
 

 

 

 

第一页为封面页  

 

 

参赛学生姓名：__沈子原____________  

中学：_    __   上海平和双语学校__  

省份：___       上海市_______ ____  

国家/地区：__   中国______________  

指导老师姓名：__丁煜宸____________  

指导老师单位：__扬州大学__________  

论文题目：_On a sign change problem on sums of divisors_ 

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示



 

论文修改增补情况说明 

 

一、增加了论文封面页 

二、论文结尾处例子拓展部分内容如下： 

 

三、Acknowledgement 部分略有改动如下： 

 

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示



On a sign change problem on sums of divisors

Ziyuan Shen

Abstract. Let 0 < s ≤ 1 and ai, bi, ci, di be nonnegative integers with ai, ci >
0, aidi − bici ̸= 0 (1 ≤ i ≤ ℓ). Recently, Pongsriiam asked whether there are infinitely
many positive integers n so that σs(ain + bi) < σs(cin + di) for all i ∈ {1, 2, · · · , ℓ},
where σs(n) =

∑
d|n d

s. In this note, we answer this problem affirmatively with a

natural constraint on the admissible situation.

1. Introduction

In 1853, Chebyshev [2] observed that there appear to be more primes of the form
p ≡ 3 (mod 4) than those of the form p ≡ 1 (mod 4), a phenomenon now known as the
Chebyshev bias. Riemann, in his famous memoir [1], noted that π(x), the number of
primes less than or equal to x, is often less than Li(x), where Li(x) is the logarithmic
integral defined by

Li(x) =

∫ x

2

1

log t
dt.

Following the significant results of Hadamard [6] and de la Vallée Poussin [14], proving
the prime number theorem, it is now known that

π(x) ∼ Li(x) as x → ∞.

Riemann’s observation represents a second example of the Chebyshev bias phenome-
non. However, Littlewood [9] later disproved both Chebyshev’s and Riemann’s claims,
showing that the inequality between π(x) and Li(x) reverses infinitely often. Along with
Hardy, Littlewood [10] also proved that

π(x; 4, 3)− π(x; 4, 1)

and
Li(x)− π(x)

oscillate infinitely, meaning they change signs infinitely many times.
Another well-known instance of the Chebyshev bias occurs with Euler’s totient func-

tion, φ(n). In 1973, Jarden [8, page 65] noted that

φ(30n+ 1) > φ(30n)

for all n ≤ 100, 000. By Dirichlet’s theorem on primes in arithmetic progressions, there
are infinitely many n for which this inequality holds. However, Newman [11] later
demonstrated that there are also infinitely many n such that

φ(30n+ 1) < φ(30n).

Therefore, the difference
φ(30n+ 1)− φ(30n)

has infinitely many sign changes, as established by Dirichlet and Newman.
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2 ZIYUAN SHEN

Inspired by work from Erdős [5, 13], Wang, Chen [15], and Pongsriiam [12] studied
arithmetic functions related to sums of divisors, specifically

σs(n) =
∑
d|n

ds,

where s is a real number. Pongsriiam [12] extended the study of the Chebyshev bias
to these divisor functions, proving several results about sign changes. For instance,
Pongsriiam [12, Theorem 2.4] showed that the difference

σ(30n)− σ(30n+ 1)

(σ without s means s=1) experiences infinitely many sign changes. He also demonstrated
[12, Theorem 2.10] that for integers a > c > 0 and b ≥ d ≥ 0, there exists a threshold
s0 > 1 such that

σs(an+ b) > σs(cn+ d)

for all s ≥ s0 and n ≥ 1. Additionally, Pongsriiam [12, Theorem 2.11] found that

σs(2m+ 5) < σs(6m+ 17) and σs(5m+ 4) < σs(6m+ 7)

hold for all m ∈ N when s > 3.
Pongsriiam concluded with several open questions for further exploration, one of

which is central to this paper.

Problem 1 ([12], Problem 3.3). Suppose 0 ≤ s ≤ 1 and ai, bi, ci, di are non-negative
integers, ai,ci>0 and aidi − bici ̸= 0, for each i = 1, 2, · · · , ℓ. Are there infinitely many
n ∈ N such that

σs(ain+ bi)<σs(cin+ di)

for all i ∈ {1, 2, · · · , ℓ}?

Motivated by the very recent solutions to some problems of Pongsriiam given by Ding,
Pan and Sun [4]. We deal with Problem 1 mentioned above in a narrow but natural
situation.

Theorem 1. Suppose 0 ≤ s ≤ 1 and ai, bi, ci, di are non-negative integers, ai,ci>0
and aidi − bici ̸= 0, for each i = 1, 2, · · · , ℓ. Suppose that for any prime p there is at
least one integer np such that p divides none of the ain+ bi, then there are ≫ x(log x)−ℓ

integers n ≤ x (hence infinitely many often n) such that

σs(cjn+ dj) > max
1≤i≤ℓ

σs(ain+ bi)
(
∀ j ∈ {1, 2, · · · , ℓ}

)
,

where the constant implied by ≫ depends only on the choices of ai, bi, ci and di.

As a corollary, we immediately obtain the following partial solution to Problem 1.

Corollary 1. The answer to Theorem 1 is positive provided that for any prime p there
is at least one integer np such that p divides none of the ain+ bi (1 ≤ i ≤ ℓ).

2. Proof of Theorem 1

We first state some lemmas below before presenting the proof of Theorem 1.
The first two lemmas are standard results in number theory[3].
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ON A SIGN CHANGE PROBLEM ON SUMS OF DIVISORS 3

Lemma 1. The sum of the reciprocals of prime numbers diverges. That is, for any
given M > 0 there is some constant CM so that∑

p≤CM

1

p
> M.

Lemma 2 (Chinese Remainder Theorem). Let n1, n2, . . . , nk be pairwise coprime inte-
gers, and let N = n1n2 · · ·nk. For any integers a1, a2, . . . , ak, the system of congruences

x ≡ a1 (mod n1),

x ≡ a2 (mod n2),
...

x ≡ ak (mod nk)

has a unique solution modulo N . In other words, there exists an integer x such that
x ≡ ai (mod ni) for each i = 1, 2, . . . , k, and any two such solutions are congruent
modulo N .

Our proof is based on the following deep result of Heath–Brown [7, Theorem 1].

Lemma 3 (Heath–Brown). Let Li(n) = ain + bi (1 ≤ i ≤ k) be linear functions with
integer coefficients and ai > 0. Suppose that for any prime p there is at least one integer
np such that p divides none of the Li(np), then there are ≫ x(log x)−k integers n ≤ x
such that

max
1≤i≤k

Ω(Li(n)) ≤ Gk,

where the constant Gk is given by

Gk =

⌊
log2

⌊
3k2 + 4k + 4

2

⌋⌋
.

We now turn to the proof of Theorem 1.

Proof of Theorem 1. For any 1 ≤ i, j ≤ ℓ, let

Li(n) = ain+ bi and Hj(n) = cjn+ dj.

By the condition of Theorem 1, we know that for any prime p, there exists at least one
integer np such that p divides none of the Li(np). Under these notations, it suffices to
show that there are ≫ x(log x)−ℓ integers n ≤ x such that

σs(Hj(n)) > max
1≤i≤ℓ

σs(Li(n)) (∀1 ≤ j ≤ ℓ).

Let pf be the f -th prime. For any f , there exists some integer nf satisfying

pf ∤
∏

1≤i≤ℓ

Li(nf )

by our conditions. Set
A = max

1≤i≤ℓ
ai,

C = max
1≤j≤ℓ

cj

and
B = max

1≤i,j≤ℓ
|aidj − bicj|.
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4 ZIYUAN SHEN

Now, let pf1 be the smallest prime greater than A+B+C+ℓ. Thus, thanks to Lemma 1,
we could find out a series of numbers fi (depending only on ai, bi, ci, di and ℓ) satisfying

fv+1∑
f=fv+1

1

psf
> 2Gℓ+3A

for any 1 ≤ v ≤ ℓ.
We next consider the following congruence system:

n ≡ nf (mod pf ), (∀1 ≤ f ≤ f1)

c1n+ d1 ≡ 0 (mod pf ), (∀f1 + 1 ≤ f ≤ f2)

c2n+ d2 ≡ 0 (mod pf ), (∀f2 + 1 ≤ f ≤ f3)
...

cℓn+ dℓ ≡ 0 (mod pf ), (∀fℓ + 1 ≤ f ≤ fℓ+1).

By the Chinese Remainder Theorem, i.e., Lemma 2 there exactly one congruence n ≡
n0 (mod P ) satisfying the system above, where

P = p1 · · · pf1
∏

1≤v≤ℓ

( ∏
fv+1≤f≤fv+1

pf

)
.

Therefore, if n ≤ x with n = mP + n0 then the number of m is clearly greater than

x− n0

P
− 1 ≫ x.

For any 1 ≤ i ≤ ℓ, define Si(m) as

Si(m) = Li(mP + n0) = aiPm+ ain0 + bi.

We are going to prove that for any prime p there exists an integer mp such that p
divides none of the Si(mp) (1 ≤ i ≤ ℓ). First, set mp = 0 for p ≤ pf1 . Since none of the
Li(nf ) can be divisible by pf , we can conclude by using the congruences system earlier
that

Si(0) ≡ ain0 + bi ≡ ainf + bi = Li(nf ) ̸≡ 0 (mod pf )

for any p ≤ pf1 . For primes pf1+1 ≤ p ≤ pfℓ+1
, we again choosemp = 0. From the system

of congruences, there exists some j such that 1 ≤ j ≤ ℓ and cjn0 + dj ≡ 0 (mod p).
Hence, we have

n0 ≡ −c−1
j dj (mod p)

since p is larger than C = max1≤j≤ℓ cj which clearly means that p ∤ cj. Recall that
B = max1≤i,j≤ℓ |aidj − bicj|, it implies that

p ∤ aidj − bicj

for all 1 ≤ i, j ≤ ℓ due to the fact aidj − bicj ̸= 0. Thus, we can deduce that

Si(0) ≡ ain0 + bi ≡ ai(−c−1
j dj) + bi ̸≡ 0 (mod p).

Finally, for any p > pfl+1
, the prime p and aiP are relatively prime, so there is only one

solution m (mod p) to Si(m) ≡ 0 (mod p) for each Si(m). Hence,

S1(m)S2(m) · · ·Sℓ(m) ≡ 0 (mod p)

has at most ℓ solutions. Since pf1 > A+B+C+ ℓ, there must exist at least one integer
mp such that p divides none of the Si(np).
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ON A SIGN CHANGE PROBLEM ON SUMS OF DIVISORS 5

Employing Lemma 3, there are

≫ x− n0

P

(
log

x− n0

P

)−ℓ

≫ x(log x)−ℓ

integers m ≤ x−n0

P
satisfying that

max
1≤i≤ℓ

Ω(Li(n)) = max
1≤i≤l

Ω(Si(m)) ≤ Gℓ.

And for such m (where n = mP + n0), we will have

max
1≤i≤ℓ

σs(Li(n)) ≤ max
1≤i≤ℓ

∑
d|Li(n)

ds ≤ 2Gℓ

(
An+ max

1≤i≤ℓ
bi

)s

≤ 2Gℓ(2An)s ≤ 2Gℓ+1Ans,

providing that n is sufficiently large. Additionally, for these integers n, we know

Hj(n) = cj(mP + n0) + dj ≡ cjn0 + dj ≡ 0 (mod p)

for any pfj+1 ≤ p ≤ pfj+1
, following from the system of congruences above. Therefore,

for any 1 ≤ j ≤ ℓ we have

σs(Hj(n)) ≥
fj+1∑

f=fj+1

(
cjn+ dj

pf

)s

≥
fj+1∑

f=fj+1

(
n

2pf

)s

≥ ns

2
2Gℓ+3A = 2Gℓ+2Ans.

Thus, combining this with the earlier bound, we conclude

σs(Hj(n)) ≥ 2Gℓ+2Ans > 2Gℓ+1Ans ≥ max
1≤i≤ℓ

σs(Li(n))

for any 1 ≤ j ≤ ℓ, which completes this part of the proof of the theorem. □

To end up this short article, we provide an example which illustrates the strength of
our Theorem 1.

Example 1. Let s = 1
2
in Theorem 1. Let also

a1n+ b1 = 4n+ 1, a2n+ b2 = 6n+ 5, a3n+ b3 = 12n+ 7

and
c1n+ d1 = 4n+ 3, c2n+ d2 = 6n+ 1, c3n+ d3 = 12n+ 11.

Then ai, bi, ci and di satisfy the conditions in Theorem 1. Thus, by Theorem 1 there are
infinitely many positive integers n satisfying that

min

{ ∑
d|4n+3

√
d,

∑
d|6n+1

√
d,

∑
d|12n+11

√
d

}
> max

{ ∑
d|4n+1

√
d,

∑
d|6n+5

√
d,

∑
d|12n+7

√
d

}
, (1)

which, as one could see, is not trivial at all.
Furthermore, if we exchange the positions of ain+ bi and cin+ di, i.e.,

a1n+ b1 = 4n+ 3, a2n+ b2 = 6n+ 1, a3n+ b3 = 12n+ 11

and
c1n+ d1 = 4n+ 1, c2n+ d2 = 6n+ 5, c3n+ d3 = 12n+ 7.

Then these new ai, bi, ci and di also satisfy the conditions in Theorem 1. Thus, by
Theorem 1 there are infinitely many positive integers n so that

max

{ ∑
d|4n+3

√
d,

∑
d|6n+1

√
d,

∑
d|12n+11

√
d

}
< min

{ ∑
d|4n+1

√
d,

∑
d|6n+5

√
d,

∑
d|12n+7

√
d

}
. (2)
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6 ZIYUAN SHEN

Inequalities (1) and (2) can be viewed as a new example of the Chebyshev bias phenom-
enon on sums of divisors.
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