
Folding Polyominoes with Holes into a Cube:
A Computational Approach

Student:
Aaron You

Hong Kong International School, Hong Kong

Supervising Teacher:
Graham Nolan

Hong Kong International School, Hong Kong

August 2023

Abstract

Polyominoes are a well-known subject in recreational mathematics, con-
sisting of plane geometric figures formed by connecting unit squares edge-
to-edge. In this study, we explore the problem of folding polyominoes with
holes into a cube, which has potential applications in various fields, such as
robotics, material science, and 3D printing. In particular, we investigate the
conditions under which a given polyomino with holes can be folded into a
cube and develop an algorithm to identify such configurations.

My approach begins with the generation of various polyominoes with
holes and the identification of their properties, such as their size and number
of holes. We then develop a novel algorithm that utilizes graph theory and
combinatorial techniques to determine whether a given polyomino with holes
can be folded into a cube. The algorithm’s performance is evaluated through
a series of experiments on a range of polyominoes with varying complexity.
This study represents a step towards fuller understanding of the folding prob-
lem for polyominoes with holes and offers useful insights for future research
in this area.

Keywords: polyominoes, folding, cube, holes, computational geometry,
algorithms, graph theory, combinatorics

1

Contents

1 Introduction 4

2 Definitions and Notation 4

3 Methodology 5
3.1 Data Structures and Their Implementation 5

3.1.1 Graphical Representation of Polyominoes 5
3.1.2 Representation of the Unit Cube 8

3.2 Investigation of Algorithms . 10
3.2.1 Recursive Graph Traversal (Folding) 10
3.2.2 Implementation of the Greedy Algorithm 11

3.3 Asymptotic Analysis . 12

4 Next Steps 13
4.1 Addressing Larger Polyominoes 13
4.2 Exploring Other Folding Models 13
4.3 Implementation and Limitations of the Current Algorithm . . 13

5 Conclusion 14

3

1 Introduction

This paper explores the intriguing problem of transforming a polyomino
— a planar polygon composed of unit squares connected edge-to-edge — into
a unit cube through origami-style folding, conforming to standard rules that
permit multiple layers of paper on each unit-square face.

A grid model, implicitly suggested by Beluhov’s puzzles, promotes folding
along the polyomino’s grid lines, mandates orthogonal fold angles (±90◦ and
±180◦), and prohibits folding materials strictly inside the cube [4].

However, the polyominoes from Beluhov’s puzzles are not tree-shaped
and they possess non-simply connected interiors characterized by holes or
slits. These features arguably add to the puzzles’ charm and complexity.
Consequently, our paper aims to further understand which polyominoes with
holes can be folded into a unit cube within the grid model. While we don’t
provide a comprehensive characterization, we do offer numerous intriguing
conditions that dictate whether a polyomino can or cannot be transformed
into a unit cube.

The problem’s sensitivity to the chosen model is worth noting. The
half-grid model, another primary model explored in past studies, permits or-
thogonal and diagonal folds between half-integral points and has been shown
to accommodate the folding of all polyominoes with at least ten unit squares
into a unit cube [1, 3]. However, we choose to focus on the grid model, as it
aligns with Beluhov’s puzzles and as it has a finite number of polyominoes
that fold into a cube unlike the half-grid model [2].

2 Definitions and Notation

A polyomino is defined as a connected polygon, denoted as P, within
a two-dimensional plane. It is created by combining n unit squares on a
square lattice. The vertices of P are referred to as the grid points of P. P is

4

considered an open region, excluding its boundary, which encompasses the
n open unit squares in the form of (xi, xi + 1) · (yi, yi + 1), along with select
shared unit-length edges and grid points among these squares. It is worth
noting that the inclusion of the common edge between every adjacent pair
of squares is not a requirement for P. In cases where such an edge is missing
from P, it is referred to as a slit edge. However, P must possess a minimum
of n− 1 unit-length edges to ensure interior connectivity.

A hole in a polyomino P refers to a bounded connected component of P’s
exterior, where its boundary corresponds to one of the connected components
of P’s boundary, excluding the outermost one. It is assumed that P does not
contain holes consisting solely of a single grid point, as these holes do not
impact foldability and can be filled in by incorporating them into P. A hole is
considered a slit if it has zero area (excluding a single point) and is entirely
composed of one or more slit edges.

Within this study, our focus lies in the problem of folding a given poly-
omino P with holes to form a unit. This folding process permits creases
along edges of the lattice, with fold angles of ±90° or ±180°.

3 Methodology

3.1 Data Structures and Their Implementation

The inherent merit of polyominoes lies in their intuitive design, uniquely
that they are easily representable as a data strucutre, useful particularly in
their capacity for efficient storage and data manipulation. This merit under-
lies the decision to utilize polyomino structure in crafting data structures for
our study. This subsection aims to delve into a detailed scrutiny of the data
structures that form the foundation of the proposed algorithm.

3.1.1 Graphical Representation of Polyominoes

To address the intricate problem of evaluating a cube’s foldability, it
becomes obvious to represent a polyomino in the form of a graph.

5

Each individual square within the polyomino is a unique structure, hold-
ing four variables that denote the squares situated above, below, to the right
and left of it. In the absence of a square in any of these four directions, the
non-existence of a square is represented as null.

Figure 1: A polyomino

Figure 2: A representation of the polyomino above using a graph. U, D, R, L
representing directions Up, Down, Right, Left, respectively.

In the event of a slit or a hole, the algorithm represents it as null as well.
This is primarily because the distinction between a non-existent square and

6

a slit or hole becomes inconsequential when the factor of foldability is under
consideration.

Figure 3: Original polyomino. Red squares indicate a hole.

Figure 4: A representation of the polyomino above using a graph. Slits and holes
represented with null.

7

3.1.2 Representation of the Unit Cube

An investigation into whether a polyomino lattice can be folded into a
cube requires the incorporation of an additional data structure, designed to
keep track of the faces of a cube during the folding progression.

A cube structure can be conceived with references to the top, bottom,
front, back, left, and right faces of a cube. Each face retains a map of squares
that represent the squares existing on that specific plane.

Figure 5: A unit-cube

Figure 6: A representation of the unit-cube. Letters T, Bo, R, L, F, Ba, represent
top, bottom, right, left, front, and back reference variables respectively.

8

This structure is not confined to a single square per plane seeing that,
an entire lattice of squares can exist on a single face of the cube during the
folding process. This calls for the tracking of the graph representation of a
polyomino, as opposed to just a single square.

Figure 7: A representation of a polyomino during the folding process. Bottom
facing polyomino is labeled as Polyomino O and Front facing polyomino is labled
as Polyomino S

Figure 8: A representation of the polyomino during the folding process. Letters
T, Bo, R, L, F, Ba, represent top, bottom, right, left, front, and back reference
variables respectively.

9

3.2 Investigation of Algorithms

In the next subsection, we turn our attention to the algorithms that offer
the computational underpinnings necessary for the execution of our study.
A deep dive into each algorithm will provide the necessary framework for
understanding the operations of the folding process.

3.2.1 Recursive Graph Traversal (Folding)

During the folding of a polyomino, it is crucial to consider that not only
one square is being moved to a different plane, but all squares connected to
it except for the square the fold originated from. A recursive traversal of the
polyomino allows us to store all of the squares that are to be repositioned to
a different plane.

Let us represent O as the square lattice not altering planes and S as the
square lattice we aim to fold.

The traversal commences on the initial square of S, marking all squares
on the side of O along the fold line as visited.

Figure 9: A polyomino. Dotted blue line represents a valley fold. Green dots on
the top of a square means that square is marked ”visited”

We then traverse through S marking each square we traverse to as visited
store it as a square to be moved to another plane. If we traverse to a square

10

that is already marked as visited, we immediately ”return”, reducing time
complexity by a significant margin.

Figure 10: Orange dots show squares marked to move to another plane. Orange
arrows show the movement of the traversal.

Figure 11: Completed fold.

We iterate through the squares adjacent to the line of the fold and set
the referencing variables to null unlinking Polyomino O and Polyomino S.
Finally, we copy Polyomino S to the front face of the cube Datastructure.

3.2.2 Implementation of the Greedy Algorithm

Given our objective is to maximize the number of faces our polyomino
square lattice can cover in a cube, we can implement a greedy algorithm to

11

make 90◦ inwards folds at every edge of the grid.

Initially, a base is randomly determined as the bottom of the cube. Then,
branching out from the base, faces of the square lattice are folded 90◦ inwards
in the direction of the center.

All protruding square faces will ultimately be folded into one of the six
faces of the unit-cube as multiple layers of paper on each unit-square face
is permitted. Hence, we can make our algorithm stop once all 6 faces are
occupied by at least 1 square.

3.3 Asymptotic Analysis

This section presents an extensive analysis of the time complexity associ-
ated with a particular algorithm, which comprises two primary components:
a graph traversal algorithm and a greedy algorithm.

The graph traversal algorithm operates through the method of memoiza-
tion, a technique that stores the results of expensive function calls and reuses
them when the same inputs occur. This approach ensures that the algorithm
traverses each square node only once. Consequently, the tight bound, or
Theta complexity, of this algorithm is Θ(n), where n is the total number of
squares in the polyomino.

The other component, the greedy algorithm, executes a fold operation
at every connecting edge in the polyomino. Given that a polyomino with n
squares has n−1 connecting edges, the greedy algorithm performs n−1 folds
in total. Thus, similar to the graph traversal algorithm, the Theta complexity
of the greedy algorithm is Θ(n), indicating a linear growth pattern.

Notably, each fold operation performed by the greedy algorithm invokes
a call to the graph traversal algorithm. As a result, the time complexity
of the combined system becomes Θ(n · n) = Θ(n2). This quadratic growth
denotes that the system’s time complexity increases quadratically with the
size of the input.

12

However, an optimization has been implemented in the combined system,
which terminates the program once all six faces of the cube have been filled.
This optimization imposes an upper bound on the time complexity, denoted
by Big O notation. Thus, the overall time complexity for the combined
system, taking the optimization into account, is O(n2). This indicates that,
in the worst-case scenario, the system’s time complexity will not exceed a
quadratic function of n.

4 Next Steps

4.1 Addressing Larger Polyominoes

This research focused on relatively small polyominoes. As the size of the
polyomino increases, the complexity of the folding problem grows exponen-
tially. Future work could address this by developing more efficient algorithms
or using more powerful computing resources to tackle larger polyominoes.

4.2 Exploring Other Folding Models

This research focused on the grid model of folding. However, other folding
models, such as the half-grid model, have also been studied. Future research
could explore these other models in more depth, comparing their strengths
and weaknesses and possibly finding new insights by combining different
models.

4.3 Implementation and Limitations of the Current
Algorithm

The proposed algorithm, though rigorously conceptualized, remains the-
oretical due to its lack of implementation. Future work could aim to iden-
tify these limitations by implementing the algorithm and putting it through
thorough testing. Then, improvements or entirely new algorithms could be
proposed to handle cases where our current algorithm falls short. This could
involve accounting for more complex slit configurations or developing meth-
ods to handle polyominoes with larger numbers of holes.

13

5 Conclusion

The aim of this research was to explore the intriguing problem of fold-
ing polyominoes with holes into a unit cube using conforming to the grid
model folding standards. This study proposes a computational analysis that
determines whether a polyomino can or cannot be transformed into a unit
cube.

We hope that our research contributes to a better understanding of this
problem and serves as a stepping-stone for future studies in this field.

14

References

[1] Aichholzer, O., Akitaya, H. A., Cheung, K., Demaine, E.
D., Demaine, M. L., Fekete, S. P., Kleist, L., Kostitsyna,
I., Löffler, M., Masárová, Z., Mundilova, K., & Schmidt, C.
(2019). Folding Polyominoes With Holes Into a Cube. Canadian
Conference on Computational Geometry, 164–170. http://www.diva-
portal.org/smash/record.jsf?pid=diva2:1366092pid=diva2:1366092.

[2] Benbernou, N. M., Demaine, E. D., Demaine, M. L., & Lubiw, A. (2020).
Universal Hinge Patterns for Folding Strips Efficiently Into Any Grid
Polyhedron. Computational Geometry: Theory and Applications, 89,
101633. https://doi.org/10.1016/j.comgeo.2020.101633

[3] Czajkowski, K. Y., Demaine, E. D., Demaine, M. L., Ep-
pling, K., Kraft, R., Mundilova, K., & Smith, R. (2020).
Folding Small Polyominoes Into a Unit Cube. Canadian Con-
ference on Computational Geometry, 95–100. http://dblp.uni-
trier.de/db/conf/cccg/cccg2020.html#CzajkowskiDDEKM20

[4] Nbeluhov. (2014, October 25). Cube folding. Puzzled by Titles.
https://nbpuzzles.wordpress.com/2014/06/08/cube-folding/

15

