
Research Report 2023 S.T. Yau High School Science Award (Asia)

2023 S.T. Yau High School Science Award (Asia)

Research Report

The Team

Registration Number: Comp-169

Name of team number: Lim Li Xin Jed
School: NUS High School of Mathematics and Science
Country: Singapore, Singapore

Name of team number: Qiu Ziming
School: NUS High School of Mathematics and Science
Country: Singapore, Singapore

Title of Research Report
µ-Net: ConvNext-Based U-Nets for Cosmic Muon Tomography

Date:
August 15, 2023

i



Research Report 2023 S.T. Yau High School Science Award (Asia)

Abstract

Muon scattering tomography is an imaging technique that utilizes muons, typically
originating from cosmic rays to image the interiors of objects. Since muons are highly
penetrating, muon tomography can be used to investigate the internal composition of
dense materials such as geological formations or archaeological structures. However due
to the low flux of cosmic ray muons at sea-level and the highly complex interactions that
muons display when travelling through matter, existing reconstruction algorithms often
suffer from low resolution and high noise. In this work, we develop a novel two-stage
deep learning algorithm, µ-Net, consisting of an MLP to predict the muon trajectory
and a ConvNeXt-based U-Net to convert the scattering points into voxels. µ-Net is
trained on synthetic data generated by the Geant4 simulation package and we show
that it outperforms existing reconstruction methods for muon tomography. It achieves
a state-of-the-art performance of 17 PSNR at a dosage of 1024 muons, outperforming
traditional reconstruction algorithms such as the point of closest approach algorithm
and maximum likelihood and expectation maximisation algorithm. Furthermore, we
find that our method is robust to various corruptions such as inaccuracies in the muon
momentum or a limited detector resolution. We hope that this research will spark further
investigations into the potential of deep learning to revolutionise this field. Our model
code is at https://github.com/jedlimlx/Muon-Tomography-AI and our data gen-
eration code is at https://github.com/jedlimlx/Muons-Data-Generation. Our
dataset can be found at https://www.kaggle.com/datasets/tomandjerry2005/
muons-scattering-dataset.
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1 Introduction

Muon tomography is an imaging technique that utilizes muons, typically originating from cosmic rays, to
image the interiors of objects. By leveraging the fact that muons are highly penetrating particles, muon
tomography offers a non-invasive and non-destructive means of investigating the internal composition of
dense materials. Through tracking and analysis of muon trajectories and energies, this enables the accurate
reconstruction of internal structures and features. Consequently, muon tomography has emerged as a tool
with wide-ranging applications in fields such as geophysics [1], civil engineering [2], and archaeology [3, 4].

There are 2 main types of muon tomography - muon scattering tomography and muon absorption tomography.
Muon absorption tomography relies on the measurement of the attenuation of muon flux as it traverses a
material. In muon scattering tomography, the directions of the scattered muons are also considered. We
focus on muon scattering tomography. They both make use of muon detectors to record the flux of cosmic
muons passing through an object. The difference between the typical cosmic muon flux and the detected flux
of muons provides information about the interior of the objects.

Due to cosmic rays entering the Earth’s atmosphere, there is no need for a specialised muon source unlike
other types of tomography. However, there are many other challenges in this task. First, the flux of cosmic
muons at sea-level is very low [5]. In order to produce a decent reconstruction, data has to be collected for a
long period of time. Furthermore, unlike other types of tomography such as x-ray computed tomography,
muons will scatter off atomic nuclei. This makes the forward operator highly nonlinear. In contrast, in
computed tomography, x-rays only attenuate and hence, the forward operator is the linear radon transform.
Furthermore, due to limitations of current day muon detectors, the momentum of muons which significantly
affects the muon scattering angle is not known. At best, we will have an estimate of the momentum p̂ with a
significant amount of uncertainty.

Several methods have been developed to tackle this problem. The first algorithm developed was the Point
of Closest Approach (PoCA) algorithm [6] which assumes that the muons only scatter once at the point
of closest approach of its inward and outward trajectory. The Maximum Likelihood and Expectation
Maximisation (MLEM) algorithm [7] improves on PoCA and iteratively optimises the reconstruction to
maximise the likelihood of producing a given scattering outcome. Other algorithms have also been developed
such as most probable trajectory (MPT) [8], maximum a posterori (MAP) [9], most likely path [10, 11, 12],
scattering density estimation (SDE) [13] and angle statistics reconstruction (ASR) [14]. Other methods have
also been developed for low dosages such as the binned clustering algorithm [15] and a method based on
density clustering [16].

However, no one has attempted to make use of developments in deep learning to solve this ill-posed problem.
Due to the abundance of data which can be obtained from simulations from software such as Geant4 [17]
and the non-linearity of the problem, deep learning methods are well-suited for this task. They have been
previously applied to other inverse problems such as computed tomography [18].

In this work, we develop a novel two-stage deep learning algorithm, µ-Net, for cosmic muon scattering
tomography, based on using the point of closest approach (PoCA) algorithm and the U-Net architecture
proposed by Ronneberger et al. [19]. Instead of using the more traditional Residual Blocks, we make use of
ConvNeXt Blocks [20] which result in better performance than Residual Blocks at a lower computational
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cost. We find that our model significantly out-performs traditional reconstruction algorithms and achieves
state-of-the-art performance.

2 Preliminaries

2.1 Physical Background

Muon scattering relies primarily on modelling the scattering interaction between muons and matter. Rossi
et al. [21] developed a scattering theory for charged particles and found that charged particles travelling
through a plate of thickness x that undergo coulomb scaling have scattering angles and lateral displacements
that follow a Gaussian distribution with mean, µ = 0 and variance,

σ2 =
E2

s

2p2v2
x

Lrad
(1)

where Es = 21 MeV, λ is the radiation length of the material, x is the thickness of the plate and p and v are
the momentum and velocity of the muon respectively.

From this formula, we can define the parameter of interest, the scattering density λ.

λ =
σ2

x
=

15MeV

p2v2
1

Lrad
(2)

With this, the task of muon tomography is to find the distribution of λ within the object through looking at
positions and directions of the incoming and outgoing muons.

2.2 Problem Statement

Before proceeding with a literature review and the description of the method, let us formalize the muon
reconstruction problem. We shall follow a similar notation to Schultz et al. [7].

Let the object of interest be defined by its scattering density,

λ(x, y, z) =

(
13.6

p0

)2
1

Lrad(x, y, z)
(3)

where Lrad(x, y, z) is the radiation length at each point within the object.

We can represent the scattering density in terms of some basis functions ϕj(x, y, z) such that

λ(x, y, z) =
∑
j

αjϕ(x, y, z) (4)

where α = [αj ] are the coefficients for the basis functions.

Suppose the muon detections, y follow a distribution D parameterized by the scattering density of the object,
i.e.

Y ∼ D(α) (5)
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Therefore, given a sample of n muon detections Yn = [y1,y2, ...,yn] we wish to construct a point estimate
a(Yn) of α, which is approximated by the deep neural network fθ(Yn) parameterized by θ.

In this paper, we will take p0 to be 13.6 MeV, so that we directly regress the reciprocal of the radiation length
1

Lrad(x,y,z)
in units of cm−1.

2.3 Motivation

Some key features of the muon reconstruction problem are immediately apparent from the problem statement,
which help us design our model architecture:

• The model should be permutation-invariant, i.e. the order in which muons are inputted into the
model should not change the output.

• The model should accept any number of input muons.

• The model should be able to make use of paired input and output muon detections i.e. the model
needs to know which input muon corresponds to which output.

• The model should be able to take advantage of the 3D spatial structure of the target output.

This seems to suggest making use of Transformers [22] with the positional encoding removed. However,
the dot product attention module used in Transformers has a large time-complexity of O(N2) where N is
the dosage. Furthermore, the transformer will be unable to take advantage of the spatial structure of the
output. Hence, we will make use of the PoCA algorithm and the U-Net architecture [19] to create a two-stage
algorithm.

3 Related Work

3.1 Deep Learning Methods

Point Clouds. From the key features of the muon tomography problem, we see that it is highly similar
to point cloud problems, which also take in permutation invariant data (a set of points), but the points
themselves also exhibit some 3D structure. Deep learning methods on point cloud data can generally be
classified into 2 main categories, neural networks which operates directly on the points, and neural networks
which operate on a voxelized representation of the data [23]. In our work, we chose the latter approach since
the former tends to be slightly worse at capturing spatial structure, and our desired output is also in the form
of voxels.

U-Net. The U-Net was first proposed as an medical image segmentation model [19]. It consists of a
downward branch, where the image is downsampled and an upward branch, where the image is upsampled.
Skip connections are also used between the downward and upward branches to allow high resolution features,
which may be removed during downsampling, to be retained. U-Nets have also been extended to process 3D
data [24, 25], by replacing the standard 2D convolution operations with 3D convolutions.

ConvNext. ConvNext is a recent iteration of the family of convolutional neural networks [20]. It was
proposed as an improvement of the ResNet [26] by incorporating methods found in Vision Transformer ar-
chitectures, most notably the SWIN transformer [27], and has been shown to obtain competitive performance
against Transformer-based methods but with a lower parameter count. In our work, we will use a modified
3D ConvNext block to form our U-Net.

3
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3.2 Traditional Algorithms

Point of Closest Approach. The Point of Closest Approach (PoCA) method is a commonly used method
for muon scattering tomography, first proposed by Schultz et al. [6]. It assumes that the muon is scattered
once by an object at the point of closest approach between the input and output trajectories. However, this
fails to take into account the fact that in many cases, muons may scatter multiple times. As a result, there
will be predictions that muons scatter at points where there is actually no object as illustrated in Figure 1.
Furthermore, some information is lost as some muons may have a point of closest approach outside of the
object space.

Figure 1: A diagram illustrating the point of closest approach algorithm. Since the muon scatters more than
once, the computed PoCA is not within any object.

Maximum Likelihood Expectation Maximization. The maximum likelihood expectation maximization
(MLEM) algorithm is a statistical reconstruction method proposed by Schultz et al. [7]. It makes use of the
statistical distribution of muon scattering to frame muon reconstruction as a maximum likelihood problem.
An iterative expectation maximization algorithm is then used to find the scattering densities within the object
that is most likely to result in the observed data collected by the muon detectors.

Existing literature [28] have found that MLEM has better qualitative performance than direct allocation to
PoCA. However, in our experiments, we observed that MLEM has significantly lower performance (PSNR of
13.54 for a dosage of 2048 muons against 14.40 for PoCA). We hypothesize that this is due to the lower muon
dosages we used in our experiments, which makes it difficult to apply statistical methods to the reconstruction.
Due to the lower performance and higher computational cost of MLEM, we will be comparing our model
against PoCA for most of our experiments.

4 Methods

Scatter Operation. Our goal is to convert a set of muon detections into a reconstruction output. One
simple way to do this is to first convert the muon detections into some 3D representation, which can then be
fed into a U-Net.

4
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Figure 2: A diagram of the first stage of µ-Net. The muon features (initial position, initial momentum, etc.)
are passed through an MLP and placed at PoCA scattering points within a 3D volume. If they overlap, the
average is taken.

To achieve this, we first apply an MLP on the muon’s input parameters such as the initial momentum, initial
position, final position and final momentum. The output features are reshaped into a d× d× d× c block. We
call d the point size and c is the number of channels. Now, using the PoCA algorithm, we find the muon’s
point of closest approach and scatter the output features into the voxels near the PoCA point. That is, we find
the indices of the d × d × d block of voxels that are closest to the PoCA point and set the voxel value at
those points to the MLP output. If there is overlap in the scattering voxels, the average is taken. We choose
the PoCA point as the information about the muons that scatter in a given area is the primary information
that is needed to help decide what the scattering density of that area is.

A benefit of this approach is the scaling of the method’s runtime with dosage. Since the scattering of the
muon detections into the voxelized volume and the computation of the scattering points is very fast, the
processing time of the U-Net is much longer. As a result, our method effectively runs in constant time. With
a dosage of 1024 and a batch size of 8, the model has an inference time of 171 ms. With a dosage of 16384
and a batch size of 8, the model runs at 246 ms.

U-Net. Now, we make use of the U-Net [19] to process the voxelised volume matrix from the first stage. In
our U-Net, instead of using the more traditional Residual Blocks [26], we make use of ConvNeXt Blocks
[20] which result in better performance than Residual Blocks at a lower computational cost. Each layer of the
U-Net contains multiple such ConvNeXt blocks. Downsampling is done using Layer Normalisation followed
by a convolutional layer of strides = 2. Upsampling is done by first applying a pointwise convolution and
layer normalisation before using nearest neighbour upsampling.

5 Training Techniques.

We train our model using the Adam optimizer with a learning rate of 1× 10−3. We make use of progressive
training and first train the model on a dosage of 1024 muons for 15 epochs. Then, we initialise the model
with those weights and train it on 2048 muons for 15 epochs, and so on.

Universal Approximation. We have shown that µ-Net is an universal function approximator for continuous
set functions given the model is large enough and either of the following conditions are met:

5
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• The resolution of the reconstructed volume is sufficiently large such that there is no overlap in the
reconstructed points or,

• the resolution of the reconstructed volume is finite but the point size is large enough to cover the
entire reconstructed volume.

Formally, we can define χ = {S : S ⊆ Rm and |S| = n} and f : χ→ R is a continuous set function w.r.t
the Hausdorff distance dH(·, ·). Our theorem proves that f can be arbitrarily approximated by our model if
the resolution is sufficiently high, or if the resolution is fixed but the point size d is the same as the resolution.

Theorem 1. Suppose f : χ → Rp is a continuous set function w.r.t dH(·, ·), such that for all ϵ > 0, there
exists some configuration of the model parameters θ for sufficiently large p or ϕ(η(xi)) = Jp×d (i.e. the
indicator function maps to every point), such that for any S ∈ χ, 1

∣∣∣∣∣f(S)− γθ

(∑
xi∈S{ϕ(η(xi)) · hθ(xi)}∑
xi∈S{ϕ(η(xi)) · Jd×c}

)∣∣∣∣∣ < ϵ

where γθ : Rp×c → Rp is any continuous function, hθ : Rm → Rd×c is any continuous function,
η : Rm → R, ϕ : Rm → Rp×d and Jd×c is the ones matrix of shape (d, c). η represents the PoCA function
that generates a scattering point from the muon detection. ϕ is an indicator function for a set of intervals of
length d derived from its input. The indicator function for each of these intervals is placed along one row in
the last dimension. γθ and hθ can be taken to be any continuous function due to the universal approximation
theorem for CNNs and MLPs.

A brief proof is provided in the Appendix. We also note this theorem generalises to all dimensions easily by
replacing p with r × r, r × r × r, etc.

The limitations of the theorem to arbitrarily large resolutions or point sizes comes from the PoCA and scatter
operations (i.e. ϕ(η(xi)). The nature of this function depends on the interactions between the muons and the
object and is very difficult to analyze due to the complex interactions that muons exhibit with matter.

However, despite these limitations, we hypothesise that our model performs well with a fixed resolution and
point size since most of the information about the muon scattering is contained near the the scattering point.

6 Experiments

6.1 Experimental Setup

Our data is generated using CERN’s Geant4 simulation software [17]. To generate 3D objects to be analysed
by our system, we make use of fractal noise to generate objects of various shapes. The material of the object
is randomly chosen from a set list of materials of different radiation lengths.

The geometry of the system can be found in Figure 3. The target object is contained within a cube of side
length 1 m. The input and output detectors are squares of side length 2 m. They are separated from the object
by a distance of 0.5 m.

For the muon beam, we use a beam with a cos2 angular distribution and a power law distribution, in
accordance with characterised values of the cosmic muon flux [29]. Muons that are calculated not to hit the
detector are killed at the start of the simulation to ensure the simulation runs at a reasonable speed for data
generation.

1For this division, we assume that the division is element-wise and if division by 0 occurs the value will just be 0.

6
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Figure 3: A scale diagram (except the voxels) illustrating the simulation setup within Geant4.

Table 1: Results of the model at difference dosages for various point sizes. The inference times are evaluated
on 2 T4 GPUs with a batch size of 8. The best results are bolded.

Point Size Dosage Time↓ MSE↓ MAE↓ PSNR↑
1 1024 171 ms 0.2697 0.2417 16.3562
3 1024 171 ms 0.2674 0.2245 16.4496
5 1024 179 ms 0.2685 0.2428 16.3598

1 2048 175 ms 0.2217 0.2151 17.2552
3 2048 175 ms 0.2009 0.1883 17.7133
5 2048 198 ms 0.1992 0.1953 17.7513
1 4096 180 ms 0.1716 0.1691 18.4065
3 4096 187 ms 0.1701 0.1698 18.4348
5 4096 250 ms 0.1731 0.1742 18.3674

1 8192 201 ms 0.1428 0.1488 19.2274
3 8192 220 ms 0.1451 0.1486 19.1594
5 8192 364 ms 0.1433 0.1463 19.2040

1 16384 246 ms 0.1284 0.1340 19.7184
3 16384 296 ms 0.1321 0.1269 19.6145
5 16384 - - - -

We use 3520 samples for the training set, 240 samples for the validation set and 1116 samples for the test set.

Our model is implemented using Tensorflow and trained using 2 T4 GPUs.

6.2 Ablations

Point Size. First, we vary the point size at various dosages to see its impact on the model’s performance.

We observe that for lower dosages, larger point sizes of 3 and 5 give the best performance. On the other
hand, at higher dosages, smaller point sizes of 1 give better results. This is not unexpected. As the dosage
increases, the number of scattering points also increases. This means that there is less of a need to have large

7
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Figure 4: The results of Table 1 presented in a graph.

point sizes to fully "fill" up the 3D volume. As such, we will use a point size of 3 for dosages lower than
4096 and a point size of 1 for dosages higher than 4096.

Block Types. We also tried using a Residual Block to see how that would impact the performance of the
model. As can be seen in Table 2, the Residual Block results in a significant drop in performance, hence,
justifying our usage of ConvNeXt. Furthermore, we also see that the ConvNeXt-based model runs much
faster as compared to the ResNet-based model, showing that our approach is also efficient.

Table 2: Results of the model when using ConvNeXt blocks and Residual Blocks. The best results are
bolded.

Block Type Dosage Time↓ MSE↓ MAE↓ PSNR↑
ConvNeXt 1024 171 ms 0.2674 0.2245 16.4496
Residual 1024 412 ms 0.2754 0.2682 16.3152

ConvNeXt 2048 175 ms 0.2009 0.1883 17.7133
Residual 2048 479 ms 0.2402 0.2144 16.8412

ConvNeXt 4096 187 ms 0.1701 0.1698 18.4348
Residual 4096 467 ms 0.1965 0.1907 17.7513

ConvNeXt 8192 220 ms 0.1939 0.1486 19.1594
Residual 8192 465 ms 0.1939 0.2140 17.6638

ConvNeXt 16384 296 ms 0.1321 0.1269 19.6145
Residual 16384 440 ms 0.1575 0.1738 18.6310

6.3 Comparison with Traditional Algorithms

Figure 5: The PSNR of various methods plotted against (left) dosage levels and (right) percentage error in
the momentum estimate. The lines represent the performance of the model when no momentum estimate is
provided. µ-Net∗ represents the model’s performance when it is fine-tuned on the new data.

8
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Dosage. We vary the dosage of muons from 1024 to 16384. The results are shown in Table 3 and Figure 5
(left). We see that as the dosage increases, the performance of the models increase as well. Furthermore, it is
clear that our model, µ-Net, significantly outperforms the the traditional PoCA algorithm.

Momentum Estimate. We also look at how varying levels of error in the momentum will affect predictions
in Figure 5 (right). We again find that our model significantly outperforms the traditional PoCA algorithm.
Furthermore, we find that after fine-tuning, the model’s performance stays relatively constant as the error in
the momentum increases, indicating our model is robust.

Figure 6: The PSNR of various methods plotted against various detector resolutions. µ-Net∗ represents the
model’s performance when it is fine-tuned on the new data.

Detector Resolution. Finally, we look at how the model’s performance changes with the detector resolution
in Figure 6. Again, we find that our model significantly outperforms the PoCA algorithm. Furthermore, we
find that our model performs well at a variety of resolutions, showing that it is very robust.

Visual Comparison. Now, we visually compare the reconstructions of PoCA and MLEM. These recon-
structions are shown in Figure 7 and 8. A dosage of 16384 muons is used. The MLEM reconstruction is
significantly worse since it had to be done using a lower resolution, because the algorithm requires the muon
tracks to pass through every voxel, which is not possible at higher resolutions.

First, we see that µ-Net provides superior reconstruction quality to PoCA. Furthermore, we can also see
clearly that µ-Net is able to distinguish different materials by their radiation length and accurately reconstruct
the approximate shape of objects. Nevertheless, we still observe significant levels of blurring.

Figure 7: This is a cross-section of an object made of 3 different materials. The ability of the model to
reconstruct the approximate shapes and differentiate materials is shown clearly. However, there is still a
significant amount of blurring. (left) ground truth, (middle-left) µ-Net, (middle-right) PoCA (right) MLEM.
MLEM was performed at a much lower resolution because it requires muon tracks to intersect with every
voxel.

9
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Figure 8: This is a 3D plot and a cross-section of one of the imaging targets from the testing set. The ability
of the model to reconstruct the approximate shapes and differentiate materials is shown clearly. However,
there is still a significant amount of blurring. (left) ground truth, (middle) µ-Net, (right) PoCA

7 Discussion

7.1 Applications

Nuclear Non-proliferation. Muon tomography has been applied in detecting the presence of high-Z
materials such as radioactive materials since these materials result in a large amount of scattering. We test
our model on such cases by generating a dataset containing high-Z objects placed within a container made of
low-Z. We fine-tune our model on this dataset for 10 epochs.

As seen in Figure 9, our model is able to accurately reconstruct the positions and sizes of these objects.
However, in some cases, the reconstruction is not as good. This is most likely caused by a thicker wall with a
lower radiation length shielding the materials within the box.

Archaelogy. In addition, muon tomography also has numerous applications in archaelogy. In particular,
the ability of muons to easily penetrate thick layers of material such as rock, enables their use to image
the interiors of large structures. For instance, researchers have used muon tomography to discover secret
chambers within Khufu’s Pyramid [4, 30], image underground cavities in Mount Echia [31, 32] and discover
a secret ancient Greek burial chamber in the centre of Naples [33]. In cases where the input detections are
available, our model can be used to significantly improve the accuracy of the reconstructions.

7.2 Future Work

No Input Muon Information. One limitation of the model is that it depends on the presence of information
about the input muons because of its use of the PoCA algorithm. However, in some cases, such as in some
archaeological applications, the direction of the input muon is unavailable.

10
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Figure 9: The model’s predictions for a high-Z object placed within a container made of low-Z material.
The container is not visible as its radiation length is very large. The inverse of the radiation length is being
plotted. (left) ground truth, (right) prediction

End-to-end Training. Another possibility for improvement is to develop an approach which consists of a
single-stage and is end-to-end trainable. Currently, µ-Net makes use of the PoCA algorithm to compute the
location of scattering points. This means that the model may still suffer from some limitations that PoCA
faces such as false hotspots in the final detection when muons scatter two or more times.

Perception Losses. Another possible improvement would be the usage of perceptual losses [34]. These
losses pass the reconstruction through an image classification model, pretrained on ImageNet, and compare
feature vectors of the reconstruction and ground truth. They have seen success when training deep learning
models for computed tomography [35]. These losses have an advantage over traditional loss functions such
as MSE since they measure how the human eye would perceive the reconstruction. As a result, using this
loss function can help to reduce blurring within the image, which we observe to be a significant issue with
the current model. However, a major difficulty in using perception losses is that new classification models
will have to be trained on 3D voxels, since existing models will likely not adapt well.

Trajectory Prediction. As shown in Figure 1, when muons scatter more than once, their PoCA will be
outside of the bounds of any object. This is a significant limitation of PoCA and sometimes results in false
hotspots of scattering density in the final prediction. One solution to this could be to attempt to predict the
muon’s scattering points (or full trajectory) using a neural network using simulated data and use these as an
input to the model.
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8 Conclusion

In conclusion, we have constructed a state-of-the-art model for muon scattering tomography which outper-
forms traditional methods such as PoCA and MLEM. Furthermore, we find that our model is robust to various
corruptions, with its performance barely changing when they are applied. We hope that our research will
spark further investigation into the usage of deep learning in this field. Improvements in imaging techniques
for muon scattering tomography will have wide-ranging applications from ensuring nuclear non-proliferation
to the discovery of secret chambers in ancient structures.
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Appendices

Appendix A Proofs

To prove Theorem 1, we shall split the theorem into the arbitrarily large resolution case and the arbitrarily
large point size case.

A.1 Arbitrarily Large Resolution

Theorem 2. Suppose f : χ → Rp is a continuous set function w.r.t dH(·, ·), such that for all ϵ > 0, there
exists some configuration of the model parameters θ for sufficiently large p, such for that any S ∈ χ2

∣∣∣∣∣f(S)− γθ

(∑
xi∈S{ϕ(η(xi)) · hθ(xi)}∑
xi∈S{ϕ(η(xi)) · Jd×c}

)∣∣∣∣∣ < ϵ

where γθ : Rp×c → Rp is any continuous function, hθ : Rm → Rd×c is any continuous function,
η : Rm → R, ϕ : Rm → Rp×d and Jd×c is the ones matrix of shape (d, c). η represents the PoCA function
that generates a scattering point from the muon detection. ϕ is an indicator function for a set of intervals of
length d derived from its input. The indicator function for each of these intervals is placed along one row in
the last dimension. γθ and hθ can be taken to be any continuous function due to the universal approximation
theorem for CNNs and MLPs.

Proof. The idea is that for a sufficiently large p, the indicator functions of ϕ will not overlap, allowing S to
be recovered exactly using an inverse function T .

Let hθ simply be the identity function. 3 Now, consider a function T : Rp×m → χ, T (X) = {x : |x| >
0, x ∈ Rm, x is an entry in the last dimension of X}. Now, we define γθ as f ◦ T . Clearly,

∣∣∣∣∣f(S)− f

(
T

(∑
xi∈S{ϕ(η(xi)) · hθ(xi)}∑
xi∈S{ϕ(η(xi)) · Jd×c}

))∣∣∣∣∣ = |f(S)− f(S)| = 0 < ϵ

■

A.2 Arbitrarily Large Point Size

Theorem 3. Suppose f : χ → Rp is a continuous set function w.r.t dH(·, ·), such that for all ϵ > 0, there
exists some configuration of the model parameters θ for ϕ(η(xi)) = Jp×d, such that for any S ∈ χ,

∣∣∣∣∣f(S)− γθ

(∑
xi∈S{ϕ(η(xi)) · hθ(xi)}∑
xi∈S{ϕ(η(xi)) · Jd×c}

)∣∣∣∣∣ < ϵ

where γθ : Rp×c → Rp is any continuous function, hθ : Rm → Rd×c is any continuous function,
η : Rm → R, ϕ : Rm → Rp×d and Jd×c is the ones matrix of shape (d, c). η represents the PoCA function
that generates a scattering point from the muon detection. ϕ is an indicator function for a set of intervals of
length d derived from its input. The indicator function for each of these intervals is placed along one row in

2For this division, we assume that the division is element-wise and if division by 0 occurs the value will just be 0.
3Since hθ is the identity function, c = m
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the last dimension. γθ and hθ can be taken to be any continuous function due to the universal approximation
theorem for CNNs and MLPs.

Proof. In the case of ϕ(η(xi)) = Jp×d, the theorem reduces to

∣∣∣∣f(S)− γθ

(∑
xi∈S{hθ(xi)}

N

)∣∣∣∣ < ϵ

where N is the number of muons. By invoking Theorem 7 in [36], any continuous permutation invariant set
function can be decomposed into the form

f(S) = ρ(
∑
xi∈S

{ψ(xi)})

where ρ and ψ are continuous functions. By the universal approximation theorem for CNNs and MLPs, there
exists some θ such that

ρ(
∑
xi∈S

ψ(xi)) = γθ

(∑
xi∈S{hθ(xi)}

N

)
Therefore

∣∣∣∣f(S)− γθ

(∑
xi∈S{hθ(xi)}

N

)∣∣∣∣ = |f(S)− f(S)| < ϵ

■
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Appendix B Raw Results
Table 3: Results of various models for different amounts of dosage

Model Dosage MSE↓ MAE↓ PSNR↑
µ-Net 1024 0.2674 0.2245 16.4496
PoCA 1024 0.4191 - 14.4066

µ-Net 2048 0.2009 0.1883 17.7133
PoCA 2048 0.3723 - 14.9207

µ-Net 4096 0.1701 0.1698 18.4348
PoCA 4096 0.3187 - 15.5964

µ-Net 8192 0.1939 0.1486 19.1594
PoCA 8192 0.2861 - 16.0640

µ-Net 16384 0.1321 0.1269 19.6145
PoCA 16384 0.2701 - 16.3143
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Table 4: Results of various methods for different levels of error in the momentum estimate. µ-Net∗ indicates
that the model was finetuned on the new data for 10 epochs. The best results are bolded.

Model Detector Resolution MSE↓ MAE↓ PSNR↑
µ-Net 64× 64 0.2355 0.2197 16.9981
µ-Net∗ 64× 64 0.2233 0.2090 17.2569
PoCA 64× 64 0.5210 0.2690 13.1784

µ-Net 128× 128 0.2114 0.1978 17.4785
µ-Net∗ 128× 128 0.2077 0.2015 17.5769
PoCA 128× 128 0.5226 0.2696 13.1625

µ-Net 256× 256 0.2043 0.1914 17.6305
µ-Net∗ 256× 256 0.2039 0.1988 17.6426
PoCA 256× 256 0.5210 0.2690 13.1784

µ-Net 512× 512 0.2012 0.1885 17.7043
µ-Net∗ 512× 512 0.2014 0.2011 17.7025
PoCA 512× 512 0.5210 0.2690 13.1784

µ-Net 1024× 1024 0.2005 0.1883 17.7176
µ-Net∗ 1024× 1024 0.2023 0.1914 17.7003
PoCA 1024× 1024 0.5210 0.2690 13.1784

µ-Net 2048× 2048 0.2005 0.1881 17.7120
µ-Net∗ 2048× 2048 0.1993 0.1996 17.7592
PoCA 2048× 2048 0.5210 0.2690 13.1784

µ-Net ∞ 0.2009 0.1883 17.7133
PoCA ∞ 0.3726 0.2443 14.6382

Table 5: Results of various models for different levels of error in the momentum estimate. µ-Net∗ indicates
that the model was finetuned on the new data for 10 epochs. The best results are bolded.

Model ∆p MSE↓ MAE↓ PSNR↑
µ-Net 0% 0.1997 0.1871 17.7392
µ-Net∗ 0% 0.1941 0.1899 17.8689
PoCA 0% 0.3759 - 14.8927

µ-Net 10% 0.1995 0.1876 17.7349
µ-Net∗ 10% 0.1966 0.1861 17.8051
PoCA 10% 0.3843 - 14.7828

µ-Net 20% 0.2009 0.1883 17.7133
PoCA 20% 0.3726 0.2443 14.6382

µ-Net 40% 0.2034 0.1900 17.6543
µ-Net∗ 40% 0.2018 0.1908 17.6872
PoCA 40% 0.5709 - 14.9207

µ-Net 80% 0.2214 0.2021 17.2452
µ-Net∗ 80% 0.2033 0.2009 17.6690
PoCA 80% 1.2158 - 13.0640

µ-Net 100% 0.2308 0.2080 17.0444
µ-Net∗ 100% 0.2050 0.2073 17.6139
PoCA 100% 1.9289 0.3697 9.028

µ-Net ∞ 0.5131 0.3388 13.0599
µ-Net∗ ∞ 0.2048 0.1942 17.6251
PoCA ∞ 1.8819 0.3683 9.3671
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