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THE SOLUTION TO SCHUBERT’S PROBLEM AND CONVEX
POLYHEDRA

TIFFANY WING LUN HE

Abstract. Consider given four lines in the space R3, how many lines are there that intersect

all of them? This is a famous problem posed by Hermann Schubert in 1879. While Schubert’s

original solution to this problem was insightful and gave the correct answer, the rigorous

foundation of his arguments had not emerged until the inventions of various 20th century

mathematical concepts. In this paper, we give a detailed and comprehensive solution to

Schubert’s problem. Our method is based on Morse theory in order to study the topology

of the Grassmannian Gr2(C4). We derive the answer by computing the cup products in

H∗(Gr2(C4)). Moreover, we remark that the problem can be related to the convexity theorem

in symplectic geometry. We present an interesting graphic interpretation of the answer using

a regular octahedron at the end of the paper.

Keywords. Schubert’s calculus, Grassmannian, Morse theory, cohomology, intersection

number, convex polyhedra.
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The Solution to Schubert’s Problem and Convex Polyhedra

1. Introduction

In [Sch79], Schubert considered various problems, that nowadays are viewed as marking the
beginning of the flourishing of enumerative geometry. One of them is

. Schubert’s problem. Let l1, l2, l3, l4 ⊂ R3 be four given lines, how many lines l ⊂ R3 are there
such that l ∩ li ̸= ∅, ∀i = 1, 2, 3, 4?

Using some arguments that heavily rely on geometric intuition, Schubert (loc. cit.) gave a
"proof" of the following.

Theorem 1.1. In generic cases, the answer is 2.

There could be other answers, when l1, l2, l3, l4 happen to be in some special position:

(1) When three of them are skew-parallel lines, then no line intersects them simultaneously,
the answer is 0.

(2) When three of them are concurrent, then infinitely many lines intersect them simultane-
ously, the answer is ∞.

(3) The answer could also be 1: let l1, l2 be two parallel lines in a plane e, take two points
A,B ∈ e such that the line AB intersects l1, l2, and let l3, l4 be two lines that intersect
e at A,B respectively, then only AB intersects all the four lines.

Remark 1.2. Actually one can show that the intersection number can only be 0, 1, 2 or ∞.
But in this paper, we shall be constrained in generic cases.

If the four lines are in general position (to be defined precisely later), we say it is a generic
case, and Schubert showed that there are exactly 2 lines intersecting all of them. Ever since,
people had been trying to make sense of Schubert’s heuristic proof. In 1900, Hilbert proposed
his famous 23 problems ([Hil24]) as tasks for the 20th century mathematicians. One of them is

. Hilbert’s 15th problem. Reformulate Schubert’s work in a rigorous manner.

The culmination of the endeavors on this problem nowadays becomes part of a general theory
called Schubert’s calculus. The goal of this paper is roughly to complete the task in Hilbert’s
15th problem. A significance difference from the existing expositions in the literature on Schu-
bert’s calculus more commonly based on algebraic geometry is that, our approach is topological
in essence. Moreover, we will highlight the comparison between the modern treatment and Schu-
bert’s original proof, to really put an emphasis on the process of making sense of his arguments.
To this end, we need to first understand what Schubert originally did.

The first step is to put the problem into a more general framework, that is, the study of
positional relations of points, lines and planes. We use the following notations to denote some
logical propositions or judgements about a line l ⊂ R3.

• ∗: l coincides with a given line.
320
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The Solution to Schubert’s Problem and Convex Polyhedra

• i: l intersects a given line.
• p: l passes through a given point.
• e: l is contained in a given plane.
• r: l belongs to a given pencil, i.e. l is in a given plane and passes through a given point

on that plane.
• · · · : a vacuously true proposition.

. The inclusion relations. We denote, purely formally:

∗ ↪→ r ↪→ p, e ↪→ i ↪→ · · · . (1.1)

To explain the notation ↪→, Schubert meant it as certain implication relations among the propo-
sitions, when the given data are in some special position. Consider p and i for example, if the
given point happens to be on the given line, then p implies i, so we write p ↪→ i. For e and i,
if the given plane happens to contain the given line, then e "almost" implies i. We are ignoring
the case when l is in that plane but parallel to the line, still writing e ↪→ i. Similarly, if the plane
or the point in r coincides with that in e or p, then we have the implication so r ↪→ p, e. In any
case, we can not deduce p and e from each other.

Remark 1.3. The above is not a rigorous "proof", nor a mathematically precise statement. In
fact, to provide a rigorous context is exactly the aim of the later sections.

Alternatively we can interpret the inclusion relations as an ascending chain of "degree of
freedom". We say that a given line has no degree of freedom, since it is given. A line in a pencil
has 1 degree of freedom, since to determine it, we just need a direction which is a 1-dimensional
datum or parameter. To determine a line in a plane, we need 2 parameters: the slope and
the intercept (we are again ignoring some negligible cases). For p, we need a direction in the
3-dimensional space, which has 2 degrees of freedom. To determine a line satisfying i, we need
an intersection point on the given line and a direction, so i has 1 + 2 = 3 degrees of freedom.
Lastly, a line l ⊂ R3 without any condition has 2 + 2 = 4 degrees of freedom: we first choose a
direction, then choose a point in the perpendicular plane.

. The product relations. We denote, purely formally:

i2 = p+ e. (1.2)

i · p = i · e = r. (1.3)

p2 = e2 = i · r = ∗. (1.4)

p · e = 0. (1.5)

These look rather mysterious, but in principle + and · represent the logical operators ∨ (or)
and ∧ (and) respectively. For example, if l satisfies both i and p, then l is in a pencil (provided
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The Solution to Schubert’s Problem and Convex Polyhedra

that the point in p is not on the line in i), so we write i ·p = r. Similarly, i ·e = r means i∧e ⇒ r,
provided that the line in i is not parallel to or contained in the plane in e.

The equations p2 = ∗ and e2 = ∗ essentially mean "two points determine a line" and "two
planes intersect at a line". Similarly, the conditions i and r determine the line uniquely (modulo
some degenerate positional cases). If the given point is not on the given plane, then p and e can
not hold simultaneously so we denote p · e = 0.

To explain i2 = p + e, it involves quite some equivocation. Generically speaking, two given
lines will be in skew position. Schubert argued, by invoking his "principle of continuity", that
one could always reconsider the problem after first parallelly "shifting a line". We can thus shift
the position so that the two lines intersect at a point, hence span a plane. It then follows that a
line intersecting both of them either contains that point, or is contained in that plane.

. Principle of continuity. The problem is invariant up to deformation. That is, while continu-
ously varying the position of the given lines, as long as they are always in generic position, then
the answer number is conserved (has no sudden change).

Once the product relations are set up, the answer to Schubert’s problem follows magically.
We are studying the condition i4, and this is eventually reduced to some purely algebraic ma-
nipulations:

i4 = i2 · (p+ e) = i · (r + r) = 2(i · r) = 2∗ (1.6)

and the number 2 indicates that there are exactly two lines satisfying the condition!

Remark 1.4. By employing the principle of continuity for a specific deformation, the answer
can also be derived geometrically. Suppose that there exists at least one line l satisfying the
condition, then we can "slide the four lines along l", so that we make l1 and l2 intersect at a
point A, l3 and l4 intersect at B. In such position, a line intersecting all the four lines has to be
either AB (i.e. the line l), or the intersection of the planes spanned by {l1, l2} and {l3, l4}. We
thus recover the result that there are 2 lines.

Of course, a large part of this proof is hard to justify rigorously. We are thus left with the
tasks below, that we are going to address in the later sections.

Question 1.5. What is "generic position", exactly?

Question 1.6. What is the "principle of continuity", exactly?

Question 1.7. What do the inclusion relations really mean?

Question 1.8. What do the product relations really mean?

The rest of the paper is organized as follows. In section 2 we translate Schubert’s problem into
one on the topological space Gr2(C

4). Section 3 is preparatory, we list all the relevant results
that we will later use. The key information is that we need to determine the structure of the
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The Solution to Schubert’s Problem and Convex Polyhedra

cohomology ring of Gr2(C
4). For this purpose, we perform a Morse theoretic computation in

our section 4, which is the main technical part of the paper. The final proof of theorem 1.1 will
appear in section 5, along with a comparison with the terms singled out in the four questions
above. To the best of our knowledge, this is the first time such a comparison has been made
transparent in the literature, though [Ron06] gives a very detailed historical account. Finally,
section 6 can be viewed as an extension of our project. We reinterpret our results, in terms
of a graphic presentation on a convex polyhedron. Throughout the paper, while some of the
concepts might look fancy, when we are actually doing proofs, it involves no more knowledge
than calculus, linear algebra and basic topology.

2. Reformulation of the problem

We will show that Schubert’s problem is really a problem on the Grassmannian Gr2(C
4) (or

Gr2(R
4)). We first introduce the Grassmannians in general.

2.1. The Grassmann manifolds.

Definition 2.1. Let F be R or C. For 0 < k < n, denote by Grk(F
n) the topological space

consisting of all the k-dimensional linear subspaces of Fn.

So in particular, a point (an element) in Gr2(F
4) represents a plane in F4 containing 0.

Generally, one can show that (see [MS74], lemma 5.1) Grk(F
n) is a compact smooth manifold

of dimension k(n − k). We shall only describe a local coordinate system here, for the later
computations. Recall that Rn and Cn are inner product spaces. Any linear subspace V ⊂ Fn

admits an orthogonal complement, denoted as V ⊥.

Definition 2.2. The projection map Fn = V ⊕ V ⊥ → V is denoted as πV .

It follows that V ⊥ = ker(πV ). For V ∈ Grk(F
n), i.e. dimF(V ) = k, the result below gives a

local coordinate chart at V in Grk(F
n), that will be of fundamental use.

Proposition 2.3. On the open neighborhood UV := {W ∈ Grk(F
n)|W ∩V ⊥ = {0}} of V , there

is a homeomorphism defined as

φV : UV → HomF(V, V
⊥) ∼= Fk(n−k), W 7→ (πV ⊥ |W ) ◦ (πV |−1

W ). (2.1)

Proof: We easily see that V ∈ UV since V ∩ V ⊥ = {0}}. To see that UV is open, consider the
continuous map

D : Grk(F
n) → F, W 7→ det(πV |W ). (2.2)

Then UV = D−1(F−{0}) is open. To verify that φV is well defined, since W ∈ UV implies that
πV |W is a bijection, we have a map πV |−1

W : V → W . Thus φV (W ) is defined as a composition

φV (W ) : V
πV |−1

W−−−−→ W
π
V ⊥ |W−−−−−→ V ⊥. (2.3)
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The Solution to Schubert’s Problem and Convex Polyhedra

To show that φV is a homeomorphism, we construct its inverse directly. Given ω ∈ HomF(V, V
⊥),

we check that
φ−1
V (ω) := {v + ω(v)|v ∈ V } ∈ UV ⊂ Grk(F

n). (2.4)

Here v + ω(v) means an element in Fn = V ⊕ V ⊥. As v ranges over V , the elements form
a k-dimensional subspace because id + ω ∈ HomF(V, V ⊕ V ⊥) is of full rank, so φ−1

V (ω) =

(id+ ω)(V ) ∈ Grk(F
n). Since φ−1

V (ω) ∩ V ⊥ = {0}}, φ−1
V (ω) ∈ UV . Clearly id+ ω is continuous

in ω hence φ−1
V : HomF(V, V

⊥) → UV is continuous. It is then straightforward to check that
φ−1
V ◦ φV = id and φV ◦ φ−1

V = id, so φ−1
V and φV are inverses of each other. □

For ω ∈ HomF(V, V
⊥), let ω∗ ∈ HomF(V

⊥, V ) be its adjoint operator, characterized by the
property that

(ω(v), v′) = (v, ω∗(v′)), ∀v ∈ V, v′ ∈ V ⊥ (2.5)

where (−,−) denotes the inner product in V or V ⊥ inherited from Fn. More concretely, in terms
of matrices, ω∗ is the conjugate transpose of ω when F = C, and transpose when F = R. The
next result is prepared for section 4.

Lemma 2.4. We have a commutative diagram, where all arrows are homeomorphisms:

UV UV ⊥

HomF(V, V
⊥) HomF(V

⊥, V )

φV

W 7→W⊥

φ
V ⊥

ω 7→−ω∗

. (2.6)

Proof: The upper arrow is well defined, because (W ∩ V ⊥)⊥ = W⊥ ∩ V , so W ∩ V ⊥ = 0 ⇐⇒
W⊥ ∩ V = 0. Recall in the previous proof that

W = {v + ω(v)|v ∈ V }, ω = φV (W ). (2.7)

It then suffices to show that

φ−1
V ⊥(−ω∗) = {v′ − ω∗(v′)|v′ ∈ V ⊥} (2.8)

is the orthogonal complement of W . Since W and φ−1
V ⊥(−ω∗) have complementary dimensions,

it suffices to show that they are perpendicular to each other. That is,

(v + ω(v), v′ − ω∗(v′)) = 0, ∀v ∈ V, v′ ∈ V ⊥ (2.9)

which is then reduced to equation 2.5. □

2.2. Translating the problem. When k = 1, Gr1(F
n) is the projective space FPn−1, on which

we have the homogeneous coordinate [x1, · · · , xn]. Consider the obvious embedding

P : R3 ↪→ RP3, (x, y, z) 7→ [1, x, y, z]. (2.10)

Geometrically, what P does in R4 is to send a point A in the hyperplane x1 = 1 (identified with
R3) to the line OA, which is an element in RP3. It is then clear that P will take a line l ⊂ R
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The Solution to Schubert’s Problem and Convex Polyhedra

to a 2-dimensional subspace in R4. That is, we have an embedding

P : {lines in R3} ↪→ Gr2(R
4) (2.11)

and similarly an embedding

P : {planes in R3} ↪→ Gr3(R
4). (2.12)

Example 2.5. As a concrete example, consider the plane x+ y + z = 1 in R3, then P sends it
to the 3-dimensional subspace spanned by (1, 1, 0, 0), (1, 0, 1, 0) and (1, 0, 0, 1).

Example 2.6. For a line l = AB in R3, P(l) is the 2-dimensional subspace spanned by (1, A)

and (1, B).

Consider two lines l, l′ ⊂ R3. As two 2-dimensional subspaces in R4, generically P(l) and
P(l′) intersect at {O}. This corresponds to the fact that two lines in the space generically do
not intersect. We could have a 1-dimensional intersection P(l) ∩ P(l′) = L. This happens if l
and l′ intersect at a point A, so L = P(A). Therefore, via P we can view a line in R3 as a point
in Gr2(R

4), and translate any intersection statement in R3 to a statement in Gr2(R
4) (or in the

linear subspaces of R4).

Remark 2.7. One might worry that after the projectivization P, two parallel lines would be
wrongly counted as having an intersection. However, later we will see that we have a precise way
to rule out such degenerate cases of our discussion, so that the translation into Grassmannian
really preserves the intersection information.

Let’s translate the logical propositions we have seen in section 1 about l ⊂ R3, to those below
about x ∈ Gr2(R

4).

• ∗: x is a given point.
• i: for a given y ∈ Gr2(R

4), dim(x ∩ y) > 0.
• p: for a given 1-dimensional subspace L ⊂ R4, L ⊂ x.
• e: for a given 3-dimensional subspace H ⊂ R4, x ⊂ H.
• r: for a given 3-dimensional subspace H ⊂ R4 and a given 1-dimensional subspace
L ⊂ H ⊂ R4, L ⊂ x ⊂ H.

• · · · : a vacuously true proposition.

The last point is that we furthermore need to pass from the real numbers R to the complex
numbers C (for a purely technical reason, see the remark below) under the canonical embedding

c : R4 ↪→ R4 ⊗R C = C4. (2.13)

Under c, a linear subspace V ⊂ R4 is sent to a linear subspace c(V ) := V ⊗RC ⊂ C4. Intuitively,
what c does is to formally adjoin complex scalar multiplication of vectors. The complexification
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The Solution to Schubert’s Problem and Convex Polyhedra

c behaves well with other notions, in the sense that

dimR(V ) = dimC(c(V )). (2.14)

V1 ⊂ V2 ⇐⇒ c(V1) ⊂ c(V2). (2.15)

c(V1 ∩ V2) = c(V1) ∩ c(V2). (2.16)

Thus what we have discussed earlier in this subsection holds verbatim et literatim, replacing R

with C.

Remark 2.8. From the topological perspective working over C as opposed to R has many
advantages. For example, complex manifolds are canonically oriented. Moreover, complex di-
mensions are always converted to even real dimensions. As we will see later, this evenness
property significantly simplifies the structure of the cohomology ring.

Finally, after the projectivization P followed by the complexification c : Gr2(R
4) ↪→ Gr2(C

4),
the problem ends up being translated into the following.

. Reformulation of Schubert’s problem. For the given lk (k = 1, 2, 3, 4), denote xk := (c◦P)(lk) ∈
Gr2(C

4), and let Ik ⊂ Gr2(C
4) be the subspace of the elements satisfying the previous proposition

i for the given xk, what is the cardinality of I1 ∩ I2 ∩ I3 ∩ I4 generically?

3. Preliminaries from topology and Morse theory

Throughout this section, M will be a closed, connected, oriented and smooth manifold of
dimension n. The central result we are going to borrow from topology is the following. Roughly,
it tells us that "the cup product encodes the information of intersections".

Theorem 3.1. ([Hut11].) Let A,B ⊂ M be two submanifolds (assumed to be closed, oriented
and smooth). Suppose that A intersects B transversally (denoted as A ⋔ B), then

[A ∩B] = [A] ∪ [B] (3.1)

where ∪ denotes the cup product, [X] ∈ Hk(M) is the cohomology class associated to X where
k = codim(X). If A ∩B = ∅ then [A] ∪ [B] = 0.

We will explain the terms showing up in this statement in the subsection below.

3.1. Cohomology and cup product. Recall that the singular homology ([Hat02], chapter 2)
associates to each degree 0 ≤ k ≤ n and to M an abelian group Hk(M). For k = n in particular,
the orientation of M induces an isomorphism Hn(M) = Z, under which "1" corresponds to the
fundamental class of M . For X = A and B, the inclusion map induces a graded homomorphism
H∗(X) → H∗(M), under which the fundamental class of X is sent to a homology class x ∈ Hd(M)

where d = dim(X). The Poincare dual ([Hat02], section 3.3) of x is a cohomology class at the
degree n− d := codim(X), denoted as [X].
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The Solution to Schubert’s Problem and Convex Polyhedra

For the cup product, in this paper we will not need its explicit definition or construction in
[Hat02], section 3.2. The relevant fact for us is that, the cup product ∪ is an operation on the
cohomology, that satisfies the following conditions:

• If x ∈ Hk(M), y ∈ H l(M), then x ∪ y ∈ Hk+l(M).
• For x, y, z three cohomology classes, x ∪ (y ∪ z) = (x ∪ y) ∪ z.
• For x ∈ Hk(M) and y, z ∈ H l(M), x ∪ (y + z) = x ∪ y + x ∪ z.
• For x ∈ Hk(M) and y ∈ H l(M), x ∪ y = (−1)kly ∪ x.

The message is that ∪ is really a product-like operation, subject to the associativity, distributivity
and (graded) commutativity. One says that ∪ makes H∗(M) into a graded commutative ring.
These properties will be vital, to validate the algebraic manipulations in section 1.

Lastly, the transversality is an important property that also shows up in the next subsection.
Informally, a transverse intersection is one with overlap "as little as possible".

Definition 3.2. We denote A ⋔ B, if A ∩B ̸= ∅ and ∀p ∈ A ∩B, the tangent spaces satisfy

TpM = TpA+ TpB := {v1 + v2|v1 ∈ TpA, v2 ∈ TpB}. (3.2)

Equivalently, if codim(TpA ∩ TpB) = codim(TpA) + codim(TpB).

The second characterization is easily generalized to the transversality of multiple objects:

codim(∩k
i=1TpAi) =

k∑
i=1

codim(TpAi). (3.3)

The consequence of transversality is that A ∩ B is again a closed smooth submanifold with
orientation induced by that of A, B and M by the convention in [Hut11], so that [A ∩ B] is
defined, and theorem 3.1 holds. In particular when dim(A) and dim(B) are complementary,
then A ∩B is 0-dimensional. So A intersects B at some isolated points. Each intersection point
has an orientation +1 or −1, and the total sum of these numbers is exactly [A∩B] ∈ Hn(M) = Z,
called the intersection number of A and B.

The next result says that the transversality is a very mild condition, that always holds up to
small perturbation. We shall only give a rough statement, see [Lee13], theorem 6.35 for a precise
and more general version.

. Thom’s transversality theorem. When dim(A) + dim(B) ≥ n and A ∩ B ̸= ∅, one can always
perturb them (arbitrarily) slightly, so that A ⋔ B.

3.2. Morse theory and unstable manifolds. Broadly speaking, Morse theory is a technique
to extract topological information from studying certain smooth functions on a space. Specifi-
cally, it can be employed to derive the homology and cohomology.

Let f be a smooth function on M . At a point x ∈ M , the tangent map

f∗ : TxM → Tf(x)R = R (3.4)
1020
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The Solution to Schubert’s Problem and Convex Polyhedra

is called the gradient of f at x, denoted as ∇xf . Usually one expresses ∇xf in a local coordinate,
as the Jacobian matrix

∇xf = (
∂f

∂x1
(x), · · · , ∂f

∂xn
(x)). (3.5)

When M is embedded in an ambient Euclidean space, or more generally possesses a Riemannian
structure, we can speak of TM as a metric bundle, so any linear function on TxM is obtained
from taking the inner product with a fixed vector. In particular, we will also view ∇xf as a
tangent vector at x, in the sense that

∂f

∂v
= f∗(v) = (v,∇xf)TxM , ∀v ∈ TxM. (3.6)

As x varies, ∇f defines a smooth vector field on M , which then induces a flow on M called the
gradient flow. Precisely, a gradient flow is a smooth curve γ(t) on M satisfying

γ′(t) = ∇γ(t)f, ∀t ∈ R. (3.7)

By the existence and uniqueness theorem for ODE’s, any point x ∈ M is contained in a unique
gradient flow, denoted as γx. For a gradient flow γ, by equation 3.6

(f ◦ γ)′(t) = f∗(γ
′(t)) = (∇γ(t)f,∇γ(t)f) = |∇γ(t)f |2 ≥ 0, ∀t ∈ R. (3.8)

Hence f is non decreasing along gradient flow. A special case is when the gradient vanishes at
x, then the flow generated by x is a constant curve.

Definition 3.3. If ∇xf = 0, x is said to be a critical point of f .

Definition 3.4. f is called a Morse function, if all its critical points are non degenerate.

We refer the definition of non degeneracy to [Mil63], section 1.2. Informally speaking, a critical
point x being non degenerate means that at x locally, f has k directions of decreasing, l directions
of increasing, and k + l = n. We say that k is the index of x. These notions are closely related
to stable / unstable manifolds, as we shall now explain.

The fact k + l = n implies that non degenerate critical points are isolated. Since M is
assumed to be compact, a Morse function f has finitely many critical points. Let C(f) denote
the set of critical points. For a non constant gradient flow γ, since f has bounded value and f

monotonically increases along γ, γ(t) must converge to critical points as t → ±∞.

Definition 3.5. For x ∈ C(f), the unstable manifold of x is defined as

U(x) := {y ∈ M | lim
t→+∞

γy(t) = x} (3.9)

and the stable manifold of x is defined as

S(x) := {y ∈ M | lim
t→−∞

γy(t) = x}. (3.10)
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The Solution to Schubert’s Problem and Convex Polyhedra

It follows that M can be decomposed as a disjoint union

M =
∐

x∈C(f)

U(x) =
∐

x∈C(f)

S(x). (3.11)

The next result is [ADE14], proposition 2.1.5. Actually we can use it to characterize the non
degeneracy and the index:

Theorem 3.6. U(x), S(x) are submanifolds of M of dimension k = ind(x), and l = n − k

respectively. Moreover, we have the homeomorphisms

U(x) ∼= ek, S(x) ∼= el (3.12)

where ei ⊂ Ri denotes the open unit disk, called an open cell.

This almost makes 3.11 into a CW decomposition. But we need a mild technical condition.

. The Smale condition. We say f satisfies the Smale condition, if for any U(x) ∩ S(y) ̸= ∅,
U(x) ⋔ S(y).

Remark 3.7. By the definition, x ∈ U(x) and x ∈ S(x). By the monotonicity, if U(x)∩S(y) ̸= ∅,
then f(x) > f(y) or x = y. In the latter case, U(x)∩S(x) = {x} and the non degeneracy implies
that U(x) ⋔ S(x). The Smale condition in particularly implies that if U(x) ∩ S(y) ̸= ∅, then
ind(x) ≥ ind(y). Otherwise dim(U(x)) + dim(S(y)) < n, we can not have U(x) ⋔ S(y).

It turns out that the Smale condition ensures that every unstable manifold is attached along
the boundary to the lower dimensional ones (see [ADE14], section 4.9):

Theorem 3.8. Suppose that f is a Morse function satisfying the Smale condition, then 3.11 is a
CW decomposition. In particular, via the unstable manifold decomposition, as a CW complex,
the cells of M of dimension i are in bijection with the critical points of f of index i, for all i.

This is also recognized as the fundamental theorem of Morse theory. In fact, section 4.9 of
[ADE14] shows that not only we know the cellular decomposition, we also know what are the
boundary maps in the cellular complex from analyzing the gradient flow of f . More precisely,
there is a theory of Morse homology / cohomology, that one can compute the homology / coho-
mology groups of M using the Morse function f . However, we shall not present this theory here.
As we will soon see, the cellular complex of complex Grassmannians has all boundary maps zero,
so the example we consider in this paper is much simpler than the general theory.

4. The Morse gradient flow on Gr2(C
4)

The goal of this section is to apply the general theory sketched in the last subsection to the
example Gr2(C

4), or more generally any complex Grassmannian. We fix some notations: we use
∗ to represent a free variable, and we typically represent an element V ∈ Gr2(C

4) as a full-rank
2× 4 matrix (v1, v2)

T , meaning V is spanned by the vectors v1, v2 ∈ C4.
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The Solution to Schubert’s Problem and Convex Polyhedra

Theorem 4.1. There is a Morse-Smale function on Gr2(C
4) with 6 critical points, such that

the unstable manifolds (called the Schubert cells of Gr2(C
4)) are

• e0 :=
{(1 0 0 0

0 1 0 0

)}
.

• e2 :=
{(1 0 0 0

0 ∗ 1 0

)}
.

• e41 :=
{(1 0 0 0

0 ∗ ∗ 1

)}
.

• e42 :=
{(∗ 1 0 0

∗ 0 1 0

)}
.

• e6 :=
{(∗ 1 0 0

∗ 0 ∗ 1

)}
.

• e8 :=
{(∗ ∗ 1 0

∗ ∗ 0 1

)}
.

Remark 4.2. One might recognize that these are exactly the row canonical forms in linear
algebra. Every full-rank 2 × 4 matrix can be put into a such form uniquely, by a series of
elementary row operations which do not change the underlying space V ∈ Gr2(C

4). So it
already follows that the above is a disjoint decomposition of Gr2(C

4). With some efforts one can
show by hand that it is indeed a CW decomposition. Nevertheless, we insist a Morse theoretic
approach here, for twofold reasons. First, it is a general method. We can naturally derive this
decomposition from analyzing the gradient flow, and invoke theorem 3.8 to show directly that it
is a cellular one. Second, we will need some of the notions and results here for the later sections.

We break the proof into parts. The key part is to compute and analyze the gradient flow.

4.1. Step one: construct the Morse function. We do it for the general case. Fix an ar-
bitrary sequence of real numbers c1 < c2 < · · · < cn and denote the diagonal matrix C :=

diag(c1, · · · , cn). Recall that for V ∈ Grk(C
n), πV denotes the orthogonal projection. We can

view πV as a linear map Cn → Cn with image V .

Definition 4.3. Let f be a function on Grk(C
n) defined by

f(V ) := Trace(CπV ). (4.1)

A priori the value f(V ) ∈ C, but actually f(V ) ∈ R. This is because as an orthogonal
projection, πV is Hermitian (i.e. πV = π∗

V ) and so is C. Thus

f(V )∗ = Tr((CπV )
∗) = Tr(π∗

V C
∗) = Tr(πV C) = Tr(CπV ) = f(V ) ⇒ f(V ) ∈ R. (4.2)
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The Solution to Schubert’s Problem and Convex Polyhedra

Since V 7→ πV is smooth, f is a smooth function. It is often convenient to write f(V ) as

f(V ) =

n∑
i=1

(CπV ei, ei) (4.3)

where (−,−) is the standard Hermitian inner product on Cn, {ei} is any orthonormal basis.

Example 4.4. For k = 1 and any V ∈ CPn−1 given by a homogeneous coordinate [z1, · · · , zn],
take an orthonormal basis with e1 ∈ V , e2, · · · , en ∈ V ⊥, then

f(V ) = (CπV e1, e1) = (Ce1, e1) =

∑n
i=1 ci|zi|2∑n
i=1 |zi|2

. (4.4)

This is exactly the example Milnor considered in [Mil63], section 1.4.

From now on fix {ei} to be the standard orthonormal basis. For each 1 ≤ i1 < · · · < ik ≤ n, let
Vi1,··· ,ik ∈ Grk(C

n) denote the subspace spanned by ei1 , · · · , eik . In the next three subsections
we will prove that

Theorem 4.5. f is a Morse-Smale function with
(
n
k

)
critical points:

C(f) = {Vi1,··· ,ik |1 ≤ i1 < · · · < ik ≤ n}. (4.5)

The index of Vi1,··· ,ik is 2
∑k

j=1(ij − j).

4.2. Step two: compute the tangent map. Recall (proposition 2.3) φV : UV

∼=−→ HomC(V, V
⊥)

defines the local coordinate. For ω ∈ HomC(V, V
⊥), consider the curve γω(t) := φ−1

V (tω) in UV ,
γω(0) = V . We will determine ∇V f by computing f∗(γω) for every ω. We will write ∂f

∂ω := f∗(γω),
understood as the directional derivative along ω. The goal of this subsection is to prove

∂f

∂ω
= Tr(C(ωπV + ω∗πV ⊥)). (4.6)

Remark 4.6. In the notation ∂f
∂ω , we have identified HomC(V, V

⊥) with TV UV = TV Grk(C
n).

This identification will often show up implicitly in the later works.

First, for W ∈ UV we need an explicit formula expressing πW in πV , πV ⊥ and ω := φV (W ).

Lemma 4.7. We have the composition

πW = (id+ω) ◦ (id+ω∗ω)−1 ◦ (πV +ω∗πV ⊥) : Cn πV +ω∗π
V ⊥−−−−−−−−→ V

(id+ω∗ω)−1

−−−−−−−−→ V
id+ω−−−→ W. (4.7)

Proof: For any x ∈ Cn, denote a := πV (x), b := πV ⊥(x), then x = a+ b. Recall in lemma 2.4 we
have seen that

W = {v + ω(v)|v ∈ V }. (4.8)

W⊥ = {v′ − ω∗(v′)|v′ ∈ V ⊥}. (4.9)

In order to find πW (x), we need to find v ∈ V and v′ ∈ V ⊥ such that

x = (v + ω(v)) + (v′ − ω∗(v′)) (4.10)
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The Solution to Schubert’s Problem and Convex Polyhedra

then πW (x) = v + ω(v). We rewrite the equation as

a+ b = (v + ω(v)) + (v′ − ω∗(v′)) = (v − ω∗(v′)) + (v′ + ω(v)) (4.11)

which is then equivalent to the system of equations

a = v − ω∗(v′). (4.12)

b = v′ + ω(v). (4.13)

Eliminating v′ from the equations:

a+ ω∗b = v + ω∗ω(v) (4.14)

thus v = (id+ ω∗ω)−1 ◦ (πV + ω∗πV ⊥)(x), and πW (x) = (id+ ω)(v) as desired. □

We formally denote tW := φ−1
V (tω), then by 4.3

∂f

∂ω
=

df(tW )

dt
|t=0 =

n∑
i=1

(C
dπtW

dt
|t=0ei, ei). (4.15)

Substituting tW for W in lemma 4.7 yields

πtW = (id+ tω) ◦ (id+ t2w∗w)−1 ◦ (πV + tω∗πV ⊥) := X(t)Y (t)Z(t). (4.16)

Then take the derivative, and notice that Y (0) = id, Y ′(0) = 0:

dπtW

dt
|t=0 = X ′(0)Z(0) +X(0)Z ′(0) = ωπV + ω∗πV ⊥ . (4.17)

Finally, substitute this into 4.15, we get the equation 4.6.

4.3. Step three: compute the gradient flow. To speak of the gradient as a vector field, we
need an inner product structure on TV Grk(C

n). Since we have identified it with HomC(V, V
⊥) =

Ck(n−k) via φV , we get an inner product on TV Grk(C
n) transported from the standard Hermitian

inner product on Ck(n−k):

(ω, τ) := Tr(ωτ∗), ω, τ ∈ HomC(V, V
⊥). (4.18)

Hence we can view ∇V f as in TV Grk(C
n) by 3.6. The goal of this subsection is to prove

Theorem 4.8. The gradient flow of f generated by V is

γ(t) := A(t) · V := diag(e2c1t, · · · , e2cnt) · V. (4.19)

Remark 4.9. Here the diagonal matrix A(t) is understood as a linear automorphism of Cn,
that takes V to another k-dimensional subspace.

We need to show that γ′(t) = ∇γ(t)f everywhere. Notice that A(t) is a one-parameter group,
meaning A(t1)A(t2) = A(t1 + t2). It suffices to show that at t = 0, γ′(0) = ∇V f , then the
equation holds for all t. We use the simple fact deduced from equation 3.6 that, when |v| is
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The Solution to Schubert’s Problem and Convex Polyhedra

fixed, ∂f
∂v attains its maximum at the direction of gradient. Hence our strategy to determine the

gradient, is to maximize the expression 4.6.
Fix an orthonormal basis {e′i} of Cn with e′1, · · · , e′k ∈ V , e′k+1, · · · , e′n ∈ V ⊥. After the

change of basis {ei} → {e′i}, suppose that C is represented by the block matrix

(
A B∗

B D

)
where

A ∈ Hom(V, V ), B ∈ Hom(V, V ⊥), D ∈ Hom(V ⊥, V ⊥). In the same form of block matrix, the
other operator in 4.6 is expressed as

ωπV + ω∗πV ⊥ =

(
0 ω∗

ω 0

)
⇒ C(ωπV + ω∗πV ⊥) =

(
B∗ω · · ·
· · · Bω∗

)
. (4.20)

It follows that

∂f

∂ω
= Tr(B∗ω) + Tr(Bω∗) = (ω,B) + (B,ω) = |B + ω|2 − |ω|2 − |B|2. (4.21)

Proposition 4.10. ∇V f = 2B (under the identification TV Grk(C
n) = Hom(V, V ⊥)).

Proof: If B = 0, then ∂f
∂ω ≡ 0, so ∇V f = 0. If B ̸= 0, we maximize ∂f

∂ω , under the restriction
|ω| = |B|. Then it is to maximize |B+ω|. By |B+ω| ≤ |B|+ |ω| = 2|B|, ∂f

∂ω attains its maximum
2|B|2, at ω = B. Hence it follows from 3.6 that ∇V f = 2B. □

Corollary 4.11. The critical points of f are Vi1,··· ,ik , 1 ≤ i1 < · · · < ik ≤ n.

Proof: V = Vi1,··· ,ik ⇐⇒ V is an invariant subspace of C ⇐⇒ B = 0 ⇐⇒ ∂f
∂ω ≡ 0 ⇐⇒

∇V f = 0. In the first equivalence, we have used the assumption that the eigenvalues c1, · · · , cn
of C are distinct to each other. □

Lemma 4.12. For all t, γ(t) = A(t) · V ∈ UV .

Proof: We need to show (A(t) · V ) ∩ V ⊥ = {0}. Suppose v ∈ V such that A(t)(v) ∈ V ⊥, then
(A(t)(v), v) = 0. But A(t) is by definition positive definite, so v = 0. □

Now we also write A(t) in the block matrix form

(
α(t) β∗(t)

β(t) δ(t)

)
.

Lemma 4.13. φV (γ(t)) = β(t) ◦ α−1(t).

Proof: For v ∈ V , A(t)(v) = α(t)(v) + β(t)(v) is the decomposition in V ⊕ V ⊥. Recall that

φV (W ) : V
πV |−1

W−−−−→ W
π
V ⊥ |W−−−−−→ V ⊥. When W = γ(t) = A(t) · V , we have φV (W ) : α(t)(v) 7→

β(t)(v), hence φV (W ) = β(t)α−1(t). □

Finally, theorem 4.8 will follow from proposition 4.10 and the next result.

Proposition 4.14. γ′(0) = 2B.

Proof: Via the identification φV , γ(t) becomes the curve β(t)α−1(t) in Hom(V, V ⊥), and the
derivative is taken in Hom(V, V ⊥). Since A(0) = id, α(0) = id and β(0) = 0. Since A′(0) =

2C =

(
2A 2B∗

2B 2D

)
, β′(0) = 2B. It follows that γ′(0) = β′(0)α−1(0) = 2B. □
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The Solution to Schubert’s Problem and Convex Polyhedra

4.4. Step four: determine the unstable manifolds. To find the unstable manifold decompo-
sition, we let t → +∞ in theorem 4.8. The key observation is that A(t) scales the i-th coordinate
by e2cit, when t → +∞, e2cit = o(e2cjt) for i < j.

For all 1 ≤ i ≤ n, let Fi denote the subspace spanned by e1, · · · , ei. Consider 0 := F0 ⊂ F1 ⊂
F2 ⊂ · · · ⊂ Fn = Cn, called a complete flag in linear algebra. The previous observation implies
that ∀ 1-dimensional subspace V1 ⊂ Fi − Fi−1,

lim
t→+∞

A(t) · V1 = Cei. (4.22)

For each 1 ≤ i1 < · · · < ik ≤ n, let ei1,··· ,ik ⊂ Grk(C
n) be the subspace consisting of V such that

{i|dim(V ∩ Fi) > dim(V ∩ Fi−1)} = {i1, · · · , ik} (4.23)

Since ∀V ∈ Grk(C
n), the dimensions from V ∩ F0 to V ∩ Fn are from 0 to k, increase at most 1

each step, we deduce that V must be in some ei1,··· ,ik (precisely, ij = min{i|dim(V ∩ Fi) = j}),
and {ei1,··· ,ik} forms a disjoint decomposition of Grk(C

n).

Proposition 4.15. ∀V ∈ ei1,··· ,ik , limt→+∞ A(t) · V = Vi1,··· ,ik . As an immediate corollary:

U(Vi1,··· ,ik) = ei1,··· ,ik . (4.24)

Proof: For each 1 ≤ j ≤ k, take vj ∈ V such that vj ∈ Fij − Fij−1. It is easy to see that
{v1, · · · , vk} forms a basis of V . From

lim
t→+∞

A(t) · (Cvj) = Ceij ⊂ lim
t→+∞

A(t) · V (4.25)

we deduce that eij ∈ limt→+∞ A(t) · V , ∀j. Hence limt→+∞ A(t) · V = Vi1,··· ,ik . □

We give U(Vi1,··· ,ik) a more concrete description. Let ui1,··· ,ik ⊂ Hom(Vi1,··· ,ik , V
⊥
i1,··· ,ik) be

the linear subspace consisting of ω such that

ω(eij ) ⊂ Fij−1, ∀1 ≤ j ≤ k. (4.26)

Lemma 4.16. dimC(ui1,··· ,ik) =
∑k

j=1(ij − j).

Proof: Since dim(Fij−1 ∩ V ⊥
i1,··· ,ik) = ij − j, as a matrix of (n− k)× k, ω ∈ ui1,··· ,ik ⇐⇒ only

the first ij − j entries in the j-th column are non zero, ∀j. Hence such matrices form a linear
subspace of Ck(n−k) of dimension

∑k
j=1(ij − j). □

Proposition 4.17. ei1,··· ,ik = φ−1
Vi1,··· ,ik

(ui1,··· ,ik).

Remark 4.18. So U(Vi1,··· ,ik) consists of (id + ω) · Vi1,··· ,ik , where ω ∈ ui1,··· ,ik . In terms of
matrices, they are exactly represented by the row canonical forms as in theorem 4.1.

Proof: We use that fact that V ∈ ei1,··· ,ik ⇐⇒ ∃vj ∈ V (j = 1, · · · , k), vj ∈ Fij − Fij−1.
For (id+ ω) · Vi1,··· ,ik where ω ∈ ui1,··· ,ik , we simply take vj = (id+ ω)(eij ), the condition is

satisfied. Conversely, if such {vj} exists, without loss of generality, we can assume for vj that
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The Solution to Schubert’s Problem and Convex Polyhedra

its il-th coordinate is 0 when l < j, and 1 when l = j. Then ω determined by ω(eij ) = vj − eij

satisfies ω ∈ ui1,··· ,ik and vj = (id+ ω)(eij ), so (id+ ω) · Vi1,··· ,ik = V . □

For the stable manifolds, we consider the complete flag F⊥
n ⊂ F⊥

n−1 ⊂ · · · ⊂ F⊥
0 with respect

to the reversed basis en, · · · , e1. Then it is completely analogous that

Proposition 4.19. S(Vi1,··· ,ik) is φ−1
Vi1,··· ,ik

of a linear subspace of Hom(Vi1,··· ,ik , V
⊥
i1,··· ,ik) de-

fined by
ω(eij ) ⊂ F⊥

ij , ∀1 ≤ j ≤ k. (4.27)

Since F⊥
i is spanned by ei+1, · · · , en, dim(F⊥

ij
∩ V ⊥

i1,··· ,ik) = n− k − (ij − j). Hence

Lemma 4.20. dimC(S(Vi1,··· ,ik)) = k(n− k)−
∑k

j=1(ij − j) = codimC(U(Vi1,··· ,ik)).

Thus Vi1,··· ,ik is non degenerate of index dimR(U(Vi1,··· ,ik)) = 2
∑k

j=1(ij − j). To complete
the proof of theorem 4.5, it remains to verify that f satisfies the Smale condition. That is, for
any V ∈ U(Vi1,··· ,ik)) ∩ S(Vi′1,··· ,i′k), we need to show that U(Vi1,··· ,ik) and S(Vi′1,··· ,i′k) intersect
transversally at V .

Lemma 4.21. i′j ≤ ij , for all j.

Proof: This essentially boils down to the simple fact in linear algebra that

dim(V ∩ Fi) + dim(V ∩ F⊥
i ) ≤ dim(V ) = k. (4.28)

Thus dim(V ∩Fi) ≤ codim(V ∩F⊥
i ), ∀i. Since they both are non decreasing in i, we deduce that

ij = min{i|dim(V ∩ Fi) = j} ≥ min{i|codim(V ∩ F⊥
i ) = j} = i′j , ∀j. (4.29)

□

Proposition 4.22. TV U(Vi1,··· ,ik)+TV S(Vi′1,··· ,i′k) = TV Grk(C
n), so U(Vi1,··· ,ik) ⋔ S(Vi′1,··· ,i′k).

Proof: Recall that U(Vi1,··· ,ik) ⊂ UVi1,··· ,ik
= Hom(Vi1,··· ,ik , V

⊥
i1,··· ,ik) is identified via φ−1

Vi1,··· ,ik

with the linear subspace ui1,··· ,ik . A complement of ui1,··· ,ik is given by

u′
i1,··· ,ik = {ω ∈ Hom(Vi1,··· ,ik , V

⊥
i1,··· ,ik)|ω(eij ) ⊂ F⊥

ij , ∀1 ≤ j ≤ k}. (4.30)

Since V ∈ S(Vi′1,··· ,i′k) and i′j ≤ ij , for ω ∈ u′
i1,··· ,ik , the limit at t → −∞ of V +ω does not depend

on ω. Hence V + ω ∈ S(Vi′1,··· ,i′k), ∀ω ∈ u′
i1,··· ,ik . It follows that TV U(Vi1,··· ,ik) + TV S(Vi′1,··· ,i′k)

is the full space. □

Now we can finally reap the rewards: theorem 4.1 immediately follows from specifying for the
case k = 2, n = 4. The Schubert cells are e0 = e1,2, e2 = e1,3, e41 = e1,4, e42 = e2,3, e6 = e2,4,
e8 = e3,4. The superscript indicates the index or (real) dimension.

5. Schubert’s calculus

In this section we solve Schubert’s problem, and clarify all the equivocal aspects in Schubert’s
original proof in section 1. We showed in the previous section that Gr2(C

4) is a CW complex
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The Solution to Schubert’s Problem and Convex Polyhedra

with one 0-cell, one 2-cell, two 4-cells, one 6-cell and one 8-cell. Since they are concentrated in
even dimensions, the cohomology groups are easily determined:

H0(Gr2(C
4)) = Z, H2(Gr2(C

4)) = Z, H4(Gr2(C
4)) = Z2, H6(Gr2(C

4)) = Z, H8(Gr2(C
4)) = Z

(5.1)
where the generators correspond to the cells with canonical orientation. We will see that these
6 cells are the incarnations of the 6 logical propositions introduced in section 1.

5.1. The Schubert cells. We first specify the given data of the propositions ∗, i, p, e, r, after
the projectivization P. These are very simple:

• The point (in p and r) is the 1-dimensional space (∗, 0, 0, 0), i.e. the origin (0, 0, 0) ∈ R3.
• The line (in ∗ and i) is the 2-dimensional space (∗, ∗, 0, 0), i.e. the x-axis in R3.
• The plane (in e and r) is the 3-dimensional space (∗, ∗, ∗, 0), i.e. the xy-plane in R3.

Let ∗, I, P,E,R ⊂ Gr2(C
4) respectively denote the subspace of the elements satisfying the propo-

sitions ∗, i, p, e, r (reformulated in section 2). Clearly, from the given data:

∗ ⊂ R ⊂ P, E ⊂ I ⊂ Gr2(C
4). (5.2)

Proposition 5.1. We have

∗ = e0, e2 ⊂ R, e41 ⊂ P, e42 ⊂ E, e6 ⊂ I. (5.3)

Proof: All are straightforward, except the last one. The fact that every V =

(
∗ 1 0 0

∗ 0 ∗ 1

)
∈ e6

satisfies i can be seen from

det


1 0 0 0

0 1 0 0

∗ 1 0 0

∗ 0 ∗ 1

 = 0 (5.4)

□

Proposition 5.2. We have

e8 ∩ I = ∅, e6 ∩ (P ∪ E) = ∅, e41 ∩ E = ∅, e42 ∩ P = ∅, e2 ∩ ∗ = ∅. (5.5)

Proof: All are straightforward, except the first one. The fact that no V =

(
∗ ∗ 1 0

∗ ∗ 0 1

)
∈ e8

satisfies i can be seen from

det


1 0 0 0

0 1 0 0

∗ ∗ 1 0

∗ ∗ 0 1

 = 1 ̸= 0 (5.6)

□
1920

24
 S

.-T
.Y

au
 H

igh
 S

ch
oo

l S
cie

nc
e A

ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示



The Solution to Schubert’s Problem and Convex Polyhedra

Proposition 5.3. Let the overline indicate the closure of a space, then

(1) R = e2 = e0 ∪ e2.
(2) P = e41 = e0 ∪ e2 ∪ e41.
(3) E = e42 = e0 ∪ e2 ∪ e42.
(4) I = e6 = e0 ∪ e2 ∪ e41 ∪ e42 ∪ e6.
(5) Gr2(C

4) = e8 = e0 ∪ e2 ∪ e41 ∪ e42 ∪ e6 ∪ e8.

Proof: We just do (4), the others are completely analogous. The fact I = e0 ∪ e2 ∪ e41 ∪ e42 ∪ e6

is deduced from the previous two propositions, together with the inclusion relations 5.2. By the
statement of i, I is closed. Hence e6 ⊂ I. Since e6 consists of the elements that "intersect the
x-axis, but do not contain 0 nor be contained in the xy-plane", obviously e6 = I. □

Remark 5.4. Alternatively, e6 = e0∪ e2∪ e41∪ e42∪ e6 can be seen from letting the free variables

in

(
∗ 1 0 0

∗ 0 ∗ 1

)
∈ e6 tend to ∞.

Lemma 5.5. ∗, I, P,E,R are closed submanifolds.

Proof: The normal method, is to express the conditions of ∗, i, p, e, r locally as equations in
the coordinate chart HomC(V, V

⊥), then use the constant-rank theorem to show that they are
submanifolds. This is doable but tedious. We prefer to sketch an alternative proof that is
inspiring. We just proved that ∗, I, P,E,R are closed cells. Take I = e6 for example, clearly the
interior points x ∈ e6 (i.e. not in the plane, not contain the point) have local coordinates. For
the boundary points, there is no essential difference: we can simply "forget" the given plane and
point, or move them elsewhere (while keeping the given line, of course), then those points also
have local coordinates for the same reason as the interior points do. □

. The upshot. The cohomology classes [I], [P ], [E], [R], [∗] associated to I, P,E,R, ∗ (as defined
in section 3) are the generators. Precisely, denote them again by i, p, e, r, ∗ by slightly abusing
the notation, then they are the generators of H2, H4, H4, H6, H8, respectively.

. Important observation. Any given datum will induce the same cohomology classes i, p, e, r, ∗.

This is because the propositions i, p, e, r, ∗ are stated essentially without reference to the
coordinate, so any datum will give the generator class as above. For example, no matter what
line is given in i, we can always make it the "x-axis", then the class [I] will always be the generator
of H2(Gr2(C

4)). For p and e, there might be some ambiguity since H4 has two generators, but
it is due to the homotopy invariance of homology and cohomology classes (as we will explain in
the next subsection), that any two given data will induce the same class p and e.

Recall the formulation of Schubert’s problem in section 2, where there are four submanifolds
I1, I2, I3, I4 of codimension 2. In the transverse (i.e. generic) case, by theorem 3.1:

[I1 ∩ I2 ∩ I3 ∩ I4] = [I1] ∪ [I2] ∪ [I3] ∪ [I4] = i4 ∈ H8(Gr2(C
4)) = Z. (5.7)
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The Solution to Schubert’s Problem and Convex Polyhedra

The resulting number, is exactly the cardinality of I1 ∩ I2 ∩ I3 ∩ I4.

Remark 5.6. Recall that strictly speaking, the intersection number is a signed counting. But
for complex manifolds the canonical orientation ensures that every intersection is counted as +1,
not −1, so we get a genuine number of intersections.

Now we determine the cohomology ring. Since it is concentrated in even degrees, the graded
commutativity becomes the genuine commutativity.

Proposition 5.7. In the following product relations, we simply omit the symbol ∪:

(1) p2 = e2 = ∗, pe = 0.
(2) ir = ∗, ip = ie = r.
(3) i2 = p+ e.

Proof: The strategy is to find a transverse pair, then determine the intersection. Recall that
transversality always holds up to small perturbation. While in section 1, the relation i2 = p+ e

is very hard to justify, here we can derive it purely algebraically.

(1) Take two distinct points A,B and denote by pA, pB the corresponding propositions.
Clearly PA ∩ PB = {AB} which is the generator of H0 = H8, so

p2 = pApB = [PA ∩ PB ] = ∗. (5.8)

The relation e2 = ∗ is completely analogous. If the point in p is not in the plane in e,
then P ∩ E = ∅ and by theorem 3.1, pe = 0.

(2) Since R,P,E ⊂ I, the intersections are not transverse. We use a trick: the stable
manifolds of f are exactly the unstable manifolds of −f . For the generator i ∈ H2, we
can represent it by (the closure of) U−f (V1,3) = Sf (V1,3), which amounts to change the
given datum (∗, ∗, 0, 0) in i into (0, 0, ∗, ∗). Since f is Smale, the intersections are now
transverse. We can compute the intersections purely in linear algebra, but the better
way is to use the (projective) geometry: (0, 0, ∗, ∗) is the ∞ line at the yz-plane, so I ∩R

is the y-axis, I ∩ P is the pencil in the yz-plane through 0, I ∩ E is the pencil in the
xy-plane through the ∞ point at the y-axis. Thus ir = ∗, ip = ie = r.

(3) Since i2 is in H4 generated by p and e, there are integers a, b such that i2 = ap + be.

Using (1) and (2):

a∗ = i2p = ir = ∗, b∗ = i2e = ir = ∗. (5.9)

So a = b = 1, i2 = p+ e.

□

Finally, we can use these product relations as input, to compute i4 purely algebraically. We
emphasize, thanks to the properties of cup product listed in section 3, that this computation can
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The Solution to Schubert’s Problem and Convex Polyhedra

be understood in a precise and rigorous sense:

i4 = i2(p+ e) associativity (5.10)

= i(r + r) associativity and distributivity (5.11)

= 2(ir) distributivity (5.12)

= 2 ∗ . (5.13)

Recall that ∗ is the generator of H8, so we deduce that |I1 ∩ I2 ∩ I3 ∩ I4| = 2.

Remark 5.8. In the non transverse case, we would have an element V ∈ ∩4
k=1Ik such that

codim(∩4
k=1TV Ik) <

4∑
k=1

codim(TV Ik) = 8. (5.14)

That is, dim(∩4
k=1TV Ik) ≥ 1. This holds if there is a 1-dimensional family of intersections near

V . This could also occur, when V is an "unstable" point, in the sense that a slight perturbation
annihilates the intersection V .

5.2. Schubert’s proof revisited. We just presented a proof of theorem 1.1 based on rigorous
mathematics. Comparing what we have done with what Schubert did, in this subsection we can
give very precise answers to the four questions raised in section 1.

Question 1.5. The genericity exactly means the transversality, and the answer number in
the generic cases is always 2. This is a precise notion, otherwise one would have to conduct an
exhaustive enumeration of degenerate positions to define genericity. Note that Thom’s transver-
sality theorem well gets across what the word "generic" wants to convey: one can always restore
the genericity infinitesimally locally.

Question 1.6. The "principle of continuity" is a consequence of the homotopy invariance
of homology / cohomology. Recall that to define homology classes, we modulo the boundary
relation. When we move a line to another position, we get two closed subspaces of Gr2(C

4) that
are coboundary, hence they induce the same homology class. More precisely, a deforming process
of the given line can be viewed as a homotopy between two maps f, g from e6 to Gr2(C

4), so
f∗ = g∗ on homology. Passing via the Poincare duality, we get a well defined cohomology class
i ∈ H2(Gr2(C

4)). Since no matter what data are given, they all represent the same cohomology
class, once we can compute for one specific representative, the result applies to all generic cases.

Question 1.7. The inclusion relations exhibit a cell structure of Gr2(C
4), and the "degree of

freedom" is the dimension of cell. While in section 1, the symbol ⊂ is understood as implication
under some special conditions, here ⊂ genuinely means inclusion of cells at their boundaries.
That is, ⊂ encodes the gluing information in the CW complex Gr2(C

4).
Question 1.8. The product relations are the cup product formulas in the cohomology ring

H∗(Gr2(C
4)). Schubert meant the product as taking ∧ ("and") of logical propositions, or equiv-

alently, taking intersection of those elements that satisfy the propositions. From theorem 3.1 we
2220
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The Solution to Schubert’s Problem and Convex Polyhedra

know that this is just secretly computing the cup product, though Schubert himself would not
be aware of it. The formal calculus of Schubert turns out to give the correct answer, because the
cup product really behaves like a product as in the usual sense.

Let’s recap what we have done: we convert the problem of finding the intersection number,
to the algebraic problem of computing the cup product, and we use transverse pairs in geom-
etry to represent the cohomology classes. Along the way, we have seen that many important
terminologies can only be made rigorous after the introduction of some more advanced and ab-
stract mathematical concepts. However, the Schubert problem itself is stated in a completely
elementary way, that literally anyone can understand. In this project we have witnessed the
intriguing process of unraveling the mysterious original arguments of Schubert, and we feel very
much inspired, to see that these abstract theories we have learnt in geometry and topology, could
eventually lead to an elegant solution to such a concrete problem.

6. The octahedron

The paper could just end here, but we learned from [Gue01] an interesting visualizable rein-
terpretation of the results that we would like to present. Although we have not managed to
understand the general theory there, we are able to prove the theorem for the particular Grass-
mannian example of ours, using no more than linear algebra and basic topology.

Now we consider the Grassmannian Gr2(R
4), not Gr2(C

4). First recall again πV : R4 →
V ⊂ R4 is the orthogonal projection for V ∈ Gr2(R

4), and {ei}1≤i≤4 denotes the standard
orthonormal basis. Define a map µ from Gr2(R

4) to R4 by

µ(V ) = ((πV ei, ei))1≤i≤4 (6.1)

called the moment map, for reasons that are beyond the scope of the paper. Equivalently, µ(V )

is formed by the diagonal entries of the matrix πV in the basis {ei}. It is the image of µ that
reveals interesting patterns.

Lemma 6.1. The image of µ is contained in

O := {(x1, x2, x3, x4) ∈ R4|x1 + x2 + x3 + x4 = 2, xi ∈ [0, 1]}. (6.2)

Proof: As a projection map of rank 2, πV has trace 2 so the image of µ is in the 3-dimensional
hyperplane x1+x2+x3+x4 = 2. As a projection map, πV is positive semidefinite, so (πV ei, ei) ≥
0, and (πV ei, ei) ≤ |ei|2 = 1. □

For V = Vi,j (using the notation in section 4), 1 ≤ i < j ≤ 4, obviously πV is a diagonal
matrix and µ(V ) = ei + ej . Explicitly, we denote

A := µ(V1,2) = (1, 1, 0, 0), B := µ(V1,3) = (1, 0, 1, 0), C := µ(V1,4) = (1, 0, 0, 1) (6.3)

D := µ(V2,3) = (0, 1, 1, 0), E := µ(V2,4) = (0, 1, 0, 1), F := µ(V3,4) = (0, 0, 1, 1). (6.4)
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The Solution to Schubert’s Problem and Convex Polyhedra

We deduce from the distance relations that ABCDEF forms a regular octahedron in the hyper-
plane x1 + x2 + x3 + x4 = 2 of edge length

√
2, with AF , BE, CD being the opposite vertices.

From now on, everything is implicitly in the hyperplane.

Lemma 6.2. The regular octahedron ABCDEF is O.

Proof: It is easy to see that O is convex. Then as the convex hull of A,B,C,D,E, F ∈ O, the
octahedron is contained in O. Notice that the eight faces have the underlying planes xi = 0, 1

(1 ≤ i ≤ 4) respectively. The other sides of the planes, are the regions xi < 0, xi > 1 (1 ≤ i ≤ 4).
So no point in O can be outside the octahedron, hence O = ABCDEF . □

It is a much more general theorem of Atiyah-Guillemin-Sternberg ([Gue01], theorem 4.1.3)
that for our case states that

Theorem 6.3. µ(Gr2(R
4)) = O. In more detail, the images of the closed Schubert cells are

(1) µ(e2) = AB = O ∩ {x1 = 1, x4 = 0}.
(2) µ(e41) = ABC = O ∩ {x1 = 1}.
(3) µ(e42) = ABD = O ∩ {x4 = 0}.
(4) µ(e6) = ABCDE = O ∩ {x1 + x2 ≥ x3 + x4} = O ∩ {x1 + x2 ≥ 1}.

In all the cases above, the image is the convex hull of the images of critical points in the region.

Proof: We start from the simple cases to the hard ones.

(1) Since ∀V ∈ e2 = e0 ∪ e2 is spanned by (1, 0, 0, 0) and another vector in (∗, ∗, ∗, 0) (see
theorem 4.1), (πV e1, e1) = 1 and (πV e4, e4) = 0, so µ(e2) ⊂ AB. Since e2 is connected
containing V1,2, V1,3, and A = µ(V1,2), B = µ(V1,3), we must have µ(e2) = AB.

(2) Since ∀V ∈ e41 = e0∪e2∪e41 contains (1, 0, 0, 0), (πV e1, e1) = 1 so µ(e41) ⊂ ABC. For any
element (1, x2, x3, x4) in ABC (so x2+x3+x4 = 1, xi ∈ [0, 1]), consider V ∈ e41 spanned
by the orthonormal basis e1 = (1, 0, 0, 0), v := (0,

√
x2,

√
x3,

√
x4). Then for i = 2, 3, 4,

since ei ⊥ e1,
(πV ei, ei) = |πV ei|2 = (ei, v)

2 = xi. (6.5)

So (1, x2, x3, x4) = µ(V ), hence µ(e41) = ABC.
(3) Since ∀V ∈ e42 = e0 ∪ e2 ∪ e42 is contained in (∗, ∗, ∗, 0), (πV e4, e4) = 0 so µ(e42) ⊂ ABD.

For any element (x1, x2, x3, 0) in ABD (so x1+x2+x3 = 2, xi ∈ [0, 1]), consider V ∈ e42 to
be the normal plane of the unit vector v := (

√
1− x1,

√
1− x2,

√
1− x3, 0) in (∗, ∗, ∗, 0).

Then for i = 1, 2, 3, since (ei, v) =
√
1− xi,

(πV ei, ei) = |πV ei|2 = 1− (ei, v)
2 = xi. (6.6)

So (x1, x2, x3, 0) = µ(V ), hence µ(e42) = ABD.
(4) Since ∀V ∈ e6 has non zero intersection with the 2-dimensional space (∗, ∗, 0, 0), ∃ an

element v := (
√
a,
√
1− a, 0, 0) ∈ V , so

(πV e1, e1) + (πV e2, e2) = |πV e1|2 + |πV e2|2 ≥ (e1, v)
2 + (e2, v)

2 = 1. (6.7)
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The Solution to Schubert’s Problem and Convex Polyhedra

Hence µ(e6) ⊂ ABCDE. Conversely, for any (x1, x2, x3, x4) ∈ O with x1 + x2 ≥ 1,

we show that ∃x such that V (x) :=

( √
x

√
1− x 0 0

−
√
x1 − x

√
x2 + x− 1

√
x3

√
x4

)
∈ e6 and

µ(V (x)) = (x1, x2, x3, x4), so µ(e6) = ABCDE. Note that the two basis vectors v1(x)

and v2(x) are unit vectors, if we have v1 ⊥ v2, then

(πV ei, ei) = |πV ei|2 = (ei, v1)
2 + (ei, v2)

2 = xi, i = 1, 2, 3, 4 (6.8)

so that µ(V (x)) = (x1, x2, x3, x4). It remains to show ∃x, v1(x) ⊥ v2(x). Consider the
continuous function

g(x) := v1(x) · v2(x), x ∈ [1− x2, x1]. (6.9)

Since g(1− x2) ≤ 0 ≤ g(x1), ∃x such that g(x) = 0, i.e. v1(x) ⊥ v2(x).

Finally, µ(Gr2(R
4)) = O can be proved in an exactly the same manner as in (4). Alternatively,

we remark the following facts. Recall that e2 = R = {V ∈ Gr2(R
4)|(∗, 0, 0, 0) ⊂ V ⊂ (∗, ∗, ∗, 0)}.

For any i ̸= j, the subset Rij := {V ∈ Gr2(R
4)|ei ∈ V ⊂ e⊥j } has the edge connecting µ(Vi,k)

(k ̸= i, j) as its image, for the same reason as R14 = e2 does. So all the 12 edges of the octahedron
can be µ(R) for some R. Similarly, for P = e41, let the given datum in p vary from (∗, 0, 0, 0)
to (0, 0, 0, ∗), then µ(P ) = ABC,ADE,BDF,CEF the 4 alternate faces, and µ(E) can be the
other 4 alternate faces ABD,ACE,BCF,DEF . Lastly, the original given datum in i is V1,2,
and the image of I = e6 is the regular square pyramid with the apex A = µ(V1,2). Any Vi,j

can be the given datum in i, together they give all the 6 regular square pyramids with the apex
µ(Vi,j) as µ(I) respectively. It is then clear that µ(Gr2(R

4)) is the whole octahedron. □

After taking Gr2(R
4) to the regular octahedron via µ, we can "visualize" the cup product of

cohomology classes in the picture as taking intersection among vertices, edges, faces and regular
pyramids, and this looks quite interesting for us. For example, if we take two regular pyramids
with adjacent apexes, then their intersection is two adjacent faces. This can be viewed as a
visualization of the relation i2 = p+e. Similarly, consider given four lines: the x-axis, the y-axis,
the ∞ line at the xz-plane, and the ∞ line at the yz-plane. Then the lines intersecting all of
them are the z-axis, or the ∞ line at the xy-plane. This can be seen from the picture that
the four pyramids with apexes A,B,E, F have the intersection {C,D}, which reflects the fact
that i4 = 2. In fact, example 4.1.10 of [Gue01] tells us that just by contemplating the regular
octahedron, we find all the structures in the cohomology ring H∗(Gr2(C

4)).
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passion for mathematics, and to my family, especially my mother, who provided the emotional
and intellectual foundation for this work, I extend my deepest gratitude. This research is as
much a reflection of their contributions as it is of my own efforts.
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