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Abstract

In this paper, we address the problem of finding functions with predetermined
continuous points and Lipschitz continuous points. More precisely, given A ⊆
B ⊆ [0, 1], we are interested in the existence of function f : [0, 1] → R which
is Lipschitz continuous exactly on A and continuous exactly on B. We will give
examples, existence theorems and non-existence theorems, which partially answer
the question.
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1 Introduction

For f : [0, 1] → R, we denote

C(f) =
{
x ∈ [0, 1]

∣∣ f continuous at x
}

(1.1)

and
L(f) =

{
x ∈ [0, 1]

∣∣ f Lipschitz continuous at x
}
. (1.2)
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This paper is motivated by an unsuccessful attempt to construct a function on [0, 1]
with C(f) = [0, 1] ∩Q. Given S ⊆ [0, 1], can we construct a function

f : [0, 1] → R (1.3)

such that C(f) = S? Many beginners in analysis have (at least briefly) considered
about this. So does the author. For S finite or [0, 1]\S finite, the answer is immediate.
For S = [0, 1]\Q, the answer is standard. Now consider S = [0, 1] ∩ Q. We will prove
the follows.

1) There is no function f : [0, 1] → R with C(f) = [0, 1] ∩Q.

2) There is a function f : [0, 1] → R such that L(f) = [0, 1] ∩ Q and C(f) is a null
set.

We will equally prove some related results. In particular, we prove that

3) Given S ⊆ [0, 1], if both S and [0, 1]\S are dense, then there is no function on
[0, 1] with C(f) = L(f) = S.

Here 1) is standard. But we still give a proof.
This paper is organized as follows. In §2, we give some examples of functions with

predetermined continuous points. In §3, we introduce the oscillation function which
will be used in latter sections. In §4, we address the problem of finding functions
with predetermined continuous points. In §5, we introduce Liptchitz continuous points.
In 6, we further address the problem of finding functions with predetermined Lipschitz
continuous points. In the appendices §7,8, we introduce some tools from measure theory
and topology.

2 Illustrative Examples

Most examples in this section are standard. We will skip some proofs.
For a bounded function f : [0, 1] → R, we denote

C(f) =
{
x ∈ [0, 1]

∣∣ f continuous at x
}

(2.1)

and
D(f) =

{
x ∈ [0, 1]

∣∣ f discontinuous at x
}
. (2.2)

Let f1 : [0, 1] → R be such that

f1(x) = 0 for any x. (2.3)

We have D(f1) = ∅.
Let f2 : [0, 1] → R be such that

f2(x) =

{
1 if x ∈ Q,
0 else.

(2.4)

We have C(f2) = ∅.
Let a1, · · · , an ∈ [0, 1] be distinct numbers.
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Let f3 : [0, 1] → R be such that

f3(x) =

{
1 if x ∈ {a1, · · · , an},
0 else.

(2.5)

We have D(f3) = {a1, · · · , an}.
Let f4 : [0, 1] → R be such that

f4(x) = f2(x)
n∏

k=1

∣∣x− ak
∣∣. (2.6)

We have C(f4) = {a1, · · · , an}.
In the examples above, either C(f) or D(f) is discrete. In the sequel, we consider

functions f : [0, 1] → R such that both C(f) and D(f) are dense.
Let A ⊆ [0, 1] be countable and dense. We denote A = {ak | k ∈ N}.
Let f5 : [0, 1] → R be such that

f5(x) =

{
2−k if x = ak for certain k ∈ N,
0 else.

(2.7)

Proposition 2.1. We have
D(f5) = A. (2.8)

Proof. Since the zero points of f5 are dense and f5
∣∣
A
> 0, f5 is discontinuous at any

point in A.
Now we show that f5 is continuous on [0, 1]\A. Fix x0 ∈ [0, 1]\A. For any ε > 0, let

nε ∈ N be such that 2−nε ≤ ε. Let x0 ∈ Uε be an open neighborhood such that ak /∈ Uε

for k = 0, · · · , nε. Then we have

0 ≤ f5
∣∣
Uε

< 2−nε ≤ ε. (2.9)

Hence f5 is continuous at x0.

Here D(f5) is a null set (see Definition 7.1). We can equally construct a function f
such that C(f) is a null set.

Let f6 : [0, 1] → R be such that

f6(x) = inf
k∈N

2k
∣∣x− ak

∣∣. (2.10)

For a bounded function f : [0, 1] → R, We denote

Z(f) =
{
x ∈ [0, 1]

∣∣ f(x) = 0
}
. (2.11)

Proposition 2.2. We have
A ⊊ C(f6) = Z(f6). (2.12)

And C(f6) is an uncountable null set.
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Proof. For convenience, we denote

φk(x) = 2k
∣∣x− ak

∣∣. (2.13)

Then we have
f6 = inf

k∈N
φk. (2.14)

First we show that
C(f6) = Z(f6). (2.15)

Fix an arbitrary x0 ∈ [0, 1]. We need to show that

f6 is continuous at x0 ⇔ f6(x0) = 0. (2.16)

By our construction, we have

f6 ≥ 0 and f6
∣∣
A
= 0. (2.17)

Since A is dense and f6
∣∣
A
= 0, if f6(x0) > 0 then f6 is not continuous at x0. So we

have proved the (⇒) side. Now we assume that f6(x0) = 0. By equation (2.14), for any
ε > 0, there exists certain k such that φk(x0) < ε. Since φk is continuous, there exists
a neighborhood x0 ∈ Uε such that

φk

∣∣
Uε

< ε. (2.18)

Again, by equation (2.14), we have

0 ≤ f6 ≤ φk. (2.19)

Combining equation (2.18) and equation (2.19), we get

0 ≤ f6
∣∣
Uε

< ε. (2.20)

Hence f6 is continuous at x0. So we have proved the (⇐) side.
Now we show that Z(f6) is a null set. We denote

Ik,ε = (ak − 2−kε, ak + 2−kε) ∩ [0, 1]. (2.21)

We remark that
Ik,ε =

{
x ∈ [0, 1]

∣∣φk(x) < ε
}
. (2.22)

By equation (2.14) and equation (2.22),

Z(f6) ⊆
⋃
k∈N

Ik,ε for any ε > 0. (2.23)

We also have ∑
k∈N

∣∣Ik,ε∣∣ = ∑
k∈N

21−kε = 4ε. (2.24)

Hence Z(f6) is a null set.
Now we show that Z(f6) is uncountable. By equation (2.14) and equation (2.22),

we have

Z(f6) =
∞⋂
n=1

⋃
k∈N

Ik,1/n, (2.25)

which is uncountable by Proposition 8.6.
Now we have proved that C(f6) = Z(f6). We have also proved that Z(f6) is an

uncountable null set. We obviously have A ⊆ Z(f6). Since A is countable, we have
A ⊊ C(f6).

4
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3 Continuous Points, Zero Points and Oscillation

Function

For all the examples in §2, we have f ≥ 0 and C(f) ⊆ Z(f). This is not simply a
coincidence. The key point lies in the oscillation function.

Definition 3.1. For a bounded function f : [0, 1] → R and x ∈ [0, 1], we denote

ω(f)(x) = inf
x∈I

(
sup
w∈I

f(w)− inf
w∈I

f(w)
)
, (3.1)

where I runs over open intervals containing x. We call ω(f) the oscillation function of
f .

We will establish several properties of ω(f). Particularly, the continuous points of
f are exactly the zero points of ω(f). This result will be repeatedly used in this paper.

Definition 3.2. We say that a function f : [0, 1] → R is lower semicontinuous if for
any x ∈ [0, 1] and any ε > 0 there exists δ > 0 such that

f(y) < f(x) + ε for any y satisfying |y − x| < δ. (3.2)

Proposition 3.3. If f : [0, 1] → R is lower semicontinuous, then for any a ∈ R, the
subset

{
x ∈ [0, 1]

∣∣ f(x) < a
}
is open in [0, 1].

Proof. This is an immediate consequence of the definition.

Proposition 3.4. The function ω(f) : [0, 1] → R is lower semicontinuous.

Proof. Fix x ∈ [0, 1]. By the construction of ω(f), for any ε > 0, there exists an open
interval I ∋ x such that

sup
w∈I

f(w)− inf
w∈I

f(w) < ω(f)(x) + ε. (3.3)

Then, by the definition of ω(f), we have ω(f)(y) < ω(f)(x) + ε for any y ∈ I. Hence
ω(f) is lower semicontinuous.

Proposition 3.5. For a bounded function f : [0, 1] → R, we have

C(f) = Z(ω(f)). (3.4)

Moreover, if C(f) is dense, we have

C(f) = Z(ω(f)) = C(ω(f)). (3.5)

Proof. Equation (3.4) follows directly from the definition of ω(f). We only prove equa-
tion (3.5). Since ω(f) is non negative and lower semicontinuous, ω(f) is continuous
on Z(ω(f)). On the other hand, since Z(ω(f)) is dense, ω(f) is discontinuous on
[0, 1]\Z(ω(f)). Hence Z(ω(f)) = C(ω(f)).
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Theorem 3.6. Consider a dense subset S ⊆ [0, 1]. If there exists f : [0, 1] → R
satisfying C(f) = S, then there exists g : [0, 1] → R satisfying

g ≥ 0, C(g) = S, Z(g) = S. (3.6)

Proof. Take g = ω(f). By Proposition 3.5, g satisfies the desired properties.

Now we prove a result for latter use.

Proposition 3.7. Consider a bounded function f : [0, 1] → R such that C(f) is dense.
Then D(f) is of first category (see Definition 8.3).

Proof. Set Un =
{
x ∈ [0, 1]

∣∣ω(f) < 1/n
}
. By Proposition 3.3 and Proposition 3.4, Un

is open in [0, 1]. On the other hand, by Proposition 3.5, we have

C(f) = Z(ω(f)) =
⋂
n>0

Un. (3.7)

Thus Un ⊇ C(f). Since C(f) is dense, Un is open and dense. Set Vn = [0, 1]\Un, which
is nowhere dense (see Definition 8.1). Taking the complement of equation (3.7), we get

D(f) =
⋃
n>0

Vn. (3.8)

Hence D(f) is of first category.

4 Functions with Predetermined Continuous Points

Let A ⊆ [0, 1] be countable and dense. We denote A = {ak | k ∈ N}. In this section, we
show that there does not exist f : [0, 1] → R such that C(f) = A. In particular, there
does not exist f : [0, 1] → R such that C(f) = [0, 1] ∩Q.

Theorem 4.1. Consider a dense subset S ⊆ [0, 1]. The follows are equivalent.

- There exists f : [0, 1] → R satisfying C(f) = S.

- There exists a countable family of open sets
(
Uk

)
k∈N such that S =

⋂
k∈N Uk.

Proof. The (⇒) part follows from equation (3.7). Now we prove the (⇐) part. We may
assume that Uk ⊇ Uk+1 for each k. Set

f(x) =


0 if x ∈ S,

1/k if x ∈ Uk\Uk+1 with k ≥ 1,
1 else.

(4.1)

Since f vanishes on the dense subset S, f is discontinuous at any non zero point. Hence
C(f) ⊆ S. On the other hand, for any x ∈ S and any ε > 0, taking n ∈ N such that
1/n < ε, we have 0 ≤ f

∣∣
Un

≤ ε and x ∈ Un. Hence C(f) ⊇ S.

Theorem 4.2. Consider S ⊆ [0, 1]. If S is countable and dense, then there does not
exist a bounded function f : [0, 1] → R such that C(f) = S.

Proof. This follows from Theorem 4.1 and Proposition 8.6.
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5 Lipschitz Continuous Points

In this section, we turn to study the set of Lipschitz continuous points, which enjoys
very different property.

Definition 5.1. Consider a bounded function f : [0, 1] → R. We say that f is Lipschitz
continuous at x ∈ [0, 1] if there exists Cx > 0 such that∣∣f(y)− f(x)

∣∣ ≤ Cx

∣∣y − x
∣∣ for any y. (5.1)

We denote
L(f) =

{
x ∈ [0, 1]

∣∣ f Lipschitz continuous at x
}
. (5.2)

Obviously, we have L(f) ⊆ C(f).
For S ⊆ R, we denote by m∗(S) the outer measure (see Definition 7.2) of S.
Now we prove a result for latter use.

Lemma 5.2. Consider a bounded function f : [0, 1] → R. If f is Lipschitz continuous
at b ∈ [0, 1] and f(b) = 0, then there exists α > 0 such that for any open interval J ∋ b,
we have

lim inf
ε→0

1

ε
m∗

({
x ∈ J

∣∣ f(x) < ε
})

≥ α. (5.3)

Proof. Since f is Lipschitz continuous at b ∈ [0, 1] and f(b) = 0, there exists C > 0
such that f(x) ≤ C|x− b| for any x. Thus we have{

x ∈ J
∣∣ f(x) < ε

}
⊇ [0, 1] ∩ J ∩

(
b− ε/C, b+ ε/C

)
. (5.4)

Using equation (7.5), we can show that

lim inf
ε→0

1

ε
m∗

(
[0, 1] ∩ J ∩

(
b− ε/C, b+ ε/C

))
≥ 1/C. (5.5)

By equation (5.4), equation (5.5) and equation (7.3), the inequality (5.3) holds with
α = 1/C.

6 Functions with predetermined Lipschitz continu-

ous points

Let f6 : [0, 1] → R be as in §2.

Proposition 6.1. We have L(f6) = A. Here A = {ak | k ∈ N} as is defined in §2.

Proof. Fix ak ∈ A. We have f6(ak) = 0 and

0 ≤ f6(y) ≤ 2k
∣∣y − ak

∣∣ for any y. (6.1)

Hence f6 is Lipschitz continuous at ak.
Let φk be as in equation (2.13). Let Ik,ε be as in equation (2.21).
Fix b ∈ [0, 1]\A. For n ∈ N, let Jn ∋ b be an open interval such that ak /∈ Jn for

k ≤ n. Then there exists κn > 0 such that

φk

∣∣
Jn

> κn for k ≤ n. (6.2)
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By equation (2.14), equation (2.22) and (6.2), for 0 < ε < κn, we have{
x ∈ Jn

∣∣ f6(x) < ε
}
⊆

⋃
k>n

Ik,ε. (6.3)

Thus, for 0 < ε < κn, we have

m∗
({

x ∈ Jn
∣∣ f6(x) < ε

})
≤

∑
k>n

∣∣Ik,ε∣∣ = 21−nε. (6.4)

As a consequence, we have

lim inf
ε→0

1

ε
m∗

({
x ∈ Jn

∣∣ f6(x) < ε
})

≤ 21−n. (6.5)

Since n is arbitrary, by Lemma 5.2, f6 is not Lipschitz continuous at b.

In particular, taking A = [0, 1] ∩Q, we obtain a function which is Lipschitz contin-
uous exactly on [0, 1] ∩Q.

It is natural to ask if we can find certain f such that L(f) = C(f). The answer is
always negative as long as both C(f) and D(f) are dense.

Theorem 6.2. Consider a bounded function f : [0, 1] → R such that both C(f) and
D(f) are dense. Then L(f) is of first category. As a consequence, we have L(f) ⊊ C(f).

Proof. For any b ∈ L(f), set

Cb = sup
y ̸=b

∣∣∣f(y)− f(b)

y − b

∣∣∣, (6.6)

which is finite. For n ∈ N, set

Vn =
{
b ∈ L(f)

∣∣Cb ≤ n
}
. (6.7)

Then we have
⋃

n∈N Vn = L(f).
Now we show that Vn is closed. Let

(
bk
)
k∈N be a convering sequence in Vn. Let c

be its limit. We need to show that c ∈ Vn. We have

f(bk)− n
∣∣x− bk

∣∣ ≤ f(x) ≤ f(bk) + n
∣∣x− bk

∣∣, (6.8)

which yields
ω(f)(c) ≤ 2n

∣∣c− bk
∣∣. (6.9)

Taking k → ∞, we get ω(f)(c) = 0. Thus f is continuous at c. In particular, we have
f(bk) → f(c) as k → ∞. Now, taking k → ∞ in equation (6.8), we get

f(c)− n
∣∣x− c

∣∣ ≤ f(x) ≤ f(c) + n
∣∣x− c

∣∣. (6.10)

Hence c ∈ Vn.
Since D(f) is dense and Vn ⊆ C(f), [0, 1]\Vn is dense. Moreover, Vn is closed. Then,

by Proposition 8.2, Vn is nowhere dense. Hence L(f) =
⋃

n∈N Vn is of first category.
We have the trivial identity

[0, 1] = L(f) ∪
(
C(f)\L(f)

)
∪ D(f). (6.11)

We have proved that L(f) is of first category. On the other hand, by Proposition 3.7,
D(f) is of first category. Then, by Proposition 8.5, C(f)\L(f) is not empty.
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Theorem 6.3. Given S ⊆ [0, 1], if both S and [0, 1]\S are dense, then there does not
exist a bounded function f : [0, 1] → R such that L(f) = C(f) = S.

Proof. This is an immediate consequence of Theorem 6.2.

Now we summarize what we get. Consider bounded functions f : [0, 1] → R such
that both C(f) and D(f) are dense. The set C(f) must be the intersection of a countable
family of open sets. As a consequence, we cannot find f with C(f) = [0, 1] ∩ Q. On
the other hand, L(f) can be any countable set. In particular, there exists f with
L(f) = [0, 1] ∩Q. Moreover, the set C(f) is strictly larger than L(f). In fact, the sets
L(f) and D(f) are of first category. Hence f is continuous but not Lipschitz continuous
‘at almost all points’ (in the sense of topology).

7 Appendix A. Measure Theoretic Tools

In this section, we introduce outer measure. For more details, see [Oxt80, §3].

Definition 7.1. A subset S ⊆ R is called a null set if for any ε > 0 there exists a
countable family of open intervals

(
Ik
)
k∈N such that S ⊆

⋃
k∈N Ik and∑

k∈N

∣∣Ik∣∣ < ε. (7.1)

In particular, a countable subset of R is a null set.

Definition 7.2. Let S ⊆ R. The outer measure of S is defined by

m∗(S) = inf
{∑

k∈N

∣∣Ik∣∣ ∣∣∣ (Ik)k∈N open intervals such that S ⊆
⋃
k∈N

Ik

}
. (7.2)

The follows are equivalent.

- S is a null set.

- m∗(S) = 0.

Proposition 7.3. For A ⊆ B, we have

m∗(A) ≤ m∗(B). (7.3)

For a countable family
(
Ak

)
k∈N, we have

m∗
( ⋃

k∈N

Ak

)
≤

∑
k∈N

m∗(Ak). (7.4)

For a < b, we have
m∗((a, b)) = m∗([a, b]) = |b− a|. (7.5)

Proof. The inequalities (7.3) and (7.4) follow from of the definition of outer measure.
Now we prove equation (7.5). Since any open cover of [a, b] admits a finite sub cover,
we have m∗([a, b]) = |b− a|. Taking A = [a+ ε, b− ε] and B = (a, b) in inequality (7.3)
with ε tending to 0, we get m∗((a, b)) ≥ |b− a|. On the other hand, taking A = (a, b)
and B = [a, b] in inequality (7.3), we get m∗((a, b)) ≤ |b− a|.

9
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8 Appendix B. Topological Tools

In this section, we introduce set of first category. For more details, see [Oxt80, §4].

Definition 8.1. We say that a subset S ⊆ R is nowhere dense if for any open interval
I ⊆ R there exists an open interval J ⊆ I such that J ∩ S = ∅.

Proposition 8.2. Let S ⊆ R. The following statements are mutually equivalent.

1) S is nowhere dense.

2) S is nowhere dense.

3) R\S is dense.

Proof. 2)⇒1) Obvious.
1)⇒3) Let I ⊆ R be an arbitrary open interval. We need to show that I ∩ (R\S) =

I\S ̸= ∅. Since S is nowhere dense, there exists an open interval J ⊆ I such that
J ∩ S = ∅. Since J is open, we have J ∩ S = ∅. Hence J ⊆ I\S.

3)⇒2) Let I ⊆ R be an arbitrary open interval. We need to find an open interval
J ⊆ I such that J ∩S = ∅. Since R\S is dense, there exists x ∈ I∩(R\S) = I\S. Then
x /∈ S. Since S is closed, there exists an open interval J ′ ∋ x such that J ′ ∩ S = ∅. We
take J = J ′ ∩ I.

Definition 8.3. We say that a subset S ⊆ R is of first category if there exists a
countable family of nowhere dense subsets

(
Ak

)
k
such that S =

⋃
k∈N Ak. In particular,

if S is countable, then S is of first category.

Proposition 8.4. If
(
Ak

)
k∈N is a family of subsets of R of first category, then

⋃
k∈N Ak

is of first category.

Proof. This is an immediate consequence of the definition.

Proposition 8.5. The interval [0, 1] is not of first category. As a consequence, [0, 1]
cannot be covered by a countable family of subsets of first category.

Proof. Assume the contrary, i.e., [0, 1] =
⋃

k∈N Ak where each Ak is nowhere dense.

Set Bk = R\Ak. Then we have
⋂

k∈N Bk = ∅. By our construction, each Bk is open.
Moreover, by Proposition 8.2, each Bk is dense. Now we construct a decreasing sequence
of non degenerated closed intervals

I0 ⊇ I1 ⊇ I2 ⊇ · · · (8.1)

by induction. Since B0 is open and dense, there exists a non degenerated closed interval
I0 ⊆ B0. Assume that In is constructed. Since Bn+1 is open and dense, there exists
a non degenerated closed interval In+1 ⊆ Bn+1 ∩ In. By our construction, we have
In ⊆ Bn for each n ∈ N. Let c ∈

⋂
k∈N In. Then we have c ∈

⋂
k∈N Bn. But we have

proved that
⋂

k∈N Bn = ∅. Contradiction.
Now we turn to prove the second part. Assume the contrary, i.e., [0,1] is the union

of a countable family of subsets of first category. Then, by Proposition 8.4, [0, 1] itself
is of first category. Contradiction.
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Proposition 8.6. Let A be a countable dense subset of [0, 1]. For any countable family
of open sets

(
Uk

)
k∈N in [0, 1], we have

A ̸=
⋂
k∈N

Uk. (8.2)

Proof. If A ⊈ Uk for certain k, then equation (8.2) obviously holds. In the rest of the
proof, we assume that A ⊆ Uk for each k. Then each Uk is open and dense in [0, 1].
Set Vk = [0, 1]\Uk, which is nowhere dense. Since A is countable, A is of first category.
Then, by Proposition 8.4, A∪

⋃
k∈N Vk is of first category. By Proposition 8.5, we have

A ∪
⋃
k∈N

Vk ̸= [0, 1], (8.3)

which is equivalent to equation (8.2).
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