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Abstract: Stochastic dynamical systems with memory are wsually" modeled, using stochastic functional
differential equations. Quantifying the probability density evolution in these systems remains an open problem
with strong practical applications. However, due to a lack/of efficient methods for computing the probability
density of stochastic functional differential equations in their general form, the application of these systems
are severely restricted. We address this challenge by presenting a universal approach for computing the
evolution of probability density in a broad class.ef stochastic dynamical systems with memory. To verify
and illustrate the proposed approach, it is applied‘to compute both the transient and long time evolution of

probability density for some typical climate models.
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1 Introduction

Conventional stochastic differential equations (SDEs), which have the Markovian property, are used exten-
sively to model stochastic dynamical systems without memory (i.e., the future states of the systems depend
only on the current states). One of the central tasks of stochastic dynamics is to quantify the prebabilistic
behavior of the systems, which is often described by the evolution of probability density. There are-well
established tools such as Fokker-Planck equations [1, 2], to predict the time evolution of probability density
for SDEs without memory.

In practice, many engineering and scientific systems are subject to both nois¢'and memory. For example,
it is suggested in [3], from the viewpoint of mathematical modeling, that ‘appropriate models of climate
systems should reflect the roles of both noise and memory, and thus these models.are better modeled by
stochastic differential equations with memory. However, the reported applications of stochastic differential
equations with memory are much less compared to its counterpart without memory./The reason for this lies
partly in the fact that approaches are rarely available to prediet the probabilistic behavior for SDEs with
memory. In fact, It is a well known open problem to quantify=probability density in stochastic dynamical
systems with memory. Some challenges regarding this epensproblem aré mentioned in [4, 5].

Recently, a governing equation and its numerical method was presented in [6, 7] for the probability density
of stochastic dynamical systems subject to discrete time delays of special form. However, the methods given
in [6, 7] are only applicable to discrete time delays of .a special form, and suffer from high computational
loads due to the fact that the dimensions/of'the governing equation increases with time.

The main objective of this paper is'to.develop-an universal algorithm to compute the probability density
for stochastic systems modeled by a general class of stochastic functional equations.

Many stochastic dynamical, systems with with discrete time delays can be modeled by the following

stochastic delay differential«equation (SDDE)

dX(t) =3 f(X(t), X(t N 7-1)7 X(t - 7—2))1 T 7X(t - Tm)))dt (1)

+g(X(t)aX(t»Tl)aX(thQ))a"' 7X(t*Tm)))dB(t)v for ¢ >0,
with initial’data
X(t) =~(), for —max{m,m, - ,Tm}<t<0, (2)

where 744 To, +* -, T, are m discrete time delays, X (t) is a R%valued stochastic process, B(t) is a R™-valued
Brownian motion defined on some probability space (€, F, P), f : RintDxd , Rd g . Rim+Dxd _ pqdxn
and vy :[-7,0] =+ R%. Here M?*™ is the set of all d-by-n real matrices.

The SDDE defined by (1) and (2) is an important special case of the following stochastic functional
differential equation (SFDE):

AX(t) = f(X,)dt + g(X;)dB(t), for t>0, (3)



with initial data
X(t) =), for —7<t<0. )

Here, X (t) is a R%valued stochastic process, B(t) is a R™-valued Brownian motion, f and g aresfunctionals
with f : C([~7,0];RY] — R? and g : C([~7,0]; RY — M9*". Note that X;, which is a C([—7,0]; R%)-valued
random variable, can be expressed more accurately as X; : [— 7,0] — R%, 6 — X (¢t + 0) . Here, the main
use of X; is to represent the segment of solution path on the interval [t — 7,¢].

Throughout the paper, unless we state otherwise, we assume that: (i) f and g.are Lipschitz/continuous;
(ii) g satisfies the strong elliptic condition, i.e. there exists a constant ¢ > 0 such that gg” > eI. Here I is the
identity matrix. Note that under assumptions (i) and (ii), both (1) and (3) have a unique, strong solution,
and the probability densities for the solutions exists and is continuous, see [8, 9], among ethers, for a more
detailed discussion. In this paper, we derive an algorithm to compute the probability density associated with
(1) and (2), and (3) and (4), respectively, under assumptions i) and“(ii). Note that, for our purposes, the
above assumptions (i) and (ii) can be replaced by some more relaxed conditions, although it will not be
discussed here.

The paper is is organized as follows: In Section 2, thenumerical method to'ecompute the probability density
for SDDE (1) with initial condition (2) is derived./In Section 3,/the method is generalized to compute the
probability density for SDFE (3) with initial condition (4). In Section 4, convergence rate of the numerical
method with respect to the time step is discussed. Finally, in Section 5, some numerical examples are

presented to illustrate and verify the proposed algorithm.

2 The algorithm for SDDEs

In this section, we develop our algorithin to compute the probability density for SDDE (1) with initial
conditions (2). For brevity, we only consider the special case of (1) with d =1, n =1, and k = 2. For general
cases, the derivation is essentially the same, and will not be presented here.

With d = 1, n = 1yand k = 2, equations (1) and (2) become
AX (1) = fIX (£)eX(t = 7), X(t — m))dt + g(X(£), X (t — 71), X(t — 72))dB(t) for t>0 (5
and
X(t) =~(t), for —max{r,m}<t<0, (6)

respectively.
Consider IV + 1 discrete time points ¢t; (j =0,1,2,--- ,N) on the time interval [0, T] such that ¢; = jAt
T
(j =0,1,2,5:- ,N), where At = N is the time step. By the Euler method, (5) and (6) can be discretized as

X (trgr) = X(tr) + FX (), X (temmy )y X (trmma )AL + (X (t), X (temmy ), X (th—mo))ABy,  (7)



with initial values

X(t—]) :7(t—j) for .] 2071,2, , M, (8)

where my = | & ], mo = | &, m = max{mi,ma}, ABy = B(ty41) — B(tx), and k = 0,1,2,--., N."Here,
|| represents the floor function.

Denote p4(z,t) as the probability density of X (¢) given in (5) and (6), and p 4 A, (zk, tx) as the probability
density of X (t) given in (7) and (8). Here the subscript A and A are used to explicitly indicate the inital
conditions (6) and (8) respectively. By the above definition, p(z,t) and p 4 A,(2k, t) can be-expressed in

form of conditional densities, i.e.,
pa(w,t) = p(a,t|X(s) =7(s) for —7<s<0) (9)
and

Paac(Trste) = ﬁ(l'kﬁk‘xmto;«%'fht-l; s, tem), (10)

where p(z,t|X(s) =v(s) for —7 < s <0) represents the probability density of X (t) at X (t) = = under
the condition that X(s) = y(s) for —7 < s <0, p(xk,tklmo,to;x_l,tAl; T _m,t_m) Tepresents the
probability density of X (t) at X (t) = x under the condition that X (¢;) = _;. Note that throughout the
paper, z_; with j =0,1,2,--- ,m is a constant equal to the initial value %(t_;).

Both the weak and strong convergence of /X (£); given in (7); to.the original solution X (¢), given in (5),
has been studied extensively. See [10, 11, 12], among others, for more details. Under the condtion that the
probability density exists and is continuous, either weak or strong convergence as mentioned above guarantees

the convergence of the probability. density;.i.e.,

Yy € R, |;3A,At(y,tk)—p,4(y,tk)|—>0 as At —0. (11)

The convergence given'in (11) provides the theoretical foundation to approximate p_4(y, tx), the probability
density of X (t), by using p“A’At(y, tr), the probability density of X(t)7 given that the time step At is sufficiently
small. The main“goal of the proposed algorithm is to approximate p4(y, tx) by designing an efficient way to
compute ﬁAAt(a:k., t)-

It follows from (10) that

pAA,At('rlwtk:) =2 ﬁ(y,fk|$07t0;33—1,t—1; e ;x—nut—nL)

k-1
://"'/ﬁ(xkatk§$k—1atk—1§'" sy, t|o, to w1t Ty b)) [ ] da
R/E JR -1

k-1 (12)
———
://"'/ﬁ(wk,tk\xk—l,tk—l;“' ST, tom) P(Th—1, th—1|Th—2,th—2; T, tm)
R JR R
k-1
s plan,talo,tos 3Ty tom) [ ] dae
i=1



Equation (7) implies that th“ depends only on X, , thfm and th,mz, ie.,

D(Tg, th ’561%1, the13 T2, L2535 Ty b)) = D@k, L ’»”61%17 b1 Th—my > Loy} Th—ma th—ms )4 ((13)

It is straightforward to check, by using (7), that the probability density of X (tx41) at X (tpy1) = g given

X(tr) = 2k, X(them,) = Thm, and X (tx_m,) = Tk_m,, can be expressed as

D@kt 1 Lot 1 [Tk, L3 Thmmy s th—ma s Thema s th—ms)

1 exp (_ (Th1 — Tp — f(mk,xk_ml,xk_mQ)Aty) (14)
\/M. g(xk’xk_ml’xk_WZ) 2At - QZ(xkaxk—mlvxk—ﬂw)

Substituting (13) into (12), we get

P ant(@h: )

k—1
—
://"'/ﬁ(mlmtkm'kflatkflﬂﬂkfmlflatk—mlfl;xkfmz—lytk~m2-1))
R JR R

X P(@p—1, te—1|Th—2, -2} Thmmy —2, Lh—my =2} Th—mo—25Lh—ms—2)
k—1

X o X P21, 1120, E05 Ty s T iy} & Sy t—my) H da;
i=1

Next we will proceed to compute the right hand side of (15) recursively. To this end, introduce a family of func-
tions I, indexed by k (k =1,2,..., N) such that I, : R™tL 5 Ry (21,20, -+, 2ma1) — Te(21, 22, Zma1)
and

Ik(xkvxkflu e 7xkfm)

max{k—m—1,0}
—_———

= /// D(Thes th| T 19 bk —13 Th—1—mas th—1—my 5 The1—mo > Lh—1—mo)
R JR R

X P —1 to— 1T —A—mis b1 —my ; Th—2—mas th—2—ms)

(16)

k—m—1
Xoe ><ﬁ(l'l)tl|x0;t0;x—mlat—ml;x—mgat—mg) H dxl
i=1

Note that for k—m —1 < 0,'the right hand side of (16) just represents the integrand itself (i.e., no integrating
is performed).

Examining (16), we find that I can be expressed recursively as

11(331,3307$—17 ey xl—m) = ﬁ(x17t1|$05 tO; x—7n17t—m1;x—7n27 t—mg): (17)

Ik(l'k,xk—l; Ce ,xk_m)
= ﬁ(xkvtk|xk—17tk—l;‘Tk—ml—lvtk—ml—l;xk—mz—lytk—m2—1>
X Iy 1(Th—1,Th—2, ., Thom—1)

for k=2,3,....,m+1,



and
In(zk, Th—1, -+, Them)

:/ﬁ(xk,tk\xk—htk—l;xk—ml—btk—m1—1;$k—m2—1,tk—m2—1)
R

(19)
X It (Th—1, T2, - -+, T(hemn—1) ATh—p—1
for k>m+ 2.
Given I}, defined in (17), (18) and (19), (15) can be expressed in term of I as
Il(xlaanx—lw"vwl—m) for k:17
k—1
k-1
PAA,At(iﬂkvtk)Z /R/R.../Rfk(xk,...,.731,.1:07-” ,xf(mfk)) 1:[1 dz; for 2<EkE <m+1, (20)
~ k—1
//~-~/Ik(xk,xk_1,~-- s Tg—m) 1] “das, for. k> m +2.
R JR R i=k=m

To evaluate p 4 5, numerically, we approximate integrals over'R by integrals over the interval [—D, D], where

D is a sufficiently large constant. Then (19) and (20) become
Ii(@k, To—1, "+, Th—m)

D
=/ D(@hos | Th—15 th—15 The 1y s k1 =15 Thoe1—mg > Le—1—ms )

-D
X Ty 1(Th—1, T2y . Thtie1) dTr 1
for k> m2.
and
Il(xl,l‘(),l‘_l,...,fﬂl_m) for k= 1,
k=1
—_———
D D D k—1
ﬁA7At<xk7tk): / / Ik(l‘k,...7.’131,$0,-~-,.’L’,(m,k)) H dz; for 2<k<m+1,
-D.J-D -D i=1
m
—_—
D D D E—1
/ / / I(xp, op—1,- - ,2p—m) [ da;, for k>m+2,
_DJ-D -D i=k—m
respectively.

Nexty discretize the interval [—D, D] with M + 1 equally distanced grid points zg, 21, -

(22)

, zp such that

Zpn= —D +9h, here+ = 0,1,2,--- | M and h = %. Then, by using the Euler integration scheme, (21) and

(22) become



Ik(xb Rig_1s s Zik—m,)
M
= h X E p(xk‘;tk“zik_lvtkfl;Zik_ml_lvtk‘fmlfl;Zik_m2_17tk7m271)

ik—m—1=0
X kal(xkfla Rig_oy+ Zik:—m,—l)

for k>m+2.

and
11(1’1,330,33_1,.-.7331_7”) for k:17
k—1
M M M
. hE—1 x I (%, oo 2iy X0 - T for'r 2L ke<m+1
SIVTTIN LR ol ol oY TERRSIN ooy P
’ ik—1=017,_2=0 i1=0
m
M M M
h™ x Z Z Z I (xk, 2 ys e s Zi ). fOTT K >m + 2,
i—1=01k—2=0 ik —m=0

respectively.

Substituting (14) into (17), (18), and (23), respectively, we ‘get

Il(;vl,xo,cc_l, e ,.Z‘l_m)
_ < 1 ) b (xl — Ty — f(ZOa x—mlax—m'z)At)Q
\ 27TAt'g(x07x—’m,17x—mg) 2At'92(l‘0’l’,m17.’1},m2>
for k=1,
Tn (g, Zig_y s s 2iy 2805 -+ > TL (il k)

_ 1 exp (xk = Ry f(zik—l ’ Z;::fmlfl’ ZZ—mg—l))At)2
V2T At g(zikf1 , z,’;_ml_l, z;7m271)) 2At - QQ(Zikfuzzfmlfl’ z;—mg—l))

X Ik—l(zk—h Rijgmny =21 Rl L0y - -+ ax—(m—k:—l))

for 2 <k <m+1,

I(@k, 2iy 4 s o o5 Zin_)

X (217) . 1
M V2rAt - g(zik—l ) Zik—m,l—l’zik—mz—l)

M 2
T — Zig_y — S (Zin_1s Zinns 13 Zigme 1 )AL
X Z {exp <( Tk—1 f( U —1 1k 1—1 Uk 2 1) ) > Ik_l(.$k_17 Zik72’ . Z,Lkml)}

. a2( 2. . .
ik m_1=0 2At g (lecfl’Zlkfm,l—l’zlk—mz—l)

for k>m+2,

(23)

(24)

(26)

(27)



where z¥ in (26) is defined as being equal to z;_, for s > 1, and being equal to z, for s < 0.
Combining (25), (26), (27) and (24), we get the proposed algorithm to compute p; o,(zx,tx). The'steps

to implement the algorithm are as below:

Algorithm: Compute the probability density associated with SDDE (1) with initial condition (2).
Input: T, D, N, M, f and g. Here, N + 1 is the number of time nodes, M + 1 is the number of

space nodes, f and g are functions used in the coefficients of (1).
Output: p 4 A,(2k, 1), which is the numerical solution to the probability density of X (t)
1 Initialize time step At = %, and space step h = %
2 for k=0 to N do
3 L set t, = kAt

4 for k=0 to M do
5 L compute [, by using (25), (26) and (27)

[«

Get p 4 ar(Tk, tr) by using (24)

~

Output ﬁA,At(xkv tr)

3 The algorithm for SFDESs

In this section we shall derive the algorithm to compute the probability density for SEDE (3) with X (¢)
being a scalar process. For more general cases of (3)-with X (¢) being a R%-valued process, the derivation is
essentially the same and will be omitted here for brevity.

Equation (3), with X () being a scalar process;becomes
dX (t) = £(Xy)dt + g(Xy)dB(t), for t>0, (28)
with the initial conditions
X(t)=~(), for —7<t<0, (29)

where B(t) 8 a scalar/Brownian motion, X (¢) is a scalar process, X; is a C([—, 0], R)-valued random varible,
f and g.arefunctionals with f : C([-7,0];R) = R and g : C([-7,0];R) — R. Recall that X; can be expressed
more clearly as Xy: [—7,0] - R4 6 — X(¢t+0).

Consider V + 1 discrete time points ¢t; ( =0,1,2,--- ,N) on the time interval [0, T] such that ¢; = jAt
(j =0,152, % ,N), where At = % is the time step. By the Euler method, (28) and (29) can be discretized

as

X(tey1) = X(tg) + f(Xe At + g(X;, )ABg, for k>0, (30)



with initial conditions
X(tg) =7(ty), for —m<k<O0, (31)

where, m = | 53], ABy = B(tyq1) — B(tx), k = 0,1,2,--- ,N. As used here, X,, is a O([—, 0;R)-valued

random variable defined as the linear interpolation of X (tx—_m), X (tk—ma1)s - » X (tr), i€
. tiv1 — 0 , 0—t; &
X, (0) = HAt X (tetit1) Al (th+i)s

(32)
for iIAt<O<(i+1)At i=-m,—(m—1),---,—1.

It follows from (32) that the coefficients f(X;,) and f(Xy,) in (30) can be regarded as functions of X (tx_m),

X(tk—my1), - -+ X (tx). Introduce functions f : R+ — R and § : R™*! < Réuch that

F(Xe) = FX (trmm)s X (temme1)s - X () (33)
and

9(Xt) = §(X (temm)s X (Brmm 1) X (1)), (34)

then (30) can be rewritten as

R (trr) =X () + FX () Kl s1), - 4 X (BRNAL )
+ G(X (them)s X (Lot 1), - A X (#))ABy, for k>0,
with initial conditions
X(tg) =(t_p),/ Mord —m <k <0. (36)

Denote g4(x,t) as the probability.density of X (¢)'defined by (28) and (29), and ‘jA,At(Ik’ tx) as the prob-
ability density of X (t) defined.by (35) and'(36). Here the subscripts A and A are used to explicitly indicate

the initial conditions (29) and (36), respectively. Note that pa(z,t) and p 4 o,(2k, k) can be expressed as
qalx,t) = q(ac,t|X(s) =~(s) for —7<s5<0), (37)
and

(jA’At(Iat) = (j(xk»tk|l'07t0; 1',1,15,1; o ;.’E,mﬂf,m% (38)

where g(z, /X (s) = #(s) “for —7 < s <0) represents the probability density of X(t) at X (t) = = under
the condition that X(s) = v(s) for —7 <s <0, and Q(xk,tk‘xo,to;x,ht,l; 3T, t_m) represents
the probability density of X (t) at X (t) = x; under the condition that X (¢;) = z_;. Similar to Section 3,
rag, with =0,1,2,--- ,m, is a constant equal to the initial value v(t_;).

Theé strong convergence of X (t;.), as given by (35) and (36), to X (t1), as given by (28) and (29), is proven
n [12]). Assuming the probability density of X (¢;) in (28) exists and is continuous, the strong convergence

mentioned above guarantees the convergence of probability density, i.e.,

Yy €R, |q4na(with) — qaly,te)] =0 as At —0. (39)



Hence we see that (}Am(y, tx) can be used to approximate g4(y, tx) when At is sufficiently small, and(it
only remains to devise a method to compute ch}At(ack,tk) efficiently. Notice that equations (35) to (39)uin
this section correspond to equations (7) to (11) in Section 3. Following the same procedure as in Section'3,
where we derived the algorithm given by (25), (26), (27) and (24) starting from equations (7), (8)*and (11);
we can start from equations (35), (36), (39) to derive the following algorithm for computing § 4 A, (Zx, tk);

the probability density of SDE (35):

Il(zilvx()vxfla"';xlfm)
1 i =20 — f(20, Tt LT ) A2
_ ( _ )exp (2, -1‘0~2 f(zo, o1 Z ) ) (40)
V2mAL - G(xo, 1, T ) 2At - §%(2i,, o, T 20, 0, T_i)
for k=1,
Ik‘(z’ikazik717'"7zilﬂm0?"'7x7(m7k}))
_ 1 ox (Zik e f(Zikfl, iy Zi s LOy e e ,x_(m_k))At)z
\/27TAt'g(Zik_l,...,Zil,$07...,$_(m_k)) 2At'gQ(Zik_lv--~7Zi1ax0a-~-a$7(m7k¢))
X kal(zik_lazik_27 sy Zigy LOy - - 7x—(m—1—k))
for 2<k<m+1,
(41)
Ik(zik7zik—17 R Zik—nz)
- (w) ) |
M v 27TAt'§(Zik—172ik—27"' vzik—m—l)
M . ) (42)
% Z exp (Z'Lk — iy — f(zik—leik—z’... 7Zik7m—1)At) T (Z 2 e 2 )
) 0 2At'g2(zik—17zik—27'“ 7Zik—m—1) B T Pt
lk—1= o
for k>m+ 2.
Li(zifszosz iy .., @1—) for k=1,
k—1
M M M
. hF—1'% I(zi oo 20,00 - o T (e for 2<k<m-+1,
32 1) A 2 2 2 Bl s a0 anp) for 25k S (43)
M M M
h™ x Z Z Z Ii(Zi s Zig_ys - %o,y ) for B >m+2.
ik—1=01ir_2=0 ik —m=0

Comparing (25), (26), (27) and (24), which express the algorithm for SDDE (1) given in Section 2, with
(40),(41), (42) and (43), which express the algorithm for SFDE (3), we observe that they are structurally

identical. The sole distinction lies in the notation: f and g are used for the former while f and g are used

10



for the latter. Consequently, the steps to implement the algorithm for SFDEs are the same as the steps to
implement it for SDDEs, which were outlined at the end of Section 2.

4 Remarks on the convergence rate

The convergence for the algorithms proposed in Sections 3 and 4 is shown by (11) and«(39), respectively.
However, the convergence rate of the algorithm is not clear so far.

Convergence rate of the weak convergence and strong convergence for the Eulerrmethod has been studied
extensively. In contrast, research results on the convergence rate for probability density are much rarer. It
is shown in [13] that, under some Hormander type condition, the convergenee rate of probability density for
stochastic differential equations driven by Brownian motion and without memory is of the first order, but
the convergence rate of probability density for SDEs with memory ‘has not been.proven so far.

Our numerical simulations suggest that the convergence rate of probability density/for SFDEs with mem-
ory is of the first order, provided that f and g are smooth in addition to assumptions (i) and (ii) as mentioned

in the introduction, i.e.,

Yy € R, ‘ﬁA,At(y’tk) — pa(ys tk)| < CAt as. At —0, (44)

Yy € R, ‘qAA’At(y,tk) — qA(y,tk)| < OAt as At — 0. (45)

However, a rigorous proof of (44) and (45).is a nontrivial‘task and will be left for our future work.

5 Numerical Examples

Three examples are provided in this section to illustrate and verify the proposed algorithm. Example 1
is a toy example, where the analytical solution is available to test the proposed algorithm. In Example 2,
the probability density of'an SFDE with continuous time delay is considered. In Example 3, the proposed
algorithm is applied to an SDDE—the stochastic EINO model, revealing its density evolution into the steady
state.

Example 1 Consider the following SDDE,

dX(t) = X (t — 7)dt + dB(2), (46)

X(t)=0, —7<t<0,

where X(t)/is a'R-valued process, and B(t) is the standard scalar Brownian motion. Note that (46) is a
special form of SDDE (1) with 7y = 75 = - -+ = 7,5, and a diffusion coefficient of 1.

The analytical solution is available for SDDE (46) for ¢t € (0,27]. In fact, it is straightforward to check

11



that the solution to (46) is

B(t), for te(0,7],
X(@t) = (47)
(t—7)B(t—7)+B(t)— [, sdB(s), for te (r,27],

and the probability density for the solution X (¢) is

L e ( x2> for.. t€ (0, 7]
xp|(—=— ). .7,

) V2mt P 2t

Palw.t) = V3 322

V2r ((t—7)3+ 37— l)exp <2((t —7)334+37-1)

(48)

) , for. t e (7,21].

Table 1: Convergence order of the proposed. algorithm.
At Err(At) 7 =log, (Err(2At)

Err(At)
1/5  0.0109 %
1/10  0.0054 1.01
1/20  0.0027 1.00

Now we solve equation (46) using the numerical method presented in Section 2. The analytical solution

and numerical solution to the probability density at ¢ = 0.4 are compared in Figure 1. In the numerical

1
20

the space step is %0, and the space domain is [—3.5,3.5]. It can

computation, 7 = 0.2, the time step is
be seen from Figure 1 that the numerical solution agrees very well with the analytical solution.

The errors and convergence orders for:the numerical solutions with different time steps are listed in
Table 1, where the errors (the 2nd‘column) are defined as the square root of the mean square error at all

space grid points, and convergence order (the3rd column) for time step At is defined by r = log, (%).

1

55, respectively. Table 1 shows

The space step Az = % is fixed while the time.step At is chosen as %, 1—10 and

that the proposed algorithm has a first order convergence with respect to the time step.

Example 2 Consider the following SFDE,

AX(t) = = (fy X(t—s)ds)dt + ([ (1+0.5co8(X(t —s))) ds) dB(t), (49)

X(t)=-01, —71<t<0.

Takes = 0.2¢ The probability density for (49) is computed using the algorithm proposed in Section 3. In
the numerical computation, the time step is 1/20, the space step is 1/10, and the space domain is [—1, 1]. The
probability density at ¢ = 0.5 obtained by the proposed algorithm is compared with that obtained by Monte
Carlo simulations, as shown in Figure 2. It can be seen from the Figure that the results of the proposed

method are consistent with that of Monte Carlo simulations.

Example 3 Consider the following simplified model for EI-Nino Southern Oscillation (ENSO), [14, 15],

12
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K
with additive noise,

72))dt +dB(t), for ¢>0,

dX (1) = (X() - X3(1) \@?— .
X(t) = —0.1, —T‘g@
-
where 71 and 75 are the non nsional ere, we take 7 = 0.2, 5, = 0.4, and oy = ay = 0.1.
0(50) ha 1/2

The deterministic model corresponding t s two stable equilibriums at z = (1 — a3 — a3)'/# and
r=—(1—-0a; —ay)/? e unstable equilibrium at z = 0.

The probability!en or (50) is d for by the proposed algorithm in Section 2. In the computation,

both the time step and the space is 1/10. Time evolution of the probability density is shown in Figure

3. It can &frﬁm the at the probability density gradually becomes steady after some period of
drastic trary’tio . Note that Figure 3 does not show the values of p(z,t) for ¢t < 0.5 since it is already known

that-the degsity n
in evoluti e probability density for values of ¢ not close to 0. Figure 4 shows that the probability

sity at .= 2'by the proposed algorithm is consistent with that by Monte Carlo simulations.
% onclusion

\ tifying the density evolution in a stochastic system is a central task for stochastic dynamics. Stochas-

tic functional differential equations are appropriate models for stochastic dynamical systems with memory.

14
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However, the application of SFDEs is severely restricted due to‘the fact that there is no efficient algorithm
to compute its density evolution. A universal.algorithmdis presented in this paper to compute the probability
density for SDDE (1) and SFDE (3). This algorithm provides an efficient method for predicting transitional
and long-term probabilistic behavioriin a general class of stochastic systems with memory, thus demonstrat-

ing significant potential for widespread applications. We intend to explore these applications further in our

future work.
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