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Abstract

Given a prime p and positive integers n and k, consider the ring
Mn(Z/p

k
Z) of n × n matrices over Z/pkZ. Friedman and Washington

computed the number of matrices in Mn(Z/p
k
Z) with a given residue

modulo p and a given cokernel G subject to the condition pk−1G = 0.
Cheong, Liang, and Strand generalized this result by removing the con-
dition pk−1G = 0, completing the description of the distribution of the
cokernel of a random matrix uniformly selected from Mn(Z/p

k
Z). In

this paper, we investigate the distribution of the cokernel of a random
symmetric matrix uniformly selected from Mn(Z/p

k
Z). We prove a sym-

metric analogue of the result of Cheong, Liang, and Strand by adapting
their methods. Our result leads to a refined version of a result of Clancy,
Kaplan, Leake, Payne, and Wood.
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1 Introduction
Throughout the paper, let p be a prime and k and n be positive integers. We
adopt the following notation.
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Definition 1.1. For any nonnegative integer m and positive integer q, we write

ϕm(q) =

m∏

j=1

(1− q−j) and ψm(q) =

⌊m/2⌋
∏

j=1

(1− q−2j).

In [7], Friedman and Washington studied the distribution of the cokernel
of a random matrix selected from Mn(Zp), the ring of n × n matrices over the
p-adic integers. They showed the following result, where we identify Z/pZ with
the finite field Fp. We recall an explicit formula for |Aut(G)|, the order of the
automorphism group of G, in Lemma 2.24.

Theorem 1.2 ([7, pp. 232–233]). Suppose that G is a finitely generated torsion
module over Zp. For a random matrix X selected from Mn(Zp) with respect to
additive Haar measure, the probability that cok(X) ≃ G is

Pn(G) =
1

|Aut(G)|

ϕn(p)
2

ϕn−r(p)
,

where r = dimFp
(G/pG).

Friedman and Washington were motivated by the study of Cohen–Lenstra
heuristics for p-parts of ideal class groups of number fields; see the introduction
to the paper of Cheong and Huang [3] for additional discussion of the connection
between ideal class groups and cokernels of p-adic matrices and the motivation
behind the work of Friedman and Washington. In addition, the cokernel of a
matrix X ∈ Mn(Zp) carries the same information as the Smith normal form of
X, which has a variety of applications throughout combinatorics and number
theory; see, for example, the survey of Stanley [12].

Friedman and Washington also studied the distribution of the cokernel of
a random matrix uniformly selected from Mn(Z/p

k
Z), which is equivalent to

counting the number of matrices in Mn(Z/p
k
Z) whose cokernel is a given finitely

generated module G over Z/pkZ. A main idea of their work is to fix some matrix
X̄ ∈ Mn(Z/pZ) and count the matrices in Mn(Z/p

k
Z) with the given cokernel

G whose residue modulo p is X̄. They showed the following result.1

Theorem 1.3 ([7, pp. 235–236]). Suppose that G is a finitely generated module
over Z/pkZ satisfying pk−1G = 0. For any X̄ ∈ Mn(Z/pZ) such that cok(X̄) ≃
G/pG,

#







X ∈ Mn(Z/p
k
Z) :

cok(X) ≃ G
and X ≡ X̄ (mod p)






=
p(k−1)n2+r2

|Aut(G)|
ϕr(p)

2,

where r = dimFp
(G/pG).

It is striking that the count in Theorem 1.3 does not depend on the fixed
residue X̄ as long as cok(X̄) ≃ G/pG. Since cok(X̄) ≃ G/pG is equivalent to

1The original result was stated in terms of cok(X − I) instead of cok(X), where I is the
n× n identity matrix. This does not affect counting since the map X 7→ X − I is bijective.
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rank(X̄) = n−r, the number of such residues X̄ is well-known; see Lemma 2.22.
Multiplying the result of Theorem 1.3 by the number of admissible residues X̄
gives the total number of matrices X ∈ Mn(Z/p

k
Z) satisfying cok(X) ≃ G

subject to the condition pk−1G = 0, which is enough to recover Theorem 1.2.
In [4], Cheong, Liang, and Strand refined Theorem 1.3 to cover the case

pk−1G 6= 0.2

Theorem 1.4 ([4, p. 8]). Suppose that G is a finitely generated module over
Z/pkZ. For any X̄ ∈ Mn(Z/pZ) such that cok(X̄) ≃ G/pG,

#







X ∈ Mn(Z/p
k
Z) :

cok(X) ≃ G
and X ≡ X̄ (mod p)






=
p(k−1)n2+r2

|Aut(G)|

ϕr(p)
2

ϕu(p)
,

where r = dimFp
(G/pG) and u = dimFp

(pk−1G).

Combined with Lemma 2.22, Theorem 1.4 fully describes the distribution of
the cokernel of a random matrix uniformly selected from Mn(Z/p

k
Z).

Following the work of Friedman and Washington, many mathematicians have
studied distributions of cokernels of families of random matrices over Zp. For
example, Bhargava, Kane, Lenstra, Poonen, and Rains [2] determined the dis-
tribution of the cokernel of a random n × n alternating matrix over Zp, and
Clancy, Kaplan, Leake, Payne, and Wood [5] determined the distribution of the
cokernel of a random n× n symmetric matrix over Zp. The following symmet-
ric analogue to Theorem 1.2 is a consequence of Theorem 2 in [5, p. 706]. We
review partitions and related notation in Section 2.5.

Theorem 1.5 ([8, p. 305]). Suppose that G is a finitely generated torsion module
over Zp with the product decomposition

G ≃
s⊕

i=1

(Z/peiZ)ri

as specified in Corollary 2.8 and type λ = (λ1, . . . , λr) as defined in Defini-
tion 2.21. For a random matrix X selected from Symn(Zp) with respect to
additive Haar measure, the probability that cok(X) ≃ G is

P Sym
n (λ) = p−n(λ)−|λ| ϕn(p)

ψn−r(p)

s∏

i=1

1

ψri(p)
.

Theorem 1.5 is enough to determine the total number of matrices X ∈
Symn(Z/p

k
Z) satisfying cok(X) ≃ G subject to the condition pk−1G = 0.

In this paper, we seek a refinement to Theorem 1.5 analogous to Theorem 1.3
and Theorem 1.4 by counting the matrices in Symn(Z/p

k
Z) with the given

cokernel G whose residue modulo p is some fixed matrix X̄ ∈ Symn(Z/pZ).
This is our main result.

2The original result was more generally stated in terms of a polynomial pushforward P (X)
of the matrix X. We are concerned with the special case P (t) = t.
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Theorem 1.6 (Main result). Suppose that G is a finitely generated module
over Z/pkZ with the product decomposition

G ≃

s⊕

i=1

(Z/peiZ)ri

as specified in Corollary 2.8. For any X̄ ∈ Symn(Z/pZ) such that cok(X̄) ≃
G/pG,

#







X ∈ Symn(Z/p
k
Z) :

cok(X) ≃ G
and X ≡ X̄ (mod p)






=

√

p(k−1)n(n+1)+r(r+1)

|G||Aut(G)|

ϕr(p)ψu(p)

ϕu(p)

s∏

i=1

√

ϕri(p)

ψri(p)
,

where
r = dimFp

(G/pG) =

s∑

i=1

ri

and

u = dimFp
(pk−1G) =

{

r1 if e1 = k,
0 if e1 < k.

Again, since cok(X̄) ≃ G/pG is equivalent to rank(X̄) = n−r, the number of
such residues X̄ follows from Lemma 2.23. Multiplying the result of Theorem 1.6
by the number of admissible residues X̄ gives the total number of matrices X ∈
Symn(Z/p

k
Z) satisfying cok(X) ≃ G, which is enough to recover Theorem 1.5

as we discuss in Section 4. Our proof of Theorem 1.6, given in Section 3,
does not use the method of moments, a major tool in this subject. Instead,
we demonstrate that the methodology originally employed by Friedman and
Washington in [7] and later refined by Cheong, Liang, and Strand in [4] carries
over to the symmetric case.

In Theorem 1.3 on [13, pp. 919–920], Wood showed a strong universality
result for the distribution of the cokernel of a random n× n symmetric matrix
as n→ ∞, namely that the distribution follows a variant of the Cohen–Lenstra
heuristics as long as the random symmetric matrix X comes from choosing each
entry Xij (i ≤ j) independently from an ϵ-balanced distribution. We show that
the cokernel distribution still follows a variant of the Cohen–Lenstra heuristics
when we restrict to symmetric matrices with a fixed residue modulo p. Our
results fit into a body of literature about cokernels of families of p-adic matrices
with algebraic structure and variations of the Cohen–Lenstra heuristics. For ex-
ample, Cheong and Huang [3] studied the cokernel of a polynomial pushforward
of a random matrix, Yan [14] worked with random matrices over a Dedekind
domain, and Lee [9] investigated Hermitian matrices.

2 Preliminaries
In this section, we review some preliminary concepts and results.
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2.1 p-adic integers and the additive Haar measure on them
Definition 2.1 (p-adic integer). A p-adic integer is an infinite sequence a =
(a1, a2, a3, . . . ) of residues ai ∈ Z/piZ satisfying ai ≡ aj (mod pi) for all i < j.
The set Zp of p-adic integers forms a commutative ring under elementwise ad-
dition and multiplication over their respective rings Z/piZ. The ring of integers
is embedded in Zp through the monomorphism

n 7→ (n mod p, n mod p2, n mod p3, . . . ).

We identify the quotient ring Zp/p
k
Zp with Z/pkZ as they are isomorphic.

Definition 2.2 (additive Haar measure on Zp). Let Σ be the σ-algebra on Zp

generated by subsets of the form a + pkZp where k is a positive integer and
a ∈ Zp. The additive Haar measure µ : Σ → [0, 1] is defined by

µ(a+ pkZp) = p−k

for all aforementioned subsets a+ pkZp.
Remark 2.3. If a is a random p-adic integer selected with respect to additive
Haar measure, then its residue a mod pk is uniformly distributed in Z/pkZ.

2.2 Principal ideal domains and finitely generated mod-
ules over them

Definition 2.4 (principal ideal domain). An integral domain is a nontrivial
commutative ring in which the product of two nonzero elements is always non-
zero. A principal ideal domain is an integral domain in which every ideal can
be generated by a single element.
Definition 2.5 (torsion). Let M be a module over the ring R. A torsion
element of M is an element that becomes zero when multiplied by some nonzero
element of R. The torsion submodule of M is the submodule consisting of the
torsion elements of M . The module M is a torsion module if it equals its torsion
submodule.

The following theorem is known as the invariant factor form of the structure
theorem for finitely generated modules over a principal ideal domain.
Theorem 2.6 ([6, pp. 462–463]). Let M be a finitely generated module over a
principal ideal domain R. Then, M has a product decomposition

M ≃ Rr ⊕

m⊕

i=1

R/aiR

for some nonnegative integer r and nonzero non-unit elements ai ∈ R satisfying

a1 | · · · | am.

This product decomposition is unique up to multiplication of ai by units. The
module M is a torsion module if and only if r = 0.
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Definition 2.7 (invariant factor of a module). In the product decomposition
specified in Theorem 2.6, the invariant factors of the module M are the elements
ai with multiplicity. Invariant factors are defined up to multiplication by a unit.

For a finitely generated module G over the principal ideal domain Zp, we
may assume that every invariant factor of G is normalized to a power of p via
multiplication by an appropriate unit. We arrive at the following corollary of
Theorem 2.6.

Corollary 2.8. Every finitely generated torsion module G over Zp has a unique
product decomposition

G ≃
s⊕

i=1

(Z/peiZ)ri

where ei and ri are positive integers such that e1 > · · · > es. Each pei is an
invariant factor of G with multiplicity ri.

Remark 2.9. Every finitely generated module over Z/pkZ can be viewed as
a finitely generated torsion module over Zp via the identification Z/pkZ ≃
Zp/p

k
Zp. Thus, Corollary 2.8 also applies to such modules with e1 ≤ k.

2.3 Cokernels and the Smith normal form
Definition 2.10 (cokernel). Let Mn(R) be the ring of n × n matrices over a
commutative ring R. Each matrix X ∈ Mn(R) represents an endomorphism
v 7→ Xv of the module Rn over R. The image im(X) of the matrix X is defined
as the image of this endomorphism, and the cokernel of the matrix X is defined
as the quotient module

cok(X) = Rn/ im(X).

Definition 2.11 (invariant factor of a matrix). Suppose that R is a principal
ideal domain. The invariant factors of a matrix in Mn(R) are the invariant
factors of its cokernel.

We use diag(a1, . . . , an) to denote the diagonal matrix or diagonal block
matrix with entries a1, . . . , an on the diagonal.

Theorem 2.12 (Smith normal form). Suppose that R is a principal ideal do-
main and X ∈ Mn(R) has rank r. For any nonnegative integer i ≤ n, let di be
the greatest common divisor of all i×i minors of X, defined up to multiplication
by a unit. In particular, d0 is a unit. Then, d0, . . . , dr are nonzero and satisfy

d0 | · · · | dr

while dr+1 = · · · = dn = 0.
For any positive integer i ≤ r, there is an element αi ∈ R such that di =

αidi−1. Again, αi is defined up to multiplication by a unit. Then,

α1 | · · · | αr,
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and there are matrices S, T ∈ GLn(Zp) such that

SXT = diag(α1, . . . , αr, 0, . . . , 0).

This diagonal matrix is the Smith normal form of X.

Remark 2.13. The nonzero diagonal entries of the Smith normal form of X
comprise the invariant factors of X, which uniquely describe cok(X) up to iso-
morphism. Thus, cok(X) carries the same information as the Smith normal
form of X.

The p-adic integers form a principal ideal domain. For any matrix X ∈
Mn(Zp), we may assume that every invariant factor of X is normalized to a
power of p via multiplication by an appropriate unit. The same applies to
nonzero entries in the Smith normal form of X.

Given a matrix X ∈ Mn(Zp), the following lemma translates a constraint
on the smallest invariant factor of cok(X) and its multiplicity to an equivalent
condition on the expansion of X in terms of powers of p.

Lemma 2.14. Suppose that the nonzero matrix X ∈ Mn(Zp) can be expressed
as

X =
k−1∑

i=0

piXi

for some positive integer k, where each Xi takes entries in {0, 1, . . . , p−1}. For
any nonnegative integer e ≤ k and positive integer r ≤ n, the smallest invariant
factor of X is pe with multiplicity r if and only if X0 = · · · = Xe−1 = 0
and rank(Xe) = r over Fp.

Proof. Let diag(α1, . . . , αm, 0, . . . , 0) be the Smith normal form ofX. The small-
est invariant factor of X is pe with multiplicity r if and only if α1 = . . . = αr =
pe 6= αr+1.

Let di(X) denote the greatest common divisor of all i × i minors of X,
normalized to a power of p. In particular, d0(X) = 1 and di(X) = 0 for all
i > n.

(⇐=) Suppose that X0 = · · · = Xe−1 = 0 and rank(Xe) = r over Fp. Then,
X = peX ′ where

X ′ =

k−e−1∑

i=0

piXi

has rank r, so di(X ′) = 1 for all 0 ≤ i ≤ r while dr+1(X
′) 6= 1. Since

di(X) = di(p
eX ′) = peidi(X

′),

we have
αi =

di(X)

di−1(X)
= pe

di(X
′)

di−1(X ′)
,

so α1 = · · · = αr = pe 6= αr+1.
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(=⇒) Suppose that α1 = · · · = αr = pe 6= αr+1. Then, d1(X) = pe, so every
entry of X is a multiple of pe. Hence, X0 = . . . = Xe−1 = 0, so X = peX ′ where

X ′ =
k−e−1∑

i=0

piXi.

Reasoning analogously to the previous case, we see that dr(X) = per and thus
dr(X

′) = 1, whereas dr+1(X) 6= pe(r+1) and thus dr+1(X
′) 6= 1. It follows that

rank(X ′) = r, so rank(Xe) = r over Fp.

The following lemma relates the cokernel of a matrix in Mn(Z/p
k
Z) to the

cokernel of its lift in Mn(Zp) under the identification Zp/p
k
Zp ≃ Z/pkZ.

Lemma 2.15. Suppose that X ∈ Mn(Zp) is a lift of X̄ ∈ Mn(Z/p
k
Z). Then

cok(X̄) ≃ cok(X)/pk cok(X).

Proof. We have cok(X) = Z
n
p/ im(X) and cok(X̄) = (Z/pkZ)n/ im(X̄). Con-

sider the epimorphism f : cok(X) → cok(X̄) defined by f([v]) = [v mod pk] for
all v ∈ Z

n
p . Since f factors through the projection cok(X) → cok(X)/pk cok(X),

we obtain the epimorphism

f̃ : cok(X)/pk cok(X) → cok(X̄)

defined by f̃([v]) = [v mod pk] for all v ∈ Z
n
p .

It remains to show that f̃ is a monomorphism. Suppose that u, v ∈ Z
n
p and

f̃(u) = f̃(v). Then, (u− v) mod pk ∈ im(X̄), so (u− v) mod pk = X̄w̄ for some
w̄ ∈ (Z/pkZ)n. Fixing a lift w ∈ Z

n
p of w̄, we have

u− v ≡ Xw (mod pk),

so [u] = [v] in cok(X)/pk cok(X).
Therefore, f̃ is an isomorphism.

We can extend Lemma 2.14 to matrices in Mn(Z/p
k
Z) using Lemma 2.15.

Corollary 2.16. Suppose that the matrix X ∈ Mn(Z/p
k
Z) can be expressed as

X =

k−1∑

i=0

piXi

for some positive integer k, where each Xi takes entries in {0, 1, . . . , p−1}. For
any nonnegative integer e ≤ k and positive integer r ≤ n, the smallest invariant
factor of X is pe with multiplicity r if and only if X0 = · · · = Xe−1 = 0
and rank(Xe) = r over Fp.
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2.4 Congruence
Definition 2.17 (congruence). Suppose that A and B are n× n matrices over
a commutative ring R. The matrices A and B are congruent if B = QAQ⊤ for
some matrix Q ∈ GLn(R).

Remark 2.18. Matrix congruence is an equivalence relation on Mn(R). Given
Q ∈ GLn(R), the map X 7→ QXQ⊤ is an automorphism of Mn(R) that pre-
serves symmetry.

The following corollary of Lemma 7 on [1, p. 391] shows that every symmetric
matrix over a field is congruent to a relatively simple matrix.

Lemma 2.19 ([1, p. 391]). Any symmetric matrix over a field F is congruent
to some matrix of the form

diag(0, A)

where 0 is a zero matrix and A is an invertible symmetric matrix over F.

2.5 Partitions
Definition 2.20 (partition). A partition

λ = (λ1, . . . , λr)

is a finite sequence of positive integers λ1 ≥ · · · ≥ λr. We define

|λ| =

r∑

i=1

λi and n(λ) =

r∑

i=1

(i− 1)λi.

Definition 2.21 (type of a finitely generated torsion module over Zp). Sup-
pose that G is a finitely generated torsion module over Zp with the product
decomposition

G =

s⊕

i=1

(Z/peiZ)ri

as specified in Corollary 2.8. The type of G is the partition

(e1, . . . , e1
︸ ︷︷ ︸

r1 copies of e1

, . . . , es, . . . , es
︸ ︷︷ ︸

rs copies of es

).

2.6 Useful enumerations
In this section, we review some enumerations used in the proof of Theorem 1.6.
We start with a well-known formula for the number of n × n matrices over a
finite field with a given rank.
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Lemma 2.22 ([11, p. 6]). Let Fq be a finite field and r be an integer such
that 0 ≤ r ≤ n. Then

#{X ∈ Mn(Fq) : rank(X) = r} =
r−1∏

i=0

(qn − qi)2

qr − qi
= qr(2n−r) ϕn(q)

2

ϕr(q)ϕn−r(q)2
.

In particular, setting r = n gives

|GLn(Fq)| =
n−1∏

i=0

(qn − qi) = qn
2

ϕn(q).

The following formula is the analogue of Lemma 2.22 for symmetric matrices.

Lemma 2.23 ([10, pp. 154–155]). Let Fq be a finite field and r be an integer
such that 0 ≤ r ≤ n. Then

#{X ∈ Symn(Fq) : rank(X) = r} =

⌊r/2⌋
∏

i=1

q2i

q2i − 1

r−1∏

i=0

(qn−i − 1)

= qr(2n−r+1)/2 ϕn(q)

ϕn−r(q)ψr(q)
.

The following formula calculates |Aut(G)| in terms of the product decompo-
sition of a finitely generated module G over Z/pkZ.

Lemma 2.24 ([7, p. 236]). Suppose that G is a finitely generated module over
Z/pkZ with the product decomposition

G ≃
s⊕

i=1

(Z/peiZ)ri

as specified in Corollary 2.8. Then

|Aut(G)| =

s∏

i=1

q−r2i |GLri(Fq)|

s∏

i=1

s∏

j=1

qmin(ei,ej)rirj

=
s∏

i=1

ϕri(q)

s∏

i=1

s∏

j=1

qmin(ei,ej)rirj .

3 Proof of Theorem 1.6
A major step toward proving Theorem 1.6 is to consider the special case where
n = r = dimFp

(G/pG). Let X ∈ Mn(Z/p
k
Z) and let X̄ ∈ Mn(Z/pZ) satisfy

X ≡ X̄ (mod p). Suppose cok(X) ≃ G. Since dimFp
(G/pG) = n − rank(X̄),

we see that n = dimFp
(G/pG) if and only if X̄ is the zero matrix.
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Lemma 3.1. Suppose that G is a finitely generated module over Z/pkZ with
the product decomposition

G ≃

s⊕

i=1

(Z/peiZ)ri

as specified in Corollary 2.8. Then,

#{X ∈ Symr(Z/p
k
Z) : cok(X) ≃ G}

=

√

pkr(r+1)

|G||Aut(G)|

ϕr(p)ψu(p)

ϕu(p)

s∏

i=1

√

ϕri(p)

ψri(p)
,

where
r = dimFp

(G/pG) =
s∑

i=1

ri

and

u = dimFp
(pk−1G) =

{

r1 if e1 = k,
0 if e1 < k.

Proof. We use induction on s. We consider two base cases.
The first base case is when G is trivial, so r = s = u = 0 and |G| =

|Aut(G)| = 1. We have

#{X ∈ Symr(Z/p
k
Z) : cok(X) ≃ G}

=

√

pkr(r+1)

|G||Aut(G)|

ϕr(p)ψu(p)

ϕu(p)

s∏

i=1

√

ϕri(p)

ψri(p)
= 1

in this case.
The second base case is when G ≃ (Z/pkZ)r, so s = 1, e1 = k, and u = r.

For any X ∈ Symr(Z/p
k
Z), we have cok(X) ≃ G if and only if X = 0, so

#{X ∈ Symr(Z/p
k
Z) : cok(X) ≃ G} = 1.

On the other hand,
√

pkr(r+1)

|G||Aut(G)|

ϕr(p)ψu(p)

ϕu(p)

s∏

i=1

√

ϕri(p)

ψri(p)

=

√

pkr(r+1)

pkr+kr2ϕr(p)

ϕr(p)ψr(p)

ϕr(p)

√

ϕr(p)

ψr(p)
= 1

by Lemmas 2.22 and 2.24, concluding the proof for this case.
Now, we provide a proof of the inductive step. Suppose that the result holds

for G ≃
⊕s

i=1(Z/p
eiZ)ri and consider the finitely generated module

G′ ≃ G⊕ (Z/pes+1Z)rs+1 =

s+1⊕

i=1

(Z/peiZ)ri
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over Z/pkZ, where ei and ri are positive integers such that k ≥ e1 > · · · > es+1.
Let r = dimFp

(G/pG) =
∑s

i=1 ri and r′ = dimFp
(G′/pG′) = r + rs+1. Our

choice of base cases allow us to assume that es+1 < k, so we may write u =
dimFp

(pk−1G) = dimFp
(pk−1G′). We would like to show that

#{X ′ ∈ Symr′(Z/p
k
Z) : cok(X ′) ≃ G′}

=

√

pkr′(r′+1)

|G′||Aut(G′)|

ϕr′(p)ψu(p)

ϕu(p)

s+1∏

i=1

√

ϕri(p)

ψri(p)
.

To this end, consider an arbitrary matrix X ′ ∈ Symr′(Z/p
k
Z) satisfying

cok(X ′) ≃ G′. It follows from Corollary 2.16 that X ′ = pes+1X0 + pes+1+1X1

for some symmetric X0 taking entries in {0, 1, . . . , p − 1} and symmetric X1

taking entries in {0, 1, . . . , pk−es+1−1 − 1} such that rank(X0) = rs+1 over Fp.
There are

prs+1(2r
′−rs+1+1)/2 ϕr′(p)

ϕr(p)ψrs+1
(p)

= prs+1(2r+rs+1+1)/2 ϕr′(p)

ϕr(p)ψrs+1
(p)

choices for X0 by Lemma 2.23.
Fix some choice of X0. It follows from Lemma 2.19 that there is some

Q̄ ∈ GLr′(Fp) such that
Q̄X0Q̄

⊤ = diag(0,Σ)

where Σ ∈ Symrs+1
(Fp) is invertible. Pick an arbitrary lift Q ∈ GLr′(Z/p

k
Z)

of Q̄. The map X ′ 7→ QX ′Q⊤ is an automorphism on Symr′(Z/p
k
Z), and

cok(X ′) ≃ cok(QX ′Q⊤). Hence, we may assume X0 = diag(0,Σ) without loss
of generality.

Write
X1 =

[
A B
B⊤ C

]

where A, B, and C are r × r, r × rs+1, and rs+1 × rs+1 matrices respec-
tively, all taking entries in {0, 1, . . . , pk−es+1−1 − 1}. Note that A and C are
symmetric. Leaving A unchosen, there are p(k−es+1−1)rrs+1 choices for B and
p(k−es+1−1)rs+1(rs+1+1)/2 choices for C.

Fix some choice of B and some choice of C. It is straightforward to verify
that

PX ′P⊤ =

[
pes+1+1(A− pB(Σ + pC)−1B⊤) 0

0 pes+1(Σ + pC)

]

where
P =

[
Ir −pB(Σ + pC)−1

0 Irs+1

]

∈ GLr′(Z/p
k
Z)

and Im denotes the m × m identity matrix. Corollary 2.16 shows that the
rs+1× rs+1 matrix pes+1(Σ+pC) has an invariant factor pes+1 with multiplicity
rs+1, so

cok(pes+1(Σ + pC)) ≃ (Z/pes+1Z)rs+1 .

12



Since
cok(X ′) ≃ cok(PX ′P⊤)

≃ cok(pes+1+1(A− pB(Σ + pC)−1B⊤))⊕ cok(pes+1(Σ + pC))

≃ cok(pes+1+1(A− pB(Σ + pC)−1B⊤))⊕ (Z/pes+1Z)rs+1 ,

it remains to count the number of choices for A such that
cok(pes+1+1(A− pB(Σ + pC)−1B⊤)) ≃ G.

The inductive hypothesis shows that
#{X ∈ Symr(Z/p

k
Z) : cok(X) ≃ G}

=

√

pkr(r+1)

|G||Aut(G)|

ϕr(p)ψu(p)

ϕu(p)

s∏

i=1

√

ϕri(p)

ψri(p)
.

Corollary 2.16 shows that any such X satisfies X ≡ 0 (mod pes). Since es ≥
es+1 + 1, there is a unique A such that

X = pes+1+1(A− pB(Σ + pC)−1B⊤).

The choice of A concludes the determination of X ′.
Multiplying the quantities involved in this process, we have

#{X ′ ∈ Symr′(Z/p
k
Z) : cok(X ′) ≃ G′}

= prs+1(2r+rs+1+1)/2 ϕr′(p)

ψrs+1
(p)ϕr(p)

p(k−es+1−1)rs+1(2r+rs+1+1)/2

·

√

pkr(r+1)

|G||Aut(G)|

ϕr(p)ψu(p)

ϕu(p)

s∏

i=1

√

ϕri(p)

ψri(p)

=

√

pkr(r+1)+(k−es+1)rs+1(2r+rs+1+1)

ϕrs+1
(p)|G||Aut(G)|

ϕr′(p)ψu(p)

ϕu(p)

s+1∏

i=1

√

ϕri(p)

ψri(p)

=

√

pkr′(r′+1)−es+1rs+1(2r+rs+1+1)

ϕrs+1
(p)|G||Aut(G)|

ϕr′(p)ψu(p)

ϕu(p)

s+1∏

i=1

√

ϕri(p)

ψri(p)
.

Note that
|G′|

|G|
= pes+1rs+1

and
|Aut(G′)|

|Aut(G)|
= pes+1rs+1(2r+rs+1)ϕrs+1

(p)

by Lemmas 2.22 and 2.24. Therefore,
#{X ′ ∈ Symr′(Z/p

k
Z) : cok(X ′) ≃ G′}

=

√

pkr′(r′+1)

|G′||Aut(G′)|

ϕr′(p)ψu(p)

ϕu(p)

s+1∏

i=1

√

ϕri(p)

ψri(p)
.

This concludes the induction.
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Now, we are ready to prove Theorem 1.6 in the general case.

Proof of Theorem 1.6. As in the proof of Lemma 3.1, we may assume X̄ =
diag(0,Σ) without loss of generality.

Write
X =

[
A B
B⊤ C

]

where A, B, and C are r×r, r×(n−r), and (n−r)×(n−r) matrices respectively,
all taking entries in {0, 1, . . . , pk−1−1}. Note that A and C are symmetric. Leav-
ing A unchosen, there are p(k−1)r(n−r) choices for B and p(k−1)(n−r)(n−r+1)/2

choices for C.
Fix some choice of B and some choice of C. It is straightforward to verify

that
PXP⊤ =

[
A− pB(Σ + pC)−1B⊤ 0

0 Σ + pC

]

where
P =

[
Ir −pB(Σ + pC)−1

0 In−r

]

∈ GLn(Z/p
k
Z)

and Im denotes the m×m identity matrix. Since Σ+ pC is invertible, we have

cok(X) ≃ cok(PXP⊤)

≃ cok(A− pB(Σ + pC)−1B⊤)⊕ cok(Σ + pC)

≃ cok(A− pB(Σ + pC)−1B⊤),

so it remains to count the number of choices for A such that cok(A − pB(Σ +
pC)−1B⊤) ≃ G.

Lemma 3.1 shows that

#{A′ ∈ Symr(Z/p
k
Z) : cok(A) ≃ G}

=

√

pkr(r+1)

|G||Aut(G)|

ϕr(p)ψu(p)

ϕu(p)

s∏

i=1

√

ϕri(p)

ψri(p)
.

For any such A′, there is a unique A such that

A′ = A− pB(Σ + pC)−1B⊤.

The choice of A concludes the determination of X.
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Multiplying the quantities involved in this process, we have

#







X ∈ Symn(Z/p
k
Z) :

cok(X) ≃ G
and X ≡ X̄ (mod p)







= p(k−1)(n−r)(n+r+1)/2

√

pkr(r+1)

|G||Aut(G)|

ϕr(p)ψu(p)

ϕu(p)

s∏

i=1

√

ϕri(p)

ψri(p)

=

√

pkr(r+1)+(k−1)(n−r)(n+r+1)

|G||Aut(G)|

ϕr(p)ψu(p)

ϕu(p)

s∏

i=1

√

ϕri(p)

ψri(p)

=

√

p(k−1)n(n+1)+r(r+1)

|G||Aut(G)|

ϕr(p)ψu(p)

ϕu(p)

s∏

i=1

√

ϕri(p)

ψri(p)
.

4 Theorem 1.6 implies Theorem 1.5
In order to count the total number of matrices X ∈ Symn(Z/p

k
Z) such that

cok(X) ≃ G, we multiply the result of Theorem 1.6 by the number of residue
X̄ ∈ Symn(Z/pZ) satisfying X̄ ≃ G/pG.

Lemma 4.1. Suppose that G is a finitely generated module over Z/pkZ with
the product decomposition

G ≃
s⊕

i=1

(Z/peiZ)ri

as specified in Corollary 2.8. Then

#{X ∈ Symn(Z/p
k
Z) : cok(X) ≃ G}

=

√

pkn(n+1)

|G||Aut(G)|

ϕn(p)ψu(p)

ϕu(p)ψn−r(p)

s∏

i=1

√

ϕri(p)

ψri(p)
,

where
r = dimFp

(G/pG) =
s∑

i=1

ri

and

u = dimFp
(pk−1G) =

{

r1 if e1 = k,
0 if e1 < k.

Proof. For any residue X̄ ∈ Symn(Z/pZ), the condition cok(X̄) ≃ G/pG is
equivalent to rank(X̄) = n− r. Hence,

#{X̄ ∈ Symn(Z/pZ) : cok(X̄) ≃ G/pG} = p(n−r)(n+r+1)/2 ϕn(p)

ϕr(p)ψn−r(p)
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by Lemma 2.23. Multiplying this count by the result of Theorem 1.6, we see
that

#{X ∈ Symn(Z/p
k
Z) : cok(X) ≃ G}

= p(n−r)(n+r+1)/2

√

p(k−1)n(n+1)+r(r+1)

|G||Aut(G)|

ϕn(p)ψu(p)

ϕu(p)ψn−r(p)

s∏

i=1

√

ϕri(p)

ψri(p)

=

√

pkn(n+1)

|G||Aut(G)|

ϕn(p)ψu(p)

ϕu(p)ψn−r(p)

s∏

i=1

√

ϕri(p)

ψri(p)
.

Now we apply Lemma 4.1 to prove Theorem 1.5. We emphasize that this
argument is different than the one appearing in [5].

Proof of Theorem 1.5. Pick any k > e1, so pkG = 0. For a random matrix X
selected from Symn(Zp) with respect to additive Haar measure, its residue X ′

modulo pk is uniformly distributed in Symn(Z/p
k
Z), and cok(X) ≃ G if and

only if cok(X ′) ≃ G. Therefore, we see that

P Sym
n (λ) =

#{X ′ ∈ Symn(Z/p
k
Z) : cok(X ′) ≃ G}

|Symn(Z/p
kZ)|

= p−kn(n+1)/2

√

pkn(n+1)

|G||Aut(G)|

ϕn(p)ψu(p)

ϕu(p)ψn−r(p)

s∏

i=1

√

ϕri(p)

ψri(p)

=
1

√

|G||Aut(G)|

ϕn(p)

ψn−r(p)

s∏

i=1

√

ϕri(p)

ψri(p)

by Lemma 4.1 (note that u = 0). Since

|G| =

s∏

i=1

peiri = p|λ|

and

|Aut(G)| =

s∏

i=1

ϕri(p)

s∏

i=1

s∏

j=1

pmin(ei,ej)rirj

=

s∏

i=1

ϕri(p)
r∏

i=1

r∏

j=1

pmin(λi,λj)

=
s∏

i=1

ϕri(p)

r∏

i=1

pλi(2i−1)

= p2n(λ)+|λ|
s∏

i=1

ϕri(p)

by Lemma 2.24, we have

P Sym
n (λ) = p−n(λ)−|λ| ϕn(p)

ψn−r(p)

s∏

i=1

1

ψri(p)
.
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