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Abstract

Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that signifi-
cantly impacts brain development and function with increasing prevalence, making
early and accurate diagnosis critical for effective intervention. While existing
diagnostic methods typically focus on either internal brain connectivity or external
population relations, effectively integrating these two crucial sources of informa-
tion remains an open problem. To address this challenge, we propose a novel
Brain-Population Graph-in-Graph Neural Network (BP-GiGNN) that enhances
ASD diagnosis by effectively combining brain-level and population-level data.
The BP-GiGNN consists of two parts: an internal brain-GNN and an external
population-GNN. The internal brain-GNN captures the intricate neural interactions
within the brain, and the external population-GNN models the relationships be-
tween individuals using both brain-level embeddings and non-imaging phenotypic
data. Our method is evaluated on two public datasets, ABIDE-NYU and ABIDE-
UCLA, and consistently outperforms state-of-the-art methods, demonstrating its
effectiveness in ASD diagnosis tasks.
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1 Introduction

Figure 1: Prevalence rate in the past 20 years (2000-2020).

Autism Spectrum Disorder (ASD) is a representative type of neurodevelopmental disorder, which
causes severe impact on the development and function of the human brain in childhood [1]. Research
has shown that ASD can affect a child’s ability to develop typical social skills, leading to challenges
in forming social relationships and communicating effectively with others [2]. By 2015, the number
of ASD patients in China has exceeded 10 million [3]. As shown in Fig. 1, the prevalence rate of
ASD in America has increased from 6.7‰ in 2000 to 27.6‰ in 2020, more than quadrupling in just
twenty years [4]. The severe impact on children and rapid increase in prevalence calls for greater
attention to the diagnosis and treatment of ASD.

Accurate diagnosis and timely intervention are crucial in mitigating the long-term effects of ASD
[5]. Research indicates that children who receive intensive early interventions are more likely to
make substantial gains in cognitive and language abilities, as well as in adaptive functioning [6, 7].
However, the current diagnostic process for ASD is fraught with challenges that contribute to high
variability and the potential for misdiagnosis [8]. Diagnosis typically relies on behavioral assessments
and clinical observations which often involves structured interviews, parent-reported questionnaires,
and standardized behavioral assessments [9]. Due to the high variability and easy misdiagnosis of the
current diagnostic process, there is an urgent need to develop an effective method for automatic ASD
diagnosis with more accuracy and robustness.
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Fortunately, recent advances in neuroimaging and machine learning offer promising avenues for
effective automatic ASD diagnosis, potentially transforming the way ASD is diagnosed in the future.
In neuroimaging, resting-state functional Magnetic Resonance Imaging (rs-fMRI) is a useful
source to assess brain activity by tracking hemodynamic fluctuations. By capturing the dynamic
interactions between brain regions, rs-fMRI provides insights into the functional connectivity of
the brain and reveals how different regions interact during various cognitive tasks [10]. This makes
rs-fMRI an invaluable tool in neurodevelopmental research, offering a window into the characteristics
of neurodevelopmental disorders such as ASD [11]. In machine learning, by analyzing complex
and high-dimensional brain rs-fMRI data, techniques such as support vector machine [12], random
forests [13], and deep learning models [14, 15], have been applied to classify individuals with ASD.
Especially, Graph Neural Networks (GNNs) have gained significant attention for their ability to
effectively model complex, non-Euclidean data such as brain networks derived from rs-fMRI. By
capturing structural information within the brain graphs, researchers have adopted GNNs in disorder
diagnosis and proposed many GNN-based ASD prediction methods [16, 17].

Figure 2: Two types of graphs in GNN-based ASD prediction.

As shown in Fig. 2, there are generally two types of graph-structured data in the GNN-based ASD
prediction task: the brain graph and the population graph. The Brain Connectivity Graph is
constructed from each individual’s rs-fMRI data, where nodes represent regions of interest (ROIs)
in the brain, and the edges indicate the connections linking these regions [18, 19]. This graph
captures the unique connectivity patterns within an individual’s brain, which can vary significantly
between those with ASD and neurotypical individuals. The Population Relation Graph represents
relationships across different individuals, where each node corresponds to an individual, and edges
are based on similarities in their brain connectivity patterns or other non-imaging data [20]. This
graph allows for the exploration of how different individuals relate to one another in terms of brain
connectivity, providing insights into shared characteristics or differences across a population.

Although GNN-based methods have shown great potential in this field, there are still some significant
challenges. Firstly, a large proportion of existing methods [18, 16, 21, 22] tend to focus on either the
brain connectivity graph or the population relation graph, failing to fully leverage the complementary
information that these two types of graphs can provide when used together. By only utilizing one
type of graph, existing methods may miss out on valuable contextual information that could enhance
the accuracy and robustness of ASD diagnosis. Secondly, due to the high heterogeneity in both
data format and topological structure, it is still a challenging problem to effectively integrate the
information from the above two graphs [23]. The brain connectivity graph is typically represented as
a weighted complete graph derived from rs-fMRI data, while the population relation graph is usually
a sparse graph with similarities in brain connectivity profiles and non-imaging attributes across the
population. This disparity in graph representation poses significant difficulties in developing effective
GNN-based rs-fMRI analysis methods. Therefore, it is a key challenge to make full use of the two
types of data and effectively integrate heterogeneous graph-structured information.

To address the challenges of integrating heterogeneous graph data, we propose a novel approach
called Brain-Population Graph-in-Graph Neural Network (BP-GiGNN) to effectively fuse the brain
connectivity graph and the population relation graph for accurate and robust diagnosis of ASD. The
proposed method consists of two components: the Internal Brain-GNN and the External Population-
GNN. The Internal Brain-GNN processes the brain connectivity graph derived from rs-fMRI
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data, capturing the intricate patterns of functional connectivity within an individual’s brain. These
connectivity patterns are crucial for identifying the subtle neural abnormalities associated with ASD.
The External Population-GNN operates on the population relation graph, which encodes inter-
individual relationships based on non-imaging attributes like age and gender. By embedding internal
brain features into a population graph structure, BP-GiGNN provides a comprehensive analysis that
integrates multi-level information. This multi-layered approach ensures that the model does not
simply analyze brain connectivity in isolation but also contextualizes it within a broader population
framework. The fusion of these two levels of information allows us to exploit the full spectrum
of available data, offering a more holistic view of both individual and group-level patterns. The
proposed method is evaluated on the ABIDE-UCLA and ABIDE-NYU datasets, which are widely
used benchmarks in the study of ASD. Our BP-GiGNN demonstrates superior performance over
state-of-the-art baseline methods in various evaluation settings. The results highlight the significant
advantages of our BP-GiGNN method.

The key contributions of our work can be concluded as follows:

• We propose a novel Brain-Population Graph-in-Graph Neural Network (BP-GiGNN) that
effectively integrates brain connectivity graphs and population relation graphs to enhance
the ASD diagnosis. Our method leverages both internal brain-level GNNs and external
population-level GNNs, enabling the simultaneous analysis of intricate brain connectivity
patterns and inter-individual relationships.

• We propose a comprehensive strategy that embeds internal brain features into a population
graph structure for better multi-level information fusion, which significantly improves
predictive performance.

• We evaluate the effectiveness of BP-GiGNN on several public datasets and achieve state-of-
the-art performance across various diagnostic settings and metrics, which offers robust and
accurate diagnosis assistance.

2 Related Work

2.1 Autism Spectrum Disorder Prediction

Predicting neurodevelopmental disorders, such as Autism Spectrum Disorder (ASD), has been a
critical area of research in medical image analysis [24]. Researchers have increasingly focused on
using neuroimaging data, including structural and functional MRI, to identify biomarkers that can aid
in the early detection and diagnosis of ASD [25, 26]. These imaging techniques provide insights into
the anatomical and functional abnormalities associated with neurodevelopmental disorders, which
are often subtle and difficult to detect through behavioral assessments alone.

In the field of ASD prediction, early methods [12, 13] focused on statistical analysis of rs-fMRI data
to construct handcrafted features and traditional machine learning approaches. The authors of [12]
employ functional connectivity analysis to classify individuals with ASD by pinpointing key brain
embeddings. They use statistical techniques to analyze the rs-fMRI data and generate connectivity
maps that highlight key differences in brain networks between ASD individuals and neurotypical
controls, which are further exploited as the input of a support vector machine for diagnosis results.
The researchers in [13] apply a functional random forest approach to explore the heterogeneity of
executive function across individuals with ADHD and ASD. They use statistical analysis to extract
functional connectivity features from rs-fMRI data, which are then input into a random forest classifier.
While these handcrafted methods provide valuable insights into brain connectivity, they are limited
by their reliance on manual feature selection and often struggle with capturing complex, non-linear
patterns inherent in the data.

Recently, various deep learning-based methods have been proposed for ASD prediction [14, 27, 28,
15]. The study by [27] proposes a deep learning model to identify ASD using data from the ABIDE
dataset, which trains a neural network on rs-fMRI data, permitting the model to derive pertinent
embeddings from the inputs. The model demonstrates robustness across different sites and imaging
protocols, highlighting the potential of deep learning to generalize well across diverse datasets and
conditions. The ASD-SAENet method proposed by [15] combines a sparse autoencoder with a deep
neural network for detecting ASD using fMRI data. The sparse autoencoder is designed to efficiently
identify the most prominent features from the high-dimensional fMRI data by learning a compressed
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representation, which is leveraged by the neural network for final decision. These deep learning-based
methods show high effectiveness in automatically learning complex, non-linear features from rs-fMRI
data, offering improved accuracy and robustness across diverse datasets.

2.2 GNN-based Methods for ASD prediction

Graph Neural Networks (GNNs) have attracted significant attention in the field of brain network
analysis and Autism Spectrum Disorder (ASD) classification [29]. GNNs extend traditional neural
networks to handle graph data, where nodes represent entities (brain regions), and edges represent
relationships between these entities (connectivity in the brain). This ability to directly model the
relational structure of data makes GNNs particularly well-suited for analyzing complex networks like
those found in the human brain.

Generally, there are two categories of GNN-based ASD prediction approaches: brain-based methods
[16, 30] and population-based methods [21, 22]. The brain-based methods for ASD prediction treat
the problem as a graph classification task, where the brain is represented as a connectivity graph,
and each node is a region of interest (ROI). This modeling allows for the analysis of complex neural
connections and interactions that are central to understanding ASD. For instance, BrainGNN [16]
utilizes GNNs to learn complex representations of these brain connectivity graphs and incorporates
an interpretable mechanism that identifies the most critical ROIs and connections. The population-
based methods approach ASD prediction as a node classification task, where each node in the
graph represents an individual, and the entire population is modeled as a population relation graph.
These methods enable the analysis of relationships and similarities between individuals within a
population, incorporating both neuroimaging data and non-imaging attributes such as age and gender.
For example, the work by [21] develops a model that utilizes spectral graph convolutions to predict
diseases like ASD in a population-based context and captures the relationships between individuals,
where individuals with greater similarity have stronger connections.

More recently, researchers have attempted to adopt GNN for the joint learning of both brain connec-
tivity and population relation graphs, integrating the strengths of both approaches to enhance the
ASD prediction [8, 23]. Hi-GCN [23] designs a hierarchical graph convolutional network to learn
graph feature embeddings while considering both the topology of individual brain networks and the
relationships between subjects in the global population. LG-GNN [8] proposes a local-to-global
graph neural network to bridge the gap between local brain region analysis and global population-
level classification through a dual-stage process. Although demonstrating promising performance in
classifying brain disorders, these joint learning methods still face the inherent challenge of effectively
integrating the diverse types of information [8]. Thus, it remains an open challenge for ASD predic-
tion to effectively integrate ROI-level and individual-level information from the heterogeneous graph
structures.

3 Brain-Population Graph-in-Graph Neural Network

Figure 3: Illustration of the proposed BP-GiGNN method. The input rs-fMRI data is first processed
by the Internal Brain-GNN to extract brain-level features. These brain-level subgraphs are then
incorporated and processed by the External Population-GNN to obtain the overall prediction.

5

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示



3.1 Overall Framework

In this paper, we propose a novel framework named Brain-Population Graph-in-Graph Neural
Network (BP-GiGNN) to enhance the performance of neurodevelopmental disorder diagnosis. The
BP-GiGNN framework is designed to integrate both individual brain connectivity information and
broader population-level relationships. As shown in Fig. 3, the proposed BP-GiGNN method consists
of two interconnected components: an internal brain-GNN and an external population-GNN.

The Internal Brain-GNN focuses on modeling each individual’s rs-fMRI data as a brain connectivity
graph. In this component, each region of interest (ROI) within the brain is represented as a node, and
the functional connections between these regions are represented as edges. The Internal Brain-GNN
is responsible for capturing intricate patterns of brain activity and interactions among different brain
regions, which are crucial for identifying disease-related biomarkers. By analyzing the connectivity
structure within an individual’s brain, the Internal Brain-GNN extracts features that are indicative of
neurodevelopmental disorders, allowing the model to pinpoint specific neural abnormalities that may
be associated with ASD.

Built upon the brain-level embeddings of the internal graphs, the External Population-GNN extends
the analysis to a broader context by constructing a population relation graph across different individu-
als. This component leverages the shared feature patterns across individuals by connecting nodes
(individuals) based on similarities in their brain connectivity profiles and non-imaging data. The
External Population-GNN captures inter-individual relationships and patterns that are not apparent
when considering brain data in isolation. By integrating these relationships, the model can identify
commonalities and differences across the population, enhancing the robustness and accuracy of the
diagnostic predictions.

By embedding individual brain graphs into a larger population graph, BP-GiGNN effectively captures
both internal patterns (within the brain) and external patterns (across the population). This dual-level
integration provides a comprehensive understanding of neurodevelopmental disorders, enabling the
model to make more informed and accurate predictions. The ability to simultaneously analyze local
brain connectivity and global population relationships ensures that BP-GiGNN can account for the
complex and heterogeneous nature of brain disorders, ultimately resulting in enhanced diagnostic
accuracy and a deeper understanding of the fundamental neural processes.

3.2 Internal Brain-GNN

3.2.1 Brain Graph Construction

Constructing the brain connectivity graph is a critical step in capturing the intricate functional
interactions within the brain, which are essential for ASD diagnosis [5]. The brain’s functional
connectivity, which reflects the coordinated activity between different regions, provides valuable
insights into how various parts of the brain communicate and how these communications may be
disrupted in the presence of neurodevelopmental disorders.

To construct this internal brain graph, we start with the rs-fMRI data of each individual. The entire
brain can be systematically divided into M regions of interest (ROIs) according to a certain brain
atlas. Each ROI represents a distinct area of the brain, and its corresponding node, denoted as vint

i , is
associated with the rs-fMRI time series data xint

i .

In this way, the internal brain connectivity graph is constructed as G int = {V int,Aint}, where V int =
{vint

1 , · · · , vint
M} represents the set of nodes corresponding to the M ROIs. The node features X int =

(xint
1 , · · · ,xint

M )⊤ encapsulate the time series data for each ROI, providing a detailed representation
of neural activity across the brain. The edges in this graph, represented by the adjacency matrix
Aint ∈ RM×M , are defined based on the functional relationships between pairs of ROIs as the
following:

Aint
i,j =

{
|corr(xint

i ,xint
j )| if i ̸= j

0 if i = j
(1)

where corr(·, ·) is the Pearson correlation coefficient. Specifically, for each pair of ROIs i and
j (where i ̸= j), the weight of the edge Aint

i,j is calculated as the absolute value of correlation
coefficient between their respective time series data xint

i and xint
j . This correlation quantifies the

degree of synchronized activity between the two regions, reflecting how strongly they are functionally
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connected. Notably, self-loops are removed from the graph, setting Aint
i,j = 0 when i = j, to focus

solely on inter-regional interactions.

By representing the ROIs as nodes and their functional relationships as edges, the brain connectivity
graph encapsulates the complex network of neural interactions within the brain. This graph-based
representation enables further analysis of brain activity patterns, facilitating the identification of
potential biomarkers and the characterization of functional disruptions that are associated with brain
disorders. The constructed brain connectivity graph provides a rich source of information that can be
leveraged by GNNs to enhance the accuracy and interpretability of brain disorder diagnoses.

3.2.2 Internal GNN Model

Once the brain connectivity graph is constructed, the next step is to process these graphs using the
internal GNN to extract meaningful features that capture the complex neural interactions within the
brain. Operating on the initial node features derived from the brain connectivity graph, the internal
GNN can transform these features through multiple layers to produce rich embeddings that are crucial
for downstream tasks.

The internal GNN model in our framework utilizes two Graph Convolutional (GCNConv) layers,
which are central to the feature extraction process. GCNConv layers extend the principles of
convolutional neural networks to graph-structured data, enabling the model to aggregate information
from a node’s neighbors in the graph, allowing the GNN to capture both local and global patterns
within the brain’s connectivity structure.

Specifically, the operation of the i-th (i = 1, · · · ,K) GCNConv layer is calculated as:

X(i) = GCNConv(X(i−1),Aint;W (i−1))

= σ(D−1/2AintD−1/2X(i−1)W (i−1))
(2)

where X(i−1) is the input node features to the i-th layer, X(i) is the output node embeddings after
applying the graph convolution, W (i−1) is the learnable parameter, σ(·) is the activation function
like ReLU. Here, Di,i =

∑
j A

int
i,j is the diagonal degree matrix of the brain connectivity graph,

which normalizes the adjacency matrix Aint to account for variations in node connectivity.

Initially, the input to the first GCNConv layer is the matrix X(0), which corresponds to the raw input
data X int. As these features pass through the successive GCNConv layers, the model progressively
refines them, resulting in higher-level embeddings that encapsulate the most relevant aspects of the
brain’s functional connectivity for disorder diagnosis. The output of the internal GNN model is
denoted as X̃ int = X(K), which represents the extracted internal embeddings of the brain graph
G int. By effectively transforming the raw input data into meaningful embeddings, the internal GNN
model lays the foundation for accurate and interpretable diagnosis within the broader BP-GiGNN
framework.

3.3 External Population-GNN

3.3.1 Population Graph Construction

In addition to the internal brain connectivity within an individual, it is also essential to consider the
broader context of how different individuals within a population are connected. These inter-individual
associations, coupled with individual-level non-imaging data, also contribute significantly to the
overall accuracy and robustness of disease prediction models [21]. By integrating both neurological
and non-neurological factors, we can capture a more comprehensive view of the disorder, accounting
for both individual variability and shared characteristics across the population.

To systematically explore these inter-individual correlations, we construct the external population
graph, which is designed to model the relationships between different individuals based on their
internal brain subgraphs and extra non-imaging phenotypic data. The external population graph is
denoted as Gext = {V ext,Aext}, where the node set V ext = {G int

1 , · · · ,G int
N } represents the internal

brain subgraphs of all N individuals in the study. For each node in the external population graph, it
corresponds to an internal brain subgraph G int

j of a specific individual j, as defined and constructed in
Section 3.2. The ROI-level features extracted from each individual’s internal brain graph, represented
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by the embeddings X̃ int, serve as the foundational data for constructing the nodes in the external
population graph.

To facilitate the transition from individual brain connectivity to population-level analysis, we derive
external node embeddings Xext from the brain-level embeddings X̃ int obtained from the internal
GNN as

Xext = (h(X̃ int
1 ), · · · ,h(X̃ int

N )) (3)

h(X̃ int
j ) =

(
M−1⋃
k=1

M⋃
l=k+1

corr(x̃int
j;k, x̃

int
j;l)

)
(4)

where corr(·, ·) is the correlation function, M is the number of ROIs. Specifically, the internal
correlation function h(·) is designed to capture the pairwise correlations between all ROI-level
features within each individual’s brain, effectively summarizing the internal connectivity patterns in a
single vector. For a specific individual j, the correlation between every pair of ROI embeddings, x̃int

j;k

and x̃int
j;l, is calculated. The resulting coefficients are concatenated into a M(M − 1)/2-dim vector,

which serves as the input embedding for the j-th brain subgraph in the population graph.

Once the external node embeddings Xext are constructed for all N individuals, the adjacency matrix
Aext of the external population graph is computed similarly to Eq. (1). Furthermore, to fully
capture the nuances of inter-individual relationships, we follow the previous work [8] to refine this
adjacency matrix by incorporating non-imaging information metrics, including gender, age, and site.
By constructing this external population graph, we provide a comprehensive framework that not
only accounts for the detailed brain connectivity within individuals but also leverages the shared
characteristics and relationships across the entire population.

3.3.2 External GNN Model

After constructing the population graph, the next step is the implementation of the external GNN
model. This model should effectively aggregate and leverage information from correlated individuals,
integrating both brain-level and population-level data to enhance the predictive power of the system.

Specifically, we employ two Graph Convolutional Network (GCNConv) layers that incorporate the
jumping knowledge mechanism [31]. Jumping knowledge allows the model to dynamically select
and aggregate information from different layers of the network, effectively capturing both local and
global patterns within the graph. This mechanism is particularly useful in complex graph structures,
such as population-level analyses with multi-scale relationships. The result of this process is a set
of external embeddings X̃ext = (x̃ext

1 , · · · , x̃ext
N )⊤, where each vector x̃ext

j represents the aggregated
feature embedding for the j-th subgraph G int

j in the population graph.

Recognizing the multi-level nature of neurodevelopmental disorder indicators, we further enhance
the discriminative performance of our model by fusing the internal and external embeddings. The
internal embeddings X̃ int derived from the brain graph, are combined with the external embeddings
X̃ext derived from the population graph, to obtain the final embeddings as

X̃final = X̃ext + λX̃ int (5)

where λ is a learnable weight parameter that determines the relative contribution of the internal and
external embeddings. By allowing the model to adjust this parameter during training, we ensure that
the final embeddings optimally reflect the most relevant information from both levels of analysis.

The BP-GiGNN is supervised by the cross-entropy objective

L = −
N∑
i=1

[(1− yi) log(1− ŷi) + yi log(ŷi)] (6)

where ŷi is the prediction output, yi denotes the ground truth label of individual i. Through this
comprehensive approach, the external GNN model learns to effectively leverage both the internal
brain-level and external population-level embeddings.
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4 Experimental Setup

4.1 Datasets

In the experiments, we evaluate the proposed method on the widely recognized Autism Brain Imaging
Data Exchange (ABIDE) dataset [32], which offers a valuable dataset of neuroimaging information
specifically assembled for researching Autism Spectrum Disorder (ASD). The ABIDE initiative
compiles neuroimaging datasets from a wide range of research institutions worldwide. To thoroughly
assess the performance of our method, we focus on two distinct subsets of the ABIDE dataset:
ABIDE-UCLA and ABIDE-NYU. These subsets were selected based on their consistency in data
collection methods and their representativeness of the ABIDE dataset. The raw sequences are
then preprocessed by the widely adopted DPARSF toolbox [33] to enhance the quality of the brain
connectivity graphs used in our experiments. The details of the datasets are as follows:

• ABIDE-NYU includes 262 subjects, with 127 having an ASD diagnosis and 135 as nor-
mal ones. Similar to ABIDE-UCLA, ABIDE-NYU is also a merged dataset, bringing
together the NYU Sample from ABIDE-I and the NYU Sample 1 from ABIDE-II. These
samples were collected at NYU Langone Medical Center and exhibit overlaps in phenotypic
characterization and scan parameters.

• ABIDE-UCLA includes data from 141 participants, with 78 individuals diagnosed with
ASD and 63 healthy controls. The ABIDE-UCLA subset is a composite dataset, formed
by merging several related samples: UCLA Sample 1 and UCLA Sample 2 from ABIDE-I,
along with the UCLA Sample from ABIDE-II. These samples were all collected at the
University of California, Los Angeles, which share similar inclusion criteria.

4.2 Baselines & Metrics

The baseline methods selected for comparison in this paper include general graph neural network
(GNN) models and GNN-based brain disorder prediction models. General GNN models include
GCN [34], GraphSAGE [35], and GAT [36]. GCN is a seminal model in the field of graph-based
learning that applies convolutional operations directly to graph-structured data. GraphSAGE extends
the GCN framework by introducing an inductive learning approach, which generates node embeddings
through a process of neighborhood sampling and aggregation. GAT enhances graph neural networks
by incorporating an attention mechanism that allows the model to assign varying levels of importance
to different neighbors during feature aggregation. GNN-based brain disorder prediction models
consist of LG-GNN [8]. LG-GNN is a specialized GNN model for brain disorder prediction, which
combines local brain region analysis with global population-level relationships.

We assess the efficacy of our model and other methods by employing a wide array of metrics
commonly used in neuroimaging-based classification tasks, such as Accuracy, Sensitivity, and
Specificity. Additionally, we also calculate F1-Score and Area Under the ROC Curve to provide a
comprehensive evaluation.

4.3 Implementation Details

Setting the learning rate to 1 × 10−4 and implementing a weight decay of 5 × 10−5, the model
undergoes training for 200 epochs. The model is trained for 200 epochs. In order to ensure thorough
evaluation, we employ 5-fold cross-validation on both datasets. For each fold, the data is split into
training and validation subsets, and the model is fit and evaluated based on this partitioning. We report
the results across the five folds, providing a comprehensive assessment of the model’s performance
and its generalizability across different subsets of the data. The proposed BP-GiGNN is implemented
by PyTorch.

5 Experimental Results

5.1 Comparison Study

To assess the quantitative performance of our BP-GiGNN model, we conduct an extensive evaluation
with several leading baselines on two benchmark datasets: ABIDE-NYU and ABIDE-UCLA. We

9

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示



(a) on the ABIDE-NYU dataset.

(b) on the ABIDE-UCLA dataset.

Figure 4: Training loss of the proposed BP-GiGNN across 5 folds.

depict the loss function values in Fig. 4. We detail the results in Table 1 and Table 2. Based on the
results, we see three conclusions:

(1) The BP-GiGNN approach consistently surpasses all leading baseline methods across various
evaluation settings and metrics. Specifically, on the ABIDE-NYU dataset, BP-GiGNN exceeds the
second-best method, LG-GNN, by a significant margin with improvements of 11.38% in accuracy and
comparable gains in other metrics. Similarly, on the ABIDE-UCLA dataset, BP-GiGNN demonstrates
an increase of 15.80% in accuracy compared to LG-GNN. These substantial improvements can be
attributed to the advantages of our model, which integrates both internal brain-level and external
population-level information through a graph-in-graph architecture. This dual-level integration allows
BP-GiGNN to capture complex intra-individual and inter-individual patterns more effectively, leading
to more accurate and robust predictions.

(2) General GNN models, such as GCN, GraphSAGE, and GAT, perform relatively poorly when
applied directly to ASD diagnosis. This underperformance is evident in their lower accuracy and AUC
scores compared to specialized brain disorder prediction models. The primary reason for this is that
these general GNN models are not designed to fully exploit the rich, multi-level relationships inherent
in neuroimaging data. Specifically, they struggle to effectively model the intricate associations
between internal brain connectivity (brain-level information) and external phenotypic relationships
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Table 1: The comparison results of the compared approaches on ABIDE-NYU.

Method Acc (%) Sen (%) Spe (%) AUC (%) F1 (%)

GCN [34] 54.89±4.40 52.50±7.64 57.05±5.37 61.07±6.23 52.55±6.06

SAGE [35] 60.96±3.69 55.87±5.47 65.69±4.68 64.18±3.83 57.78±4.48

GAT [36] 59.35±3.43 56.81±5.35 61.85±8.16 61.11±4.16 57.22±3.24

LG-GNN [8] 74.38±3.10 70.29±13.74 78.06±9.61 85.83±1.34 71.79±6.28

Internal-GNN 58.97±5.72 57.68±6.27 60.15±6.63 63.87±5.85 57.42±5.67

Internal-GNN+GCN 79.23±12.57 92.36±4.95 66.86±27.75 93.57±3.04 82.07±7.55

Ours 85.76±5.50 92.50±8.08 79.94±15.78 98.41±1.41 86.45±3.97

Table 2: The comparison results of the compared approaches on ABIDE-UCLA.

Method Acc (%) Sen (%) Spe (%) AUC (%) F1 (%)

GCN [34] 61.77±7.60 72.56±11.25 46.67±10.89 71.52±9.70 68.45±7.04

SAGE [35] 59.70±7.00 64.36±8.98 53.33±12.96 66.62±6.62 64.74±6.87

GAT [36] 57.97±6.50 64.36±22.09 48.89±20.61 58.28±10.96 62.02±12.12

LG-GNN [8] 72.90±8.80 78.97±12.62 64.44±4.44 80.91±10.08 76.73±8.32

Internal-GNN 62.60±5.28 67.69±11.68 55.56±9.94 65.90±9.79 67.23±6.69

Internal-GNN+GCN 75.67±9.12 69.10±24.42 84.44±15.07 87.56±8.24 74.19±14.31

Ours 88.70±9.77 87.05±13.23 91.11±10.89 96.01±5.30 89.53±9.42

(population-level information). As a result, they fail to capture the full spectrum of relevant features
needed for accurate ASD classification.

(3) GNN-based brain disorder prediction models like LG-GNN exhibit advancements compared to
traditional GNN models, but there remains room for further enhancement. These models do achieve
better performance by leveraging multi-level relational information, which helps in capturing the
complex structures within brain networks and across individuals. However, they still face significant
challenges in the effective fusion of heterogeneous graph information across different levels. The
integration of diverse data types (e.g., neuroimaging features and demographic information) within
a unified model is complex, and current methods struggle with this aspect, leading to suboptimal
performance. BP-GiGNN addresses these challenges more comprehensively, but the results suggest
that ongoing research is needed to further refine the methods for integrating multi-layered and
heterogeneous data sources.

5.2 Ablation Study

Furthermore, an ablation study is conducted in our BP-GiGNN by systematically removing or
modifying parts of the model and observing the resulting changes in performance. Specifically, three
variations of the BP-GiGNN model are designed as:

• Internal-GNN: The model of internal brain-GNN only.
• Internal-GNN+GCN: The model of internal brain-GNN and plain GCN, i.e., replacing the

external population-GNN of BP-GiGNN with plain GCN.
• Ours: The model of both internal brain-GNN and external population-GNN, i.e., the

proposed BP-GiGNN.

The results are presented in Table 1 and Table 2. Several observations can be made as follows:

(1) Only using internal-GNN leads to suboptimal performance, similar to the results observed with
general GNN models. This underperformance can be attributed to its inability to leverage the multi-
level relational information that is crucial for accurately diagnosing ASD. By focusing solely on
brain-level connectivity within individuals, the internal-GNN fails to capture the broader population-
level relationships that provide additional context and insights necessary for more accurate predictions.
This limitation highlights the importance of integrating multi-level data for comprehensive modeling
in neurodevelopmental disorder diagnosis.
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(2) The performance is improved when adding a plain GCN to the internal-GNN. This enhancement
indicates that incorporating population-level relational information, even in a basic form, is beneficial
for ASD diagnosis. The plain GCN introduces an additional layer of analysis that considers the
similarities and differences between individuals at the population level, which helps to refine the
model’s predictions. This result underscores the value of including population-level data in the
diagnostic process, as it complements the brain-level features captured by the internal-GNN and
contributes to a more accurate overall model.

(3) The BP-GiGNN model, which combines both the internal-GNN and the external population-
GNN, achieves the best performance across all metrics. This superior performance demonstrates
the effectiveness of integrating both internal brain-level and external population-level information
within a unified framework. By leveraging the strengths of both components, BP-GiGNN can capture
the intricate, multi-layered relationships that are essential for accurately diagnosing neurodevelop-
mental disorders. The model’s ability to synthesize detailed brain connectivity patterns with broader
population-level interactions allows it to provide more robust and reliable predictions. This finding
reinforces the critical importance of a holistic, multi-level approach in advancing the accuracy and
effectiveness of neurodevelopmental disorder models.

5.3 Visualization

Figure 5: Scatter plot of the embeddings extracted by our BP-GiGNN and the compared LG-GNN.

To qualitatively assess the efficacy of our BP-GiGNN model, we visualize the embeddings extracted
by our BP-GiGNN and the compared LG-GNN. To qualitatively assess the efficacy of the proposed
approach, we extract and visualize the features Specifically, we extract the features from the penul-
timate layer of both our method and LG-GNN and reduce their dimensionality to 2D space using
t-SNE [37]. The scatter plot of the extracted features for all 5 folds is presented in Fig. 5.

It is demonstrated that the features learned by our method exhibit significantly better separability
between healthy controls and ASD patients, compared with the features extracted by LG-GNN. In
the visualization of our method, the clusters corresponding to different classes are more distinct with
tighter intra-class grouping and greater inter-class separation. This indicates that the embeddings
extracted by BP-GiGNN have stronger discriminative power, leading to more accurate classification.
In contrast, the feature representation from LG-GNN shows greater overlap between the two classes,
suggesting that it struggles to fully capture the underlying differences between ASD and healthy
individuals. This further underscores the effectiveness of BP-GiGNN’s graph-in-graph approach,
which integrates both internal brain connectivity and external population relations to provide a more
comprehensive and robust feature extraction process.
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6 Conclusion

In this paper, we propose a novel Brain-Population Graph-in-Graph Neural Network (BP-GiGNN) to
address the challenges associated with predicting Autism Spectrum Disorder (ASD), using resting-
state functional MRI (rs-fMRI) data. Our method offers a unified approach that effectively integrates
both brain-level internal connectivity information and population-level external attributes. In BP-
GiGNN, the internal brain-GNN captures the intricate neural interactions within the brain, while the
external population-GNN models relationships between individuals, leveraging both brain connectiv-
ity embeddings and non-imaging attributes. The comprehensive experimental results on two public
datasets, ABIDE-NYU and ABIDE-UCLA, demonstrate the superior performance of BP-GiGNN
over several state-of-the-art models, including traditional graph neural networks and specialized brain
disorder diagnosis approaches.

In the future, there are several directions for further enhancing the BP-GiGNN model and its
applications: 1) Exploring interpretability of GNNs in ASD diagnosis. While BP-GiGNN has
demonstrated strong performance, a key area for future work is improving the interpretability of the
model. By explaining the model in identifying specific brain regions or population-level relationships
that contribute to ASD diagnosis, we can gain deeper insights into the neural processes and offer
clinicians more practical guidance. 2) Incorporating multi-modal data for more accurate diagnosis.
Combining rs-fMRI data with other sources of information (genetic data, behavioral assessments)
could enhance the model’s ability to capture the full complexity of ASD, which is expected to result
in more precise and resilient diagnosis results. 3) Extending to other neurodevelopmental disorders.
Although BP-GiGNN is focused on ASD, future work could involve applying the model to other
neurodevelopmental disorders, such as ADHD. By validating the model on different datasets and
extending its application to other conditions, we can assess its generalizability and further expand its
utility into a wider range.
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经发育障碍诊断方面的论文，认识到图神经网络在处理脑网络连接中的广阔应用

前景。这不仅帮助我更好地理解了研究课题的前沿进展，还让我有了更多的信心

去探索这一选题，并且从技术上评估其可行性。在实验阶段遇到的主要困难是模

型框架代码的搭建。模型框架涉及许多复杂的步骤，涉及到 rs-fMRI的脑影像数

据，包括数据读取、图结构构建、神经网络的设计与搭建、模型优化与训练、以

及测试评估等一系列过程。为了解决这个问题，我通过调研发现了 LG-GNN等前

沿方法的开源代码仓库，对于我的工作具有非常高的参考价值。通过分析这些代

码的思路，我成功搭建了 BP-GiGNN的基础框架，为后续的模型调整和优化打下

了重要基础。 
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