

参赛学生姓名：马渊

中学：中国人民大学附属中学

省份：北京市

国家/地区：中国

指导老师姓名：武迪、翁冬冬

指导老师单位：中国人民大学附属中学、北

京理工大学

论文题目：SemanticLang: Infinite-length

document information extraction for traceable

question answering

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

1

SemanticLang: Infinite-length document information

extraction for traceable question answering

Yuan Ma

The High School Affiliated to Renmin University of China

Email: semanticlang@kip.gay

Abstract

Question-answering (QA) is an important task in the field of neural language

processing. It requires the computer to extract information from text and answer the

user’s questions accurately based on that information. Transformer-based large language

models (LLMs) have proved to perform well in this task, as they are powerful in text

understanding and have flexible logic deduction skills, which are required for cohesive

question-answering. However, hardware memory and computation restrictions often limit

the accuracy of the purely transformer-based models’ logic deduction process.

Explainability of AI is crucial to allow the model’s deduction process to be supervised

and verified to be correct. Typical neural networks’ un-explainability cause large language

models to be unaccountable in mission-critical tasks. Therefore, lightweight QA models

with user-viewable deduction processes are crucial to creating explainable AI that’s

accountable. In this project, we aim to create an evidence-first lightweight model that can

have its logic deduction process understood by users. We created a hybrid model for

question-answering that answers the user’s questions by automatically gathering

information from documents. We created a system consisting of three Gemma2-2b

transformer language models fine-tuned with the WebNLG and vquanda dataset,

combined it with a modified Resource Description Framework (RDF) triple store used in

the Semantic Web to create a lightweight model for information extraction and question

answering. It combines the language understanding capabilities of language models and

the reliability and transparency of RDF. We introduce a novel approach called “Multi

context” that improves the explainability of the model’s understanding process by listing

the evidence used for deduction, improves parallelization and unlocks theoretically

infinite context length for the model. We compare the performance of SemanticLang’s

knowledge extraction ability with mainstream LLMs and conclude that it has similar

performance, however it also provides explainability and infinite context length unique to

SemanticLang.

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

mailto:semanticlang@kip.gay

2

The source code of the project is available at https://kip.gay/SemanticLang.

Index terms: Explainable AI, Information Extraction, Question Answering,

Transformer, Large Language Model, Resource Description Framework

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

https://kip.gay/SemanticLang

3

Contents

Abstract .. 1

1. Introduction ... 4

2. Related Work ... 5

3. Our Method ... 6

3.1. GraphGen & Multi Context ... 7

3.1.1. Implementation ... 9

3.2. QueryGen ... 20

3.3. AnswerGen .. 23

4. Performance Evaluation .. 24

5. Conclusion and Future Work ... 25

6. References ... 27

7. Acknowledgements ... 30

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

4

1. Introduction

Fig. 1: Overview of the SemanticLang structure

Question-answering (QA) is a fundamental task in natural language processing,

requiring systems to extract relevant information from text and provide accurate,

contextually relevant answers to users’ questions. One of the common use-case of a LLM

is for it to be used as a search engine-like question answering system[1]. While some

models rely on internal memory to answer questions, using webpages or documents to

gather up-to-date information is better for accuracy and spread of knowledge. This

requires models to understand document(s) with long text length.

With the rise of transformer-based large language models (LLMs), substantial

improvements have been made on the flexibility and accuracy of QA tasks. These models,

such as OpenAI’s GPT-4[2] have demonstrated significant abilities on text

comprehension and flexible reasoning, making them strong candidates for answering

complex queries[2].

However, despite their success, purely transformer-based language models face

several limitations, particularly when tasked with handling in-depth logical deductions on

long documents.[3] Transformers’ main goal is to extract and manipulate semantic

meaning in text, therefore extracting logic from text requires considerable levels of

abstraction, requiring more layers. [4]The high computational and memory costs of the

attention mechanism in transformers also pose challenges, especially when run locally

where resources are limited, often resulting in suboptimal performance in terms of both

accuracy and efficiency.[5]

Furthermore, the“black box” nature of neural networks, particularly with the scale of

LLMs, raises concerns around explainability. The neural nature of LLMs make their

deduction process unexplainable to users, humans are unable to understand or find

problems in the internal reasoning process of these models[6], [7], which hinders trust

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

5

and transparency. Many LLMs are designed to be general purpose models, as their scale

increases, internal memory may introduce more unwanted content in the output. The un-

explainability of models makes them unaccountable and unverifiable on logic deduction,

limiting their future application on mission-critical tasks.[8]

To address these challenges of conventional Transformer-based language models, this

paper presents a novel, evidence-first lightweight Q&A model called SemanticLang. It

combines a conventional language model with knowledge graphs to improve the model’s

explainability, performance and context length (Fig. 1).

2. Related Work

Large Language Model with Prompt Engineering. Chain-of-Thought

prompting[9], Least-to-Most prompting[10] are prompt engineering techniques that

encourage LLMs to process a single problem in multiple sub-steps to produce more

logical answers. These in-context learning approaches reduce hallucinations and improve

the LLM’s output accuracy, they do not fix the underlying problem of hallucinations and

logic limitations coming from the Transformer architecture.[11] Most Large language

models also have limited context length, which restricts the number of documents the

model can understand for a question. Large language models are also not easily

explainable. LLM’s complexity makes it hard to trace the logic deduction process on the

low level, and steps generated by the model through prompt engineering may be

incorrect. This paper’s model offloads the logic deduction process to the Resource

Description Framework Graph, only requiring the language model to understand semantic

information from text. Our system’s hybrid and multi-stage process allows the deduction

process to be clearly visualized.

Natural Language to Predicate Logic. There has been research on offloading pure

logic deduction in Transformers to Logic Solvers, such as using language models to

translate text in natural language to first-order logic. Logic solvers are then used to

process the logic statements and produce a result. [12], [13]These strategies can

effectively improve the logic deduction capabilities of LLMs and perform well in solving

logic problems, but they are not well suited to the use-case of information extraction and

question answering.

Resource Description Framework. Resource Description Framework[14] is a part

of the Semantic Web. Semantic Web, also known as Web 3.0 (Not to be confused with

Web3) was proposed in 1999 as an extension to the World Wide Web. It included several

technologies that introduced a standardized data structure that “allows data to be shared

and reused across application, enterprise, and community boundaries[.]”[14] One of the

key components of the Semantic Web is the Resource Description Framework, which

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

6

defined the RDF Triple (or triple)[15]: A sequence of three keywords in the order of

“subject–predicate–object” that describes a directional relationship between things.

Multiple triples that share keywords can create a network of relationships, the network

can then be stored in a relational database where it can be queried against using an RDF

query language such as SPARQL[16], allowing the system to reply to the query with the

stored knowledge. RDF is used in our project as the main system that organizes

knowledge and performs logic deduction.

3. Our Method

SemanticLang consists of three modules: GraphGen, QueryGen and AnswerGen,

with GraphGen being the focus of the project. SemanticLang is a Q&A system that can

understand documents written in natural language (NL) and answer user’s questions

based on the information in the documents. SemanticLang’s design revolves around the

fact that RDF can represent knowledge structurally, and that RDF has a query (pattern

matching) system that can successfully represent many types of questions.[15]

SemanticLang process a question as follows (Fig. 2):

1. GraphGen: It combines the custom fine-tuned Gemma2-2b[17] language model with

a novel technique we call “Multi Context” to understand the text documents and

extracts the knowledge in the documents as RDF-like triples where things’ relations

and attributes are expressed formally. The network formed by the triples stored in an

RDF triple store. Each triple is assigned an ID that indicates the document and

sentence from which the triple was generated. The network can also be visualized as a

graph to improve the transparency of the understanding process.

2. QueryGen: It understands the User’s question about the contents and converts the

question into a standard SPARQL query. Our implementation includes systems that

ensure the model generates a valid SPARQL query with high relevancy to the

generated network.

3. RDF Triple store: It queries the network with the SPARQL string generated by

QueryGen and returns the result.

4. AnswerGen: uses the context of the question and the result from the SPARQL query

to answer the user’s question contextually.

These modules, when connected create a complete seq2seq QA model that takes in

documents and a question, then returns the answer. Visualization of the generated RDF

graph and sentence mapping and SPARQL query allows the user to verify each step of the

system’s logical deduction process. The GraphGen module can also be run independently

to create graphs for knowledge visualization or create RDF-like triple store for further

processing.

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

7

Fig. 2: Graph representing the structure of processing done in SemanticLang

3.1. GraphGen & Multi Context

Understanding the information represented in documents is crucial for document QA

models. Because of the quadratic complexity of the attention mechanism as context

length increase[4], traditional transformer-based language models’ context length is

limited by hardware restrictions, which limits the number of tokens, or the length of

documents the model can process. This presents a challenge for models to understand

long documents or multiple documents.

With long documents, it’s hard for humans to manually verify a model’s output

accuracy through the answer alone. LLMs may produce invalid sources and reasoning

steps when asked. For example, when ChatGPT with gpt-4o[18] was presented the lead

section of Wikipedia pages for “World Wide Web”[19], “Semantic Web”[20] and

“Resource Description Framework”[21] and asked “List all components of the semantic

web. List your evidence.”, ChatGPT returned evidence sentences such as “Technologies

such as Resource Description Framework (RDF) and Web Ontology Language (OWL)

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

8

are used to formally represent metadata.1”, which do not appear in the provided text.

We have developed GraphGen with Multi Context to address the problems mentioned

above. GraphGen splits a document into n chunks, where each chunk is processed by the

language model independently. Each chunk is around 400 characters long, this addresses

the problem of limited context length, but it removes context that came from other parts

of the text which could decrease the model’s accuracy. Multi Context addresses the

context problem by simultaneously using three techniques to add context to the sentence:

Textual Context: We theorize that the most relevant textual context of a sentence

comes from sentences immediately before it. Fig. 3 shows one such example.

“The World Wide Web (WWW or simply the Web) is an information system that enables

content sharing over the Internet through user-friendly ways meant to appeal to users

beyond IT specialists and hobbyists. It allows documents and other web resources to be

accessed over the Internet according to specific rules of the Hypertext Transfer

Protocol (HTTP).”

The “It” in red refers to the World Wide Web. This important information would be lost

if the yellow sentence was viewed alone.

Fig. 3: An example of textual context coming from the neighboring sentence.

During chunk generation, the last sentence of the previous chunk is added to every chunk

of text. It creates an overlap of processed text which can provide important textual

context (Fig. 4).

Fig. 4: Demo visualization of chunk overlap when target chunk length is set to 250.

 Semantic Context: Since previous sentences have been converted into RDF triples,

these triples in the triple store can provide semantic (logical) context in a modular and

space efficient way. When a chunk is processed by the model, a random selection of 10

triples generated from the previous chunks of the document is also included as part of the

prompt. This enables the model to gain semantic context of the entirety of the document.

 Keyword Reward: RDF triples mostly use Universal Resource Identifiers

(URIs)[15]. Because the triples made by GraphGen are generated from NL documents,

we use plain text instead of URIs for the naming of subject, object and predicates. We

1 The correct text is “technologies such as Resource Description Framework (RDF)[2] and Web Ontology Language (OWL)[3] are

used.”. Original text from Semantic Web article on Wikipedia. [20]

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

9

refer to the subject and objects as nodes, and the names of subject, object and predicates

in triples as keywords. We found that our original model may generate triples with the

same semantic meaning but with keywords with different wording. RDF triple store

cannot recognize the similarity between the two triples, instead it generates two unique

nodes. This raises a problem as it drastically reduces connectivity in the graph, reducing

the accuracy of queries. The problem worsens when multiple documents are parsed. Each

document may use different keywords to represent the same node, making querying

across multiple documents difficult. We developed Keyword Reward to decrease the

chance of this happening: A custom Logit Processor guides the model to use existing

keywords instead of creating new ones.

 Multi Context provides context through multiple info types in the prompt and

enforces context during the token generation process. Because of the relatively short

context length achieved by Multi Context and scalability of RDF triple stores,

GraphGen’s theoretically able to handle documents of any length. GraphGen is

theoretically parallelizable, the RDF triple store can be updated in real-time and the most

recent semantic context will be retrieved and used when processing a chunk, allowing

multiple chunks to be processed at the same time.

3.1.1. Implementation

Fine-tuning

GraphGen is developed using unsloth’s optimized Gemma2-2b model[22], a 2 billion

parameter pre-trained transformer-based language model. The relatively small size of the

model allows GraphGen to be run locally on PCs. We used a modified version of the

WebNLG[23] dataset to fine-tune the Gemma2-2b model for the task of RDF triples

generation.

<entry category="Airport" eid="Id1" shape="(X (X (X) (X (X))))" shape_type="mixed" size="4">

 <originaltripleset>

 <otriple>Aarhus_Airport | location | Tirstrup</otriple>

 <otriple>Tirstrup | country | Denmark</otriple>

 <otriple>Denmark | capital | Copenhagen</otriple>

 <otriple>Tirstrup | subdivisionName | Central_Denmark_Region</otriple>

 </originaltripleset>

 <modifiedtripleset>

 <mtriple>Aarhus_Airport | location | Tirstrup</mtriple>

 <mtriple>Tirstrup | country | Denmark</mtriple>

 <mtriple>Denmark | capital | Copenhagen</mtriple>

 <mtriple>Tirstrup | isPartOf | Central_Denmark_Region</mtriple>

 </modifiedtripleset>

 <lex comment="good" lid="Id1">Aarhus airport is located in Tirstrup, part of the Central Region of Denmark which has the capital city of

Copenhagen.</lex>

 <lex comment="good" lid="Id2">Copenhagen is the capital of Denmark where Aarhus airport is located in Tirstrup which is part of the Central

Denmark region.</lex>

 <lex comment="good" lid="Id3">Aarhus Airport is located in Tirstrup, part of the Central Denmark region. The capital of the country is

Copenhagen.</lex>

</entry>

Fig. 5: One pair in the WebNLG dataset

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

10

 The WebNLG dataset consists of datasets of pairs of 1 to 7 triples and each pair

contains multiple human generated text annotations (Fig. 5). We modified the dataset to

add special tokens <T>, <R> and <S> to indicate the subject, predicate and object parts

respectively (The actual tokens used is <unused0>, <unused1> and <unused2>. For

readability these tokens are represented as <T> <R> and <S> in both the code and this

paper). Triples paired with a text annotation are randomly selected to become semantic

context.

Example of a triple in dataset:
<T>11th_Mississippi_Infantry_Monument<R>category<S>Contributing_property

Semantic Context Triples
<T>11th_Mississippi_Infantry_Monument
<R>established <S>2000

<T>11th_Mississippi_Infantry_Monument
<R>location
<S>Adams_County,_Pennsylvania

<T>11th_Mississippi_Infantry_Monument
<R>municipality
<S>Gettysburg,_Pennsylvania

<T>11th_Mississippi_Infantry_Monument
<R>category <S>Contributing_property

<T>Adams_County,_Pennsylvania
<R>hasToItsNorth
<S>Cumberland_County,_Pennsylvania

<T>11th_Mississippi_Infantry_Monument
<R>country <S>"United States"

NL The 11th Mississippi Infantry Monument, built in 2000, is placed in the

municipality of Gettysburg in Pennsylvania which is in Adams County, USA.

The 11th Mississippi Infantry Monument is classified as a Contributing

Property. Cumberland county, Pennsylvania is to the north of Adams County.

Fig. 6: One pair in the modified dataset

Using this modified dataset (Fig. 6), we generate prompts that combine the semantic

context and NL. The prompt and triples are used to fine-tune the Gemma2-2b model. The

model was fine-tuned with a total batch size of 8 and fine-tuned for 1000 steps.

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

11

Inference: Textual Context & Semantic Context

Fig. 7: Architecture of GraphGen’s inference process

 Inference in GraphGen consists of multiple steps (Fig. 7). Natural Language

Toolkit[24] is used to separate a document into a list of sentences. Then these sentences

are merged based on the length. For each chunk, the last sentence of the previous chunk is

appended to the front of the current chunk to provide textual context. The length of the

accounting chunk shall be under the chunk length limit, except if the chunk repeats the

last when following this length limit (Fig. 8). By appending the last sentence into the

chunk, textual context is achieved.

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

12

Fig. 8: Pseudo-code for chunk generation algorithm

Each chunk is processed by the fine-tuned Gemma2-2b model combined with Multi

Context. Textual context is achieved during chunk generation, semantic context is added

during prompt generation.

sentences = pkt_tokenizer.tokenize(input_text) # Document is split by
sentences using the nltk punkt tokenizer

merged_sentences = []

for i in range(len(sentences)):

sentence = sentences[i]
 if len(sentence) <= 0: # Skip empty strings

 continue
 if i >= 1 and len(merged_sentences[-1]) + len(sentence) <=

max_chunk_length:
Append current string to the last chunk if it will be below

the length limit
 merged_sentences[-1] += " " + sentence
 else:
 # Create new chunk
 if i >= 1:
 merged_sentences.append(sentences[i - 1]) # Add last

sentence for textual context if applicable
 merged_sentences.append(sentence)

merged_sentences

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

13

Fig. 9: Prompt for training and inference in GraphGen.

Semantic Context is presented to the model through the “Existing RDF triples”

section of the prompt as seen in Fig. 9. Semantic Context is limited to the current

document. When previous chunks are processed, the generated RDF triples are added to

the RDF triple store. During prompt generation, 15 triples will be randomly selected from

the document’s RDF triple store and added into the prompt (Fig. 10). We intend that this

provides the language model the semantic context of the entire document, including key

object, subjects and topics in a compressed manner, and that selecting triples randomly

can decrease the impact of incorrect triples on the entire generation.

Below is an instruction that describes a task, paired with an input that provides further

context. Write a response that appropriately completes the request.

Instruction:

Extract the most confident information in the sentence below as much as possible, and

express the relationships in RDF Triples that complement the existing RDF triples. Do

not use information from common sense.

Existing RDF triples:

{Semantic Context in the form of triples, or “None” if none exists}

Input:

{Document chunk in natural language. Unnecessary whitespaces are removed.}

Response:

<T>

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

14

Fig. 10: A complete prompt with Semantic Context and Textual Context2

 RDF Structure Enforcement & Keyword Reward

 During the project, we found that the model sometimes generates triples with invalid

structures. These invalid structures include incorrect <T> <R> <S> order and placement,

Incoherent output and repetition (Fig. 11).

Fig. 11: An example of incorrect output from an early version of our model

 Another problem we found was that our early models may generate nodes with the

same semantic meaning but with different keywords (Fig. 11). This is problematic as the

RDF is designed to work with URIs and will not recognize two nodes as the same if they

2 Input sentence from Wikipedia. [25]

Instruction:

Extract the most confident information in the sentence below as much as possible, and express the relationships in

RDF Triples that complement the existing RDF triples. Do not use information from common sense.

Existing RDF triples:

<T>Quiz_bowl<R>location<S>"Nationwide" <T>Quiz_bowl<R>region<S>"Nationwide"

<T>Academic_Bowl<R>region<S>"Nationwide" <T>Academic_Bowl<R>country<S>United_States

<T>Academic_Bowl<R>sport<S>Quiz_bowl <T>Quiz_bowl<R>gameplay<S>"Buzzer"

<T>Academic_Bowl<R>alternativeName<S>"Scholars' Bowl" <T>Quiz_bowl<R>player<S>"team of four"

<T>Quiz_bowl<R>alternativeName<S>"Scholars' Bowl", "Academic Bowl", "Academic Team", "Academic

Challenge", "Scholastic Bowl", "Primary School Quiz Bowl", "Middle School Quiz Bowl", "High School Quiz

Bowl", "University Quiz Bowl"

Input:

A moderator reads questions to the players, who try to score points for their team by buzzing first and responding

with the correct answer.

Response:

<T>

<bos>Below is an instruction that describes a task, paired with an input that provides further context. Write a
response that appropriately completes the request.

Instruction:

Extract the most confident information in the sentence below as much as possible, and express the relationships in
RDF Triples that complement the existing RDF triples. Do not use information from common sense.

Input:

Logits can range from (-∞,+∞) , where a higher value means that the token’s more probable to be the next in the
sequence.

Response:

<T>Logits<R>range<T>Logits<R>associatedNumber<S>1<T><R><S>1<S><eos>

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

15

have different keywords. Furthermore, similar keywords may have different semantic

meaning, e.g. Complement vs Compliment, so a fuzzy matching algorithm would not be

appropriate for merging similar keywords.

Fig. 11: An example of a poorly generated RDF graph from an early version of our model.

Notice the nodes boxed with a yellow outline all represent the World Wide Web Consortium.

Transformer language models generate text by predicting the most probable token

following the input sequence. Specifically, in the final layer, a list of logits for all tokens

are generated. Logits can range from (−∞, +∞), where a higher value means that the

token’s more probable to be the next in the sequence. The logits usually get normalized

by an activation function such as softmax into confidence scores which is used for the

final token selection.[4] We developed two custom logit processor for GraphGen that

modify the model’s generated logits before normalization to address the two problems.

TRSLogits. TRSLogits enforces the correct triple structure by disabling invalid

special tokens. This allows our model to adapt to the required triple structure and produce

valid outputs. Special tokens are used by our RDF parser to deserialize strings into

internal triples structures, they’re also exploited by the paper’s custom logit processors to

improve the model’s generation quality (Fig. 12).

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

16

Special Tokens

Token <T>

(<unused0>)

<R>

(unused1)

<S>

(unused2)

<eos>

Meaning Start of new

triple, start of

subject

Start of

predicate

Start of

object

End of string.

Ends generation

Fig. 12: The special tokens used in GraphGen and their meaning

During the model’s generation process, after the final layer finishes processing and

produces the list of logits, the logits, and the token sequence used for generation is passed

to TRSLogitss. TRSLogits finds the special token with the largest index in the sequence

and prevents corresponding tokens from being generated based on the type of the special

token. Note that tokens and special tokens are presented as their detokenized text

counterpart in this paper. Gemma2-2b uses sentencepiece[26] for tokenization which

includes byte-pair-encoding. Our special tokens are all 1 token long.

TRSLogits checks the closest special token from the generation position, then

disables certain special tokens based on the closest special token (Fig. 13). For example,

the model cannot generate <S> out of order when <T> has just been generated, and

special tokens cannot be adjacent (it cannot generate triples with no content).

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

17

Fig. 13: Pseudo-code of TRSLogits

We disable tokens by setting their respective logits to −∞, preventing them from being

chosen as the predicted token. TRSLogits, through enforcing the subject-predicate-object

sequence and generation of full triples before stopping inference, forces the model to

generate full, valid triples.

 KeywordReward: KeywordReward, or PreferKeywordsLogit, decreases the chance

of multiple keywords for the same node being generated by recommending existing

keywords to the model through modifying the logits. From the RDF triple store, two sets

of keywords are extracted:

𝑆𝑛𝑜𝑑𝑒𝑠 = {𝑠𝑛𝑜𝑑𝑒1
, 𝑠𝑛𝑜𝑑𝑒2

, … , 𝑠𝑛𝑜𝑑𝑒𝑥
}

for node keywords (subject and object in triples) and

func TRSLogits.Process(original_logits, sequence):

 t_largest_index = GetLargestIndex(t_token) # <T>

 r_largest_index = GetLargestIndex(r_token) # <R>

 s_largest_index = GetLargestIndex(s_token) # <S>

 eos_largest_index = GetLargestIndex(eos_token) # <eos>

 max_index = max(t_largest_index, r_largest_index,

 s_largest_index, eos_largest_index)

 # Find which special token is the closest to the token we’re generating

 if max_index == len(sequence) - 1:

 # Just generated a special token, no conseq. special tokens allowed

 disabled_tokens = [t_token, r_token, s_token, eos_token] # ALL NO

 if max_index == t_largest_index: # <T>

 disabled_tokens = [t_token, s_token, eos_token] # <R> OK

 if max_index == r_largest_index: # <R>

 disabled_tokens = [t_token, r_token, eos_token] # <S> OK

 if max_index == s_largest_index:

 # Either stop generating or create a new triple

 disabled_tokens = [r_token, s_token]

 return LogitsAfterDisablingTokens(original_logits, disabled_tokens)

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

18

𝑆𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑠 = {𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒1
, 𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒2

, … , 𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑦
}

for predicates in the triples. For each set of keywords, the keywords are tokenized, and

unique tokens for each set of keywords are collected in their respective sets.

𝑇𝑜𝑘𝑒𝑛𝑖𝑧𝑒(𝑆𝑡𝑟𝑖𝑛𝑔) → {𝑘1, 𝑘2, … , 𝑘𝑖}

𝐾𝑛𝑜𝑑𝑒𝑇𝑜𝑘𝑒𝑛𝑠 = ⋃ 𝑇𝑜𝑘𝑒𝑛𝑖𝑧𝑒(𝑆𝑛𝑜𝑑𝑒𝑖
)

𝑛

𝑖=1

𝐾𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑇𝑜𝑘𝑒𝑛𝑠 = ⋃ 𝑇𝑜𝑘𝑒𝑛𝑖𝑧𝑒(𝑆𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑖
)

𝑛

𝑖=1

After generating logits, the logits are modified by KeywordReward. KeywordReward

uses the same algorithm as TRSLogits to detect the most recent special token, and

modifies the logit based on the type of the special token.

Let the previous token sequence be 𝐾 = {𝑘1, 𝑘2, 𝑘𝑛}, logits be 𝑃 = {𝑝1, 𝑝2, 𝑝𝑛},

Because logits can be either positive or negative, we developed an algorithm that

increases the logit proportionally. This increases the chance of existing keywords that’re

likely the same with the to be promoted.

𝑅𝑒𝑤𝑎𝑟𝑑𝑇𝑜𝑘𝑒𝑛(𝑝, 𝑛𝑟𝑒𝑤𝑎𝑟𝑑) = 𝑝 + (𝑛𝑟𝑒𝑤𝑎𝑟𝑑 − 1) ∗ |𝑝|

If the special token is the subject <T> or object <S> token:

𝑃′ = {𝑃[𝑖] ∣ 𝑖 ∉ 𝐴} ∪ {𝑅𝑒𝑤𝑎𝑟𝑑𝑇𝑜𝑘𝑒𝑛(𝑃[𝑖], 𝑛𝑟𝑒𝑤𝑎𝑟𝑑) ∣ 𝑖 ∈ 𝐾𝑛𝑜𝑑𝑒𝑇𝑜𝑘𝑒𝑛𝑠}

If the special token is the predicate <R> token:

𝑃′ = {𝑃[𝑖] ∣ 𝑖 ∉ 𝐴} ∪ {𝑅𝑒𝑤𝑎𝑟𝑑𝑇𝑜𝑘𝑒𝑛(𝑃[𝑖], 𝑛𝑟𝑒𝑤𝑎𝑟𝑑) ∣ 𝑖 ∈ 𝐾𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑇𝑜𝑘𝑒𝑛𝑠}

𝑃′ replaces 𝑃 as the final logits. This procedure reduces the chance where different

keywords representing the same node gets generated, improving the RDF graph’s

connectivity and the query-ability and generalization ability of the triple store.

These two custom logit processors run in serial, with the TRSLogits’ processed logits

being fed into KeywordReward to produce the final logits, addresses the problems of the

model’s tendency to generate triples with incorrect structure and/or unnecessary new

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

19

keywords.

Deserialization

The triples string generated by QueryGen is parsed into rdflib[27] triples (using

URIRef with the keywords as fake URIs). rdflib provides interfaces to create, manage and

query RDF databases in python. Simultaneously the triples are stored using an internal

format. Here, a sentence ID and document ID is stored in the triples object, allowing the

user to check the evidence sentence from which the triple is generated from. Using

pyvis[28], we generate an interactive directional graph that visualizes the relations

between objects and a reference to the evidence of the relation in text. The color of the

arrow represents the sentence from which it is generated from. Fig. 14 shows a

demonstration of a piece of document being converted into triples and visualized.

Fig. 14-A: Document provided to GraphGen

Natural language processing (NLP) is an interdisciplinary subfield of computer science and

artificial intelligence. It is primarily concerned with providing computers with the ability to

process data encoded in natural language and is thus closely related to information retrieval,

knowledge representation and computational linguistics, a subfield of linguistics. Typically data

is collected in text corpora, using either rule-based, statistical or neural-based approaches in

machine learning and deep learning.

[…]

Text-to-video

 Given a description of a video, generate a video that matches the description.[44][45]

(https://en.wikipedia.org/wiki/Natural_language_processing), 26470 characters

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

https://en.wikipedia.org/wiki/Natural_language_processing

20

Fig. 14-B: Image of the generated visualized graph. Colors represent the source sentence from

which the triple is generated from. The interactive graph allows the user to hover on the arrow to see

the predicate.

3.2. QueryGen

To create a complete seq2seq document QA model, we have created two other models

to complete GraphGen. RDF triple store can be queried using an RDF query language.

We have chosen the standard RDF query language SPARQL for its flexibility and

availability of training datasets. SPARQL has a complicated syntax that’s not like typical

natural language conversations, and they require specific keywords in the query that are

generated by GraphGen, making it hard for users to manually create SPARQL queries.

QueryGen converts a user’s question in NL into a SPARQL query based on the context of

the RDF graph. It is a Gemma2-2b language model finetuned with the vquanda[29]

dataset combined with a custom logit processor: SPARQL Enforce & Keyword Enforce.

SPARQL

SPARQL[16] is an RDF query language with a similar syntax to database query

languages such as SQL. Users can use SPARQL to ask relatively complex question about

the knowledge stored in SPARQL endpoints (in this case, the RDF triple store)

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

21

Fig. 15: An example of a SPARQL query in the vquanda dataset.

The basic syntax of SPARQL is as follows: Whitespaces have no effect in SPARQL,

instead brackets and triple separators(“.”) are used. The first word indicates the type of

query performed. SELECT queries extract raw data from the database. CONSTRUCT

returns an RDF graph based on the graph template in the query. ASK queries returns if the

query has a solution. DESCRIBE returns an RDF graph generated by the RDF database.

Variables can be declared in the form of “?[variable name]”. The WHERE{} adds

conditions to the query. In the conditions exists triple-like structures following the

subject-predicate-object order. Keywords in brackets represent an existing keyword

(Usually URIs, this project modified them into plain strings). Any of the three positions in

a triple can be replaced with a variable. Special functions like COUNT() adds additional

functionality and conditions to the query.

We use the SPARQL query showcased in Fig. 14 as an example. It requires the RDF

triple store to return a list of unique ?uri where ?x‘s religion is ?uri and ?x’s residence is

British Columbia and ?x’s type is Politician.

Fine-tuning

The vquanda dataset consists of pairs of Question in NL-SPARQL-answer in NL. The

SPARQL queries in the dataset contains URIs as the dataset is created from DBPedia (An

automatically generated RDF database from Wikipedia metadata)[30] entries. To adapt

the dataset to work with the RDF graph generated by GraphGen, we modified the

vquanda dataset to only preserve the last part of the URI in the triples section of SPARQL

queries (Fig. 16).

SELECT DISTINCT ?uri WHERE

{

?x <residence> <British_Columbia> .

?x <religion> ?uri .

?x <type> <Politician>

}

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

22

Original SPARQL SELECT DISTINCT COUNT(?uri) WHERE { ?x
<http://dbpedia.org/ontology/commander>
<http://dbpedia.org/resource/Andrew_Jackson> . ?uri
<http://dbpedia.org/ontology/knownFor> ?x . }

Modified SPARQL SELECT DISTINCT COUNT(?uri) WHERE { ?x <commander>
<Andrew_Jackson> . ?uri <knownFor> ?x . }

Fig. 16: Comparison of the SPARQL in the original dataset and the modified dataset

 Using this modified dataset, we fine-tuned a unsloth optimized Gemma2-2b model

with a total batch size of 8 and fine-tuned for 600 steps.

 SPARQL Enforce & Keyword Enforce

 QueryGen combines the language model with a custom logit processor to ensure it

generates valid SPARQL queries that works with the generated RDF triple store.

SPARQL, like RDF triples, also relies on the subject-predicate-object structure. Rules

are added as part of the custom logit processor to enforce the overall SPARQL structure:

Brackets needs to be closed, etc. It uses the same algorithm as TRSLogit to detect the

nearest special token.

 Because the SPARQL queries against the RDF database generated by GraphGen, the

SPARQL must use keywords that are relevant to the generated RDF database. We enforce

this by limiting the model to only selecting from existing keywords for non-variables. The

logit processor detects if the predicted token is a part of a triple keyword, then based on

the position of the keyword in a triple it will limit the allowed tokens to either the node

tokens or the predicate tokens and certain special tokens.

Special token

\ Token

position

tokens exist between currently

predicting and special token

Special token is directly before currently

predicting

Only allow these Only allow these

{ IMPOSSIBLE < ?

< keyword(node/predicate) > keyword(node/predicate)

> IMPOSSIBLE <(index<2) ?(index<2) .(index==2)

. IMPOSSIBLE < ? }

? ALL, except >

{ }(index<2) .(index<2) ?(index==2)

<(index==2)

ALL, except < > { } ? .

} IMPOSSIBLE <eos>

None ALL ALL

Fig. 17: Rule table for allowed tokens based on closest special token

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

23

 Fig. 17 shows the rules the custom logits processor uses to enforce the SPARQL

structure and the use of existing keywords. The allowed keywords change based on the

position of the keyword. In position 0 and 2 node keywords are allowed, in position 1

predicate keywords are allowed. Variables do not have this keyword restriction as they are

defined in the SPARQL query. This allows QueryGen to generate contextual SPARQL

queries based on user’s questions.

3.3. AnswerGen

The final part of the SemanticLang QA system is the answer contextualization

module, AnswerGen. RDF databases, when encountered a SELECT query, typically reply

with a list of keywords that satisfy the conditions. These answers, while coherent, do not

provide the necessary context. AnswerGen uses the user’s original question and the query

result to provide a coherent response. It is a Gemma2-2b language model fine-tuned with

the vquanda dataset as shown in Fig. 18. It is trained with a total batch size of 8 for 300

steps.

Fig. 18: An entry in the vquanda answer contextualization dataset

 AnswerGen can incorporate the query result into a natural sentence as a reply to the

user’s question, completing the QA system.

 The combination of GraphGen for document understanding, QueryGen for question

understanding and AnswerGen for answer contextualization completes the seq2seq

document QA system SemanticLang. A complete QA run is shown in Fig. 19.

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

24

Fig. 19: A demonstration of SemanticLang’s entire QA process.

4. Performance Evaluation

This section evaluates the GraphGen module’s knowledge extraction ability.

Fig. 20: A long document.

We found that GraphGen has the unique ability of being able to process long

documents. For example, the document shown in Fig. 19 has a character length of 6725

words or 45890 characters (8946 tokens for GPT-4[31], 9407 tokens for Gemma2[17]),

Gemma2 and GPT-4 has a context length of 8192 tokens[17], [31], which is below the

number of tokens for this document. GraphGen, however, can understand documents at

this length.

We used WebNLG test dataset to compare the performance of GraphGen with GPT-

Natural language processing (NLP)

is an interdisciplinary subfield of

computer science and artificial

intelligence. It is primarily

concerned with…

What’s NLP a subfield of?

NLP is a subfield of Computer Science and Artificial

Intelligence.

SELECT DISTINCT ?uri

WHERE{?uri <subfie…

[Computer_Science,

Artificial_Intelligence]

Artificial intelligence (AI), in its broadest sense, is intelligence exhibited by machines,

particularly computer systems.

[…]

they are unsafe, and the use of self-learning neural networks trained on vast, unregulated

sources of flawed internet data should be curtailed.[dubious – discuss][213]

(https://en.wikipedia.org/wiki/Artificial_intelligence), 45890 characters

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

https://en.wikipedia.org/wiki/Artificial_intelligence

25

3.5-turbo and Gemma2-2b Instruction-tuned model on medium-length sentence level

relation extraction. We calculate the sum of squared differences between Laplacian

spectrum of the predicted RDF graph and the ground truth to generate a loss score (Fig.

21).

Fig. 21: Algorithm for calculating prediction accuracy

The resulting score is a positive number, where closer to 0 means higher accuracy.

 SemanticLang GPT-3.5-turbo Gemma2-2b-it

Avg. WebNLG 3.7687 3.3567 3.8975

We conclude that GraphGen shows comparable performance with high-quality general-

purpose large language models while also having the unique properties of infinite context

length and sentence-level evidence.

5. Conclusion and Future Work

This paper proposes a document QA model designed to be lightweight and have

human-verifiable logic deduction processes. To achieve this, we created GraphGen,

QueryGen and AnswerGen that combine neural language models with symbolic RDF

graphs to improve the logic stability and transparency of the system. In GraphGen, we

propose Multi Context to enable the model to understand long documents, improve

def select_k(spectrum, minimum_energy = 0.9):
 running_total = 0.0
 total = sum(spectrum)
 if total == 0.0:
 return len(spectrum)
 for i in range(len(spectrum)):
 running_total += spectrum[i]
 if running_total / total >= minimum_energy:
 return i + 1
 return len(spectrum)

Similarity
laplacian1 = nx.spectrum.laplacian_spectrum(ground_truth_graph)
laplacian2 = nx.spectrum.laplacian_spectrum(predicted_graph)

k1 = select_k(laplacian1)
k2 = select_k(laplacian2)
k = min(k1, k2)

similarity = sum((laplacian1[:k] - laplacian2[:k])**2)

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

26

performance and improve explainability enabled by the special properties of RDF graphs.

We created an explainable AI that can be run locally on-device for safe processing of

private information and low power usage, it also provides sentence-level evidence for its

answers, so users can examine and verify the model’s understanding, logic deduction and

answering process.

While SemanticLang has demonstrated having explainable understanding and logic

deduction abilities, SemanticLang still contains some problems that we wish to continue

tackle. GraphGen sometimes generates overly long triple keywords. While the chance of

a single node having multiple keyword representations is reduced, the phenomenon still

sometimes happens. We also wish to implement parallelization to GraphGen to improve

its performance, and to enable QueryGen to understand more nuanced context from the

RDF graph than just keywords.

In conclusion, we believe that SemanticLang is a starting point for evidence-first

language models with human-understandable logic deduction process.

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

27

6. References

[1] T. B. Brown et al., “Language Models are Few-Shot Learners,” Jul. 22, 2020, arXiv:

arXiv:2005.14165. doi: 10.48550/arXiv.2005.14165.

[2] OpenAI et al., “GPT-4 Technical Report,” Mar. 04, 2024, arXiv: arXiv:2303.08774.

doi: 10.48550/arXiv.2303.08774.

[3] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi, “The Curious Case of Neural

Text Degeneration,” Feb. 14, 2020, arXiv: arXiv:1904.09751. doi:

10.48550/arXiv.1904.09751.

[4] A. Vaswani et al., “Attention Is All You Need,” Aug. 01, 2023, arXiv:

arXiv:1706.03762. Accessed: Jul. 20, 2024. [Online]. Available:

http://arxiv.org/abs/1706.03762

[5] Y. Tay, M. Dehghani, D. Bahri, and D. Metzler, “Efficient Transformers: A Survey,”

Mar. 14, 2022, arXiv: arXiv:2009.06732. doi: 10.48550/arXiv.2009.06732.

[6] T. Niven and H.-Y. Kao, “Probing Neural Network Comprehension of Natural

Language Arguments,” Sep. 16, 2019, arXiv: arXiv:1907.07355. doi:

10.48550/arXiv.1907.07355.

[7] S. Jain and B. C. Wallace, “Attention is not Explanation,” May 08, 2019, arXiv:

arXiv:1902.10186. doi: 10.48550/arXiv.1902.10186.

[8] M. Shanahan, “Talking About Large Language Models,” Feb. 16, 2023, arXiv:

arXiv:2212.03551. doi: 10.48550/arXiv.2212.03551.

[9] J. Wei et al., “Chain-of-Thought Prompting Elicits Reasoning in Large Language

Models,” Jan. 10, 2023, arXiv: arXiv:2201.11903. doi: 10.48550/arXiv.2201.11903.

[10] D. Zhou et al., “Least-to-Most Prompting Enables Complex Reasoning in Large

Language Models,” Apr. 16, 2023, arXiv: arXiv:2205.10625. doi:

10.48550/arXiv.2205.10625.

[11] Z. Ji et al., “Survey of Hallucination in Natural Language Generation,” ACM

Comput Surv, vol. 55, no. 12, p. 248:1-248:38, Mar. 2023, doi: 10.1145/3571730.

[12] L. Pan, A. Albalak, X. Wang, and W. Y. Wang, “Logic-LM: Empowering Large

Language Models with Symbolic Solvers for Faithful Logical Reasoning,” Oct. 18, 2023,

arXiv: arXiv:2305.12295. Accessed: Jul. 19, 2024. [Online]. Available:

http://arxiv.org/abs/2305.12295

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

28

[13] S. Han et al., “FOLIO: Natural Language Reasoning with First-Order Logic,”

May 17, 2024, arXiv: arXiv:2209.00840. Accessed: Aug. 01, 2024. [Online]. Available:

http://arxiv.org/abs/2209.00840

[14] “W3C Semantic Web Activity Homepage.” Accessed: Sep. 15, 2024. [Online].

Available: https://www.w3.org/2001/sw/

[15] “Resource Description Framework (RDF) Model and Syntax Specification.”

Accessed: Sep. 11, 2024. [Online]. Available: https://www.w3.org/TR/PR-rdf-syntax/

[16] “SPARQL 1.1 Overview.” Accessed: Sep. 15, 2024. [Online]. Available:

https://www.w3.org/TR/sparql11-overview/

[17] Gemma Team et al., “Gemma 2: Improving Open Language Models at a Practical

Size,” Aug. 02, 2024, arXiv: arXiv:2408.00118. doi: 10.48550/arXiv.2408.00118.

[18] “GPT-4o System Card.” Accessed: Sep. 15, 2024. [Online]. Available:

https://openai.com/index/gpt-4o-system-card/

[19] “World Wide Web - Wikipedia.” Accessed: Sep. 15, 2024. [Online]. Available:

https://en.wikipedia.org/wiki/World_Wide_Web

[20] “Semantic Web,” Wikipedia. Aug. 30, 2024. Accessed: Sep. 15, 2024. [Online].

Available: https://en.wikipedia.org/w/index.php?title=Semantic_Web&oldid=1243036247

[21] “Resource Description Framework,” Wikipedia. Sep. 03, 2024. Accessed: Sep. 15,

2024. [Online]. Available:

https://en.wikipedia.org/w/index.php?title=Resource_Description_Framework&oldid=12

43769359

[22] unslothai/unsloth. (Sep. 15, 2024). Python. Unsloth AI. Accessed: Sep. 15, 2024.

[Online]. Available: https://github.com/unslothai/unsloth

[23] C. Gardent, A. Shimorina, S. Narayan, and L. Perez-Beltrachini, “Creating

Training Corpora for NLG Micro-Planners,” in Proceedings of the 55th Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Papers), R. Barzilay

and M.-Y. Kan, Eds., Vancouver, Canada: Association for Computational Linguistics, Jul.

2017, pp. 179–188. doi: 10.18653/v1/P17-1017.

[24] E. Loper and S. Bird, “NLTK: The Natural Language Toolkit,” May 17, 2002,

arXiv: arXiv:cs/0205028. doi: 10.48550/arXiv.cs/0205028.

[25] “Quiz bowl,” Wikipedia. Jul. 24, 2024. Accessed: Sep. 15, 2024. [Online].

Available: https://en.wikipedia.org/w/index.php?title=Quiz_bowl&oldid=1236341758

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

29

[26] T. Kudo and J. Richardson, “SentencePiece: A simple and language independent

subword tokenizer and detokenizer for Neural Text Processing,” Aug. 19, 2018, arXiv:

arXiv:1808.06226. doi: 10.48550/arXiv.1808.06226.

[27] “Tools to Manipulate and Query Semantic Data.” Accessed: Sep. 15, 2024.

[Online]. Available: https://docs.ropensci.org/rdflib/

[28] “WestHealth/pyvis: Python package for creating and visualizing interactive

network graphs.” Accessed: Sep. 15, 2024. [Online]. Available:

https://github.com/WestHealth/pyvis

[29] E. Kacupaj, H. Zafar, J. Lehmann, and M. Maleshkova, “VQuAnDa:

Verbalization QUestion ANswering DAtaset,” in The Semantic Web, A. Harth, S. Kirrane,

A.-C. Ngonga Ngomo, H. Paulheim, A. Rula, A. L. Gentile, P. Haase, and M. Cochez,

Eds., Cham: Springer International Publishing, 2020, pp. 531–547. doi: 10.1007/978-3-

030-49461-2_31.

[30] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives, “DBpedia:

A Nucleus for a Web of Open Data,” in The Semantic Web, K. Aberer, K.-S. Choi, N.

Noy, D. Allemang, K.-I. Lee, L. Nixon, J. Golbeck, P. Mika, D. Maynard, R. Mizoguchi,

G. Schreiber, and P. Cudré-Mauroux, Eds., Berlin, Heidelberg: Springer, 2007, pp. 722–

735. doi: 10.1007/978-3-540-76298-0_52.

[31] “Snapshot.” Accessed: Sep. 15, 2024. [Online]. Available:

https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

30

7. Acknowledgements

This project was inspired by recent controversies online surrounding commercial

Large Language Models, specifically controversies over copyright in the training

data, power usage and privacy concerns over server-side inference and the reliance

some people have over LLM’s results because of LLM’s confident wording. This

project aims to create a lightweight AI system that acts similarly to conventional chat-

based LLMs but can be run locally and have a verifiable logic deduction process. The

original project proposed combining LLMs with predicate logic solvers to enhance

the model’s reasoning process. However, during research, I found that most NL

predicate logic datasets focus on pure logic questions. Ms. Di Wu suggested to me

that the model should focus on semantics instead of pure logic, as semantic relations

can provide more useful information for common question-answering tasks like those

of search engines and typical commercial LLM usage. From Ms. Wu Di’s suggestion

I discovered the Semantic Web and the Resource Description Framework which

became the key to this project. Thanks to Ms. Di Wu for helping me design the proper

direction of the project during multiple stages of the project. Thanks to Prof.

DongDong Weng at the Beijing Institute of Technology, who gave me valuable

guidance on the algorithm design and logit processors of the project. I would also like

to thank Mr. YiNing Shi for his guidance and help during this project, and for

introducing me to Prof. DongDong Weng. Ms. Di Wu and Mr. YiNing Shi are

teachers at the High School affiliated to the Renmin’s University of China. I’m the

sole researcher, system designer, developer, and paper writer for this project. Multiple

challenges were faced during the development of this project. For example, the

GraphGen module would produce incorrect triples, which we fixed by developing

TRSLogits. I would like to again thank Ms. Wu Di, Prof. DongDong Weng and Mr.

YiNing Shi for their unpaid guidance in this project.

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

