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Desargues’ Involution at Action

Hanzhang Yu

Ra✏es Institution, Singapore

Abstract

Involution is one of the most powerful and fruitful concepts introduced by Desargues

and has found numerous novel applications in solving di�cult problems in recent years’

Mathematical Olympiads. Essentially, an involution is a cross-ratio preserving swap among

all the points in a cline or all the lines in a pencil. Typical examples are reflections

and inversions restricted to a line. Desargues’ Involution Theorem (DIT) and its dual

(dDIT) tell us how to build involutions from quadrilaterals and quadrangles. Here we will

explore the applications of DIT and dDIT in proving many fundamental theorems in plane

geometry in addition to solving challenging problems. In particular, we show that not only

the theorems from Pappus, Pascal, Desargues’ two-triangle theorem to Butterfly theorem,

Ping-Pong Lemma, but also theorems with less projective flavor such as Newton-Gauss

line, Jacobi, Poncelet’s porism and Protassov’s Theorem can arise from DIT and its dual.

Furthermore, we find that involution can also improve Casey’s solution to Apollonius’

problem of finding circles that touch three given circles.

Keywords: Involution; Cross-ratio; Desargues’ involution theorem (DIT) and its dual

(dDIT); Poncelet’s porism; Protassov’s theorem; Apollonius’ problem
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1. Introduction

The concept of involution was first introduced by the French mathematician and ar-

chitect G. Desargues (1591-1661), one of the founders of projective geometry. Along his

journey of laying the foundations of projective geometry, Desargues invented about seventy

new terms — most of which were plant related — into the game but, unfortunately, his

works were not appreciated during his lifetime and thus almost all of them were forgotten.

Involution is the only one that has survived because it provides an extremely powerful tool.

One of Desargues’ essential contributions is his Two-Triangle Theorem which states that

two triangles are perspective from a point are also perspective from a line. This theorem

has become an axiom in the formal system of projective geometry. Compared with his Two-

Triangle Theorem, Desargues’ involution theorem (DIT) and its dual (dDIT) are regarded

to be “even more remarkable” by Coxeter [1]. This remarkable theorem specifies how to

build involutions from quadrilaterals and quadrangles. The well-known Butterfly Theorem

and its extensions are simply a special case of DIT. Another special case is a less well-

known theorem called Isogonal Line Lemma. Most recently, DIT has been generalized to

more general cases [4].

Starting in 2017, a note by Markbcc168 [2] appears in AoPS with a systematic introduc-

tion of DIT in solving problems in various kinds of Mathematical Olympiad competitions.

Many di�culty problems can be trivialized by some novel applications of DIT or dDIT.

As warmup problems, a few projective theorems such as Pappus and Pascal, are given

there as exercises. Most recently, more examples are included, such as the Newton-Gauss

line [3]. Along the journey of learning and applying DIT, I found that many more funda-

mental theorems can be proved by DIT, including Jacobi’s Theorem, Poncelet’s Porism,

and Protassov’s Theorem. Moreover, by making use of involution, I can also simplify

the constructive solution proposed by Casey to Apollonius’ problem of finding circles that

touch three given circles.

The rest of the report is organized as follows. In Section 2, we will give the necessary

background information on involution and cross-ratio. In Section 3, we will introduce DIT

and dDIT with some special cases and di↵erent configurations, which are illustrated by
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detailed diagrams. In Section 4, we will present some typical examples of applying DIT in

solving Math Olympiad problems. In Section 5, we will prove some fundamental theorems

such as Newton-Gauss line, Jacobi’s Theorem, and Poncelet’s Porism, and in Section 6,

we show how involution can help to improve Casey’s solution to Apollonius’ problem. In

Section 7, we consider some extension of DIT to “invisible” intersections and tangents.

Finally, discussions, insights and conclusions are included in Section 8.

2. Involution: cross-ratio preserving swap

Simply put, an involution is a swap that preserves cross-ratio. Here, by swapping we

mean the exchange of a pair of objects, namely, two points on a line or a circle or two

lines in a pencil, which is a bundle of lines passing through a common point. For example,

when restricted to some given line, the reflection over a given point on the line is a swap,

and the inversion about some point on the line with an arbitrary nonzero power, possibly

negative, is another swap.

2.1 Cross-ratio

A crucial property for a swap to be an involution is that the cross-ratios must be

preserved. By cross-ratio [5], we mean a ratio of ratios unique to any four points on a

line or a circle of four lines in a bundle, defined as follows: the cross-ratio of four points

A,B,C,D on a line (in any order) is given by

(AB;CD) :=
AC
AD
BC
BD

=
AC ·BD

AD ·BC
. (1)

A harmonic division has cross-ratio (AB;CD) = �1 with directed lengths. It is clear

that under the simultaneous exchanges of any two pairs, the cross-ratio is invariant. For

example, (AB;CD) = (BA;DC) and on a line any three points uniquely determines

another point via the cross-ratio, e.g., (AB;CD) = (AB;C 0
B) leads to C = C

0. Cross-ratio

is an extremely powerful tool in solving sophisticated problems and proving fundamental

theorems due to the following properties:
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1. Perspectivity — One nice property of cross-ratio is its invariance under perspectivity,

which is a projection of a line to another line via a fixed point called the center, say E,

outside these two lines. Now, if we denote by A
0
, B

0
, C

0
, D

0 the images of A,B,C,D

FIG. 1. A perspectivity centered at E from line " to line "
0.

under the perspectivity, then (AB;CD)
E
= (A0

B
0;C 0

D
0). This is true because the

cross-ratio

(AB;CD) =
AC ·BD

AD ·BC
=

[ACE] · [BDE]

[ADE] · [BCE]
=

sin\AEC · sin\BED

sin\AED · sin\BEC

depends only on the angles spanned by lines AA
0
, BB

0
, CC

0
, DD

0. As a result, the

cross-ratio of four lines in a pencil can be defined by the cross-ratio of the intersections

of the pencil with any given line. In a similar manner, the cross-ratio of four points

on the circle can be defined by projecting four points on the circle to a given line via

a point on the circle, a perspectivity projecting the circle to the given line.

2. Projectivity — The composition of a sequence of perspectivities with possibly dif-

ferent centers is called a projectivity and it is clear that cross-ratio is preserved. On

the other hand, all cross-ratio preserving transformations are projectivities, i.e., they

can be realized by a sequence of perspectivities [1].

3. Collinearity — Assume that the two line pencils O(↵���) and P (↵�0
�
0
�
0) have the

same cross-ratio and common line ↵, then the other corresponding lines intersect at

three points B = � \ �
0, C = � \ �

0, D = � \ �
0 which are collinear.

Proof. Let �\�0 = B and �\�0 = C with A = ↵\BC andD = �\BC, D0 = �
0\BC.

By cross-ratio chase, we have

(AB;CD) = (AB;CD
0)
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FIG. 2. Proving collinearity by cross-ratio chasing.

from which it follows D = D
0. ⇤

4. Concurrence — Assume that on two lines {↵,�} intersecting at point O, there are

defined respectively the points {A,B,C} and {A0
, B

0
, C

0}, such that (OA;BC) =

(OA
0;B0

C
0). Then the lines {AA0

, BB
0
, CC

0} pass through a common point or are

parallel.

FIG. 3. Proving concurrency by cross-ratio chasing.

Proof. Let AA0 \BB
0 = P and PC \ � = C

00. By cross-ratio chase we have

(OA
0;B0

C
00)

P
= (OA;BC) = (OA

0;B0
C

0)

meaning that C 0 = C
00. ⇤
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2.2 Properties of involution

A projectivity can be a transformation of points on the same line or circle or lines in

the same pencil. We have an involution when the projectivity is a swap of points on a cline

or lines in a pencil. In an involution, two objects swapping to each other form a reciprocal

pair. We list below some useful properties of an involution:

1. For an arbitrary projectivity, if there is one reciprocal pair, then it is an involution.

Let � be the projectivity and (AA0) be a reciprocal pair under �, i.e., A0 = �(A)

and A = �(A0). For any given point C and its image D = �(C), we have

(AA0;CD)
�
= (A0

A;D�(D)) = (AA0;�(D)D)

As the cross-ratio is preserved and unique, we thus have C = �(D), i.e., a swap.

2. Two reciprocal pairs uniquely determine an involution. We let � and  denote

two involutions sharing two identical reciprocal pairs (AA0) and (BB
0), then for any

given point C it holds

(A0
A;B0

C
0)
�
= (AA0;BC)

 
= (AA0;B0

C
00)

from which it follows �(C) := C
0 = C

00 =:  (C) for all C, i.e., � =  . That is,

to specify an involution, we need only to explicitly show how two di↵erent pairs of

points are swapped.

3. Inversion restricted on a line is an involution. The inversion around a point P 2 `

with power c, i.e., PA · PA
0 = c 2 R (8A 2 `) induces an involution A 7! A

0 on

straight line `. It is clearly a swap, i.e, (A0)0 = A and from the inversion distance

formula it follows that for any two points A,B 2 `,

A
0
B

0 =
c

PA · PB
AB

from which the invariance of cross-ratio follows

(A0
B

0;C 0
D

0) =
A

0
C

0 ·B0
D

0

B0C 0 ·A0D0 =
c
2
PB · PC PA · PD

c2PA · PC PB · PD

AC ·BD

BC ·AD = (AB;CD).
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4. An involution can have either 2 fixed points or none. Suppose the involution has one

fixed point, say A, with A
0 = A. Let (BB

0) be another reciprocal pair with B 6= B
0

and C be the point such that (AB;CB
0) = �1. Then we have �1 = (AB0;C 0

B) =

(AB;C 0
B

0) so that C = C
0, i.e., C is also a fixed point. If there are 3 or more

fixed points then all points are fixed as cross-ratio is preserved, and thus the given

involution is the trivial identity map.

5. An involution on a line is either i) a reflection over a fixed point or ii) an inversion

of some nonzero, possibly negative, power. That is, for any involution A
0 = �(A)

on a straight line ` there exists a point P 2 ` such that either i) PA = PA
0 or ii)

PA · PA
0 = c 2 R, for all A 2 `.

Proof. Let `1 be the point at infinity on `. If P := �(`1) 6= `1, since for any

two points A,B 2 ` we have (A,B; `1, P ) = (A0
, B

0;P, `1), so we get PA · PA
0 =

PB · PB
0 (P = �(`1) is called the center of involution). If �(`1) = `1 then there

exists another fixed point P 6= `1 such that (AP ;A0
`1) is harmonic for all A, i.e.,

PA = PA
0, i.e., a reflection over P . ⇤

6. An involution on a circle is induced by a perspectivity via some fixed point not lying

on the circle.

Proof. By performing an inversion about any given point P on the circle and for a

reciprocal pair AA
0, we denote by Ã, Ã

0 their images which lie on the line `, which

is the inversion image of the given circle. Let Q be the second intersection of two

circles (ÃÃ
0
P ) and (B̃B̃

0
P ) and R = PQ\ `. By Property 5, together with the fact

that PQ is the radical axis of these two circles, i.e., RÃ ·RÃ
0 = RB̃ ·RB̃

0, we see that

the involution �̃ becomes the inversion about R, from which it follows that RC ·RC̃
0

equals the inversion power, meaning that R also lies on the circle (C̃C̃
0
P ), i.e., all

circles (AA0
P ) share the same radical axis. This implies that prior to inversion, they

are concurrent. ⇤

7. Any given point on a circle induces an involution on the circle from an involution on

a line and vice versa.
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8. An involution of a pencil induces an involution on any line not passing through the

pencil center. The reciprocal pairs of the involution on the given line are the two

intersections of the pair of lines that are reciprocal to each other in the involution

of the pencil. Vice versa, an involution on a line gives rise to an involution of the

pencil passing any given point outside the given line.

3. Desargues’ Involution Theorem and its dual

Desargues’ involution theorem tells us how to find involutions via quadrangles, quadri-

laterals, and circles. Most succinctly, Desargues’ Involution Theorem can be formulated

via conics: Given four points and a line, the two intersections of the line with any conic

passing through those given four points form a reciprocal pair of the same involution on

the given line. We note that any five points determine a unique conic, and thus there is

a pencil of conics that passes through four given points. However, in order to be applied

to Mathematical Olympiad problems, the notion of conics turns out to be unnecessary.

Therefore, we focus on the lines and circles that passing through four given points.

1. DIT `@(ABCD) for cyclic quadrangle

This is a typical DIT and the most powerful and frequently used configuration with

a cyclic quadrilateral ABCD cut by an arbitrary line ` not passing through any of the

vertices of the quadrilateral. We have an involution on the line ` with the following four

reciprocal pairs of points (! \ `), (AB,CD) \ `, (AC,BD) \ `, (AD,BC) \ ` as indicated

by the di↵erent colors and shapes in FIG. 4 shown below.

Proof. Consider a cyclic quadrangle A1A2A3A4 with an arbitrary line ` not passing

through any one of those four points. Let ` \ AiAj = Xij and ` \ C = {X,X
0}. Consider

the involution � defined by (XX
0)(X12, X34) on line `. By cross-ratio chasing, we have

(X,X13;X12, X
0)

A1= (X,A3;A2, X
0)

A4= (X,X34;X24, X
0)
�
= (X 0

, X12;X
0
24, X)

which gives X 0
24 = X13. Similarly, we have reciprocal pair (X14, X23). ⇤

7



FIG. 4. Reciprocal pairs indicated by di↵erent shapes and colors.

We now consider some special cases of this configuration. The first example is the But-

terfly Theorem, which can be regarded as a special involution corresponding to reflection.

Butterfly Theorem states that if a line ` intersects the opposite sides, say AB,CD, of

a complete quadrilateral ABCDEF at two points, say G,G
0, that are at the same dis-

tance to the intersections, say X,X
0 of the line with the circle, i.e., GX = G

0
X

0, then

the intersections of the line with the other two pairs of opposite sides are also at the

same distance from X,X
0. By DIT on `@(ABCD), we have an involution with reciprocal

FIG. 5. Butterfly theorem with reflection as involution.

pairs (GG
0), (XX

0), (AC,BD) \ `, (AD,BC) \ `. However, as GX = G
0
X

0, two pairs

(GG
0), (XX

0) determine the involution to be the reflection over the midpoint M of XX
0,

hence (AC,BD) \ `, (AD,BC) \ ` are also symmetric with respect to M .

The second example is the triangle DIT on `@AABC with two vertices of a quadran-
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gle coinciding, in which there are only three reciprocal pairs left and two-point DIT on

`@AABB with ` \ AB being a fixed point (the red point). By Property 4 of Section 2.2,

there is another fixed point of the involution which is determined by the harmonic division.

FIG. 6. Triangle and two-point DIT.

Our third special case is due to Pappus. When the quadrangle is not cyclic, namely

quadrangular DIT on `@ABCD: For a given quadrangular ABCD and a line ` not passing

through any of the four given points, we have the following involution on the line ` with

three reciprocal pairs (AB,CD) \ `, (AC,BD) \ `, (AD,BC) \ `.

FIG. 7. Reciprocal pairs indicated with the same colors, showing in two di↵erent configu-

rations.

2. dDIT P@[ABCD] for inscribable quadrilateral

By duality we mean the conversion of points into lines and vice versa. For example,

9



under duality transformation, a cyclic quadrangle becomes an inscribable quadrilateral, and

the range on a line becomes the lines of a pencil. In essence, the corresponding theorem

after a duality transformation also holds true: Pascal is the dual of Brianchon, and dDIT

is the dual of DIT. For dDIT, we have an involution on the pencil centered at P with

reciprocal pairs P (AC)(BD)(EF )(!) where P (!) denotes two tangents from P to !. We

FIG. 8. Reciprocal pairs for P@[ABCD] indicated with the same colors.

consider the following two degenerate cases. First, the incircle (corr. excircle) dDIT on

P@[ABDC] with D being the intouch (corr. extouch) point.

FIG. 9. Incircle (corr. Excircle) dDIT on P@[ABDC]: P (AD)(BC)(!).

Second, the two-point dDIT on P@[AABB] determines an involution on a pencil

centered at P which has a fixed red line PC with C = AA \BB.

For a general quadrilateral which is not necessarily cyclic, we have dDIT P@ABCD:

for a given quadrilateral ABCDEF with E = AC \ BD and F = AB \ CD and a

point P that is not lying on any one of six lines, we have an involution on the pencil

10



FIG. 10. Two-point dDIT.

passing through P , with three reciprocal pairs:

P (AB)(CD)(EF ).

For a given set of four points, there are the following three possible di↵erent invo-

lutions on the pencil P , with reciprocal pairs denoted by lines of the same color:

FIG. 11. Three configurations for dDIT on a general quadrilateral.

The special cases for this configuration are in the Isogonal line lemma as well as

Parallelogram Isogonality Lemma, where the relevant involution is the reflection over

the angle bisector.

11



FIG. 12. Isogonal Line Lemma and Parallelogram Isogonality Lemma.

4. DIT in Mathematical Olympiads

Desargues’ Involution Theorem helps us identify various kinds of involutions in

di↵erent configurations. There are two ways in which involutions may help us solve

problems or prove theorems. The first way is that two reciprocal pairs determine the

involution, and thus the rest of the reciprocal pairs will enjoy the same relation. The

second way is that as involution preserves cross-ratio, it can be used in cross-ratio

chasing, and with the help of Properties 3 and 4 of Section 2.1, we will be able to

gain new information on the configuration. Our first example comes from ELMO

2021, which I solved in a mock test by using DIT.

Problem 0 (ELMO21P1) In 4ABC, points P and Q lie on sides AB and AC,

respectively, such that the circumcircle of 4APQ is tangent to BC at D. Let E lie

on side BC such that BD = EC. Line DP intersects the circumcircle of 4CDQ

again at X, and line DQ intersects the circumcircle of 4BDP again at Y . Prove

that D, E, X, and Y are concyclic.

Proof. Connect PY and QX and let Z = BY \ CX. By angle chase, \PDQ =

⇡�\PAQ = \PBD+\DCQ = \PY D+\DXQ, so circle (BPDY ) touches circle

(CQDX) at D. Now, the homothety centred at D sending (BPDY ) to (CQDX)

sends P, Y,B to X,Q,C respectively, thus PB k XC, Y B k QC and PY k XQ.

Thus, ABZC is a parallelogram, so \Y DX + \Y ZX = \PDQ + \PAQ = ⇡, i.e.

12



FIG. 13. ELMO 2021 P1.

(DXZY ) is cyclic. Denote (DXZY ) by !, and let ` be the line through A parallel

to PY and QX. By dDIT on A@PY QX, we have the involution

(AP,AQ), (AD, `), (AX,AY )

which is determined by the first two reciprocal pairs to be the reflection over the angle

bisector of PAQ. Thus, we have \PAY = \QAX. Together with \ABY = \ACX,

we get 4ABY ⇠ 4ACX, so BY · BZ = BY · AC = CX · BA = CX · CZ, i.e,

B,C have the same power wrt !. Hence E 0, the second intersection of BC with !

satisfying CE 0 = BD, proving E = E 0 and thus D,E,X, Y are concyclic. ⇤
In this example, we have applied dDIT from the point A to a trapezium PY QX

13



with intersections PY \ QX at infinity and D = PX \ QY . The involution gives

three reciprocal pairs and can be easily identified to be a reflection by two reciprocal

pairs and additional information on the third pair helps us solve the problem. In the

IMO shortlist alone, there are many problems that are trivialized by DIT and dDIT

which include at least the following problems:

05G6, 06G3, 07G3, 08G7, 11G4, 12G2, 12G8, 14G7, 15G7, 19P2, 21P3.

Problem 1 (ISL08G7) Let ABCD be a convex quadrilateral with AB 6= BC.

Denote by !1 and !2 the incircles of triangles ABC and ADC. Suppose that there

exists a circle ! inscribed in angle ABC, tangent to the extensions of line segments

AD and CD. Prove that the common external tangents of !1 and !2 intersect on !.

FIG. 14. IMO SL08G7.

Proof. Let T be the touch point of the tangent of ! that is parallel to AC and

A0 = TT \AB, C 0 = TT \CB. Now by dDit on T@[ACBD], we get the involution

T (!)(AC)(BD)

which is a reflection when projected onto AC as infinity on AC is mapped into itself.

Therefore AK = CL. Let L = TB \ AC and K = TD \ AC. The homothety at

14



FIG. 15. IMO SL15G7.

B sending 4BAC to 4BA0C 0 sends L to T , and since T is the extouch point of

4BA0C 0, we have that L is the extouch point of 4ABC. Similarly, K is the extouch

point of 4ADC. As a result, K,L are also intouch points of 4ABC and 4ADC,

respectively, so that T is the exsimilicenter of !1 and !2. ⇤

Problem 2 (ISL15G7) Let ABCD be a convex quadrilateral, and let P,Q,R, and

S be points on the sides AB,BC,CD, and DA, respectively. Let the line segments

PR andQS meet atO. Suppose that each of the quadrilateralsAPOS,BQOP,CROQ,

and DSOR has an incircle. Prove that the lines AC,PQ, and RS are either concur-

rent or parallel to each other.

15



Proof. First, we note that ABCD also has an incircle ! by the reverse of Pitot’s

theorem. Let X be the exsimilicenter of !1 = (APOS) and !2 = (CROQ). By

Monge’s theorem on !1, !2, and !, X lies on AC. By dDIT on X@[APOS] and

dDIT on X@[CQOR], we have involutions

X(AO)(PS)(!1), X(CO)(QR)(!2),

respectively. Since these two involutions share the pairs X(AO)(!1), they must be

identical, which is denoted by �. Let T = PQ \ RS. By dDIT on X@PQRS, we

have the involution

X(PR)(QS)(TO)

which shares two pairs X(PR)(QS) with �. Thus, X(TO) is a reciprocal pair of �.

But XO,XAC is a pair of �, so T 2 AC. ⇤
Problem 3 (IMO21P3) Let D be an interior point of the acute triangle ABC

with AB > AC so that \DAB = \CAD. The point E on the segment AC satisfies

\ADE = \BCD, the point F on the segment AB satisfies \FDA = \DBC, and

the point X on the line AC satisfies CX = BX. Let O1 and O2 be the circumcenters

of the triangles ADC and EXD, respectively. Prove that the lines BC,EF, and

O1O2 are concurrent.

Proof. Let S = EF \ BC. By introducing the isogonal conjugate D0 of D we

have by angle chase (FDD0B) and (EDD0C) are cyclic, implying (ECBF ) cyclic as

AF ·AB = AD ·AD0 = AE ·AC. Then by dDit on D@EFBC gives the involution

D(FC)(EB)(AS)

which is the reflection over angle bisector of \EDB so that \SDC = \ADF =

\CBD and hence SD is tangent to (DBC), giving SD2 = SB · SC = SE · SF so

SD is tangent to (DEF ). Hence, SD is tangent to both circles (DBC) and (DEF ).

Inversion about circle ! centered at S with radius SD sends (EF )(BC) so AC is
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FIG. 16. IMO 21P3.

sent to (BFS). Thus {U, V } = XC\(BFS) 2 ! and S is the midpoint of arc UV in

(BFS). By angle chasing, \XBC = \XCB = \BV S so XB is tangent to (BFS)

and thus DIT on XC@FSBB gives the involution

(UV )(XE)(AC)

on AC. Hence, the circles !, (ADC) and (DEX) are coaxial and thus their centers

are collinear. ⇤
Problem 4 (AoPS) Let A be the external homothetic center of circles v, g. Let

B,C be points on a line passing through A. The tangents through B to v and

through C to g, intersect at I, J respectively. Also the tangents through B to v

and through C to g intersect the common internal tangents of v, g in M,N,K,L

respectively. Prove that MN,KL, IJ are concurrent.

Proof. Let D = ML\KN and E = MK\NL and from Desargues’ Two Triangle

theorem applied to 4NLJ and 4MKI it’s enough to prove E 2 AC.
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FIG. 17. A problem from AoPS.

The dDITs A@[BMDN ] and A@[KDLC] give the same involution

A(DC)(v)(MN)(KL)

as A(v) = A(g) (circles v, g share the same tangents from A). However, dDIT

A@MKNL gives also the same involution

A(MN)(KL)(DE)

and thus E 2 AC. ⇤
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5. Some well-known theorems from DIT

5.1 Pappus’ theorem

Given two lines a, b with arbitrary three points on each line Ak and Bk. Prove

that Ci = AjBk \ AkBj with (i, j, k) being cyclic permutations of (1, 2, 3) are con-

current [6].

FIG. 18. Pappus’ theorem

Proof. Let O = a \ b. By dDIT on C1@A3B1B3A1, we get the involution

C1(A3B3)(A1B1)(OC2)

Also, by dDIT on C1@A2B1B2A1 leads to the involution

C1(A2B2)(A1B1)(OC3) = C1(B3A3)(A1B1)(OC3)

which must be identical to the first involution since they share two common reciprocal

pairs. Thus, C1, C2, C3 are collinear. ⇤
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5.2 Pascal’s theorem

Given 6 points on a circle A1,2,3 and B1,2,3 and let Ck = BiCj \BjCi with (i, j, k)

being cyclic permutations of (1, 2, 3), it hold C1 � C2 � C3 collinear [6].

FIG. 19. Pascal’s theorem

Proof. Let {U, V } = C1C2 \ (A1A2A3). By DIT on C1C2@B1A1B2A3, we get the

involution

(S = B1A1 \ C1C2, C1)(C2, A1B2 \ C1C2)(UV )

and by DIT on C1C2@B1A1B3A2, we get the involution

(S,C1)(C2, C1C2 \ A1B3)(UV )

which is identical to the first one as there are two common reciprocal pairs. Thus

C1, C2, C3 are concurrent. ⇤

5.3 Desargues’ 2-triangle theorem

If two triangles 4A and 4B are perspective from a line, i.e., Ck = BiBj \ AiAj

are collinear, with (i, j, k) being cyclic permutations of (1, 2, 3), then they are also
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perspective from a point, i.e., AiBi are concurrent [6].

FIG. 20. Desargues’ two-triangle theorem

Proof. By DIT on B2A2@A1C2B1C3, we get the involution

(A2, U = B2A2\B1C2)(B2, V = A1C2\A2B2)(S = A2B2\A1B1,W = A2B2\C1C2)

and by DIT on B2A2@C2A3C1B3 we get the involution

(A2, U)(B2, V )(A2B2 \ A3B3,W )

from which it follows AiBi are concurrent. ⇤

5.4 Ping-Pong Lemma

Consider a cyclic quadrilateral P1P2P3P4 with circumcircle ⌦ and a chord UV

that cuts the quadrilateral at A,B,C,D such that [7]

P1
A7�! P2

B7�! P3
C7�! P4

D7�! P1.
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FIG. 21. Ping-pong lemma.

• If we project an arbitrary point Q1 on ⌦ via points A,B,C, resulting in three

points Q2, Q3, Q4, i.e., Q1
A7�! Q2

B7�! Q3
C7�! Q4 then we have also Q4

D7�! Q1

i.e., Q4, Q1, D collinear.

• If we project an arbitrary point Q2 on ⌦ via points A,D,C, resulting in three

points Q1, Q4, Q3, i.e., Q2
A7�! Q1

D7�! Q4
C7�! Q3 then we have also Q3

B7�! Q2

i.e., Q3, Q2, B collinear.

Proof. By DIT on UV@P1P2P3P4, we have the involution

 = (AC)(BD)(UV )

Thus if A 2 Q1Q2 and B 2 Q2Q3, C 2 Q3Q4, letting D0 = UV \ Q4Q1, we

have another involution (AC)(BD0)(UV ) which equals  because there are

two common reciprocal pairs. Thus D = D0. ⇤
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5.5 Newton-Gauss line

The midpoints of diagonals of a complete quadrilateral are collinear [3].

FIG. 22. Newton-Gauss line

Proof. Let two circles with diameters AC and BD (with centers K and M re-

spectively) intersect at S, T . By dDIT on S@ABCD and T@ABCD, we get the

following two involutions

S(AC)(BD)(EF ), T (AC)(BD)(EF )

which are both the rotation of ⇡
2 as AC,BD are the respective diameters of the

circles. Thus SF ? SE and TF ? TE, meaning that S, T are on the circle with

diameter EF , i.e., ST is the common radical axis of three circles. ⇤

5.6 Jacobi’s theorem

Given triangle ABC and three points X, Y, Z outside of 4ABC such that

\ZAB = \Y AC, \ZBA = \XBC, and \XCB = \Y CA, then it holds AX,

BY , and CZ concurrent [6].
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FIG. 23. Jacobi’s theorem

Proof. Let N = BY \ ZC,X 0 = ZB \ Y C. By dDIT on A@ZBY C, we get the

involution A(Y Z)(BC)(NX 0) which is the reflection over angle bisector of \BAC.

However, X 0 and X are isogonal conjugates, as a result, A,N,X are collinear. ⇤

5.7 Poncelet’s Porism

Given a triangle ABC and its circumcircle and incircle !. If another triangle

A0B0C 0 with the same circumcircle touches the incircle ! at two sides, the third side

touches also the incircle [8].

Proof. Suppose A0C 0 and B0C 0 are tangent to incircle and let the other tangent to

the incircle from B0 intersect circumcircle at A00. We want to show A0 = A00, which

is true by cross-ratio chasing,

(AA0;BC) = C 0(AA0;BC)
 
= C 0(DT ;CB) = B0(DT ;CB)

�
= B0(AA00;BC)
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FIG. 24. Poncelet’s porism.

where the first involution

 = C 0(AD)(BC)(A0B0)

comes from dDIT on C 0@ABDC and the second involution

� = B0(AD)(BC)(C 0A00)

comes from dDIT on B0@ABDC. ⇤

5.8 Protassov’s Theorem

For a triangle ABC with incircle ! with incenter I, let a circle ⌦ passing through

BC be arbitrary. Another circle � touches AB,AC and ⌦ at E,F, T , respectively.

Prove that TI bisects \BTC [9].

Proof. Let E,F be the two touch points of � on AB,AC respectively, and S =

EF \BC. Let E 0, F 0 be the intouch points. Let �\BC = {U, V } and R = TI\BC.

Redefine T to be the intersection of ⌦ and (SI) on the di↵erent side of A from BC.
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FIG. 25. Protassov’s theorem.

We shall prove that (BTC) touches ⌦ at T . Let !\AT = {L,N}. By homothety

centered at A between ! and �, we have E 0N k ET so \AE 0L = \E 0NL = \ETL

i.e. (LE 0ET ) cyclic. As E 0, E,M, I are concyclic, we also have L,M, I, T are

concyclic, and since S,M, I, T,D are concylic by the redefinition of T we have

S, L,M, I,D, T are concyclic. Thus, we have TI bisects \LTD = \ATD. By dDit

on T@ABDC we have the involution T (AD)(BC)(!) which is exactly the reflection

over TI, so TI bisects \BTC. By DIT on BC@EEFF , we have the involution

(pencil attached to T ) T (SS)(BC)(UV ). As TS ? TI is the external angle bisector

of \BTC this involution is also the reflection over TI so that \BTU = \CTV , i.e.,

26



(BTC) is tangent to �. The involution we have here is the reflection over TI ? TS,

which is

T (BC)(UV )(BC)(AD)(SS)(RR),

giving the desired result. ⇤

6. Apollonius’ Problem

To construct circles that are tangent to three given circles in a plane by using

a straightedge and a compass, which has been called “the most famous of all” [10]

geometry problems. In this section, we will be exploring the proofs of Gergonne and

Casey, as well as my own contributions and extensions to the latter.

Radical center O — Take one point on each given circle and construct the cir-

cumcircle ! of these 3 points. Together with the other 3 intersection points, we have

the radical axis of ! and !i. From the pairwise intersection points of these 3 radical

axes, we drop perpendiculars to the lines connecting the circumcenters of !i we get

the radical center O and construct (O) that is orthogonal to !i with intersections

{Ui, Vi}.

Monge line m — Let Mi = UiVi+1\ViUi+1 and they are exsimilicenters for !i,!i+1

as (UiViUi+1Vi+1) so that the inversion about Mi will send !i to !i+1. Therefore, by

Monge’s theorem M1,M2,M3 are collinear on some line m.

m as radical axis — From Wi = UiVi \ m construct tangents to !i with touch

points {Si, Ti}. Since OUi, OVi are tangents to !i, UiVi is the pole of O with respect

to !i, hence Wi lies on the polar of O with respect to !i. By La Hire’s Theorem, O

lies on the polar of Wi with respect to !i. Since WiTi,WiSi are tangents to !i, TiSi

is the pole of Wi with respect to !i so O, Ti, Si are collinear. As O lies on the radical

axis of !i and !i+1, {Si, Si+1} and {Ti, Ti+1} are antihomologous pairs with respect
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FIG. 26. Gergonne’s construction.

to inversion about Mi, thus Si, Si+1,Mi and Ti, Ti+1,Mi collinear. As a result, Mi

lies on the radical axis of (O) and !S = (S1S2S3) and !T = (T1T2T3).

As Wi is the radical center of !i, (O),!S,!T we have WiSi and WiTi are also

tangent to !S and !T , respectively, so that circles !S and !T are tangent to all three

given circles !i.

In comparison to Gergonne’s construction, Casey in his famous book [11] proposed

a solution by projectivity: i) find 3 exsimilicenters of each pair of the given 3 circles;

ii) for each point P 2 !1 we recursively find its image under inversion about the

exsimilicenter of !i,!i+1 exchanging !i and !i+1 with cyclic notation; iii) as a result

we get another point Q 2 !1 and P ! Q (e.g., the red points in FIG. 14.) is a

28



FIG. 27. Casey’s construction using projectivity.

projectivity as inversions preserve cross-ratio; iv) by this projectivity we get three

images Q1, Q2, Q3 2 !1 from 3 general points P1, P2, P3 on !1; v) these three pairs

of points Pi, Qi determines completely the projectivity on the circle and thus vi) the

intersections of the Pascal line, denoted by the red line in FIG. 14., and !1 are two

fixed points of the projectivity which are exactly the desired tangency points. My

contribution is to note that this projectivity is in de facto an involution! Therefore,

two points su�ce in the determination of its fixed points, i.e., the tangency points.

Proposition Given three circles !i as shown above, let A 2 !1 be arbitrary and

B be the image of A under the inversion about exsimilicenter AB \ DE swapping

!1 and !2 and let C the image of B under the inversion swapping !2 and !3 and D

be the image of C under the inversion swapping !3 and !1. Then A 7! D defines an

involution.

Proof. We shall prove first that A,B,C,D are concyclic. Let AB \ !1 = A0,

CD \ !1 = D0, and BC \ !3 = C 0 and Oi be the centers of !i. As {B,A0}, {B,C 0},

and {C,D0} are homologous pairs we have O1A0 k O2B k O3C 0 and O1D0 k O3C.
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FIG. 28. My construction by involution.

Together with OA0 = OD0, OC 0 = OC, we get 4O1A0D0 ⇠ 4O3C 0C. These two

similar triangles have two pairs of corresponding sides parallel and thus the last pair

must also be parallel i.e. A0D0 k BC. Now, since A,A0, D0, D concyclic, by Reim’s

theorem, we get A,B,C,D are also concyclic. In the same manner, BCDE, CDEF ,

and DEFA0 are all cyclic, where A0 is the image of F . As a result, we have cyclic

ABCDEFA0 and also A0 2 !1 so that A = A0. Thus A 7! D 7! A0 = A is an

involution. ⇤

7. Imaginary realities

There are certain presumptions in using DIT and dDIT. For example, consider the

case of DIT on `@(ABCD) for a cyclic quadrangle. If the line ` does not intersect

with the circle then we can only have 3 reciprocal pairs instead of 4. For another

instance, the dDIT on p@[ABCD] can have only 3 reciprocal pairs when the point

P lies inside the circle, meaning that there are no tangents. Nonetheless, we can
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assume that there are imaginary intersections or tangents and DIT will still hold, as

symmetry is maintained. Most commonly, the involution is a reflection.

7.1 Imaginary Butterfly theorem

In the following figure, a line s is outside circle ! = (O) and OS ? s. Let B,B0 2 s

be two symmetric points wrt S, i.e., BS = B0S and two lines BP and B0Q intersect

! again at N,M respectively. Prove that C = MN \s and C 0 = PQ\s, A = NQ\s

and A0 = PM \ s are symmetric wrt S.

FIG. 29. Imaginary Butterfly theorem.

Proof. It seems like there are two imaginary intersections of line s with circle !

and these two imaginary points should be symmetric with respect to S. Applying

DIT to line s and quadrangle MPNQ would lead directly to the conclusion as the
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involution is a reflection.

Alternatively, the conclusion can also be proved by considering the symmetric

point P 0 2 ! of P . By Miquel Pivot Theorem in 4NBC, we have PNP 0M cyclic

and since PBB0P 0 is also cyclic, \P 0MC = \NQP 0 = \BPP 0 = \P 0B0C. Hence,

P 0MB0C is cyclic and by Miquel pivot theorem again in 4QB0C 0, we have PP 0CC 0

cyclic since PQP 0M and P 0MB0C are cyclic. Thus C,C 0 are symmetric with respect

to S. Similarly, A,A0 are also symmetric with respect to S, and we are done. ⇤

7.2 Imaginary Ping-Pong Lemma

Given three points A,B,C on a line ` that does not intersect with circle ⌦. Each

point P 2 {A,B,C} induces an involution ⌧P from ⌦ to itself: {X, ⌧A(X)} = AX\⌦.

Prove that there exists a fourth point D such that ⌧D � ⌧C � ⌧B � ⌧A is identity.

FIG. 30. Imaginary Ping-pong Lemma.

Proof. Let X be an arbitrary point on the circle and X
A7�! Y

B7�! Z
C7�! W .

It su�ces to prove X,W,D collinear. By Pascal’s Theorem on MLXY ZN we have

A,B, U = XL \ ZN collinear and by Pascal’s Theorem on KLXWZN we have

C,U,XW \KN collinear, i.e., D,X,W collinear. ⇤
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7.3 Incircle dDIT with imaginary tangents

Let the incircle of ABC have center I and touch BC at D. Let X be a point so

that XI internally bisects \AXD. Prove that XI also externally bisects \BXC.

FIG. 31. Imaginary tangents.

Proof. Let {K,H} = AX \ (I) and S = IX \ BC so that KS also tangent to

(I) as IX bisects \AXD. The tangent at H intersects BC at Y and KS at L.

By Pole-Polar duality, from �1 = D(FE;KH), where E,F are two touch points on

AB,AC, we have (BC;SY ) = �1. Moreover, by Iran Lemma applied to excircle of

4Y LS we have Y X ? IS so that IX externally bisects \BXC. ⇤

8. Discussions

Being a Math Olympian, I have had the opportunity to come across many won-

derful and hard problems to which I have come up with short and quick DIT or dDIT

solutions that are able to solve the problem almost instantly. I have compiled the

more significant such instances in this Report, each demonstrating a di↵erent use of
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this powerful Theorem. Additionally, I also discovered that DIT and dDIT can be

used to prove many other Theorems in Geometry, and be used to further extend their

proofs. Furthermore, for all of my solutions presented in this Report, I have managed

to completely circumvent the use of conics, demonstrating the fact that the concept

of conics, which is commonly associated with the learning and application of DIT,

is not necessary at all. Finally, I have included an interesting type of application of

this Theorem: the imaginary realities, which is a beautiful concept and extension of

Desargues’ Involution Theorem.

In conclusion, through this Report, we can see the unlimited power of Desargues’

Involution Theorem and its dual in both solving problems and proving other Theo-

rems, and the various extensions of the original version. I believe that there remains

much more to be discovered regarding Desargues’ Involution Theorem and its dual,

and I will continue my research of the yet unknown properties, usages and extensions

of this Theorem.
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