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Author: Qiumeng Song

Abstract

The electrocatalytic conversion of furfural (FF) into value-added chemicals like

furoic acid (FA) shows significant potential for sustainable chemical production.

However, understanding the catalyst's behavior during furfural oxidation remains

challenging. In this study, cobalt oxide (Co3O4) was chosen as the model catalyst for

its excellent redox properties, high activity and ease of transition between oxidation

states, making it ideal for furfural electrooxidation. The Co3O4/NF composite

demonstrated high activity and stability in furfural oxidation (FOR), achieving 80%

FA selectivity and 90% Faradaic efficiency (FE) at 1.6 V vs. RHE in 30 minutes.

Electrochemical tests revealed that the Co3O4/NF catalyst has a large electrochemical

surface area (ECSA) of 58.4 mF cm⁻², indicating a high number of active sites. Pulse
tests showed Co3O4 oxidizes more easily than cobalt hydroxide carbonate

(Co2(OH)2CO3) or pristine nickel foam, while broken circuit process (BCP) tests

revealed that Co3+ species formed during electrocatalysis enhanced the spontaneous

non-electrochemical oxidation rate of furfural. These results explain the catalyst's

high activity and selectivity, offering insights for the design of efficient, stable

electrocatalysts for biomass-derived chemicals. This study also advances

understanding of surface dynamics in transition metal oxides during electrocatalysis,

paving the way for next-generation catalysts.

Keywords：electrocatalysis, electrocatalytic oxidation, Co-based catalysts, furfural

oxidation (FOR)
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1 Introduction

The increasing demand for sustainable energy solutions has led to the

exploration of renewable energy sources, such as wind, solar, hydropower and

biomass, to drive critical chemical processes like water splitting for hydrogen (H2)

production. This approach offers a promising alternative to mitigate the

environmental and energy challenges posed by the continued reliance on fossil fuels.

However, one of the key obstacles in this process is the slow kinetics of the anodic

oxygen evolution reaction (OER), which involves a complex four-electron transfer,

resulting in high energy consumption. An effective strategy to reduce energy

consumption is to replace OER with alternative nucleophilic oxidation reactions

(NOR), such as the oxidation of hydroxyl groups and aldehydes, which can

simultaneously produce value-added chemicals. Among transition-metal-based

electrocatalysts, cobalt-based materials have shown significant potential for NOR.

Notably, NOR has been found to be closely linked to the Co2+/Co3+ redox reactions,

yet the redox kinetics of these species and their direct impact on electrocatalytic

performance remain underexplored[1-15].

In this study, we present the successful synthesis of cobalt oxide (Co3O4)

nanoflowers directly grown on nickel foam (NF), serving as a highly efficient

electrocatalyst for furfural oxidation (FOR)[16-23]. The Co3O4/NF composite exhibited

outstanding catalytic performance, achieving an impressive 80% selectivity towards

furoic acid (FA) and a high Faradaic efficiency (FE) of 90% under optimal conditions.

Detailed electrochemical analysis revealed that the Co3O4/NF catalyst possesses a

substantial electrochemical active surface area (ECSA) of 58.4 mF cm⁻², indicating a
significant density of active catalytic sites. Furthermore, pulse testing demonstrated

that Co3O4 undergoes oxidation more readily than cobalt hydroxide carbonate

(Co2(OH)2CO3) and pristine nickel foam, suggesting its enhanced redox properties.

The optimized BCP tests further confirmed that the formation of Co3+ species in

Co3O4 accelerates the spontaneous oxidation of furfural, offering a substantial

improvement in reaction kinetics over Co2(OH)2CO3 and bare NF. These findings

underscore the exceptional capability of Co3O4/NF as a superior electrocatalyst for

furfural oxidation, highlighting its potential for applications in biomass-derived

chemical transformations and sustainable catalytic processes.20
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2 Experimental section

2.1 Materials and reagents

Hydrochloric acid (HCl, ≥37 %), ethanol, cobalt nitrate hexahydrate

(Co(NO3)2·6H2O), urea, ammonium fluoride (NH4F), potassium hydroxide (KOH),

furfural (FF), and furoic acid (FA) were purchased from Aldrich (China). All of the

reagents were used without any purification. Nickel foam (NF) was provided by HGP.

2.2 Pre-treatment of nickel foam

The pre-cleaned Nickel foam (NF) was obtained by ultrasonic cleaning for 10

minutes each with ethanol, 3 M hydrochloric acid (HCl) and deionized water to

ensure the surface was free from contaminants.

2.3 Preparation of Co2(OH)2CO3/NF

For the synthesis of Co2(OH)2CO3/NF nanoflowers, the process began by

dissolving 3 mmol cobalt nitrate hexahydrate (Co(NO3)2·6H2O) and 9 mmol urea in

30 mL of deionized water. This solution was stirred continuously for 30 minutes to

ensure it was well-mixed and homogeneous. Next, the prepared solution was poured

into a 50 mL Teflon-lined autoclave, then a piece of pre-cleaned nickel foam (NF)

was fully submerged in the solution for a hydrothermal reaction. The hydrothermal

process was carried out at 180°C for 12 hours.

After the hydrothermal reaction, the Co2(OH)2CO3/NF product was thoroughly

rinsed with both water and ethanol to remove any residual reactants. Finally, the

cleaned material was dried under vacuum at 60°C for 6 hours to complete the

synthesis. This method resulted in the successful growth of Co2(OH)2CO3

nanoflowers on the nickel foam substrate.

2.4 Preparation of Co3O4/NF

For the synthesis of Co3O4/NF nanoflowers, the process involved a calcination

process of the pre-synthesized Co2(OH)2CO3/NF. The Co2(OH)2CO3/NF material was

placed in a muffle furnace and subjected to heat treatment at 350 °C for two hours in

an air atmosphere. This controlled calcination process facilitated the oxidation of

cobalt hydroxide carbonate (Co2(OH)2CO3/NF) into cobalt oxide (Co3O4). The
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elevated temperature in air not only ensured complete conversion but also maintained

the structural integrity of the nanoflowers during the transformation. This procedure

resulted in the formation of Co3O4 nanoflowers anchored onto the nickel foam (NF).

2.5 Characterization methods

2.5.1 Scanning electron microscopy (SEM)

SEM clearly reflects the morphological state of the catalyst. The instrument used

in this paper is a JSM-7500F JEOL (5 kV) scanning electron microscope.

2.5.2 Transmission electron microscopy (TEM)

TEM is an effective characterization method for observing the morphology,

particle size, and size distribution of nanoparticles. The following instruments were

used: JEM-2011 TEM with an accelerating voltage of 200 kV, and an FEI Talosf 200s

high-angle annular dark-field scanning transmission electron microscope

(HAADF-STEM).

2.6 Electrochemical performance testing methods

2.6.1 Preparation of the working electrode

The catalyst synthesized in each experimental section was cut into a size of 1.0

cm × 1.5 cm and clamped with a platinum electrode clip, ensuring a contact area of

1.0 cm² with the electrolyte. This served as the working electrode, directly used for

electrochemical testing.

2.6.2 Electrochemical FOR performance testing

All electrochemical tests were conducted in an H-type electrolytic cell separated

by a Nafion 117 proton membrane, using a CHI660E electrochemical workstation

(Shanghai Chenhua). In this study, all voltages have been converted to the potential

relative to the reversible hydrogen electrode (RHE) based on the Nernst equation

(Equation 2-1):
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E (vs. RHE) = E (vs. Ag/AgCl) + 0.059  pH + 0.197 （2-1）

where E (vs. RHE) represents the potential relative to the reversible hydrogen

electrode, and EEE (vs. Ag/AgCl) is the electrode potential measured relative to the

saturated Ag/AgCl reference electrode.

A standard three-electrode system was used to measure the electrocatalytic FOR

and OER performance of the catalyst. The reference electrode was a saturated

Ag/AgCl, the counter electrode was a graphite rod and the working electrode was the

prepared catalyst. The electrolyte was a 1.0 M KOH solution containing 50 mM FF

(or without FF). The testing conditions for linear sweep voltammetry (LSV) were a

voltage range of 0-0.8 V vs. Ag/AgCl and a scan rate of 5 mV s⁻¹. The conditions for
testing the electrochemical active surface area (ECSA) were a voltage range of 0.0-0.1

V vs. Ag/AgCl and scan rates of 10, 30, 50, 70, 90 and 100 mV s⁻¹. The conditions for
electrochemical impedance spectroscopy (EIS) were an AC voltage amplitude of 5

mV, a frequency range of 0.01-105 Hz and the potential corresponding to a current

density of 10 mA cm⁻².
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3 Results

Fig.1. Synthesis and characterization of Co2(OH)2CO3/NF and Co3O4/NF. (a)

Schematic diagram of the synthesis process; (b) SEM image of Co2(OH)2CO3/NF

showing its nano-petal structure; (c) SEM image of Co3O4/NF, demonstrating the

retained nano-petal morphology after oxidation; (d) TEM image of Co3O4/NF

providing detailed structural insight; (e) STEM image of Co3O4/NF and

corresponding elemental mappings of (f) cobalt (Co) and (g) oxygen (O).

Fig.1a illustrates the synthesis process of Co3O4/NF, providing an overview of

the in situ growth and transformation steps. In Fig.1b, the SEM image of

Co2(OH)2CO3 reveals its distinctive nano-petal-like structure, characterized by thin,

petal-shaped formations[24]. Similarly, Fig.1c shows the SEM image of Co3O4,
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confirming that the nanostructure remains largely intact after the thermal oxidation of

Co2(OH)2CO3 in air, preserving the nano-petal morphology[25]. Fig.1d presents the

TEM image of Co3O4, further corroborating the nano-petal structure at higher

resolution, emphasizing its structural consistency post-calcination. The dark-field

image in Fig.1e, along with the element mapping in Fig.1f and 1g, provides critical

insights into the elemental distribution. The mappings demonstrate that cobalt (Co)

and oxygen (O) are uniformly distributed across the nanopetals, confirming the

homogeneity of the Co3O4 nanoflowers[26]. This even dispersion of elements is a key

factor contributing to the material’s high catalytic performance, as it ensures the

availability of active sites throughout the structure. These characterizations

collectively highlight the stability and uniformity of the synthesized Co3O4/NF

catalyst, which is crucial for its enhanced electrochemical activity in catalysis.

Fig.2. Furfural oxidation reaction (FOR) performance in a three-electrode system. (a)

LSV curves of the three catalysts at a scan rate of 5 mV s⁻¹ in 1.0 M KOH with and

without 50 mM furfural (FF); (b) FA yield comparison for different catalysts; (c) FA20
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production rate after 30 minutes of the FOR process; (d) Faradaic efficiency (FE) and

FA yield of FF oxidation over the Co3O4/NF catalyst after 30 minutes of FOR.

The electrocatalytic performance of the samples for furfural (FF) oxidation was

evaluated using linear sweep voltammetry (LSV) under a three-electrode system. As

shown in Fig.2a, Co3O4/NF demonstrated superior catalytic activity for both oxygen

evolution reaction (OER) and furfural oxidation reaction (FOR) compared to

Co2(OH)2CO3/NF and pristine nickel foam (Pre-NF). Notably, the onset potential of

Co3O4 was significantly lower than that of Co2(OH)2CO3 and Pre-NF, indicating

enhanced electrocatalytic efficiency. This lower onset potential suggests that

Co3O4/NF requires less energy to initiate the oxidation process, contributing to its

excellent catalytic performance.

Chronoamperometry tests, conducted after 30 minutes of FOR, revealed that

Co3O4/NF exhibited a significantly higher FA yield compared to Co2(OH)2CO3/NF

and Pre-NF, as illustrated in Fig.2b. Interestingly, the FA yield increased with the

applied potential between 1.40 VRHE and 1.60 VRHE, with Co3O4/NF reaching its

maximum yield at 1.6 VRHE. Fig.2c further highlights that the FA production rate of

Co3O4/NF surpassed that of the other catalysts. Additionally, the system achieved

over 90% Faradaic efficiency (FE) and 80% FA yield within the tested potential range,

as shown in Fig.2d, demonstrating the excellent performance of Co3O4/NF in FF

oxidation.
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Fig.3. Cyclic voltammetry (CV) curves of furfural (FF) conversion over (a) Co3O4/NF,

(b) Co2(OH)2CO3/NF and (c) Pre-NF catalysts in the non-faradaic region, measured at

scan rates of 10, 30, 50, 70, 90, and 100 mV s⁻¹. (d) Corresponding double-layer

capacitance (Cdl) measurements at 1.07 V for all three catalysts, reflecting their

electrochemical surface areas.

Fig.3 demonstrates that the electrochemical active surface area (ECSA) of

Co3O4/NF (58.4 mF/cm²) is significantly larger than that of Co2(OH)2CO3/NF (5.79

mF/cm²) and Pre-NF (1.69 mF/cm²). This substantial increase in active area correlates

with the enhanced catalytic performance of Co3O4/NF, as seen in Fig.3a, confirming

its superior activity in both furfural oxidation (FOR) and oxygen evolution reaction

(OER) compared to Co2(OH)2CO3/NF and Pre-NF. The larger ECSA suggests a

greater density of active sites on Co3O4/NF, contributing to its heightened catalytic

efficiency in these reactions.
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Fig.4. (a) Pulse voltammetry protocol applied between 1.15 V vs. RHE (low potential)

and 1.4 V to 1.5 V vs. RHE (high potential), without iR correction. (b) Charge density

(QECSA) versus pulse voltage for different catalysts, derived from pulse-voltammetry

tests. (c) The correlation between the onset potential and the deprotonation ability of

the catalysts, highlighting the impact of proton removal on catalytic efficiency.

Fig.4 shows the oxidation of the catalyst during the OER process. Pulsed

voltammetry tests were conducted to further assess the deprotonation ability of the

catalysts. During the OER process of the Co3O4 catalyst in alkaline solution,

Co2(OH)2CO3 forms on the surface and subsequently deprotonates to generate

Co(III)-OOH species. The deprotonation ability of the catalyst can be evaluated by

measuring the charge accumulation rate on the surface under periodic pulse voltages.

To ensure comparability, all electrochemical data were normalized to ECSA. As

depicted in Fig.4b, the relationship between the total accumulated oxide charge

density (QECSA) and the pulse voltage (high potential Eh) shows a linear trend. The

slope of this relationship reflects the deprotonation ability of the catalyst.

The slope values for Co3O4, Co2(OH)2CO3, and Pre-NF are 0.154, 0.145, and

0.065, respectively, indicating the deprotonation capacity follows the order: Co3O4 >

Co2(OH)2CO3 > Pre-NF. Fig.4c demonstrates that the deprotonation ability of these

catalysts is inversely related to their onset potential. A stronger deprotonation capacity

correlates with a lower onset potential, making it easier for Co2+ to oxidize, thus

enhancing the catalytic activity for the FOR and OER processes.
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Fig.5. (a)-(c) BCP test results for Co3O4 ,Co2(OH)2CO3 and Pre-NF, respectively;

(d)-(f) Multi-potential step measurements for Co3O4, Co2(OH)2CO3 and Pre-NF in 1.0

M KOH solution, both with and without the presence of 50 mM FF. 5(g) Schematic

diagram of the BCP tests in KOH-FF solution, which were designed to evaluate the

reaction kinetics of furfural (FF) with the active intermediate species (Co(III)-OOH).

(h) the plots of Qt/Q0 versus time (t), derived from the optimized BCP-KOH-FF tests,

5(i) the corresponding linear fitting of kinetic constants using a first-order kinetics

equation for Co3O4, Co2(OH)2CO3 and Pre-NF catalysts.

To investigate the effect of spontaneous non-electrochemical reactions on FOR

activity, BCP tests were employed to analyze differences in spontaneous chemical

reaction kinetics. Fig.5a-c present the BCP test results for Co3O4, Co2(OH)2CO3 and

Pre-NF, respectively. During the BCP process in 1 M potassium hydroxide (KOH)

solution (BCP-KOH), all catalysts showed a discharge curve at low potential due to

surface charge accumulation at high potential, forming Co(III)-OOH. The discharge

magnitude followed the order: Co3O4 > Co2(OH)2CO3 > Pre-NF, indicating greater

surface charge accumulation of Co(III)-OOH in Co3O4. However, when the BCP
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process was conducted in 1 M KOH with 50 mM FF (BCP-FF), the discharge curve

disappeared, suggesting a spontaneous non-electrochemical reaction between

Co(III)-OOH and FF during the FOR process.

To quantitatively assess the kinetics of these spontaneous reactions, an optimized

BCP-KOH-FF process was designed (Fig.5g). The test involved double-segment

amperometric i-t measurements. First, under a high potential of 1.60 V vs. RHE in 1

M KOH solution, the charging process lasted 100 s. This was followed by a BCP

process in 1 M KOH + 50 mM FF solution and a final discharge at a low potential of

1.15 V vs. RHE for 60 s. The discharge i-t curve reflected the reduction of

Co(III)-OOH, and the discharge quantity (Qt) was calculated by integrating the

discharge current.

By varying the BCP duration, Qt-t curves were obtained, revealing the

spontaneous reaction rates: Co3O4 > Co2(OH)2CO3> Pre-NF (Fig.5h). Using the

first-order kinetic equation ln(Q0/Qt) = kt, where k is the rate constant, the linear

fitting results confirmed the order of reaction kinetics: Co3O4 > Co2(OH)2CO3 >

Pre-NF (Fig.5i).

The pulse test in Fig.4 and the BCP test in Fig.5 indicate that, compared to

Co2(OH)2CO3 and Pre-NF, Co3O4 exhibits easier electrooxidation and faster kinetics

in the spontaneous oxidation of FF.

4 Conclusion

In conclusion, we have successfully employed Co3O4/NF as a model catalyst to

investigate its exceptional catalytic performance in furfural oxidation, providing

valuable insights into the underlying mechanisms driving its high activity. Our

comprehensive electrochemical analysis revealed that Co3O4 exhibits remarkable

selectivity (~80%) for furoic acid (FA) production and a Faradaic efficiency (FE) of

approximately 90% under alkaline conditions, demonstrating its potential for

sustainable chemical synthesis. The cobalt oxide nanoflowers displayed an impressive

electrochemical active surface area (ECSA) of 58 mF cm⁻², confirming the high

density of catalytic sites available for reaction.

Moreover, pulse tests showed that Co3O4 undergoes oxidation more readily than

its counterparts, Co2(OH)2CO3 and pristine nickel foam (Pre-NF), further enhancing

its electrocatalytic activity. The results from both the standard and optimized BCP

tests provided critical evidence that Co3O4 facilitates the spontaneous oxidation of
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furfural at a significantly faster rate than Co2(OH)2CO3 and Pre-NF, emphasizing the

superior kinetics of Co3O4 in the reaction process.

These findings not only highlight Co3O4's superior catalytic performance but also

offer a clearer understanding of how its intrinsic properties, such as redox flexibility

and deprotonation ability, contribute to enhanced reactivity. This study paves the way

for the development of advanced electrocatalysts for biomass-derived chemical

transformations and holds promise for future innovations in energy-efficient catalytic

processes.

5 Potential further experiments

Further mechanistic studies could be carried out using in situ spectroscopic

techniques. These techniques includes Raman spectroscopy, X-ray absorption

near-edge structure (XANES) and infrared (IR) spectroscopy. They could be

employed during the electrocatalytic reactions to monitor the oxidation states of

Co3O4. This would provide deeper insights into the reaction mechanism, particularly

the formation and role of intermediate species such as Co(III)-OOH during the

oxidation process.

Moreover, creating intentional distortions in the crystal structure of Co3O4 to

influence d-orbital splitting and improve its catalytic performance also is an intriguing

experimental direction. Distortion in the crystal lattice can lead to the formation of

dx2-y2 orbital with a higher energy level. This means the dx2-y2 orbital will be closer to

the Fermi level and hence the catalyst will have a stronger deprotonation ability. We

can achieve this by either cation doping or creating oxygen vacancies in the Co3O4

lattice. The impact can be characterized using techniques like X-ray diffraction (XRD)

and X-ray photoelectron spectroscopy (XPS) etc.
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