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October 31, 2024

Abstract: Stochastic dynamical systems with memory are usually modeled using stochastic functional

di↵erential equations. Quantifying the probability density evolution in these systems remains an open problem

with strong practical applications. However, due to a lack of e�cient methods for computing the probability

density of stochastic functional di↵erential equations in their general form, the application of these systems

are severely restricted. We address this challenge by presenting a universal approach for computing the

evolution of probability density in a broad class of stochastic dynamical systems with memory. To verify

and illustrate the proposed approach, it is applied to compute both the transient and long time evolution of

probability density for some typical climate models.
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1 Introduction

Conventional stochastic di↵erential equations (SDEs), which have the Markovian property, are used exten-

sively to model stochastic dynamical systems without memory (i.e., the future states of the systems depend

only on the current states). One of the central tasks of stochastic dynamics is to quantify the probabilistic

behavior of the systems, which is often described by the evolution of probability density. There are well

established tools such as Fokker-Planck equations [1, 2], to predict the time evolution of probability density

for SDEs without memory.

In practice, many engineering and scientific systems are subject to both noise and memory. For example,

it is suggested in [3], from the viewpoint of mathematical modeling, that appropriate models of climate

systems should reflect the roles of both noise and memory, and thus these models are better modeled by

stochastic di↵erential equations with memory. However, the reported applications of stochastic di↵erential

equations with memory are much less compared to its counterpart without memory. The reason for this lies

partly in the fact that approaches are rarely available to predict the probabilistic behavior for SDEs with

memory. In fact, It is a well known open problem to quantify probability density in stochastic dynamical

systems with memory. Some challenges regarding this open problem are mentioned in [4, 5].

Recently, a governing equation and its numerical method was presented in [6, 7] for the probability density

of stochastic dynamical systems subject to discrete time delays of special form. However, the methods given

in [6, 7] are only applicable to discrete time delays of a special form, and su↵er from high computational

loads due to the fact that the dimensions of the governing equation increases with time.

The main objective of this paper is to develop an universal algorithm to compute the probability density

for stochastic systems modeled by a general class of stochastic functional equations.

Many stochastic dynamical systems with with discrete time delays can be modeled by the following

stochastic delay di↵erential equation (SDDE)

dX(t) = f(X(t), X(t� ⌧1), X(t� ⌧2)), · · · , X(t� ⌧m)))dt (1)

+ g(X(t), X(t� ⌧1), X(t� ⌧2)), · · · , X(t� ⌧m)))dB(t), for t > 0,

with initial data

X(t) = �(t), for �max{⌧1, ⌧2, · · · , ⌧m}  t  0, (2)

where ⌧1, ⌧2, · · · , ⌧m are m discrete time delays, X(t) is a Rd-valued stochastic process, B(t) is a Rn-valued

Brownian motion defined on some probability space (⌦,F , P ), f : R(m+1)⇥d ! Rd, g : R(m+1)⇥d ! Md⇥n

and � : [�⌧, 0] ! Rd. Here Md⇥n is the set of all d-by-n real matrices.

The SDDE defined by (1) and (2) is an important special case of the following stochastic functional

di↵erential equation (SFDE):

dX(t) = f(Xt)dt+ g(Xt)dB(t), for t > 0, (3)
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with initial data

X(t) = �(t), for � ⌧  t  0. (4)

Here, X(t) is a Rd-valued stochastic process, B(t) is a Rn-valued Brownian motion, f and g are functionals

with f : C([�⌧, 0];Rd] ! Rd and g : C([�⌧, 0];Rd] ! Md⇥n. Note that Xt, which is a C([�⌧, 0];Rd)-valued

random variable, can be expressed more accurately as Xt : [ � ⌧, 0] ! Rd, ✓ ! X(t + ✓) . Here, the main

use of Xt is to represent the segment of solution path on the interval [t� ⌧, t].

Throughout the paper, unless we state otherwise, we assume that: (i) f and g are Lipschitz continuous;

(ii) g satisfies the strong elliptic condition, i.e. there exists a constant ✏ > 0 such that ggT � ✏I. Here I is the

identity matrix. Note that under assumptions (i) and (ii), both (1) and (3) have a unique, strong solution,

and the probability densities for the solutions exists and is continuous, see [8, 9], among others, for a more

detailed discussion. In this paper, we derive an algorithm to compute the probability density associated with

(1) and (2), and (3) and (4), respectively, under assumptions (i) and (ii). Note that for our purposes, the

above assumptions (i) and (ii) can be replaced by some more relaxed conditions, although it will not be

discussed here.

The paper is is organized as follows: In Section 2, the numerical method to compute the probability density

for SDDE (1) with initial condition (2) is derived. In Section 3, the method is generalized to compute the

probability density for SDFE (3) with initial condition (4). In Section 4, convergence rate of the numerical

method with respect to the time step is discussed. Finally, in Section 5, some numerical examples are

presented to illustrate and verify the proposed algorithm.

2 The algorithm for SDDEs

In this section, we develop our algorithm to compute the probability density for SDDE (1) with initial

conditions (2). For brevity, we only consider the special case of (1) with d = 1, n = 1, and k = 2. For general

cases, the derivation is essentially the same, and will not be presented here.

With d = 1, n = 1, and k = 2, equations (1) and (2) become

dX(t) = f(X(t), X(t� ⌧1), X(t� ⌧2))dt+ g(X(t), X(t� ⌧1), X(t� ⌧2))dB(t) for t > 0 (5)

and

X(t) = �(t), for �max{⌧1, ⌧2}  t  0, (6)

respectively.

Consider N + 1 discrete time points tj (j = 0, 1, 2, · · · , N) on the time interval [0, T ] such that tj = j�t

(j = 0, 1, 2, · · · , N), where �t =
T

N
is the time step. By the Euler method, (5) and (6) can be discretized as

X̂(tk+1) = X̂(tk) + f(X̂(tk), X̂(tk�m1), X̂(tk�m2))�t+ g(X̂(tk), X̂(tk�m1), X̂(tk�m2))�Bk, (7)
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with initial values

X̂(t�j) = �(t�j) for j = 0, 1, 2, · · · ,m, (8)

where m1 = b ⌧1
�tc, m2 = b ⌧2

�tc, m = max{m1,m2}, �Bk = B(tk+1) � B(tk), and k = 0, 1, 2, · · · , N . Here,

b·c represents the floor function.

Denote ⇢A(x, t) as the probability density of X(t) given in (5) and (6), and ⇢̂Â,�t(xk, tk) as the probability

density of X̂(tk) given in (7) and (8). Here the subscript A and Â are used to explicitly indicate the inital

conditions (6) and (8) respectively. By the above definition, ⇢A(x, t) and ⇢̂Â,�t(xk, tk) can be expressed in

form of conditional densities, i.e.,

⇢A(x, t) = p(x, t
��X(s) = �(s) for � ⌧  s  0), (9)

and

⇢̂Â,�t(xk, tk) = p̂(xk, tk
��x0, t0;x�1, t�1; · · · ;x�m, t�m), (10)

where p(x, t
��X(s) = �(s) for � ⌧  s  0) represents the probability density of X(t) at X(t) = x under

the condition that X(s) = �(s) for � ⌧  s  0, p(xk, tk
��x0, t0;x�1, t�1; · · · ;x�m, t�m) represents the

probability density of X̂(tk) at X̂(tk) = xk under the condition that X̂(tj) = x�j . Note that throughout the

paper, x�j with j = 0, 1, 2, · · · ,m is a constant equal to the initial value �(t�j).

Both the weak and strong convergence of X̂(t), given in (7), to the original solution X(t), given in (5),

has been studied extensively. See [10, 11, 12], among others, for more details. Under the condtion that the

probability density exists and is continuous, either weak or strong convergence as mentioned above guarantees

the convergence of the probability density, i.e.,

8y 2 R,
��⇢̂Â,�t(y, tk)� ⇢A(y, tk)

��! 0 as �t ! 0. (11)

The convergence given in (11) provides the theoretical foundation to approximate ⇢A(y, tk), the probability

density ofX(t), by using ⇢̂Â,�t(y, tk), the probability density of X̂(t), given that the time step�t is su�ciently

small. The main goal of the proposed algorithm is to approximate ⇢A(y, tk) by designing an e�cient way to

compute p̂Â,�t(xk, tk).

It follows from (10) that

⇢̂Â,�t(xk, tk) = p̂(y, tk|x0, t0;x�1, t�1; · · · ;x�m, t�m)

=

k�1z }| {Z

R

Z

R
· · ·
Z

R
p̂(xk, tk;xk�1, tk�1; · · · ;x1, t1|x0, t0;x�1, t�1; · · · ;x�m, t�m)

k�1Y

i=1

dxi

=

k�1z }| {Z

R

Z

R
· · ·
Z

R
p̂(xk, tk|xk�1, tk�1; · · · ;x�m, t�m) p̂(xk�1, tk�1|xk�2, tk�2; · · · ;x�m, t�m)

· · · p̂(x1, t1|x0, t0; · · · ;x�m, t�m)
k�1Y

i=1

dxi.

(12)
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Equation (7) implies that X̂tk+1 depends only on X̂tk , X̂tk�m1
and X̂tk�m2

, i.e.,

p̂(xk, tk
��xk�1, tk�1;xk�2, tk�2; · · · ;x�m, t�m) = p̂(xk, tk

��xk�1, tk�1;xk�m1 , tk�m1 ;xk�m2 , tk�m2). (13)

It is straightforward to check, by using (7), that the probability density of X̂(tk+1) at X̂(tk+1) = xk+1 given

X̂(tk) = xk, X̂(tk�m1) = xk�m1 and X̂(tk�m2) = xk�m2 , can be expressed as

p̂(xk+1, tk+1|xk, tk;xk�m1 , tk�m1 ;xk�m2 , tk�m2)

=
1p

2⇡�t · g(xk, xk�m1 , xk�m2)
exp

✓
� (xk+1 � xk � f(xk, xk�m1 , xk�m2)�t)2

2�t · g2(xk, xk�m1 , xk�m2)

◆
.

(14)

Substituting (13) into (12), we get

⇢̂Â,�t(xk, tk)

=

k�1z }| {Z

R

Z

R
· · ·
Z

R
p̂(xk, tk|xk�1, tk�1;xk�m1�1, tk�m1�1;xk�m2�1, tk�m2�1))

⇥ p̂(xk�1, tk�1|xk�2, tk�2;xk�m1�2, tk�m1�2;xk�m2�2, tk�m2�2)

⇥ · · ·⇥ p̂(x1, t1|x0, t0;x�m1 , t�m1 ;x�m2 , t�m2)
k�1Y

i=1

dxi

(15)

Next we will proceed to compute the right hand side of (15) recursively. To this end, introduce a family of func-

tions Ik indexed by k (k = 1, 2, . . . , N) such that Ik : Rm+1 ! R, (z1, z2, · · · , zm+1) ! Ik(z1, z2, · · · , zm+1)

and

Ik(xk, xk�1, · · · , xk�m)

=

max{k�m�1,0}
z }| {Z

R

Z

R
· · ·
Z

R
p̂(xk, tk|xk�1, tk�1;xk�1�m1 , tk�1�m1 ;xk�1�m2 , tk�1�m2)

⇥ p̂(xk�1, tk�1|xk�1�m1 , tk�1�m1 ;xk�2�m2 , tk�2�m2)

⇥ · · ·⇥ p̂(x1, t1|x0, t0;x�m1 , t�m1 ;x�m2 , t�m2)
k�m�1Y

i=1

dxi

(16)

Note that for k�m�1  0, the right hand side of (16) just represents the integrand itself (i.e., no integrating

is performed).

Examining (16), we find that Ik can be expressed recursively as

I1(x1, x0, x�1, . . . , x1�m) = p̂(x1, t1|x0, t0;x�m1 , t�m1 ;x�m2 , t�m2), (17)

Ik(xk, xk�1, . . . , xk�m)

= p̂(xk, tk|xk�1, tk�1;xk�m1�1, tk�m1�1;xk�m2�1, tk�m2�1)

⇥ Ik�1(xk�1, xk�2, . . . , xk�m�1)

for k = 2, 3, . . . ,m+ 1,

(18)

5
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and

Ik(xk, xk�1, · · · , xk�m)

=

Z

R
p̂(xk, tk|xk�1, tk�1;xk�m1�1, tk�m1�1;xk�m2�1, tk�m2�1)

⇥ Ik�1(xk�1, xk�2, . . . , x(k�m�1) dxk�m�1

for k � m+ 2.

(19)

Given Ik defined in (17), (18) and (19), (15) can be expressed in term of Ik as

⇢̂Â,�t(xk, tk) =

8
>>>>>>>>>><

>>>>>>>>>>:

I1(x1, x0, x�1, . . . , x1�m) for k = 1,
k�1z }| {Z

R

Z

R
· · ·
Z

R
Ik(xk, . . . , x1, x0, · · · , x�(m�k))

k�1Q
i=1

dxi for 2  k  m+ 1,

mz }| {Z

R

Z

R
· · ·
Z

R
Ik(xk, xk�1, · · · , xk�m)

k�1Q
i=k�m

dxi, for k � m+ 2.

(20)

To evaluate p̂Â,�t numerically, we approximate integrals over R by integrals over the interval [�D,D], where

D is a su�ciently large constant. Then (19) and (20) become

Ik(xk, xk�1, · · · , xk�m)

=

Z D

�D
p̂(xk, tk|xk�1, tk�1;xk�1�m1 , tk�1�m1 ;xk�1�m2 , tk�1�m2)

⇥ Ik�1(xk�1, xk�2, . . . , xk�m�1) dxk�m�1

for k � m+ 2.

(21)

and

⇢̂Â,�t(xk, tk) =

8
>>>>>>>>>>><

>>>>>>>>>>>:

I1(x1, x0, x�1, . . . , x1�m) for k = 1,
k�1z }| {Z D

�D

Z D

�D
· · ·
Z D

�D
Ik(xk, . . . , x1, x0, · · · , x�(m�k))

k�1Q
i=1

dxi for 2  k  m+ 1,

mz }| {Z D

�D

Z D

�D
· · ·
Z D

�D
Ik(xk, xk�1, · · · , xk�m)

k�1Q
i=k�m

dxi, for k � m+ 2,

(22)

respectively.

Next, discretize the interval [�D,D] with M + 1 equally distanced grid points z0, z1, · · · , zM such that

zi = �D + ih, here i = 0, 1, 2, · · · ,M and h = 2D
M . Then, by using the Euler integration scheme, (21) and

(22) become

6
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Ik(xk, zik�1 , . . . , zik�m)

= h⇥
MX

ik�m�1=0

p̂(xk, tk|zik�1 , tk�1; zik�m1�1 , tk�m1�1; zik�m2�1 , tk�m2�1)

⇥ Ik�1(xk�1, zik�2 , . . . , zik�m�1)

for k � m+ 2.

(23)

and

⇢̂Â,�t(xk, tk) =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

I1(x1, x0, x�1, . . . , x1�m) for k = 1,

hk�1 ⇥

k�1z }| {
MX

ik�1=0

MX

ik�2=0

· · ·
MX

i1=0

Ik(xk, . . . , zi1 , x0 . . . , x�(m�k)) for 2  k  m+ 1,

hm ⇥

mz }| {
MX

ik�1=0

MX

ik�2=0

· · ·
MX

ik�m=0

Ik(xk, zik�1 , . . . , zik�m) for k � m+ 2,

(24)

respectively.

Substituting (14) into (17), (18), and (23), respectively, we get

I1(x1, x0, x�1, . . . , x1�m)

=

✓
1p

2⇡�t · g(x0, x�m1 , x�m2)

◆
exp

(x1 � x0 � f(x0, x�m1 , x�m2)�t)2

2�t · g2(x0, x�m1 , x�m2)

for k = 1,

(25)

Ik(xk, zik�1 , . . . , zi1 , x0, . . . , x�(m�k))

=

 
1p

2⇡�t · g(zik�1 , z
⇤
k�m1�1, z

⇤
k�m2�1))

!
exp

(xk � zik�1 � f(zik�1 , z
⇤
k�m1�1, z

⇤
k�m2�1))�t)2

2�t · g2(zik�1 , z
⇤
k�m1�1, z

⇤
k�m2�1))

⇥ Ik�1(xk�1, zik�2 , . . . , zi1 , x0, . . . , x�(m�k�1))

for 2  k  m+ 1,

(26)

Ik(xk, zik�1 , . . . , zik�m)

=

✓
2D

M

◆
⇥
 

1p
2⇡�t · g(zik�1 , zik�m1�1 , zik�m2�1)

!

⇥
MX

ik�m�1=0

(
exp

 
(xk � zik�1 � f(zik�1 , zik�m1�1 , zik�m2�1)�t)2

2�t · g2(zik�1 , zik�m1�1 , zik�m2�1)

!
Ik�1(xk�1, zik�2 , . . . , zik�m�1)

)

for k � m+ 2,

(27)
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where z⇤s in (26) is defined as being equal to zis for s � 1, and being equal to xs for s  0.

Combining (25), (26), (27) and (24), we get the proposed algorithm to compute ⇢̂Â,�t(xk, tk). The steps

to implement the algorithm are as below:

Algorithm: Compute the probability density associated with SDDE (1) with initial condition (2).

Input: T , D, N , M , f and g. Here, N + 1 is the number of time nodes, M + 1 is the number of

space nodes, f and g are functions used in the coe�cients of (1).

Output: ⇢̂Â,�t(xk, tk), which is the numerical solution to the probability density of X(t)

1 Initialize time step �t = T
N , and space step h = 2D

M

2 for k = 0 to N do

3 set tk = k�t

4 for k = 0 to M do

5 compute Ik by using (25), (26) and (27)

6 Get ⇢̂Â,�t(xk, tk) by using (24)

7 Output ⇢̂Â,�t(xk, tk)

3 The algorithm for SFDEs

In this section we shall derive the algorithm to compute the probability density for SFDE (3) with X(t)

being a scalar process. For more general cases of (3) with X(t) being a Rd-valued process, the derivation is

essentially the same and will be omitted here for brevity.

Equation (3), with X(t) being a scalar process, becomes

dX(t) = f(Xt)dt+ g(Xt)dB(t), for t > 0, (28)

with the initial conditions

X(t) = �(t), for � ⌧  t  0, (29)

where B(t) is a scalar Brownian motion, X(t) is a scalar process, Xt is a C([�⌧, 0],R)-valued random varible,

f and g are functionals with f : C([�⌧, 0];R) ! R and g : C([�⌧, 0];R) ! R. Recall that Xt can be expressed

more clearly as Xt : [� ⌧, 0] ! Rd, ✓ ! X(t+ ✓).

Consider N + 1 discrete time points tj (j = 0, 1, 2, · · · , N) on the time interval [0, T ] such that tj = j�t

(j = 0, 1, 2, · · · , N), where �t =
T

N
is the time step. By the Euler method, (28) and (29) can be discretized

as

X̂(tk+1) = X̂(tk) + f(X̂tk)�t+ g(X̂tk)�Bk, for k > 0, (30)

8
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with initial conditions

X̂(tk) = �(tk), for �m  k  0, (31)

where, m = b ⌧
�tc, �Bk = B(tk+1) � B(tk), k = 0, 1, 2, · · · , N . As used here, X̂tk is a C([�⌧, 0];R)-valued

random variable defined as the linear interpolation of X̂(tk�m), X̂(tk�m+1), · · · , X̂(tk), i.e.,

X̂tk(✓) =
ti+1 � ✓

�t
X̂(tk+i+1) +

✓ � ti
�t

X̂(tk+i),

for i�t  ✓  (i+ 1)�t, i = �m,�(m� 1), · · · ,�1.

(32)

It follows from (32) that the coe�cients f(X̂tk) and f(X̂tk) in (30) can be regarded as functions of X̂(tk�m),

X̂(tk�m+1), · · · , X̂(tk). Introduce functions f̃ : Rm+1 ! R and g̃ : Rm+1 ! R such that

f(X̂tk) = f̃(X̂(tk�m), X̂(tk�m+1), · · · , X̂(tk)) (33)

and

g(X̂tk) = g̃(X̂(tk�m), X̂(tk�m+1), · · · , X̂(tk)), (34)

then (30) can be rewritten as

X̂(tk+1) =X̂(tk) + f̃(X̂(tk�m), X̂(tk�m+1), · · · , X̂(tk))�t

+ g̃(X̂(tk�m), X̂(tk�m+1), · · · , X̂(tk))�Bk, for k > 0,
(35)

with initial conditions

X̂(tk) = �(t�k), for �m  k  0. (36)

Denote qA(x, t) as the probability density of X(t) defined by (28) and (29), and q̂Â,�t(xk, tk) as the prob-

ability density of X̂(tk) defined by (35) and (36). Here the subscripts A and Â are used to explicitly indicate

the initial conditions (29) and (36), respectively. Note that ⇢A(x, t) and ⇢̂Â,�t(xk, tk) can be expressed as

qA(x, t) = q(x, t
��X(s) = �(s) for � ⌧  s  0), (37)

and

q̂Â,�t(x, t) = q̂(xk, tk
��x0, t0;x�1, t�1; · · · ;x�m, t�m), (38)

where q(x, t
��X(s) = �(s) for � ⌧  s  0) represents the probability density of X(t) at X(t) = x under

the condition that X(s) = �(s) for � ⌧  s  0, and q̂(xk, tk
��x0, t0;x�1, t�1; · · · ;x�m, t�m) represents

the probability density of X̂(tk) at X̂(tk) = xk under the condition that X̂(tj) = x�j . Similar to Section 3,

x�j , with j = 0, 1, 2, · · · ,m, is a constant equal to the initial value �(t�j).

The strong convergence of X̂(tk), as given by (35) and (36), to X(tk), as given by (28) and (29), is proven

in [12]. Assuming the probability density of X(tk) in (28) exists and is continuous, the strong convergence

mentioned above guarantees the convergence of probability density, i.e.,

8y 2 R,
��q̂Â,�t(y, tk)� qA(y, tk)

��! 0 as �t ! 0. (39)
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Hence we see that q̂Â,�t(y, tk) can be used to approximate qA(y, tk) when �t is su�ciently small, and it

only remains to devise a method to compute q̂Â,�t(xk, tk) e�ciently. Notice that equations (35) to (39) in

this section correspond to equations (7) to (11) in Section 3. Following the same procedure as in Section 3,

where we derived the algorithm given by (25), (26), (27) and (24) starting from equations (7), (8) and (11),

we can start from equations (35), (36), (39) to derive the following algorithm for computing q̂Â,�t(xk, tk),

the probability density of SDE (35):

I1(zi1 , x0, x�1, . . . , x1�m)

=

✓
1p

2⇡�t · g̃(x0, x�1, . . . , x�m)

◆
exp

(zi1 � x0 � f̃(x0, x�1, . . . , x�m)�t)2

2�t · g̃2(zi1 , x0, x�1, . . . , x�m)

for k = 1,

(40)

Ik(zik , zik�1 , . . . , zi1 , x0, . . . , x�(m�k))

=

 
1p

2⇡�t · g̃(zik�1 , . . . , zi1 , x0, . . . , x�(m�k))

!
exp

(zik � zik�1 � f̃(zik�1 , . . . , zi1 , x0, . . . , x�(m�k))�t)2

2�t · g̃2(zik�1 , . . . , zi1 , x0, . . . , x�(m�k))

⇥ Ik�1(zik�1 , zik�2 , . . . , zi1 , x0, . . . , x�(m�1�k))

for 2  k  m+ 1,

(41)

Ik(zik , zik�1 , . . . , zik�m)

=

✓
2D

M

◆
⇥
 

1p
2⇡�t · g̃(zik�1 , zik�2 , · · · , zik�m�1)

!

⇥
MX

ik�1=0

(
exp

 
(zik � zik�1 � f̃(zik�1 , zik�2 , · · · , zik�m�1)�t)2

2�t · g̃2(zik�1 , zik�2 , · · · , zik�m�1)

!
Ik�1(zik�1 , zik�2 , · · · , zik�1�m)

)

for k � m+ 2.

(42)

q̂Â,�t(xk, tk) =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

I1(zi1 , x0, x�1, . . . , x1�m) for k = 1,

hk�1 ⇥

k�1z }| {
MX

ik�1=0

MX

ik�2=0

· · ·
MX

i1=0

Ik(zik , . . . , zi1 , x0 . . . , x�(m�k)) for 2  k  m+ 1,

hm ⇥

mz }| {
MX

ik�1=0

MX

ik�2=0

· · ·
MX

ik�m=0

Ik(zik , zik�1 , . . . , zik�m) for k � m+ 2.

(43)

Comparing (25), (26), (27) and (24), which express the algorithm for SDDE (1) given in Section 2, with

(40), (41), (42) and (43), which express the algorithm for SFDE (3), we observe that they are structurally

identical. The sole distinction lies in the notation: f and g are used for the former while f̃ and g̃ are used
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for the latter. Consequently, the steps to implement the algorithm for SFDEs are the same as the steps to

implement it for SDDEs, which were outlined at the end of Section 2.

4 Remarks on the convergence rate

The convergence for the algorithms proposed in Sections 3 and 4 is shown by (11) and (39), respectively.

However, the convergence rate of the algorithm is not clear so far.

Convergence rate of the weak convergence and strong convergence for the Euler method has been studied

extensively. In contrast, research results on the convergence rate for probability density are much rarer. It

is shown in [13] that, under some Hormander type condition, the convergence rate of probability density for

stochastic di↵erential equations driven by Brownian motion and without memory is of the first order, but

the convergence rate of probability density for SDEs with memory has not been proven so far.

Our numerical simulations suggest that the convergence rate of probability density for SFDEs with mem-

ory is of the first order, provided that f and g are smooth in addition to assumptions (i) and (ii) as mentioned

in the introduction, i.e.,

8y 2 R,
��⇢̂Â,�t(y, tk)� ⇢A(y, tk)

��  C�t as �t ! 0, (44)

8y 2 R,
��q̂Â,�t(y, tk)� qA(y, tk)

��  C�t as �t ! 0. (45)

However, a rigorous proof of (44) and (45) is a nontrivial task and will be left for our future work.

5 Numerical Examples

Three examples are provided in this section to illustrate and verify the proposed algorithm. Example 1

is a toy example, where the analytical solution is available to test the proposed algorithm. In Example 2,

the probability density of an SFDE with continuous time delay is considered. In Example 3, the proposed

algorithm is applied to an SDDE—the stochastic EINO model, revealing its density evolution into the steady

state.

Example 1 Consider the following SDDE,

8
><

>:

dX(t) = X(t� ⌧)dt+ dB(t),

X(t) = 0, �⌧  t  0,
(46)

where X(t) is a R-valued process, and B(t) is the standard scalar Brownian motion. Note that (46) is a

special form of SDDE (1) with ⌧1 = ⌧2 = · · · = ⌧m and a di↵usion coe�cient of 1.

The analytical solution is available for SDDE (46) for t 2 (0, 2⌧ ]. In fact, it is straightforward to check
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that the solution to (46) is

X(t) =

8
><

>:

B(t), for t 2 (0, ⌧ ],

(t� ⌧)B(t� ⌧) +B(t)�
R t�⌧
0 sdB(s), for t 2 (⌧, 2⌧ ],

(47)

and the probability density for the solution X(t) is

PA(x, t) =

8
>><

>>:

1p
2⇡t

exp

✓
�x2

2t

◆
. for t 2 (0, ⌧ ],

p
3p

2⇡ ((t� ⌧)3 + 3⌧ � 1)
exp

✓
� 3x2

2((t� ⌧)3 + 3⌧ � 1)

◆
, for t 2 (⌧, 2⌧ ].

(48)

Table 1: Convergence order of the proposed algorithm.

�t Err(�t) r = log2

⇣
Err(2�t)
Err(�t)

⌘

1/5 0.0109 ⇤

1/10 0.0054 1.01

1/20 0.0027 1.00

Now we solve equation (46) using the numerical method presented in Section 2. The analytical solution

and numerical solution to the probability density at t = 0.4 are compared in Figure 1. In the numerical

computation, ⌧ = 0.2, the time step is 1
20 , the space step is 1

10 , and the space domain is [�3.5, 3.5]. It can

be seen from Figure 1 that the numerical solution agrees very well with the analytical solution.

The errors and convergence orders for the numerical solutions with di↵erent time steps are listed in

Table 1, where the errors (the 2nd column) are defined as the square root of the mean square error at all

space grid points, and convergence order (the 3rd column) for time step �t is defined by r = log2

⇣
Err(�t)
Err(2�t)

⌘
.

The space step �x = 1
10 is fixed while the time step �t is chosen as 1

5 ,
1
10 and 1

20 , respectively. Table 1 shows

that the proposed algorithm has a first order convergence with respect to the time step.

Example 2 Consider the following SFDE,

8
><

>:

dX(t) = �
�R ⌧

0 X(t� s) ds
�
dt+

�R ⌧
0 (1 + 0.5 cos(X(t� s))) ds

�
dB(t),

X(t) = �0.1, �⌧  t  0.
(49)

Take ⌧ = 0.2. The probability density for (49) is computed using the algorithm proposed in Section 3. In

the numerical computation, the time step is 1/20, the space step is 1/10, and the space domain is [�1, 1]. The

probability density at t = 0.5 obtained by the proposed algorithm is compared with that obtained by Monte

Carlo simulations, as shown in Figure 2. It can be seen from the Figure that the results of the proposed

method are consistent with that of Monte Carlo simulations.

Example 3 Consider the following simplified model for EI-Nino Southern Oscillation (ENSO), [14, 15],
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Figure 1: Probability density for SDDE (??) at t = 0.5.

Figure 2: Probability density for SDDE (49) at t = 0.5.
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Figure 3: Probability density of SDDE (50) at t = 2

with additive noise,

8
><

>:

dX(t) =
�
X(t)�X3(t)� ↵1X(t� ⌧1)� ↵2X(t� ⌧2)

�
dt+ dB(t), for t > 0,

X(t) = �0.1, �⌧  t  0.
(50)

where ⌧1 and ⌧2 are the nondimensional delays. Here, we take ⌧1 = 0.2, ⌧2 = 0.4, and ↵1 = ↵2 = 0.1.

The deterministic model corresponding to (50) has two stable equilibriums at x = (1 � ↵1 � ↵2)1/2 and

x = �(1� ↵1 � ↵2)1/2, and one unstable equilibrium at x = 0.

The probability density for (50) is solved for by the proposed algorithm in Section 2. In the computation,

both the time step and the space step is 1/10. Time evolution of the probability density is shown in Figure

3. It can be seen from the figure that the probability density gradually becomes steady after some period of

drastic transition. Note that Figure 3 does not show the values of p(x, t) for t  0.5 since it is already known

that the density function is approximately the delta function when t is small, and we are mainly interested

in the evolution of the probability density for values of t not close to 0. Figure 4 shows that the probability

density at t = 2 by the proposed algorithm is consistent with that by Monte Carlo simulations.

6 Conclusion

Quantifying the density evolution in a stochastic system is a central task for stochastic dynamics. Stochas-

tic functional di↵erential equations are appropriate models for stochastic dynamical systems with memory.
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Figure 4: Evolution of probability density for SDDE (50)

However, the application of SFDEs is severely restricted due to the fact that there is no e�cient algorithm

to compute its density evolution. A universal algorithm is presented in this paper to compute the probability

density for SDDE (1) and SFDE (3). This algorithm provides an e�cient method for predicting transitional

and long-term probabilistic behavior in a general class of stochastic systems with memory, thus demonstrat-

ing significant potential for widespread applications. We intend to explore these applications further in our

future work.
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sdes under hörmander’s condition. Journal of Functional Analysis, 281(11):109225, 2021.
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