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LDEE a On a sign-change problem on sums of divisors
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Example 1. Let s = é in Theorem 1. Let also

an+b=4n+1, amn+b=6n+5H, an+bup=12n47
aid

cn4dy =4dn+3., cn4+dy=06n-+1, cynvdys=12n 411
Then a;, b, ¢; and d; satisfy the conditions in Theorem 1."Thus; by Theorem I-there are
infinately many posttive integers n satisfying that

wn{ 3 VA Y VA Y Vapsmad TV SV V)

d|dn+3 d|tin+1 d|12n+11 ddn+1 dlbnt5 d|12n-+7
which, as one could see, is not trivial at all.
Furthermore, if we exchange the positions of an + b, and wn + d;, i.e.,

an+b =4n+3, aon b= 6n+ 1, SJagh by = 12n+ 11
and

cin+d=4n+1, ontdi=64 I antdi=12n+7.
Then these new ag, by, ¢; and dylalse. satisfy the eanditions in Theorem 1. Thus, by
Theorem 1 there are infinitelymany positiveantegers n so that

max{ ¥ VA, 3 @NT Yikewin{ ¥ VA Y Vi Y Vil o)

d|dn+3 d|Gri%1 #f12n+11 didn+1 d|6n-+5 d|12n+7

Inequalities (1) and (2) can be viewed'as a new example of the Chebyshev bias phenom-
enon on sums of divisors.
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On a sign change problem on sums of divisors
Ziyuan Shen

ABSTRACT. Let 0 < s < 1 and ay,b;,c;,d; be nonnegative integers withva;,c; >
0, a;d; —bic; #0 (1 < i <¥). Recently, Pongsriiam asked whether there are infinitely
many positive integers n so that os(a;n + b;) < os(cin + d;) for all i € {142,---, £},
where o4(n) = >_,, d". In this note, we answer this problem affirmatively with a
natural constraint on the admissible situation.

1. Introduction

In 1853, Chebyshev [2] observed that there appear to’be.more primes of the form
p = 3 (mod 4) than those of the form p =1 (mod 4);.a phenomenon now known as the
Chebyshev bias. Riemann, in his famous memoir [1], notedthat m(x), the number of
primes less than or equal to x, is often less than Li(x),where Li(x) is the logarithmic
integral defined by

Following the significant results of Hadamard and de la Vallée Poussin [14], proving
the prime number theorem, it is now known that
m(x) ~ Li(z) vas z — co.
Riemann’s observation represents a second example of the Chebyshev bias phenome-
non. However, Littlewood [9]"ater-disproved both Chebyshev’s and Riemann’s claims,
showing that the inequality between.zr(x) and Li(x) reverses infinitely often. Along with
Hardy, Littlewood [10] also proved that
m(r;4,3) — m(x;4,1)

and

Li(z) — m(x)
oscillate infinitely, meaning they change signs infinitely many times.

Another.well-known instance of the Chebyshev bias occurs with Euler’s totient func-
tion, ¢(n). In 1973;Jarden [8, page 65| noted that

©(30n 4+ 1) > ¢(30n)

forvall n < 100, 000. By Dirichlet’s theorem on primes in arithmetic progressions, there
are infinitely many n for which this inequality holds. However, Newman [11] later
demonstrated that there are also infinitely many n such that

©(30n + 1) < ¢(30n).

Therefore, the difference
©(30n + 1) — p(30n)
has infinitely many sign changes, as established by Dirichlet and Newman.
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Inspired by work from Erdds [5, 13], Wang, Chen [15], and Pongsriiam [12] studied
arithmetic functions related to sums of divisors, specifically

oy(n) =) _d’,
dn

where s is a real number. Pongsrilam [12] extended the study of the Chebyshev bias
to these divisor functions, proving several results about sign changes. For instance,
Pongsriiam [12, Theorem 2.4] showed that the difference

o(30n) —o(30n + 1)

(o without s means s=1) experiences infinitely many sign changes. He also demonstrated
[12, Theorem 2.10] that for integers a > ¢ > 0 and b > d > 0,/there exists a threshold
so > 1 such that

os(an +b) > os(cn + d)
for all s > s and n > 1. Additionally, Pongsriiam [12, Theorem 2.11] found that

os(2m +5) < 05(6m +17) and gs(bm + 4).La(6m +7)

hold for all m € N when s > 3.
Pongsriiam concluded with several open ‘questions:for/ further exploration, one of
which is central to this paper.

Problem 1 ([12], Problem 3.3). Suppose 0 < s<'Land a;, b;, ¢;, d; are non-negative
integers, a;,c;>0 and a;d; — bic; # 0, for each/i=1,2,--- {. Are there infinitely many
n € N such that
Js(am + bi)<05(cin + dl)
forallie{1,2,--- (}7
Motivated by the veryrecent solutions to some problems of Pongsriiam given by Ding,

Pan and Sun [4]. We deal with“Preblem 1 mentioned above in a narrow but natural
situation.

Theorem 1. Suppose 0.< s.</1 and a;, b;, ¢;, d; are non-negative integers, a;,c;>0
and a;d; —bye; # 0, for each i = 1,2,--- £. Suppose that for any prime p there is at
least one integer n, such that p divides none of the a;n+b;, then there are > x(log z)™*
integers m.< = (hemee infinitely many often n) such that

os(cm+ d;) > max oy(ain + bi) (Vjef{L2.--.0),
where the constant implied by > depends only on the choices of a;, b;, c; and d;.
As_ a eorollary, we immediately obtain the following partial solution to Problem 1.
Corollary 1. The answer to Theorem 1 is positive provided that for any prime p there

is at least one integer n, such that p divides none of the a;n + b; (1<i<y).

2. Proof of Theorem 1

We first state some lemmas below before presenting the proof of Theorem 1.
The first two lemmas are standard results in number theory[3].
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Lemma 1. The sum of the reciprocals of prime numbers diverges. That is, for any
giwen M > 0 there is some constant Cy; so that

21>M.

p<Cwm p
Lemma 2 (Chinese Remainder Theorem). Let ny,ns,...,ny be pairwise coprime inte-
gers, and let N = ning - --ng. For any integers ay, as, . .., a, the system of congruences

x = ap (mod ny),
T = ag (mod ny),

x = aj (mod ny)

has a unique solution modulo N. In other words, there exists an’integer x such that

r = a; (mod n;) for each i = 1,2,...,k, and any two Such solutions' are congruent
modulo N .

Our proof is based on the following deep result of Heath-Brown [7, Theorem 1].

Lemma 3 (Heath-Brown). Let L;(n) = a;n'4 b; (1 <7 </k) be linear functions with
integer coefficients and a; > 0. Suppose that for any pritep there is at least one integer
n, such that p divides none of the L;(ng), then there ares> x(logx)™* integers n < x
such that

max Q(L;(n)). < Gy,

1<i<k
where the constant Gy, is given, by

3k 4+ 4k + 4
O |£R|

We now turn to the proof of Theorem 1.
Proof of Theorem 1."Eor any,1 <%, j </, let
Li(n) =an~+0b; and H;(n)=cn+d;.
By the condition of Theorem 1) we know that for any prime p, there exists at least one

integer n, such that p-divides none of the L;(n,). Under these notations, it suffices to
show that there are > x(logz)~* integers n < z such that

0s(H;(n)) > max o,(Li(n)) (V1<j<0).

Let p; be'the f-th prime. For any f, there exists some integer ns satisfying

prt ] Li(ny)
1<i<t
by ourconditions. Set

A = max a;,
1<i<t

C = max ¢;
1<5<¢

and

B = max |Clidj — bl'Cj‘.
1<i,j<¢
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Now, let py, be the smallest prime greater than A+B+C'4-{. Thus, thanks to Lemma 1,
we could find out a series of numbers f; (depending only on a;, b;, ¢;, d; and ¢) satisfying

f'u+1 1
Z —_ > 2G£+3A

S

f:fv+1 p‘f

for any 1 <wv < /.
We next consider the following congruence system:
(0= ns (mod py), V1< f<fi)
cn + dl =0 (HlOd pf), (\V/fl + 1 S f S fz)
con+dy =0 (mod py), (Vfo+1<f <fs)

L con+dg =0 (mod py), (Vfr+ A < oL fop)

By the Chinese Remainder Theorem, i.e., Lemma 2 there exactly one congruence n =
no (mod P) satisfying the system above, where

P=ppn [T (=0T o)

1<v<l Mot <f<fopr
Therefore, if n < x with n = mP + ngy then.the number of m is clearly greater than
T Ny

P — 1>

For any 1 <14 < ¢, define S;(m) as

We are going to prove that. for any prime p there exists an integer m, such that p
divides none of the S;(m,,) (1 <" </). First, set m, = 0 for p < py,. Since none of the
L;(ns) can be divisible by pf, we.can conclude by using the congruences system earlier
that

Si(0) = amo # b; = a;ng+ b, = Li(ny) # 0 (mod py)
for any p < pg. For primes pp 1< p < py,. ., we again choose m, = 0. From the system
of congruences, there exists.some j such that 1 < j < ¢ and ¢;ng + d; = 0 (mod p).
Hence, we have
no = —c; 'd; (mod p)
since pds larger~than C' = max;<j<,c; which clearly means that p { ¢;. Recall that
B= Maxy<ij<e ]aidj — biCj|, it 1mphes that

P J[ aidj — biCj
for all/1, <7, < ¢ due to the fact a;d; — bjc; # 0. Thus, we can deduce that
Si(0) = ang + b; = ai(—cj_ldj) + b; Z 0 (mod p).
Finally, for any p > py, ,, the prime p and a; P are relatively prime, so there is only one
solution m (mod p) to S;(m) =0 (mod p) for each S;(m). Hence,
S1(m)Sz(m) -+ - Se(m) = 0 (mod p)
has at most ¢ solutions. Since py, > A+ B+ C +{, there must exist at least one integer
m,, such that p divides none of the S;(n,).
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Employing Lemma 3, there are
—¢
T — Ny T — Ny ¢
lo z(logz
> ( &% > > x(log z)
integers m < #* satisfying that

max 2(L;(n)) = max Q(S;(m)) < Gy.

1<i<t 1<i<l

And for such m (where n = mP + ng), we will have

max os(L;(n)) < max ds < 20 (An + max bi) < 29¢(24n)E < 2% An®,
1<i<t 1<i<t 1<i<t
d|Li(n)
providing that n is sufficiently large. Additionally, for these integers n, we know
Hj(n) = c¢j(mP +ny) +dj = ¢jng +d; = 0 (mod p)

for any py,41 < p < py,,,, following from the system/of-€ongruences above. Therefore,
for any 1 < j </ we have

e Cjn+dj ’ & n ’ n’ Go+3 Ge+2 s
o(Hin) > > (T—2) = > (5= > 52 A =20 A,

2
=i~ P s=ik
Thus, combining this with the earlier bound, we conclude

05(Hj(n)) = 2972 An*'> 2L An> > max o, (Li(n))

for any 1 < j < ¢, which completes this‘part of'the proof of the theorem.
To end up this short article, we provide an.example which illustrates the strength of
our Theorem 1.

Example 1. Let s = % i Theorem 1. Letwalso

ain+b=4n+1, am+by,=6n+>5 agn—+by3=12n+7
and
cnFd; =4dn+ 37 con+dy=6n+1, cyn+ds=12n+ 11.

Then a;, b;, ¢; ‘and.d; satisfy the conditions in Theorem 1. Thus, by Theorem 1 there are
infinitely many positive integers n satisfying that

wind VISV Y Vi ma{ 3V Y VA X Vb )

d|4n+3 d|6n+1 d|12n+11 d|dn+1 d|6n+5 d|12n+7
which, «as one could'see, 1s not trivial at all.
Furthermore, if we exchange the positions of a;n + b; and ¢;n + d;, i.e.,
ain+by=4n+3, am-+by=6n+1, asn-+by3=12n+ 11
and
con+di=4n+1, cn+dy=6n+5 cn+ds3=12n+7.

Then.these new a;,b;,c; and d; also satisfy the conditions in Theorem 1. Thus, by
Theorem 1 there are infinitely many positive integers n so that

woc{ ¥ VA S0 VA S Vaf<un{ X VA Y VA Y Vafo o)

d|4n+3 d|6n+1 d|12n+11 dl4n+1 d|6n+5 d|12n+7
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Inequalities (1) and (2) can be viewed as a new example of the Chebyshev bias phenom-
enon on sums of divisors.
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