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Abstract

In this paper, we focus on the explicit expression of an extended version of Riemann
zeta function. We use two different methods, Mellin inversion formula and Cauchy’s residue
theorem, to calculate a Mellin-Barnes type integral of the analytic function regarding’z:
I'(z)['(s — z)u™* (u € (0,1), s € C) whose result contains Gamma, function:” We provide
the necessary background on the analytic properties of Gamma and/Riemann zeta function
to confirm the absolute convergence of this Mellin-Barnes integral. «Next, ave represent
the extended version of Riemann zeta function > S>> (m/+ n)~* using the following
complex integral where the real part of s is larger than 2:and ¢ > 1 is chosen to make R(s) —c
also larger than 1.

oo o0

1 c+i00
I'(s)

(m+n)"° = — C(2)¢(s = 2)E(2)I' (s — 2) dz
—1n— 2mi C+100
=1n=1

We provide the evaluation of this integral by changing the integration path from straight
line R(z) = ¢ into a rectangular contour.whose left side'is positioned at negative infinity.
The connection of this result with other intricate integrals and its application to Barnes zeta
function are discussed as well.

Keywords: Gamma function, Riemann zeta-function, Hurwitz zeta function, Cauchy’s residue
theorem, Mellin-Barnes integral
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1 Introduction

Gamma function I'(s), which was originally introduced by Leonhard Euler in 1729 in his
letter to Goldbach [[7], is defined as an infinite product: for all s € C,

o0

o I (e0) (000) g

n=1

Later, Daniel Bernoulli derived an integral representation of Gamma function forall complex
number s where the real part of s is larger than 0:

F(s):/ t5 e tdt
0

Gamma function is then analytically continued to a meromorphic¢ functionwhich/is holo-
morphic over the entire complex plane except for its simple poles at.zero andmegative integers.
It plays an important role in mathematical analysis for calculating factorials and serves as a
powerful tool in solving intricate integrals. Likewise, Riemann zeta function; which is equally
important in modern mathematics especially analytic number.theory, is originally defined by
Lenohard Euler in 1737 as:

1
C(s) = ns

n=1
where s is a real number. Subsequently, Bernhard. Riemann extended s in Euler’s definition
to a complex variable [L1], proved its meromorphic continuation and functional equation, and
intensively studied its deep connection with the'distribution of prime numbers. Riemann zeta

function and Gamma function are closely related through the following integral [[]:

fo'e) 1.5—1
Ps)(s) = /0 dx 2)

Historically, mathematicians are interested in studying complex integrals involving Gamma
and Riemann zeta function. dn 1908 and then 1910, Ernest William Barnes studied two types of
integrals involving solely a product of Gamma functions, known as the first and second Barnes
lemma [2]:

1 400
— I(a+ s)I'(b+ s)I'(c— s)I'(d — s)ds
2711 300
1 /ioo Pla+ s)I'(b+ s)I'(c+ s)I'(1 —d —s)I'(—s) g
270 _ino MNa+b+c—d+1+5s) §

In 1997, Masanori Katsurada studied complex integrals involving both Gamma and Riemann
zeta-function [10]: A
1 (77 (a+ s)[(—s)
T—100 F(b + S)

Their work has provided important explicit expressions for complicated integrals or infi-
nite sums, establishing connections with other special functions, such as digamma function,
hyperbolic function, and hypergeometric function.

C(e+s)(—2)%ds

2mi

In section of this paper, we first derive an identity containing a Mellin-Barnes type
integral:
1 ctioco
Lis)(1+u)%=— I'(z)'(s—2)u *dz (3)
2mi c—100



Then, in section @ we get an important relationship between a double sum version of Rie-

mann zeta function and a complex integral involving both Gamma and Riemann zeta function:
x© X 1 c+i00

T(s) Y Y (m+n)*= o C(2)C(s — 2)T(2)D(s — 2) dz )

m=1n=1 c—ioo

In section @, we apply the analytic properties of both Gamma and Riemann zeta.function
and Cauchy’s residue theorem to evaluate this complex integral (H) In the last section P, we
discuss the applications of this result and its efficacy for further research.

2 Main manipulations

In this section, we tackle the integral (@)

2.1 Preliminaries on absolute convergence

We first introduce a few analytic properties of Gammas function, including its asymptotic
approximation, analytic behavior in vertical strips, and upper bound, which are necessary tools
for our work in the subsequent sections. Later, we use these results,to derive several propositions
regarding the Mellin-Barnes type integral (E)

Lemma 2.1. Let 0 < § < . Then for —m +§ < args < m =6,
1
logT'(s) = (s - 2) log s — s log/2m+O (Js| ™), |s| = o (5)

Proof. By Euler’s definition of Gamma function @)7 fori—m < arg s < m we have:

logI'(s) = —logs-i—nzz:l{slog (1+711> — log <1+Z)}
N
_4 —10gs+]\}i_1>n {slogN—Zlog <1+2)}

n=1

By partial summation,

ni::llog (1 4 %) =log(l+s)+ /1N log (1 + f) d[u] (7)

u

Note that\u] = w/— 3+ p(u) where p(u) = 1/2 — {u}. Thus the above integral becomes

/1Nlog<1+z)du+/1]vlog<l+z> dp(u)

‘We have:

/Nlo <1+f)du—Nlo (1+i>—1o (1+s)+/N * du
1 & U N & N & 1 u-+s

= Nlog (1+%> — (s +1)log(1+s)+ slog(N + s)

and

/1Nlog<1+z>d,o(u):;log<1+;) —élog(l—i—s)—/le(u) <uis—i> du
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Thus, we get:

i:llog(ui):—( >log(1+s)—l— N+s+ )log(l—F;)

+ slog N — / < >
uts
Back to (B), we get:

logT'(s) = <8—|— ;) log(1+s) —logs+ /100 Malu— /100 Mdu

u-+s U
lim (N+s+ )1 (1+3)
— lim - 2
N—o0 5 2 08 N

The last limit is equal to s. Thus,

1 > p(w)
log T'(s) = =) log(1 + s) — log s — RSN
ogT'(s) <s+2> og(1+s) —logs s—i—/l u+8du+co (8)
we write N )
o) = [ ptwan ALI L
Then > pu) -~ ) N
p(u o(u u
du = d —_— 9
/1 uts /1 (u 4 5)? u<</1 lu + s|? ©)
One has
/°° du </°° du 1 dt
L Juts2| T wrts|? —2uls||cosd| s x 14 ¢2 — 2t| cosd|’
Note that:

1+ ¢34 2t[cos 5| = (1 + t[ cos 6])* + (1 — | cos 6]?) 2

Hence for |s| > 1,

/Oo du dt / dt < 1 (10)
1 ]u+s|2 s| . 1—t|cos§\ | | (1 —|cosd|?)t2 6\ |
This shows that - )

/ pu )du_05< )

1 uts ||

1 1
log(1+ s) =logs+ — + Os <H2>, |s| = o0
s s

we get from (5)7(@) that

Sinee

1
logT'(s) = <5 - 2> logs —s+co+ 1+ O (|s| ™)

Taking s = n,n+1/2, 2n and using the Legendre’s duplication formula we get ¢y = log v/27.
O



Lemma 2.2. For a < o < f3, there holds
(0 +it) = V2rjt|7 i 2e~ " ~Hi5(7=2)se0® (1 L O ([t 7)), |t — +oo

where the implied constant depends on o and f3.

Proof. By (a) we get
T(s) = vVare(s=2) 198575 (1 4 0 (|s]71)
Let s = o +it. For [t| > |o| we have

log s = log it + log (1 + %) = msin(t) + log |t]| + % +0 (|t|_2)

where the O-constant depends on « and 5. Thus

1 _ misgn(t) L1 L1 . ol)\eo , 1
<s 2>logs s = 5 (a—i—zt 2>+<a—i—zt 2>log\t|+<a+zt 2>it o—it+O (|t

_ misgn(t) <g_1> _mt <a+it—%> loglt] — it O ([t]Y)

2 2 2
Therefore,
(o +it) = V2r|t|7 =3 e~ —it+i53 (@-2) s (14 0(|¢| 1)) (11)
O
Lemma 2.3. For all 0 > 3§, there is a constant C(c) such that

Smﬁa,yéR)

N —

ID(x + iy)| < C(oYe ¥ (

Proof. By (@) we get:
Dl o iy) =y 2yl 0 Ee ERIECR) 0 (140 1yl )

mlyl w 1y
:\/57?\3/ w*%e—‘Ty‘ela(a&—%)sgn(y) (’ye|> (1+O(\y|71))

Hence,
. _mlyl _1 _
ID(x +iy)| = V2re™ 2 |y[*~2| (14 Co(o) [yl ™) |
If ly| >1 and = < 3,/then we have:

ID(x +iy)| < Clo)e
where the C(0) = v27(1 + |Cy(0)]).
If |y| > LVand = > 3, then we have:
[yl <[yl72 < Ca(o)elz DM
Thus, we have:
IU(x +iy)| < C(o)e ™
where the C (o) = V27| (1 4 Cy(0)) |C1(0).

If |y| <1, then we have:
ID(x +iy)| < C(o)e ™

where the C(c) = v/27 (1 + |Co(a))). O



Lemma 2.4. For a positive integer k, we have

D(z—k)T(s—z+k) = (-1 (2)[(s — 2) [] <1+‘°',_1>.

-z
1<j<k J

Proof. We apply the functional equation of Gamma function: for s € C, sI'(s) = I'(s+.1).
Hence
(z—k)(z=k+1)..(z2—=DI'(z—k) =T(2)

and
(s=2)(s—z+1).(s—z+k—-1I(s—2)=0(s—z2+k)

Thus
I'(z)
(z—k)(z—k+1)---(2—-1)
r(l—z+s—1@2—z4s—1).--(k—2z+s—1)
(k= 2)((k 7 1) —2)» (1= 2)

Mz—kIl(s—z+k)= (s=z2)(s—2F+1) - (s—z2+k—1I'(s—2)

=TI (s—2)-(—1)

O R |
<<k ¥

= (=1)* z S —Z y—!

—(0frere -2 T (35

1<j<k

(I

N[
-

Lemma 2.5. Given s = o + it satisfying.o’ = R(8)"> 2, if R(z) = ¢ > % and R(s) —c >
there is a constant M(s) > 0 suchsthat

IT(z — k)D(s—z +k)| < M{HKZ e W (k>1,y=3(2))

Proof. By lemma @ and lemma @ we get:

—1
|ID(z—k)[(s —2z+ k)| =|T(2)||l'(s — 2)| H 14 S
; J—=z
1<5<k
s—1
gcwﬂwhwkﬂ“m]j 1+j_z (12)
1<5<k

Due to the identity I'(Z) = I'(z) and |z| = |Z|, the signs of J(z) or J(s) do not impact the
value’of the modulus of Gamma function. Hence, we can assume both ¢ and y are larger than
0.

We know that
114 w| < R(w)+O(Jw]?)

so we have:
’ s—1
1+ -—
j—=z

R(3=1)+0( =2 2)

<e




We calculate the real part of j%i and estimate the error term:

§R<s—1>: (0 —1)+it

Jj—=z (j—c)—1y
(=1 —c -ty
(j—c)?+y?
(e -1 —¢
T o t+y?
o—1
<

2) =0 (KU b Zt‘z)
[(j — ¢) — iy
2
o <(O’ 1) +t2)

(4 —c)?
Mo(S)

and

s—1

j—=z

o

which is a constant only dependent on s.
Hence, we can get:

Sexpl(o= Dlog(k) + Mi(s)}

for some constant M (s) dependent on s. Here, we use the upper bound for harmonic number
Hy = E?Zl % <log(k) +1. Thus, from (@), we get:

[T (z~2k)D(s —aF k)| < Cre™WICy(s)e Il elo—1) log(k)+Ma(s)
< C1Cy(s)eM ) o1yl
= M(s)k? e~V

where M (s) = C1Ca(s)eMi(). O

So-far, we have finished the properties related to Gamma function, we will then deduce two
propositions about the Mellin-Barnes type integral (E) we are concerned about. The first one
validates. thes/absolute convergence of this type of integral, and the second evaluates its value
after shifting the integration path to negative infinity.

Proposition 2.6. For s € C, R(s) > 2, u € (0,1), k > 1, ¢ > %, and R(s) — ¢ > %, the

following. complex integral
1 c—k—+ioco
L(2)T'(s — z)u *dz

2mi c—k—ioco

converges absolutely.



Proof. We substitute z in the integrand by z — k:

1 c—k+ioco 1 ctioco
e P()T(s = 2)u™"dz = 5— T(z— k)T(s— 2z + k)u"t*dz

c—k—ioco c—1i00

Use the upper bound given by lemma @, we get:

1 c—k+ioco 1 c+ico o
— L) (s — z)u *dz| = / I(z—k)'(s—2z+k)u """ de
271 /Ck"LOO 271 c—100

1 c+i00 i,
- T(z — k)T(s — z + Kfu "d ’
Somi) ‘ (z (s — z+ k)u z
1 [T
< — M (s)k® ety ~ oty
27 J_ o

1 (o.9)
= / M (s)ko tu=¢tkestat
T Jo
1
= —M(s)ko tu#*
T

which is < oo. O

Proposition 2.7. Under the same condition as proposition @,

1 c—k+ioco
DNz)I'(s — 2)u7#dz'= 0

im —
k=00 28 J o f—ino

Proof. Proposition @ states:

1

1 c—k+ioco
/ P (s # 2)udz| < —
. T

N M fckafl k
2wt ) (s)u u

Since u € (0, 1),

lim-k° " 1u* =0
k= o0

for o = R(s) > 1. Thus; as k approaches infinity,
1 c—k+ioco
lim <— L(z)I'(s — z)u *dz
k=00 2% J o k—ioo

tends to“zero. O

2.2" Transition to complex integral

Nowy we introduce an important lemma that links a power function (14 u)™® and the Mellin-
Barnes integral we have discussed in the previous section.

Lemma 2.8. For s € C, R(s) > 1, u,c € (0,1), we have

1 c+ico
Ls)(1+u) % =— ['(z)I'(s — 2)u *dz (13)

21 c—100

Throughout section @, we use two different approaches to prove the above lemma. Some
of the techniques involved are paramount for our subsequent work.



2.2.1 First proof using Mellin transform
The Mellin transform of a function f(z) is given by:

wﬂﬂ@ﬂ@—F@r—/mﬁlﬂ@dx

0

where s is a complex variable.

Theorem 2.9 (Mellin inversion formula). Followed from the definition of Mellin transform,
the Mellin inversion formula is derived to recover the original function f(x)-from its Mellin
transform F(s). The inversion formula is given by:

c+i00
flx) = 1/ x °F(s)ds

2mi c—100

where ¢ is chosen such that the contour path of the complex integration lies within the region of
convergence of F(s).

Proof. See section 2.1.2 of [3]. O

Definition 2.10 (Beta function). The Beta functions~denoted by B(«,y), is defined by the
following integral for two real or complex numbers  and y with positive real parts:

1
B(gc,y):/o N1, — )Y Lt

The next theorem states an important-relationship” between Beta function and Gamma
function.

Theorem 2.11. For z,y € C where R(x), R(y) > 0,

I'(a)I'(y)

SHIE Y

Proof. See Theorem 0.8 in-Chapter /1.0, of [13]. O

After introducing some preliminaries, we begin to prove lemma @ Mellin transform and
its inversion formula derives that if

AHﬂWK@=FV%=/wM”fWMu

0
then,
o 1 c+1i00 3
MUFEY ) =S = 5 [ P ds (14)
Hence, we suppose F'(z) is the Mellin transform of f(u),
/OO w* L f(u)du = F(z) = T'(2)['(s — 2) (15)
0

Since we have verified the absolute convergence of I'(2)I'(s — z) as integrand in proposition
. Thus, for any c such that ¢ > % and R(s) — ¢ > %, we have:

c+1i00
flu) = ! / L(2)'(s —2)u *dz

21 — 00



and our main goal is to get an explicit expression for f(u).
Theorem gives us:

L(z)'(s — z)

1
= 2,8 —2) = S— 2. 2) = s—z—1/1 _ p\2—1
I(s) =B(z,5—2) = B(s - 2,2) /Ot (1—t)*tdt

We first substitute ¢ with %:

)62 ()

We then substitute w with u + 1, which gives:
Pz (s—2z2) = /Ooo (u+1)7°T(s)u* Hdu
From (1L3):
L) (s—2z2) = /000 (u+1)"°T(s)uT ' du = /000 fuyudu

Therefore, a possible expression of f(u) is I'(8§)(1 4+ u) %A well-known property states that
Mellin transform is injective, which means if M{f(x)}(z).= M{g(x)}(2), then f(z) and g(x)
must be the same (See Theorem 2.1.2 [3}). Therefore, f () can only be I'(s)(1 4+ u)~*, which
finishes the proof.

2.2.2 Second proof using Cauchy’s residue theorem

In this method, we avoid thel use.of Mellin“transform. We directly evaluate the complex
integral by shifting the integration path and:analyzing its isolated singularities.
First, we adjust the linear integration path to a rectangular contour [c¢ — iT,c + iT],[c +
iT,c—k+iT),[c — k+iT,c= k — iT]fc =k — iT,c — iT] where ¢ > % and R(s) — ¢ > 3. By
Cauchy’s residue theorem;

1 e+ c—k+iT c—k—1iT c—iT
=X {/ —I—/ —|—/ —|—/ } L'(2)(s — z)u *dz (16)
2700 | Je—iT i T c—k+iT c—k—iT

equals to the sum of the residues of all isolated singularities within the rectangular contour.
Next, wetneed to calculate the sum of the residues. The following theorem gives us an
overview to the singularities of Gamma function:

Theorem 2.12. /The function I'(s) initially defined for R(s) > 0 has an analytic continuation to
a meromorphic function on C whose only singularities are simple poles at the negative integers
$=0,—1,s... The residue of I'(s) at s = —n is (G by

n!

Proof. See Theorem 1.3 in Chapter 6 of [12]. O

Hence, within the given rectangular contour where k approaches infinity, the integrand
F(z) = T'(2)['(s — z)u™? can be considered as a meromorphic function with simple poles at
all non-positive integers. For each integer —n, n > 0, the residue of F(z) at z = —n can be
calculated:

Res [[(2)I'(s — z)u™ %,z = —n| = (_nl!)nf(s +n)u"

10



From (@) we can get:

27m |:/c+lT /c k+iT /cc zTJr/cc—iYT ]F(Z)F(SZ)u_zdlz:i(—;!)”r(s+n)un (17)

+3T k+iT —k—iT n=0

To the vertical integration at negative infinity [c—k+iT,c—k—1iT], as T approaches infinity,
proposition states that:
c—k—iT
lim — ') (s—2)u?dz=0 18
k,T—00 274 J o paiT ()T ) (18)
To the horizontal integration [c¢ 4 ¢T,c — k 4 ¢T|, as T approaches infinity, lemma @ states
that:

c—k—+iT c—k+iT
LD(z)'(s — z)u ?dz| < / ‘F(Z)F(S —2z)u” } |dz|
c+iT c+iT
c—k
< Cre 1Oy (s)e 1S6)=Ty "0 dor
/ Cie” TC’2 (s)e =T+3(8) =94 as T — oo
Thus,

lim 1 C_k_iTF(z)F(s —2)u%dz =10 (19)
k,T—o00 2700 Joqir
Similarly, consider the horizontal integration'|c — k = iTyc — iT|, as T approaches infinity,
1 c—iT
lelgoo 3 /CkiTF(z)P(s —2)u “dz =10 (20)
Combine the above results, we:derive
QLM, _+: ()T (5,2 B0~ dz — i L4k (21)

Newton’s generalized binomial theorem gives that,

(1A u) ™ = i <_ks> u

k=0
Thus,
u) = (8 s)uF
r(s1 ) ;)(k)w )
(=8 (—s—1)(—s—k+1
N e
S s(s+1)...(s+k—1)I(s)
Y . "
IRV N CER )
— kzzo(l)kk'uk
Hence, from (@), we finish the proof:
c+ioo 00 s
O R D N (R
c—100 =0

11



2.3 Representation of Y~ *_ > (m+n)"*

In this section, we deduce an integral representation of the double sum version of Riemann
zeta function Y °_ S>> | (m + n)~*, which we will further evaluate in the next section.

Lemma 2.13. Fora,b € [1,00), ¢ > %, and R(s) —c > %, we have

I'(s) 1 o0 T'(2)T(s — 2)
(@+0b)5 27 Jo_ioo a?bs—*

dz (22)

Proof. If a = b, the result follows naturally by choosing v = 1 in (@) Otherwise, without the
loss of generality, we assume a < b. Thus, we substitute u in ([L3) by § since § € (0, 1):

[(s) (1 + %)78 = 2%” Cj:o L(z)'(s— z) (%)ﬁ dz
Hence,
(arisg)s =07Ts) (145)
_ % _+: P(2)T(s “.2) (%)_ b5l
c+ioo J
ek

O

Lemma 2.14. Given complex number s satisfying R(s) > 2, choose ¢ such that ¢ > 1, and
R(s) —c > 1, we have

oo 00 c+100
Ds) 3 S by o= Lo/ (()e(s — TG — 2) e
m=1n=1 %100

where ¢ denotes the Riemann zeta function.

Proof. The result from lemma gives that,

L) 1 /C”OO L'(z)(s—2) &

(m -+ n)s T omi oo mzns—7=
Hence,
SEW S5 e,
m=1n=1 (m + n)s m=1n=1 2mi c—1i00 mAns—#
1 c+1i00 0o 00 1
= 5 F(Z)F(S — z) dz
1 c+i0co o) 1 0 1
“ami ) T()(s—2) | > — > —— | dz
m=1 n=1
1 ctioco
=5 ((2)¢(s — 2)L(2)D(s — z) dz
2mi c—100

which gives the desired result. Lastly, we need to verify the absolute convergence of the in-
tegrand, and validate the interchanging of summation and integration within the procedure

12



above. Riemann zeta function ((s) has the abscissa of absolute convergence o, = 1, which
means that the series converges absolutely when the real part of its complex variable s is larger
than 1. Thus, when R(2) = ¢ > 1 and R(s) —c¢ > 1, ((2){(s — z) converges absolutely. Gamma
function I'(s) converges absolutely in the half-plane ®(s) > 0. Hence, when R(z) = ¢ > 1 and
R(s) — ¢ > 1, the integrand F(z) = ((2)¢(s — 2)I'(2)I'(s — z) converges absolutely. Due’to
Lebesgue’s dominated convergence theorem, it is valid to interchange summation and integra-
tion in the above derivation. O

2.4 Evaluation of the complex integral

Similar to what we have done previously in section , we first need to adjust the linear
integration path to a rectangular contour [c — T, c+iT], [c+iT,c — k+iT), [c—k +iT,c — k —
iT),[c — k —iT,c — iT| where ¢ > 1, R(s) — ¢ > 1, and T, k approaches infinity. By Cauchy’s
residue theorem,

1 c+iT c—k+iT c—k—iT c—iT
% |:/czT - /c+iT - /ck:+iT - /clczT:| C(Z)C(S N Z)F(Z)F(s , Z) a= (23)

equals to the sum of the residues of all simple poles within the-rectangular contour.

2.4.1 Sum of appropriate residues within the rectangular‘contour

Next, we need to calculate the sum of the residues. Since-we have been acquainted with
the analytic properties of Gamma function in'the previous proofs, we now need some basic
properties of Riemann zeta function.

Theorem 2.15 (Analytic continuation of Riemann zeta function). The Riemann zeta function,
defined for o > 1 by the series

/1
C(S) 2 Z %7
n=1
has an analytic continuation to a.function defined on the half-plane o > 0 and is analytic in
this half-plane with the exception of a_sumple pole at s = 1 with residue 1, given by

S

C(s) = - s/loo{x}x_s_ldm (0 >0) (24)

s=1
Proof. See Theorem 4.11 in Chapter 4 of [9]. O

Theorem 2.16. For eachn =1,2,3, ...,

((~2n) =0
These are the/so-called trivial zeros of Riemann zeta function.

Proof. This follows naturally from the functional equation of Riemann zeta function (See The-
orem 12.7/in Chapter 12 of [1]):

™s

C(1 — ) = 2(2m)~°T'(s) cos (7) C(s) (25)

because cos (5(2n + 1)) = 0 for each positive integer n. O

In order to calculate the sum of residues, we need to analyze the set of simple poles for the
integrand F'(z) = ((2){(s — 2)I'(#)I'(s — z) within the rectangular contour. Since ¢ is larger
than 1, {(z) yields a simple pole at z = 1 and a set of zeros at all even negative integers. Since

13



I'(2) yields simple poles at all non-positive integers, the only simple poles for F(z) are at 1, 0,
and {—2m — 1}2°_,. Hence, the residues can be calculated:

Res [((2)¢(s = 2)L(2)L'(s = 2), 2 = 1] = lim (2 = 1)(2)¢ (s — 2)T(2)L'(s — 2)
= ((s = DIM)0(s = 1)
=Cs—=DI'(s—1)

Res[((2)¢(s — 2)T'(2)[(s — 2),z2 = 0] = ll_% 2((2)¢(s — 2)I'(2)L'(s — 2)
= llg(l) C(2)¢(s — 2)T(z + DHE(s=7%)

= —JCET(s)
since ((0) = —3 can be calculated using (@)
-1= 21_%(1 —2)((2) = ;1_%(1 — 2)2*7* Lsin (7;2> 'l —2)¢(1 = z)
= lim I(2 - 2)2°7* Ysin (%) e 2
=2¢(0)
Res[((2)((s — 2)I'(2)[(s — 2),z = —2m — 1] = z_)l_lgn (z42m+ 1)((2)((s — 2)I'(2)I'(s — 2)
N/ (z42m +1)(z + 2m)...2I'(2) B .
) zal—lgngl (z+2m)(z+2m —1)...z C(z)e(s = 2)(s = 2)
N [(z+2m +2) (s — =
A z%l—lgvlz—l (z+2m)(z +2m — 1)...2“2)“8 )T )
¢ —mC(Qm —1)¢(s + 2m + DT (s + 2m + 1)

Thus, combine the aboveresidues/and (@), we get:

L [ /C“T /j” /:Hf+ /;T ]c<z><<s_z)r<z>r<s_z>dz "

=((s —1)I(s — 1)— 74 Z 2m+1 —2m — 1)¢(s +2m + 1)I'(s + 2m + 1)
0

2.4.2 Evaluation.of the horizontal integral

In this Section, we evaluate the horizontal integral on [c+iT,c—k+iT] and [c—k — T, c—iT]
by using the upper bound of Gamma and Riemann zeta function in each assigned region. We
first prove a few lemmas about the bound for zeta function under two different conditions.

Lemma 217 (Bound for zeta function on the left half-plane o < 0). In any vertical strip on
the deft half-plane o < 0, we have:

¢l +it)] = O (|t

Proof. The functional equation of Riemann zeta function (@) derives:
¢(s) = 27 Lsin (g) T(1 - s)C(1 — s)

14



Since o < 0, we have

> 1 =1
’C(l_ff—it”:ZW Szn1—a:C(1_G)
n=1 n=1

converges to a fixed value. Hence, combine the above results and Lemma:

Co+it)] = 0 (BMjy—37oe5) — o (jy37)
O
Lemma 2.18 (Bound for zeta function in the vertical strip 0 < o < 1). Given.0 < 0 <1, for
0 <o <1andl|t| >2, we have:
[¢(o +it)| = O(It]*~*)
Proof. Lemma 5.4 in Chapter 5 of [J] states:

N
1 Ni=s * {x}
C(s) = il Bt . xSHdm

’ / xs—f—l ‘

n=1
for some integer N. Hence, for ¢ < §, we have:
Nl s
1-s

We choose N = ||t||, then it gives the desired result:

[Clov+it) =04 ~)
O
After introducing all necessary results, we first evaluate the horizontal integral on [c+iT, c—

k+14T). We spilt the integral into two segments in terms of the range of the variable in Riemann
zeta function.

1 e—k+iT
iy CARGATENG - 2
SN g WY (s — 0~ i) (o +iT)D(s — 0 i) do
c—k
0 c
. N QL [ + ] |C(oc +iT)((s — o —iT)I'(6c +iT)I'(s — o —iT)| do (27)
0 c—k 0
0 L c
< 51; [/C_kTQ_UC(S)C&e_TdJ +/0 T¢(s — 1)02(5)6—%]

=5 C1¢(s)e T +eT¢(s — 1)02(8)6_T]

log(T)

As T approaches infinity, equation (@) tends to 0. Hence,

c—k+iT
lim / C(2)¢(s — HT()T(s — 2)dz = 0

c+iT
Similarly, on the horizontal segment [c — k — iT',c — iT], we can derive:
c—iT'

C(2)C(s—2)T'(2)[(s—2)dz=0

im —
T—o00 271 c—k—iT

15



2.4.3 Evaluation of the vertical integral

Finally, we need to evaluate the integral on the vertical segment [c—k +iT, c—k —iT]. Before
handling this integral, we introduce an important limit regarding Riemann zeta function.

Lemma 2.19. Suppose o = R(s), then we have:

lim ((s) =1

ag—00

Proof. Due to the definition of Riemann zeta function when the real part of s is larger than 1:

— 1
B S0 = 0 2
n—=

Tannery’s theorem [6] allows us to interchange the limit and summation. Hence,

o0

1 1
lim Z — = lim —
o—00 ns o—o00 NS
n=1 n=1
Since
i 1 ) 1
lim |—| = lim — =0~ (n>1)
o—o0 | NS o—o00 N9
then,
SO\
O
Then, we solve the integral by first substituting the variable z by z — k:
1 c—k—iT 1 c—iT
— C(2)¢(s—2)D(2)(s—2)dz= —= C(z—k)(s—z+k)(z—k)T'(s—2+k)dz
271 c—k+iT 2 c+iT

Using the functional equation. of Riemann zeta function:

1 c—iT

=0 2"~k () kL sin (g(z £ k)) CO— 24 k)C(s— 24 k)D(1— 24 k) D (z— k)T (s— 2+ k)dz
T JeqiT

We use the Euler’s reflection formala I'(2)['(1 — 2) = Sin?m) to substitute sine function by
Gamma function:
ot o I(1—z+kI(z—k)I(s—z+k
=7 2m)*FC(1 — 2+ Kk)C(s — 2 + k) ( - )k< )z< : )dz

We then use Legendre’s duplication formula I'(2z) = QQZ*IW_%F(,Z)F(Z + 1) to substitute
I'(L=2+ k) andT'(z~ k) in the above equation:

1 c—iT T(L—zi Byl —zaoE\(z_oE(laz_E(s— i
= — (27T)Z7k<(1—2+k)C(S—Z—|—k) (2 2+2) ( 2+2) 15,2 2) (2‘:2 2) (8 z + )

211 c+iT 27TF(%—§)F(1—%+§)

1 \ k-1 1 z k 1 z k

omi C+z‘T(7T) C1=z+k)((s—z+k) (2 2+2> <2+2 2) (s — 2+ k)dz

Using lemma limgp(s) 00 ((8) = 1, we can simplify the expression as k approaches
infinity:

c—iT 1

1 z k 1 z k
= i = or Z—k—lr - _ =z (= 2 _ 2 \(s— 9
kﬁlmoo 271 c+iT ( ) (2 2 ) <2 2 2) (3 & k)dz ( 8)
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Hence, our next step is to solve this expression. In order to handle it, we introduce Hurwitz
zeta function, which is defined as:

o0

1
((s,a) = Zm

n=0

for R(s) > 1 and a # 0,1,2,.... In [1], T.M.Apostol expresses Hurwitz zeta function, using
periodic zeta function Y °° | ™14 /ps:

27r'ma —2mina ]

I'(l—s —i s m s
C(S,(I) = (éﬂ_)l s [ - /22 - )/QZ nl s

Alternatively, we can represent Hurwitz zeta function by a complex integral using lemma

OXE

[(s) 1 eTio0 () (s — 2)

—_— = d
(n+(a—1)° 2w Joioo n7(a—DF 700

for some n > 1 and a¢ > 2. Summing n from 1 to infinity:

B 0o F(s) B 00 F(s) _—1‘ 0 C—Hmw
Heea) = nZ:O (n+a) nz::l (n+(a—1))* 2mi ; /C—i‘x’ n*(a— 1) v

Lebesgue’s dominated convergence theorem allows us to.interchange the summation and
integration:

atico 2T () T(s— %
L)) = 5 [ FE28) ,

270 Jeivo it n*(a— 1)5=>

1 c+100
= 3 C)D)(s — 2)(a —1)"T%dz

2m Cc—100

On one hand, this complex integral equalsto T'(s){(s,a). On the other hand, we can shift the
integration path to a rectangular contour to evaluate it. Same to what we have done previously,
we choose the rectangle [c—iT, c+iT)y[c+iT, c—k+iT), [c—k+iT,c—k—iT), [c—k—iT,c—iT)
where ¢ > 1, R(s) — ¢> 1,and T, k.approaches infinity. By Cauchy’s residue theorem,

Iy ey [

equals to'the sum of the residues of all isolated singularities within the rectangular contour.
Res[¢C(2)[(A)(s=2)(a — 1) 2 =1] = lir%(z —1)¢(2)['(2)[(s — 2)(a — 1)t
z—

=T ()I(s —1)(a—1)"5!
=T(s—1)(a—1)"*"

Res[¢(2)I'(2)T(s — 2)(a — 1) 5% 2 = 0] = ll_rf(l) 20(2)T(2)T(s — 2)(a — 1) 751
— lim C(=)T(= + DL(s — 2)(a — 1)+

= 5 T(s)a—1)
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Res[¢(2)['(2)[(s — 2)(a —1)5* 2z = —2m — 1] = Zﬁlﬁig}%l(z +2m + 1)¢(2)T(2)0(s — 2)(a — 1)75T7
(z4+2m+1)...2I(2)

= lim ). C(2)T(s — 2)(a'= 1)75+7
B . [(z+2m+2) e
= e am). e SN Al U

- —(2ml+1)!g<—2m ~ (s + 2mt T — 1) 57 2m=t

Hence, from @) we get:

cHT  pe—kil  pe—k—iT  pe—iT
T'(2)'(s — _1)"5%2g
il [ T [ e - - ke

=I(s —1)(a—1)7""" — %F(S)(a -1 = 3 (zmlﬂ)!c(—m < DD(sH+ 2m + 1)(a —<1)"572m1

m

(30)
Using the same bound for Gamma and Riemann zeta function in section , we can show
that as T approaches infinity, the integrals on the horizontal segments tend to zero. Thus, the

integral along the vertical segment at negative infinity can be represented as:
c—k—iT
lim
k,T—00 c—k+iT

A

(2)T(2)(s — 2)(a— 1) =T(s+ 1)(a =17 — éf(s)(a -1
o0 (31)
-y G ) —2m — (5.4 2ma4-1)(a = 1)7572""L _T(s5)((s,0a)

m=0

Next, we rewrite the integral at negative-dnfinity by substituting z in the integrand by z — k:

c—k—iT c—iT
/ - / Gz~ k)D(z—k)T(s — 2+ k)(a — 1) 5T 7kdz

—k+iT T

Using the functional equation of Riemann zeta function:

c—iT T

- / 9F—kpa—k—1gin <§(z - k)) COOL 2+ B)D(1— 2+ k)T (2 — k)D(s — 2+ k) (a— 1)~k
c+iT
As k approaches infinity,;we usethe limit limg ), ((s) = 1 to simplify the equation:
c—iT T
= / 277k rr k= gin (5(2 - k:)) IF(1—z2+kI(z—k)I(s—z+k)(a—1)"* kg
c+iT

Use Euler’s reflection formula and Legendre’s duplication formula, we further simplify the

result:
_ /c—iT(2 )z—k—lr 1 . E + E A 1+ E . ﬁ F( — a4 k)( o 1)—s+z—kd
0, N 2 272 9 Ty g T AT :

Combine equation (@), we derive:

eit 1 z k 1 2z k
i 2 Z_k—lr 222+ 2 2 ) D(s = _1—s+z—k
W00 CH-T(”) <2 2+2> <2+2 2) (s—2+k)(a=1) dz
1 = 1
=-—;r -1)7° =T —Y ———((-2m - DI(s+2m+ 1)(a — 1) 572!
2 (s)(a—1) (s)¢(s,0a) P <2m+1)!6( m—1I'(s+2m+1)(a—1)

(32)
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which is what we need to solve in equation (@) Choose a = 2:

1 eil 1 z k 1 z k
lim — o) h 1 (2 2 BV (24 2 B (s — 2+ k)d

[e.o]

=T(s—1) - fr Z 2m1+1)g( 2m — DT (s +2m + 1) — T(s)¢(s,2)

which gives us the evaluation of complex integral of {(z)((s —2)I'(2)I'(s —z) at negative infinity.

2.4.4 Finalize the evaluation

Equation (@) gives us:

c+iT c—k+iT c—k—iT c—iT
2mi [/ /+ZT /c k+iT +/ck:iT] Q28 )T (@)E(s —2) d2

o0

=((s—1DI(s—1) — 74 Z 2m+1 —2m =1)C(s.4 2m4- DT (s+ 2m + 1)
O

Hence, as T approaches infinity:

L B Ck”m} +Cs = DI(s 7D 2 (G

2mi c—i0o k—o0 —k—ioco

> 1
- 7§(—2m— DC(s% 2m + 1)D(s +2m + 1)

=-T(s—1)+ I‘ +i 2m+1 (=2m — )I'(s+2m+1)+T(s)((s,2) + (s — )I'(s — 1)
= (

- 2:: 2m+1 (=2m.— 1)¢(s +2m + 1)T'(s 4+ 2m + 1)

mO

1

= 5T (s)C(5,2) I (s — 1)¢(5= 152) — > :
m=0

e (C2m = D¢+ 2m 4+ 1L, 2)0(s +2m + 1)

(33)

3 Application and further discussion

In the last section, we discuss-how the result from section E can be connected with some other
integrals. We, first derive an integral representation of power function using the definition of

Gamma function: . -
—s —Ays—1 _.—s
T %= AP N 7 D
r<s>/o

We substitutesA with xt:

_ 1 /Oo_t
T = —— e () e ndt
i f ¢

1 /°° ot ys—1
= — e TP T dt
L'(s) Jo

Hence, the double sum in section @ can be rewritten in another integral form:



Lebesgue’s dominated convergence theorem allows to interchange the summation and inte-
gration:

F(S / Z Z —(m+n) tys—1 ¢

m=1n=1
1 o) 15— 1
/ dt
F(S) (et —1)2
Therefore,
00 ts—l oo 0
—_dt =T (s m4+n)?®
| =T S S e

Equation (@) gives us the representation of this integral when s is.complex number whose
real part is larger than 1:

00 255—1 1 00 1
/0 @t = QF(S)C(S,2)+F(s—1)§(5—1,2)—mzz:om§(—2m—l)(:(s+2m+l,2)F(S-|—2m-|—1)

Alternatively, equation (@) can be expressed in another integral form< Similar to the prod-
uct formula of Gamma and Riemann zeta function (R);-a generalized formula of Gamma and
Hurwitz zeta function is famously known as:

ooxs—le—ax
Tr = —d
()c(s0) = S
Hence,
00 xsflefo 00 xsfl
r 2) = —=F i > ——d
@) = [ TEats [ o
[ee) .%'572
I'(s+1 —152)= —d
G0 120 e

Substitute I'(s)((s, 2) and T'(s — 1){(s —132) by their integrals in equation (@) Also, we
use the representation of Riemann zeta function at negative order in terms of Bernoulli number
B]: ¢(—n) = (—1)"% where By, is.the n 4+ 1-th Bernoulli number. We can then get:

c+ioco o0 B 00 s+2m
2m+2 x
—— d —d
271'1 c—ico / 26‘73 er — 1) :c—l—/ er(e x—i—z (2m +2)! / er(e* — 1) v
s—1 e8] 5—2 o] B L p2mA2 5—2
— / xx—‘dx +/ xid:c + / g 2mt2 ' 7 ’ dx
0 2e%(e®—1) o €e*(e? —1) o\ (@m+ 2)! er(e* — 1)

o p5—1 1 9,52 ) e B L e2m 5—2
:/ x4 22 dm+/ Z 2m T x da
of 2e*(e® —1) 0 (2m)! er(e* — 1)

T
2

/°° 571 + 22572 + ( coth(
0

2e% (e — 1)
00 ,.5—1 h(Z 1
:/ % (coth(5) + )da:
0 2e%(e* — 1)

Here, Lebesgue’s dominated convergence theorem validates the interchange of summation
and integration. We also use the Taylor expansion of hyperbolic cotangent function:

x T Bgna? BQnHT
§coth<§> nz:o (2n 0+Z

20




where By, according to the definition of Bernoulli number, equals to 1.

In summary, the evaluation of the complex integral (@7) provides us with broad connection
with integrals involving special function, like exponential function and hyperbolic function.
Further research can focus on the generalizations of this double sum version of Riemann zeta

function:
o0 o0
>
m=1n=1
to triple sum, and eventually to any arbitrary number of sum. It is also valuable to study on the
explicit expression of Barnes zeta function, an exotic extended version of ((s),-which is defined
as:

0o oo
1
CN(S,w|a17a27"'7a’N) = Z Z (w+a1n1+...+aNnN)s

n1=0 ny=0

where w and a; have positive real parts and s has real part larger than 4V.
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The motivation of this research project comes from an exercise (with.no solutions) in Chapter
I1.0. of G. Tenenbaum’s monograph [13]. In that problem, an/integral involves both Gamma
and Riemann zeta function, similar to the following, is introduced:

1 c+1i00
Py ((2)¢(s = 2)I'(2)D(s — 2)d= (34)
27 c—100
However, no evaluation of this type of integral is' derived. Hence, in this paper, the author
first fully explains the validity of this integral and then gives.an approach to get its explicit
expression. When tackling this integral, the-author was\greatly inspired by strategies from
[b] and [4] which rely heavily on the use.of Cauchy residuetheorem to solve related integrals.
Ultimately, the author finds a unique ‘method to solve (@) after introducing Hurwitz zeta
function. In the last section, the author discovers/the.application of this result, which can be

valuable for further research.
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