]: Let

φ(s) =
∞∑

m=1

am

λs
m

ψ(s) =
∞∑

m=1

bm

µs
m
,

be Dirichlet series admitting finite abscissae of convergence. Suppose these Dirichlet series satisfy

a functional equation, subject to certain additional constraints, with multiple Gamma factor ∆(s)

of the form

A−s∆(s)φ(s) = A−(δ−s)∆(δ − s)ψ(δ − s).(6.2)

Now let

E(x) =
∫

(κ)
∆(s)x−sds,(6.3)

and let

Φ(x) =
∞∑

m=1

anE(λnx) Ψ(x) =
∞∑

m=1

bnE(µnx).
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Note that we need to impose certain conditions on ∆(s) so that the inverse Mellin integral and the

Lambert series are convergent. Bochner’s result states that the functional equation 6.2 implies the

modular relation

Φ (Ax) − cx−δΨ
(A

x

)
= P(x),(6.4)

where P(x) is a certain residual function.

Many authors later generalized and rediscovered these results. The asserted equivalence be-

tween modular relations and functional equations is now famously known as the Riemann-Hecke

correspondence. We now elucidate how Ramanujan’s identity is a special case of equation 6.4.

The Riemann zeta function satisfies the functional equation

π
−s
2 Γ

( s
2

)
ζ(s) = π−

1−s
2 Γ

(1 − s
2

)
ζ(1 − s).(6.5)

Now for an odd integer n we have

(2π)−sΓ(s)ζ(s)ζ(s − n) = (−1)
n+1

2 (2π)−(n+1−s)Γ(n + 1 − s)ζ(n + 1 − s)ζ(1 − s).

It’s easy to deduce that

ζ(s)ζ(s − n) =
∞∑

m=1

σn(m)
ms ,

where

σn(m) =
∑
d|m

dn.

In this case, (6.3) reduces to the well-known Inverse Mellin transform of the Gamma function

1
2iπ

∫
(κ)
Γ(s)x−sds = e−x.

Applying equation (6.4) we obtain

∞∑
k=1

σn(k)e−2kπx =
(1
x

)n+1
(−1)

n+1
2

∞∑
k=1

σn(k)e−
2kπ

x + P(x)(6.6)

where P(x) is the sum of residues of the function Γ(s)ζ(s)ζ(s − n)x−s. By the formula

∞∑
k=1

σ−2n−1(k)e−2kπx =

∞∑
k=1

k−2n−1

e2kπx − 1
,

we deduce Ramanujan’s formula as a special case of equation (6.6).

In order to obtain reciprocity relations involving Hurwitz zeta functions, we cannot apply

Bochner’s results since Hurwitz zeta functions don’t satisfy a functional equation of the form (6.5).
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Moreover, the method employed in this article can also be applied to more exotic Dirichlet series

such as the Barnes zeta function defined by

ζN(s,w | a1, . . . , aN) =
∑

n1,...,nN⩾0

1
(w + n1a1 + . . . + nNaN)s ,

whereℜ(w) > 0,ℜ(ai) > 0 andℜ(s) > N. Finding reciprocity relations involving the convolution

of Barnes zeta functions at integer arguments will be the subject of future work.
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