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Abstract 

As Artificial Intelligence (AI) systems improve in processing power and reasoning ability, it can 

become helpful to users in fields such as mathematics. For example, in a recent event, Fields 

Medalist Terence Tao explained that proof checkers and AI programs are dramatically changing 

mathematics. He said, “in three years AI will become useful for mathematicians. It will be a great 

co-pilot.” An AI system, such as a large language model (LLM), can be a great tool for assisting 

the user in solving mathematical problems, as it can create preliminary ideas and even (partial or 

intermediate) solutions for complex problems and explain them in understandable natural language 

(referred to as informal solution hereafter). However, when utilizing LLM techniques to solve such 

mathematical problems, it is common for an LLM generated solution to have illogical proof steps, 

such as using incorrect premises, skipping steps in the reasoning, or containing calculation errors, 

making answers both prone to mistakes and unjustified, namely hallucination. It echoes the 

opinion held by Terence Tao, that an LLM is more like a guessing machine in mathematics which 

inspires the mathematician in solving problems, rather than providing the solution directly [18]. 

On the other hand, Formal Theorem Proving (FTP), which is commonly used among 

mathematicians and computer scientists, serves as a tool for strictly checking the correctness of 

proofs (referred to as formal solution hereafter). Therefore, it is desirable to make the LLM 

generate solutions grounded on proofs verified by FTP, so as to mitigate LLM hallucination 

problems. In this work, we propose the method of augmenting an LLM with FTP to solve 

mathematical quantitative reasoning problems, namely, Reasoning Grounded with Formal 

Verification (RGFV). Compared to previous LLM-based approaches, RGFV takes a detour by 

formal proof, utilizing auto-formalization and formal theorem proving. It augments the LLM with 

a constructed formal statement and verified formal proof to generate informal solutions. Our 

experiments and ablation studies on a collection of mathematical competition problems show that, 

compared to previous work, RGFV improves the accuracy of the answers significantly from 46.7% 

to 65.8% overall, and even more significantly on the subcategory of algebra, from 66.7% to 96.7%. 

Moreover, it significantly improves the quality of the generated solutions. The method also helps 

AI be more reliable and useful for students studying mathematics.   

Keywords: Large language model; mathematical proving; artificial intelligence; 

 

 20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示



3 

 

Contents 
Abstract .....................................................................................................................................2 

1. Introduction ...........................................................................................................................4 

2. Related Work .........................................................................................................................5 

2.1 Large Language Model Based Mathematical Reasoning ...............................................5 

2.1.1 Large Language Model .............................................................................................5 

2.1.2 LLM Based Mathematical Reasoning ......................................................................5 

2.1.3 In-Context Learning, Prompt and Demonstration ..................................................6 

2.2 Formal Theorem Proving ................................................................................................6 

2.2.1 Automated Theorem Proving ...................................................................................6 

2.2.2 ATP with LLMs .........................................................................................................7 

3. Method ...................................................................................................................................8 

3.1 Statement Auto-formalization .........................................................................................9 

3.2 Generating Natural Language Solution Candidates ......................................................9 

3.3 Formal Proof Candidate Generation & Verification ......................................................9 

3.4 Solution Auto-Informalization ......................................................................................10 

4. Experiment and Results ......................................................................................................10 

4.1 Experiment Setup ..........................................................................................................10 

4.2 Baseline and Evaluation Metrics...................................................................................13 

4.3 Main Experiment Results ..............................................................................................14 

4.4 Ablation Study ...............................................................................................................15 

4.5 Case Study .....................................................................................................................17 

5. Conclusion and Future Work..............................................................................................21 

6. Acknowledgements ..............................................................................................................21 

References: ..............................................................................................................................23 

Appendix .................................................................................................................................25 

Few-shot demonstrations ....................................................................................................25 

Prompt for RGFV pipeline .................................................................................................28 

 20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示



4 

 

1. Introduction 

LLMs have recently been used for generating informal solutions for mathematical problems, and 

some have achieved a level of proficiency already. For example, OpenAI’s GPT-4 achieved the 

89th percentile in the SAT math portion [19]. However, there is one major flaw in the informal 

solutions generated by LLMs: hallucination. LLMs will often generate outputs that deviate from 

factual error or coherence, which is detrimental to the solution, leading to incorrect answers or 

inconsistencies between answer and proof.  

In mathematical proving, there are generally two types of solutions: natural language solutions and 

formal language solutions. The former is often referred to as an informal solution, and the latter is 

accordingly referred to as a formal solution. Informal solutions involve establishing the truth of 

mathematical statements building on existing knowledge via intuitive reasoning and natural 

language explanations, and formal solutions require presenting theorems and proofs in a machine-

verifiable format, ensuring their correctness using rigorous logical rules. While informal solutions 

are easy for humans to understand, they are hard to verify formally (i.e., mathematically). Formal 

solutions, contrarily, are simple and easy for computers to verify, but hard for humans to 

understand. Therefore, by integrating these two types of methods, we aim to get the best of both 

worlds, generating verified solutions in natural language.  

In this work, we propose using LLMs with formal theorem proving to alleviate the problem of 

LLM hallucination in mathematical reasoning. Briefly, we translate the original natural language 

problem into structured formal language [1] to create a formal statement. This step is also referred 

to as formalization. Then an auto-theorem prover (ATP) can be used to generate and verify a formal 

proof. In order to further guide the ATP and boost its success rate, we utilize the LLM to propose 

informal solution candidates given the informal problem, i.e., guess a set of likely solutions. Then 

we translate these informal solution candidates into formal language, called formal proof templates, 

which can be used as guidance to help the ATP generate the formal proof. In this process, an 

informal solution candidate might skip some logical steps which are necessary for formal 

reasoning. Therefore, we generate the formal proof template that has the major steps of reasoning, 

but leave blank low-level proof details (e.g., premise selection, calculation, etc.), and let the ATP 

fill in the gaps to generate a full formal proof. The translations between the informal language and 

the formal language are performed by a pre-trained LLM with In-Context Learning (ICL), which 

will be elaborated on in greater detail in future sections.  

Once a formal proof is generated and verified (i.e., passes the Isabelle Checker), it is translated 

back via informalization into an informal solution in natural language. Since the solution is 

grounded on a verified proof, the effects of hallucination are greatly mitigated. The proposed 

approach is evaluated on the MATH [2] dataset, encompassing questions from multiple fields in 

mathematics. 
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This work has made the following highlights: 

- The LLM based Reasoning Grounded with Formal Verification (RGFV) framework for 

solving mathematical problems, which is an early attempt to leverage verified formal 

proofs with LLMs to generate reliable natural language solutions. 

- Using LLMs with the In-Context Learning method for translations between formal and 

informal language in both directions. 

- Comprehensive evaluations on the effectiveness of the RGFV method on public 

benchmarks. Our evaluation shows that RGFV improves the accuracy of the answers 

significantly from 46.7% to 65.8%. Moreover, it also significantly improves the quality 

and understandability of the generated solutions. 

2. Related Work 

2.1 Large Language Model Based Mathematical Reasoning 

2.1.1 Large Language Model 

Large Language Models (LLMs) have seen significant progress in natural language processing 

tasks, driven by the development of transformer-based architectures [20] such as GPT [19,25,26] 

and BERT [27]. LLMs have demonstrated impressive performance across a wide range of tasks, 

including text generation, question answering, summarization, and translation [21,22,23,24]. 

These models leverage vast amounts of data and computational power to learn context, semantics, 

logics and linguistic patterns, enabling them to generate human-like text and perform few-shot or 

zero-shot learning. Decoder-only Large Language Models (LLMs), also known as autoregressive 

models, are a subclass of transformer-based architectures that focus exclusively on the decoder 

component of the transformer framework. Unlike models that employ both encoder and decoder 

layers (e.g., BERT), decoder-only LLMs are designed to predict the next token in a sequence based 

on previously generated tokens, making them particularly effective for text generation tasks. The 

most well-known examples of decoder-only LLMs include the GPT series [25,26], with GPT-3 

[25] and GPT-4 [19] representing significant milestones in the development of autoregressive 

language models.  

2.1.2 LLM Based Mathematical Reasoning 

Informal mathematical reasoning involves solving a mathematical problem based on existing 

knowledge, using intuitive reasoning and natural language in explanations. This mirrors how 

people tackle and solve problems in everyday mathematics. For instance, to solve an arithmetic 

problem, one needs to comprehend basic concepts such as primes and might apply a series of 

reasoning and calculation steps to find an answer. Despite the ubiquity of informal mathematical 

reasoning, as the difficulty of mathematics increases, the solutions and proofs tend to be more 

intricate and complex, making verifying their correctness increasingly difficult. 20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示



6 

 

Recently, large language models have showcased their proficiency in tackling a diverse spectrum 

of mathematical problems [4,5], spanning from middle school math word problems (e.g., GSM8K 

[6]) to high school mathematical competition challenges (e.g., MATH[2]). Utilizing prompting 

techniques such as Chain-of-Thoughts [7] and Tree-of-Thoughts [8], these models can mimic 

human-like planning and reasoning, producing step-by-step solutions and answers. However, these 

solutions and answers suffer from hallucination problems, when the LLM does not certainly 

guarantee the accuracy and logical soundness of solutions. They are prone to generate solutions 

that seem correct, but upon closer inspection contain logical or computational mistakes. 

More recent work such as the self-consistency method [9] addresses this problem by using a 

majority vote on multiple solutions generated by large language models, providing a more 

trustworthy answer. Although it gives better performance compared to previous work, it is still 

often observed that the original informal solution contains unjustifiable reasoning steps 

accompanying a correct answer, or that the majority of the answers are not correct, instead another 

less-popular solution might give the correct answer. 

Different from these approaches, RGFV uses a formal theorem proving system to find the correct 

reasoning path, i.e., it augments the LLM with a verified formal proof to mitigate any hallucination 

problems, and generate reliable natural language solutions. 

2.1.3 In-Context Learning, Prompt and Demonstration 

In-context learning [11] refers to the ability of a model to perform a task based on a few examples 

or instructions provided within the input itself, without the need for additional fine-tuning or 

parameter updates. This approach is particularly notable in the context of large pre-trained 

language models, such as GPT-3 [25], where the model's vast knowledge base and contextual 

understanding allows it to adapt to new tasks dynamically without extra training.   

A prompt is textual input that guides the model's behavior by specifying the task, providing 

examples, and/or setting the context. Prompts can range from simple instructions to more complex 

structured inputs that include multiple examples or constraints.  

Demonstrations are a specific type of prompt that involve providing the model with examples of 

the task at hand, such as examples of proofs for math problems. These examples serve as a form 

of implicit supervision, allowing the model to grasp and carry out the task by observing how 

similar inputs have been processed in the prompt. 

2.2 Formal Theorem Proving 

2.2.1 Automated Theorem Proving 

Formal theorem proving (FTP) represents theorems and proofs in a machine-verifiable format, 

ensuring their correctness using rigorous logical rules and procedures, while automated theorem 

proving (ATP) aims to verify formal statements automatically without human intervention. 20
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Theorem provers, including E [29] and Vampire [30], mainly operate on first-order logic (FOL) in 

order to autonomously generate logical consequences from a set of axioms until a proof or 

refutation is derived, or computational limits are reached. Similarly, geometric ATP systems such 

as GEX [31] prove geometry problems by iteratively applying deduction rules. Despite the 

sophisticated designs of these ATP systems, the inherently required vast search space often limits 

their practicality in more complex problems. 

Automated Theorem Proving systems, like Isabelle [1], leverage sophisticated algorithms such as 

dependent-type theory and heuristics to handle complex mathematical theories and large-scale 

proofs. The integration of ATP with interactive theorem provers has further expanded its 

capabilities, allowing for collaborative human-machine theorem proving. Recent developments in 

machine learning, particularly the application of neural networks, enhance ATP systems with data-

driven approaches. AI models, like neural networks, can interact with ATP systems to prove and 

discover new theories. These innovations aim to improve the efficiency and scalability of theorem 

proving, making it more accessible and applicable to a broader range of mathematical domains. 

2.2.2 ATP with LLMs 

There are two types of tasks in the field of LLMs for ATP: (1) Auto-formalization and (2) Formal 

Theorem proving.   

Auto-formalization refers to the task where an informal statement is autonomously translated into 

a formal statement written in formal language like Isabelle [1], Lean [14] and Coq [3]. There are 

several methods available that can achieve this goal. Firstly, LLMs pre-trained on formal language 

corpus can be utilized to complete this task via In-Context Learning [11]. The effectiveness of this 

method has previously been studied [12], which demonstrates that LLM can be employed to auto-

formalizing informal proofs into formal ones like Isabelle. Secondly, a special-purpose translation 

system can be trained on datasets of formal proofs including AFP (Archive of Formal Proofs) and 

the Mathlib library built for formal theorem provers [17], so as to perform the auto-formalization 

task. However, this approach heavily relies on the availability of training data consisting of 

informal-formal statement pairs. Our approach adopts the first method of using a pre-trained LLM, 

and therefore does not require training. 

Formal Theorem Proving aims to prove a formal statement, written in formal language, that can 

be checked by the theorem prover. There are two ways to complete this goal [10, 13, 32]. (1) Proof 

Search method [32,33] is a tree search method that generates proofs that are step-by-step 

conditioned on the proof state (a set of conditions and goals to refine) given by a theorem prover, 

such as Isabelle. The proof search method proves the theorem progressively and refines the proof 

state until the “no goals” state is reached, which occurs when the proof search method successfully 

finds a formal proof. (2) In [10, 13], LLMs are utilized to perform formal theorem proving via one 

step generation. By In-Context Learning, LLM first generates an informal proof. Then, the 

informal proof is auto-formalized into a formal proof sketch. Finally, the Isabelle prover verifies 

the sketch and finishes proving if it passes the check.  20
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Rather than performing theorem proving in the formal language domain, RGFV aims to generate 

informal solutions that are grounded by LLM reasoning with formal theorem verification, i.e., 

given the complete and verified formal proof, the LLM can generate reliable natural language 

solutions. Since most of the available data in mathematic reasoning is written in natural language, 

RGFV attempts to tackle a more realistic but challenging problem than ATP.  

3. Method 

 

Figure 1: The overview of the RGFV framework. Starting from the informal problem, we first use 

the LLM with few-shot prompts to generate N informal solution candidates with potential answers. 

Then, we translate the informal problem into a formal statement via formalization, also by LLM. 

Thirdly, we prompt the LLM to generate a set of M formal proof templates given an informal 

solution candidate and the formal statement. Following, we run the Isabelle prover to fill in the 

missing low-level proof step gaps in the template and verify if the formal proof is correct or not. 

This process repeats until timeout or a formal proof is verified by the Isabelle prover. Once verified, 

we find the correct reasoning path in the formal language domain. Finally, we perform an auto-

informalization process to obtain the verified, hallucination-free informal solution. 20
24
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3.1 Statement Auto-formalization 

Given an informal mathematical problem and a potential answer, we denote the problem as a 

propositional function 𝑃𝑖(∙) , the solution as 𝑝𝑖 , the answer as a value �̂� . Then, an informal 

statement can be instantiated as 𝑃𝑖(�̂�) . For example, given the problem “if gcd(n, 4)  =

 1, lcm(n, 4)  =  28, Find the natural number 𝑛” and an answer candidate, e.g., 7, we can construct 

a proving statement “if gcd(n, 4)  =  1, lcm(n, 4)  =  28, then 𝑛 = 7”. 

In this step, the informal statement is fed into an LLM to generate a formal statement in Isabelle. 

Isabelle requires the formal statement to be assertive, such as “prove that x = 2,” yet there are many 

math questions that are not proofs, such as the algebraic equation “x+2=4” which is not a provable 

question. Therefore, to avoid this problem, the informal statement is transformed by a LLM into a 

proper, assertive formal statement, such as: “let x+2=4, prove x=2.” We give the LLM few-shot 

example in-context learning, then prompt it to create formal statements for the whole dataset.  

Formally, we sample the formal statement as follows 

𝑠𝑓 ~ 𝑝𝑓𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑟( ∙ | 𝑃𝑖(�̂�), {(𝑃𝑖,𝑗(�̂�𝑗), 𝑠𝑓,𝑗)}𝑗=1
𝐷 ) 

where  𝑠𝑓 is the formal statement, 𝑝𝐴𝑢𝑡𝑜𝑓𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑟  is the distribution of the auto-formalizer model 

in which we use a LLM (controlled by sampling method and prompt), each of (𝑃𝑖,𝑗(�̂�𝑗), 𝑠𝑓,𝑗) is a 

demonstration. A demonstration contains a pair consisting of an informal statement and a formal 

statement example. 𝐷 is the number of demonstrations, which is usually a number in the range 

from 20 to 50. In few-shot in-context learning, a prompt is fed as the input to the LLM, instructing 

the LLM to receive these D demonstrations as few-shot examples, and generate  𝑠𝑓   for 𝑃𝑖(�̂�) 

through sampling. 

3.2 Generating Natural Language Solution Candidates 

In this process, LLM generates a set of informal proof candidates for the original problem posed 

in natural language. We use the DeepSeek-coder-v2 [5] LLM for this task, for its low expense and 

high capability as a domestic, readily available LLM in China. Our framework is agnostic to the 

specific LLM choice. It receives the few-shot examples, then is prompted to generate a set of N 

solutions for a subsequent problem via in-context learning. These solution candidates are not 

guaranteed to be accurate and may contain logical fallacies or discontinuities, i.e., hallucinations. 

However, they can be viewed as good guesses of likely proofs, and can be used to guide the ATP. 

3.3 Formal Proof Candidate Generation & Verification 

We leverage Isabelle to verify proofs for the formal statement. Isabelle [1] is one of the mainstream 

formal theorem provers, along with Lean [14] and Coq [3], which have the ability to verify a proof 

in formal language. We selected Isabelle for its powerful tools, such as Sledgehammer, which can 20
24
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help to fill in low-level proving gaps in proof generation and verification. The DeepSeek-coder-

v2 LLM creates templates of Isabelle proofs according to the statement and prior informal solution 

candidates, prompted with few-shot examples. These templates do not contain the theorems 

utilized in the proofs;  those are instead filled in by the Sledgehammer tool in Isabelle. These 

complete proofs are then checked by Isabelle to find a proof that has correct logical reasoning and 

a correct answer. 

Given informal statement 𝑃𝑖(�̂�) , the corresponding informal solution 𝑝𝑖  and formal statement 

𝑠𝑓, we sample the formal proof 𝑝𝑓 as follows 

𝑝𝑓 ~ 𝑝𝐹𝑜𝑟𝑚𝑎𝑙𝑃𝑟𝑜𝑣𝑒𝑟( ∙ | 𝑃𝑖(�̂�), 𝑝𝑖 , 𝑠𝑓 , {(𝑃𝑖,𝑗(�̂�𝑗), 𝑝𝑖,𝑗 , 𝑠𝑓,𝑗)}𝑗=1
𝐷 ) 

where 𝑝𝐹𝑜𝑟𝑚𝑎𝑙𝑃𝑟𝑜𝑣𝑒𝑟  is the distribution of the Formal Proof generation model, which we use the 

DeepSeek-coder-v2 [5] LLM with in-context learning. These D triples, (𝑃𝑖,𝑗(�̂�𝑗), 𝑝𝑖,𝑗 , 𝑠𝑓,𝑗) , are the 

few-shot examples for in-context learning.  

3.4 Solution Auto-Informalization 

If a complete formal proof is verified to be logically correct by Isabelle, it is translated back into 

natural language by the LLM to give the more reliable informal solution, i.e., informalization. The 

LLM is prompting with few-shot examples to perform informalization. This auto-informalized 

solution is more reliable than the informal solution that is generated only conditioning on the 

original informal problem. 

Given informal statement 𝑃𝑖(�̂�), the corresponding informal solution 𝑝𝑖 and formal statement 𝑠𝑓 

and verified complete formal proof 𝑝𝑓, we reconstruct a formal-proof-grounded informal solution 

 as follows 

𝑝�̃� ~ 𝑝𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑟( ∙ | 𝑃𝑖(�̂�), 𝑝𝑖 , 𝑠𝑓 , 𝑝𝑓, {(𝑃𝑖,𝑗(�̂�𝑗), 𝑝𝑖,𝑗 , 𝑠𝑓,𝑗 , 𝑝𝑓,𝑗)}𝑗=1
𝐷 ) 

where 𝑝𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑟  is the distribution of the informal solution generation model, which we use 

the DeepSeek-coder-v2 [5] LLM with in-context-learning, too. 

 

4. Experiment and Results 

4.1 Experiment Setup 

Evaluation Dataset. We evaluate our method on a constructed subset of the MATH dataset [2], 

which is a prevalent high-school level mathematical problem-solving benchmark. It comprises 

12,500 challenging problems (5,000 for test) sourced from high school mathematics competitions, 

including the AMC 10, AMC 12, and AIME. These problems are categorized into different subjects 20
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with difficulty levels ranging from 1 to 5. In order to study the effect of using formal proving in 

our method, we further select problems which have corresponding formal statements in the 

miniF2F[15] dataset. The MiniF2F dataset is a benchmark in formal theorem proving, where some 

of the problems originate from the MATH dataset, which has been formalized by experts in the 

formal theorem proving field.  

 

 

(a) a Number Theory problem 

 

(b) an Algebra problem 

Figure 2. Examples of informal problem and the formal statement of problems in the Number 

Theory and Algebra subjects, respectively.  

 

To avoid any too-heavy computation requirements of the LLM, we perform evaluation on a subset 

of the original datasets. Specifically, we randomly sampled 60 Algebra problems and 60 Number 

Theory problems from the intersection of MATH and miniF2F, leading to a total of 120 problems 

in our evaluation set. The distribution of difficulty levels of the constructed test set is akin to the 

original MATH dataset, while the number of all levels of problems are almost at the same size. 

Note that since our method only relies on a pre-trained LLM with in-context learning, no training 

data is needed except some few-shot examples as demonstrations. We construct the demonstration 

examples from data sampled outside our evaluation dataset. Figure 2 above presents several 

examples of informal problem and the formal statement in our evaluation dataset.Model. We use 

the deepseek-coder LLM [5] in the experiments. The model has 236 billion parameters. Although 

deepseek-coder is assumed to be a specialized AI model designed to assist developers and 20
24
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programmers in writing, optimizing, and debugging code, its training data contains many examples 

of mathematics, too, and shows proficiency in solving math problems according to its technical 

report [5]. 

Few-shot Prompting Examples. We construct 36 demonstrations from MATH train split. Each 

demonstration consists of an informal problem, informal solution, formal statement and formal 

proof. We use all the demonstrations in the pipeline of RGFV including (1) Informal Solution 

Generation, (2) Statement Formalization, (3) Formal Theorem Proving, and the necessary fields 

are used in each step.  More details of demonstrations can be found in the appendix. 

Informal Solution Generation. We few-shot prompt the deepseek-coder LLM to generate 𝑁 =

10  informal solutions per problem conditioned on the informal problem statement and 

demonstrations of (informal problem, informal solution) pairs to leverage the in-context learning 

ability of LLM to generate the informal solution. We use the default sampling parameters in 

OpenAI API [28] where 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 0.7  and nucleus sampling with 𝑡𝑜𝑝_𝑝 = 1.0 . The 

prompt can be found in the appendix. 

Statement Formalization.  We use the above 36 examples with (informal problem, informal 

solution, formal statement) tuples for few-shot demonstrations. Because Isabelle theorem prover 

is only capable of proving, not solving, the answer in the informal solution must combine with the 

informal problem to construct an informal statement for statement formalization. We perform 

single statement formalization concerning each informal solution generated in the informal 

solution generation stage and in total 𝑁 = 10 formal statements are generated per problem. The 

default sampling parameters in OpenAI API [28] where 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 0.7  and nucleus 

sampling with 𝑡𝑜𝑝_𝑝 = 1.0 is adopted and the prompt can be found in the appendix. 

Formal Proof Generation & Verification.  We use the above 36 examples with (formal statement, 

formal proof) pairs for few-shot demonstrations to perform formal proof template generation. To 

save computation resources, we query the language model once ( 𝑀 = 1 ) for formal proof 

generation for each formal statement sample so that each informal problem is in total formalized 

𝑁 ×  𝑀 = 10 ×  1 times, generating 10 formal proof templates.  We then use Isabelle to verify 

the potential formal theorem (the formal statement together with the formal proof template). Since 

the template might contain low-level proving gaps, we prompt the deepseek-coder LLM to use 

sledgehammer [34] along with 11 common tactics (auto, simp, blast, fastforce, force, eval, 

presburger, sos, arith, linarith, and auto simp: field simps) to close low-level open conjectures to 

generate a complete formal proof. Then, the Isabelle theorem prover is called to verify the 

correctness of the proof.  

Proof Auto-Informalization. Once the formal proof passes the verification of the Isabelle theorem 

prover, the original informal problem is viewed as being formally solved. The verified formal proof 

will be utilized to perform informalization, also via the deepseek-coder LLM with in-context 

learning, to generate a final informal solution with correct reasoning steps, and therefore resolving 20
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the issue of hallucination in the solution. The default sampling parameters are used as mentioned 

above, and the prompt can be found in the appendix. 

 

4.2 Baseline and Evaluation Metrics 

Our task includes several steps: (1) generating informal solution candidates and potential answers 

for a given problem, (2) constructing a formal statement based on the informal problem and a 

potential answer, (3) generating formal proof templates based on the informal solution candidates, 

(4) generating and verifying formal proofs using Isabelle and sledgehammer tools, (5) composing 

the verified formal proof and generating a grounded informal solution. Therefore, for a 

comprehensive evaluation, we evaluate from three perspectives. 

Accuracy. To evaluate the effectiveness of RGFV, we measure its accuracy. In this evaluation, we 

define "accuracy" as the ratio of correctly-answered problems among all the problems. Note that, 

if ATP cannot find a correct proof, we will fall back to the most likely solution and answer 

generated by the LLM without using formal proof. As shown in Figure 1, the formalization and 

proving process will repeat k times, referred to as k trials. We use Acc@k to denote the accumulated 

accuracy in k trials. The reason to try multiple trials is that the sampling process of the LLM gives 

diverse outputs that are different each time, like a guessing machine. Therefore, iterating k trails 

increases the coverage, increasing the chance of finding a correct proof. 

Solution Quality. The goal of this project is to improve the quality of informal solutions for 

mathematical problems. For a fair and objective evaluation, we leverage a supermodel GPT-4 [19] 

to score the quality of solutions. Specifically, for each pair of solutions (e.g., one from baseline 

method, and one from RGFV), we use 2-shot prompting to score the two solutions by {-1, 0, 1}. 

We ask GPT-4 to compare the quality of the two solutions from four perspectives: Correctness, 

Clarity, Readability and Rigor, and give a relative score comparing RGFV with the baseline. To 

avoid the LLM's bias on the order of solutions presented, we randomly permute the two solutions 

and repeat the scoring eight times. The final score is an average of these eight trials.  

Verification Pass Rate. To analysis the robustness of formal verification, we also report pass rate, 

which is the ratio of formally-verified problems among all the problems. We use Pass@k to denote 

the accumulated pass rate in k trials. 

We use the (1) single-best solution method and (2) self-consistency method proposed in [9] 

recently as our baseline. Both baselines exploit a LLM with in-context learning to generate 

informal solutions and answers given the original problem without using formal proofs. The former 

uses the LLM to output the most likely solution, while the latter will perform a majority-vote to 

determine the final answer so as to enhance the self-consistency. We compare accuracy on answers 

with the above methods. As the ability of LLM’s auto-formalization has its limitations, and not all 

the formal proof will pass the checking in theorem prover, we will also report the pass rate 

concerning the auto-formalization process. 
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4.3 Main Experiment Results  

The main results are shown in table 1 below. We compare our method with the (1) single-decoding 

solution method and (2) self-consistency method [9]. Concerning the effect of verifier-grounded 

proofs on the final accuracy on the problem, we report the Accuracy on answer of our proposed 

method. The higher accuracy on answer shows the effect of verifier-grounded proofs helping the 

LLM generate a more reliable answer. 

Method Accuracy 

(Overall) 

Accuracy 

(Algebra) 

Accuracy (Number 

Theory) 

single-decoding method [9] 38.3% 58.3% 18.3% 

self-consistency method [9] 46.7% 66.7% 26.7% 

RGFV 65.8% 96.7% 35.0% 

Table 1. Accuracy of RGFV compared with single-decoding and self-consistency method, with 

number of trails k set to 10. 

Results in Table 1 show that, compared to the stronger baseline of self-consistency method [9], the 

RGFV boost the overall accuracy from 46.7% to 65.8%, a 19.1% absolute improvement, 

demonstrating the effectiveness of grounding the reasoning on formal verification. We also 

observed that the accuracy on the subject of Number Theory is relatively lower than Algebra, likely 

due to the fact that Number Theory problems oftenrequire more steps of reasoning, which 

highlights both the importance and challenge for AI to perform reasoning tasks. However, the 

improvement is still very significant for Number Theory problems, improving from 26.7% to 

35.0%, a 31.1% improvement relatively. 

Additionally, we evaluated the quality of the informal solution generated by the auto-

informalization process. We adopt GPT-4 [19] as the super model to conduct the evaluation. 

Comparing RGFV with the self-consistency method [9], we measure the relative quality of the 

solutions generated by these two approaches from 4 perspectives: Correctness, Clarity, Readability, 

Rigor. The relative score is ranged from -1 to 1.  

 

 

 

perspective Correctness Clarity Readability Rigor 

RGFV vs. self-

consistency  

+0.2769 +0.6789 +0.4132 +0.7801 

Table 2. GPT4 super model evaluation scores on Correctness, Clarity, Readability and Rigor. 

Results in Table 2 show that RGFV outperforms the baseline in all four aspects, especially in the 

category of Rigor, showing that our method gives significant advantages. Overall, RGFV 20
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outperforms the baseline by a large margin of 0.5373, which is very significant. We present typical 

examples in section 4.5. 

4.4 Ablation Study 

In this section, we first evaluate the ability of the LLM to do statement formalization, i.e., its ability 

of translation between informal and formal language. We provide the ground truth (GT) formal 

statement in the pipeline to replace the LLM-generated formal statement. Since this concerns the 

formal proving step, we measure the formal proof pass rate. 

Method Pass Rate 

(Oveall) 

Pass Rate 

(Algebra) 

Pass Rate (Number 

theory) 

RGFV (w/ GT formal statement) 65.0% 93.3% 36.7% 

RGFV (w/ LLM-generated 

formal statement) 

63.3% 91.7% 35.0% 

Table 3. The pass rate of RGFV (with/without ground truth formal statement) on sub-category on 

Algebra and Number Theory.  

The result shows that (1) even with GT formal statement, the pass rate is still far from perfect, 

especially on  the Number Theory subject. This indicates that the bottleneck relates more to the 

formal theorem proving process. This observation is consistent with the recent progress in Formal 

Theorem Proving [13], that the PassRate@100 on miniF2f is around 50%. (2) the gap between 

using GT formal statement vs. LLM-generated formal statement is quite small, in the range of only 

1-2%. This shows that LLM performs reasonably well on the task of translation between informal 

and formal languages. (3) the pass rate on Algebra is much higher than the pass rate on Number 

Theory, showing RGFV is more capable of solving Algebra problem than Number Theory, 

partially because Algebra problem focuses more on computation, which is relatively easier, while 

Number Theory problems need more steps and reasoning. 

Compared to the results in table 1, we also observed that the accuracy of RGFV is slightly higher 

than its pass rate, indicating that there are a few cases where no correct formal proof can be found, 

but the answer is still correct. Note that if ATP cannot find a correct proof, we will back off to the 

answer generated by the LLM only. This indicates there are cases where although RGFV cannot 

find any verified proof, the LLM still makes a good guess on the answer.  

Insight into the iteration k with pass rate: 

Figure 3 below shows that pass rate monotonically increases with respect to the iteration k, and 

starts becoming saturated after k=8. We use the default sampling parameters with 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 =

0.7 and nucleus sampling with 𝑡𝑜𝑝_𝑝 = 1.0. This validates the saying held by Terence Tao that 

LLM is a good guessing machine [18], and we let the LLM to guess multiple times so to increase 

the chance for the ATP to find a valid proof. More iterations could improve the pass rate but will 

cause a large cost to invocations of deepseek-coder API. Therefore, we will report pass@10. 20
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Figure 3: The accumulative pass rate up to 10 iterations, using the default value of temperature=0.7. 

The effect of temperature for the LLM to generate formal proof: 

Temperature is indeed an important hyperparameter in the context of LLMs when sampling the 

output. It controls the randomness and diversity of the model's output. At low temperature, the 

model tends to produce more deterministic and consistent outputs, while at high temperature, the 

model becomes more exploratory and produces more diverse and random outputs. The model 

outputs logits 𝑧𝑖 for each token in the vocabulary, and the Softmax function converts these logits 

into probabilities 𝑝𝑖. The softmax function is given by:  

𝑝𝑖 =
exp (𝑧𝑖/𝑡)

∑ exp(𝑧𝑗/𝑡)𝑗
, 

When the temperature 𝑡 approaches 0, The system becomes fully deterministic, choosing the token 

with the highest probability. As 𝑡 approaches infinity, the probability distribution becomes uniform, 

meaning all tokens have an equal chance of being sampled. 

We study the effect of temperature on the pass rate with 10 iterations, Figure 4 shows how different 

temperature affect the final pass rate@10. 
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Figure 4: Accumulative pass rate curves with different temperature parameters. 

Compared to the default sampling parameters in OpenAI API [28] where 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 0.7, a 

higher temperature (temperature=1.25 or 1.5) yields even better performances, boosting the pass 

rate up to 75%. High temperatures enable the large language model to generate more diverse 

solutions, so as to increase the likelihood of having ones that lead to correct formal statements and 

proofs that meet the verifier's check. This underscores the importance of exploiting LLM as a 

guessing machine to solve challenging mathematical problems. 

4.5 Case Study 

RGFV can alleviate hallucination through formal verification. We show three cases below to 

illustrate that, while LLM-generated informal solutions have some hallucination in their proving 

steps such as computational errors, illogical reasoning steps, etc., our RGFV method can generate 

a good informal solution grounded with formal verification to eliminate these hallucination errors. 
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 (a) LLM hallucination leading to incorrect computational steps in an algebra problem. 
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 (b) Hallucination where the LLM will generate illogical reasoning steps and computational 

errors. 
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 (c) LLM-generated informal solution with a factual error in its reasoning. 

Figure 5: Examples that show that, while LLM generated informal solutions have some 

hallucinations in the proving steps, the RGFV method can generate a good informal solution 

grounded with formal verification to eliminate these hallucination errors. 

Figure 5 (a) is the case when a computation error occurs in the proving step where calculating 

300−26√131

16
=  

75−13√131

4
 . It’s wrong when reducing the equation to a simpler form, as 

26

16
≠

13

4
 , 

leading to a final wrong answer. 

Figure 5 (b) shows that the LLM makes a guess on A, B and C, and deceives itself through a 

computational error where 123133212 mod 11 is not -1. In contrast, our RGFV method performs 

step-by-step reasoning that was verified by Isabelle checker, which shows the proficiency of our 

method. 

Figure 5 (c) showcases that the LLM will generate solutions with factual errors, such as saying 

that the integers between 15 and 85 that can be divided by 20 are 20, 40, and 60, which is wrong. 

In our RGFV method, the informal solution generated by auto-informalization has been verified 

by the Isabelle prover that the integers divisible by 20 between 15 and 85 are actually 20, 40, 60 

and 80. The shows that RGFV can utilize Isabelle theorem prover to ground the reasoning steps. 20
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5. Conclusion and Future Work 

In this paper, we present a novel LLM mathematical reasoning method Reasoning Grounded with 

Formal Verification (RGFV) for solving mathematical problems to incorporate verified formal 

proofs with LLMs to generate reliable natural language solutions. Our experiment shows the 

proficiency of RGFV in  solving mathematical problems without hallucination, compared with the 

self-consistency reasoning method. The case study illustrates that RGFV can largely alleviate 

hallucination in mathematical reasoning to mitigate computational errors, illogical reasonings and 

factual errors. However, our method still has limitations, as we did not conduct thorough 

experiments on more iterations on RGFV method to improve the accuracy and pass rate. Recently, 

some researchers have studied the automatic research ability of LLMs [35] and found that LLMs 

generate ideas that are more novel than those given by expert human researchers. This inspires the 

future direction of extending our RGFV method to  discover more formal theorems, and also 

generate informal problems to help teachers produce exam papers with verifiable informal 

solutions. 

Just before this report was finished, on September 12, 2024, OpenAI introduced their latest large 

model o1, which demonstrates strong reasoning ability far beyond all its predecessors, marking a 

new milestone for LLMs. On the other hand, as it is a statistical model, Terence Tao’s view still 

holds that a LLM is more a guessing machine. Rather than providing the rigorous solution to a 

problem, it is more about helping the mathematician in solving problems. The RGFV method 

proposed in this paper is agnostic to the choice of the LLM. Therefore, it will benefit from o1, too. 

Looking forward, augmenting LLMs with formal proving and verification to generate rigorous 

solutions is an exciting open research problem, and will lead to new breakthroughs in both AI and 

mathematics. 
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Appendix 

Few-shot demonstrations 

Below are some demonstrations constructed for few-shot prompting in RGFV pipeline. 

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示



26 

 

 

 

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示



27 

 

 

 

 

 

 20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示



28 

 

Prompt for RGFV pipeline 

Informal Solution Generation.  Below is the prompt for informal solution generation.  

Given a math problem, solve it step by step.  

Here are some examples: 

{demonstrations} 

 

Statement Formalization. Below is the prompt for statement formalization. 

Given an informal math problem, its solution and answer, please combine the problem with answer 

and translate the it into a Formal Isabelle theorem. 

Here are some examples: 

{demonstrations} 

 

Formal Proof Generation. Below is the prompt for formal proof generation. 

Given an Isabelle theorem, the original informal problem and solution, please give a formal 

Isabelle proof and you can refer to the origin informal problem and solution to better write the 

proof. 

Add `sledgehammer` in the sketch whenever possible if you don't know which tactics to use to 

refine the proof goal. `sledgehammer` will be used to call the automated Sledgehammer to help 

you to prove.  

Here are some examples: 

{ demonstrations} 

 

Proof Auto-Informalization. Below is the prompt for proof auto-informalization. 

Given an informal math problem and its informal solution, a formal statement  and its formal proof, 

please rewrite the informal solution based on the formal theorem and proof to correct the mistakes 

in the origin informal solution.. 
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