
1

参赛学生姓名：_ALLEN HE ______________

中学：_华润小径湾贝塞斯国际学校 (BIPH)_

省份：___________广东_________________

国家/地区：______中国_________________

指导老师姓名：_Cody Kennedy, 严骏驰___

指导老师单位：_BIPH，上海交通大学_____

论文题目：__LLM Mathematical Reasoning

Grounded with Formal Verification______

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

2

LLM Mathematical Reasoning Grounded with Formal

Verification

Allen He

Abstract

As Artificial Intelligence (AI) systems improve in processing power and reasoning ability, it can

become helpful to users in fields such as mathematics. For example, in a recent event, Fields

Medalist Terence Tao explained that proof checkers and AI programs are dramatically changing

mathematics. He said, “in three years AI will become useful for mathematicians. It will be a great

co-pilot.” An AI system, such as a large language model (LLM), can be a great tool for assisting

the user in solving mathematical problems, as it can create preliminary ideas and even (partial or

intermediate) solutions for complex problems and explain them in understandable natural language

(referred to as informal solution hereafter). However, when utilizing LLM techniques to solve such

mathematical problems, it is common for an LLM generated solution to have illogical proof steps,

such as using incorrect premises, skipping steps in the reasoning, or containing calculation errors,

making answers both prone to mistakes and unjustified, namely hallucination. It echoes the

opinion held by Terence Tao, that an LLM is more like a guessing machine in mathematics which

inspires the mathematician in solving problems, rather than providing the solution directly [18].

On the other hand, Formal Theorem Proving (FTP), which is commonly used among

mathematicians and computer scientists, serves as a tool for strictly checking the correctness of

proofs (referred to as formal solution hereafter). Therefore, it is desirable to make the LLM

generate solutions grounded on proofs verified by FTP, so as to mitigate LLM hallucination

problems. In this work, we propose the method of augmenting an LLM with FTP to solve

mathematical quantitative reasoning problems, namely, Reasoning Grounded with Formal

Verification (RGFV). Compared to previous LLM-based approaches, RGFV takes a detour by

formal proof, utilizing auto-formalization and formal theorem proving. It augments the LLM with

a constructed formal statement and verified formal proof to generate informal solutions. Our

experiments and ablation studies on a collection of mathematical competition problems show that,

compared to previous work, RGFV improves the accuracy of the answers significantly from 46.7%

to 65.8% overall, and even more significantly on the subcategory of algebra, from 66.7% to 96.7%.

Moreover, it significantly improves the quality of the generated solutions. The method also helps

AI be more reliable and useful for students studying mathematics.

Keywords: Large language model; mathematical proving; artificial intelligence;

 20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

3

Contents
Abstract ...2

1. Introduction ...4

2. Related Work ...5

2.1 Large Language Model Based Mathematical Reasoning ...5

2.1.1 Large Language Model ...5

2.1.2 LLM Based Mathematical Reasoning ..5

2.1.3 In-Context Learning, Prompt and Demonstration ..6

2.2 Formal Theorem Proving ..6

2.2.1 Automated Theorem Proving ...6

2.2.2 ATP with LLMs ...7

3. Method ...8

3.1 Statement Auto-formalization ...9

3.2 Generating Natural Language Solution Candidates ..9

3.3 Formal Proof Candidate Generation & Verification ..9

3.4 Solution Auto-Informalization ..10

4. Experiment and Results ..10

4.1 Experiment Setup ..10

4.2 Baseline and Evaluation Metrics...13

4.3 Main Experiment Results ..14

4.4 Ablation Study ...15

4.5 Case Study ...17

5. Conclusion and Future Work..21

6. Acknowledgements ..21

References: ..23

Appendix ...25

Few-shot demonstrations ..25

Prompt for RGFV pipeline ...28

 20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

4

1. Introduction

LLMs have recently been used for generating informal solutions for mathematical problems, and

some have achieved a level of proficiency already. For example, OpenAI’s GPT-4 achieved the

89th percentile in the SAT math portion [19]. However, there is one major flaw in the informal

solutions generated by LLMs: hallucination. LLMs will often generate outputs that deviate from

factual error or coherence, which is detrimental to the solution, leading to incorrect answers or

inconsistencies between answer and proof.

In mathematical proving, there are generally two types of solutions: natural language solutions and

formal language solutions. The former is often referred to as an informal solution, and the latter is

accordingly referred to as a formal solution. Informal solutions involve establishing the truth of

mathematical statements building on existing knowledge via intuitive reasoning and natural

language explanations, and formal solutions require presenting theorems and proofs in a machine-

verifiable format, ensuring their correctness using rigorous logical rules. While informal solutions

are easy for humans to understand, they are hard to verify formally (i.e., mathematically). Formal

solutions, contrarily, are simple and easy for computers to verify, but hard for humans to

understand. Therefore, by integrating these two types of methods, we aim to get the best of both

worlds, generating verified solutions in natural language.

In this work, we propose using LLMs with formal theorem proving to alleviate the problem of

LLM hallucination in mathematical reasoning. Briefly, we translate the original natural language

problem into structured formal language [1] to create a formal statement. This step is also referred

to as formalization. Then an auto-theorem prover (ATP) can be used to generate and verify a formal

proof. In order to further guide the ATP and boost its success rate, we utilize the LLM to propose

informal solution candidates given the informal problem, i.e., guess a set of likely solutions. Then

we translate these informal solution candidates into formal language, called formal proof templates,

which can be used as guidance to help the ATP generate the formal proof. In this process, an

informal solution candidate might skip some logical steps which are necessary for formal

reasoning. Therefore, we generate the formal proof template that has the major steps of reasoning,

but leave blank low-level proof details (e.g., premise selection, calculation, etc.), and let the ATP

fill in the gaps to generate a full formal proof. The translations between the informal language and

the formal language are performed by a pre-trained LLM with In-Context Learning (ICL), which

will be elaborated on in greater detail in future sections.

Once a formal proof is generated and verified (i.e., passes the Isabelle Checker), it is translated

back via informalization into an informal solution in natural language. Since the solution is

grounded on a verified proof, the effects of hallucination are greatly mitigated. The proposed

approach is evaluated on the MATH [2] dataset, encompassing questions from multiple fields in

mathematics.

 20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

5

This work has made the following highlights:

- The LLM based Reasoning Grounded with Formal Verification (RGFV) framework for

solving mathematical problems, which is an early attempt to leverage verified formal

proofs with LLMs to generate reliable natural language solutions.

- Using LLMs with the In-Context Learning method for translations between formal and

informal language in both directions.

- Comprehensive evaluations on the effectiveness of the RGFV method on public

benchmarks. Our evaluation shows that RGFV improves the accuracy of the answers

significantly from 46.7% to 65.8%. Moreover, it also significantly improves the quality

and understandability of the generated solutions.

2. Related Work

2.1 Large Language Model Based Mathematical Reasoning

2.1.1 Large Language Model

Large Language Models (LLMs) have seen significant progress in natural language processing

tasks, driven by the development of transformer-based architectures [20] such as GPT [19,25,26]

and BERT [27]. LLMs have demonstrated impressive performance across a wide range of tasks,

including text generation, question answering, summarization, and translation [21,22,23,24].

These models leverage vast amounts of data and computational power to learn context, semantics,

logics and linguistic patterns, enabling them to generate human-like text and perform few-shot or

zero-shot learning. Decoder-only Large Language Models (LLMs), also known as autoregressive

models, are a subclass of transformer-based architectures that focus exclusively on the decoder

component of the transformer framework. Unlike models that employ both encoder and decoder

layers (e.g., BERT), decoder-only LLMs are designed to predict the next token in a sequence based

on previously generated tokens, making them particularly effective for text generation tasks. The

most well-known examples of decoder-only LLMs include the GPT series [25,26], with GPT-3

[25] and GPT-4 [19] representing significant milestones in the development of autoregressive

language models.

2.1.2 LLM Based Mathematical Reasoning

Informal mathematical reasoning involves solving a mathematical problem based on existing

knowledge, using intuitive reasoning and natural language in explanations. This mirrors how

people tackle and solve problems in everyday mathematics. For instance, to solve an arithmetic

problem, one needs to comprehend basic concepts such as primes and might apply a series of

reasoning and calculation steps to find an answer. Despite the ubiquity of informal mathematical

reasoning, as the difficulty of mathematics increases, the solutions and proofs tend to be more

intricate and complex, making verifying their correctness increasingly difficult. 20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

6

Recently, large language models have showcased their proficiency in tackling a diverse spectrum

of mathematical problems [4,5], spanning from middle school math word problems (e.g., GSM8K

[6]) to high school mathematical competition challenges (e.g., MATH[2]). Utilizing prompting

techniques such as Chain-of-Thoughts [7] and Tree-of-Thoughts [8], these models can mimic

human-like planning and reasoning, producing step-by-step solutions and answers. However, these

solutions and answers suffer from hallucination problems, when the LLM does not certainly

guarantee the accuracy and logical soundness of solutions. They are prone to generate solutions

that seem correct, but upon closer inspection contain logical or computational mistakes.

More recent work such as the self-consistency method [9] addresses this problem by using a

majority vote on multiple solutions generated by large language models, providing a more

trustworthy answer. Although it gives better performance compared to previous work, it is still

often observed that the original informal solution contains unjustifiable reasoning steps

accompanying a correct answer, or that the majority of the answers are not correct, instead another

less-popular solution might give the correct answer.

Different from these approaches, RGFV uses a formal theorem proving system to find the correct

reasoning path, i.e., it augments the LLM with a verified formal proof to mitigate any hallucination

problems, and generate reliable natural language solutions.

2.1.3 In-Context Learning, Prompt and Demonstration

In-context learning [11] refers to the ability of a model to perform a task based on a few examples

or instructions provided within the input itself, without the need for additional fine-tuning or

parameter updates. This approach is particularly notable in the context of large pre-trained

language models, such as GPT-3 [25], where the model's vast knowledge base and contextual

understanding allows it to adapt to new tasks dynamically without extra training.

A prompt is textual input that guides the model's behavior by specifying the task, providing

examples, and/or setting the context. Prompts can range from simple instructions to more complex

structured inputs that include multiple examples or constraints.

Demonstrations are a specific type of prompt that involve providing the model with examples of

the task at hand, such as examples of proofs for math problems. These examples serve as a form

of implicit supervision, allowing the model to grasp and carry out the task by observing how

similar inputs have been processed in the prompt.

2.2 Formal Theorem Proving

2.2.1 Automated Theorem Proving

Formal theorem proving (FTP) represents theorems and proofs in a machine-verifiable format,

ensuring their correctness using rigorous logical rules and procedures, while automated theorem

proving (ATP) aims to verify formal statements automatically without human intervention. 20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

7

Theorem provers, including E [29] and Vampire [30], mainly operate on first-order logic (FOL) in

order to autonomously generate logical consequences from a set of axioms until a proof or

refutation is derived, or computational limits are reached. Similarly, geometric ATP systems such

as GEX [31] prove geometry problems by iteratively applying deduction rules. Despite the

sophisticated designs of these ATP systems, the inherently required vast search space often limits

their practicality in more complex problems.

Automated Theorem Proving systems, like Isabelle [1], leverage sophisticated algorithms such as

dependent-type theory and heuristics to handle complex mathematical theories and large-scale

proofs. The integration of ATP with interactive theorem provers has further expanded its

capabilities, allowing for collaborative human-machine theorem proving. Recent developments in

machine learning, particularly the application of neural networks, enhance ATP systems with data-

driven approaches. AI models, like neural networks, can interact with ATP systems to prove and

discover new theories. These innovations aim to improve the efficiency and scalability of theorem

proving, making it more accessible and applicable to a broader range of mathematical domains.

2.2.2 ATP with LLMs

There are two types of tasks in the field of LLMs for ATP: (1) Auto-formalization and (2) Formal

Theorem proving.

Auto-formalization refers to the task where an informal statement is autonomously translated into

a formal statement written in formal language like Isabelle [1], Lean [14] and Coq [3]. There are

several methods available that can achieve this goal. Firstly, LLMs pre-trained on formal language

corpus can be utilized to complete this task via In-Context Learning [11]. The effectiveness of this

method has previously been studied [12], which demonstrates that LLM can be employed to auto-

formalizing informal proofs into formal ones like Isabelle. Secondly, a special-purpose translation

system can be trained on datasets of formal proofs including AFP (Archive of Formal Proofs) and

the Mathlib library built for formal theorem provers [17], so as to perform the auto-formalization

task. However, this approach heavily relies on the availability of training data consisting of

informal-formal statement pairs. Our approach adopts the first method of using a pre-trained LLM,

and therefore does not require training.

Formal Theorem Proving aims to prove a formal statement, written in formal language, that can

be checked by the theorem prover. There are two ways to complete this goal [10, 13, 32]. (1) Proof

Search method [32,33] is a tree search method that generates proofs that are step-by-step

conditioned on the proof state (a set of conditions and goals to refine) given by a theorem prover,

such as Isabelle. The proof search method proves the theorem progressively and refines the proof

state until the “no goals” state is reached, which occurs when the proof search method successfully

finds a formal proof. (2) In [10, 13], LLMs are utilized to perform formal theorem proving via one

step generation. By In-Context Learning, LLM first generates an informal proof. Then, the

informal proof is auto-formalized into a formal proof sketch. Finally, the Isabelle prover verifies

the sketch and finishes proving if it passes the check. 20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

8

Rather than performing theorem proving in the formal language domain, RGFV aims to generate

informal solutions that are grounded by LLM reasoning with formal theorem verification, i.e.,

given the complete and verified formal proof, the LLM can generate reliable natural language

solutions. Since most of the available data in mathematic reasoning is written in natural language,

RGFV attempts to tackle a more realistic but challenging problem than ATP.

3. Method

Figure 1: The overview of the RGFV framework. Starting from the informal problem, we first use

the LLM with few-shot prompts to generate N informal solution candidates with potential answers.

Then, we translate the informal problem into a formal statement via formalization, also by LLM.

Thirdly, we prompt the LLM to generate a set of M formal proof templates given an informal

solution candidate and the formal statement. Following, we run the Isabelle prover to fill in the

missing low-level proof step gaps in the template and verify if the formal proof is correct or not.

This process repeats until timeout or a formal proof is verified by the Isabelle prover. Once verified,

we find the correct reasoning path in the formal language domain. Finally, we perform an auto-

informalization process to obtain the verified, hallucination-free informal solution. 20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

9

3.1 Statement Auto-formalization

Given an informal mathematical problem and a potential answer, we denote the problem as a

propositional function 𝑃𝑖(∙) , the solution as 𝑝𝑖 , the answer as a value �̂� . Then, an informal

statement can be instantiated as 𝑃𝑖(�̂�) . For example, given the problem “if gcd(n, 4) =

 1, lcm(n, 4) = 28, Find the natural number 𝑛” and an answer candidate, e.g., 7, we can construct

a proving statement “if gcd(n, 4) = 1, lcm(n, 4) = 28, then 𝑛 = 7”.

In this step, the informal statement is fed into an LLM to generate a formal statement in Isabelle.

Isabelle requires the formal statement to be assertive, such as “prove that x = 2,” yet there are many

math questions that are not proofs, such as the algebraic equation “x+2=4” which is not a provable

question. Therefore, to avoid this problem, the informal statement is transformed by a LLM into a

proper, assertive formal statement, such as: “let x+2=4, prove x=2.” We give the LLM few-shot

example in-context learning, then prompt it to create formal statements for the whole dataset.

Formally, we sample the formal statement as follows

𝑠𝑓 ~ 𝑝𝑓𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑟(∙ | 𝑃𝑖(�̂�), {(𝑃𝑖,𝑗(�̂�𝑗), 𝑠𝑓,𝑗)}𝑗=1
𝐷)

where 𝑠𝑓 is the formal statement, 𝑝𝐴𝑢𝑡𝑜𝑓𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑟 is the distribution of the auto-formalizer model

in which we use a LLM (controlled by sampling method and prompt), each of (𝑃𝑖,𝑗(�̂�𝑗), 𝑠𝑓,𝑗) is a

demonstration. A demonstration contains a pair consisting of an informal statement and a formal

statement example. 𝐷 is the number of demonstrations, which is usually a number in the range

from 20 to 50. In few-shot in-context learning, a prompt is fed as the input to the LLM, instructing

the LLM to receive these D demonstrations as few-shot examples, and generate 𝑠𝑓 for 𝑃𝑖(�̂�)

through sampling.

3.2 Generating Natural Language Solution Candidates

In this process, LLM generates a set of informal proof candidates for the original problem posed

in natural language. We use the DeepSeek-coder-v2 [5] LLM for this task, for its low expense and

high capability as a domestic, readily available LLM in China. Our framework is agnostic to the

specific LLM choice. It receives the few-shot examples, then is prompted to generate a set of N

solutions for a subsequent problem via in-context learning. These solution candidates are not

guaranteed to be accurate and may contain logical fallacies or discontinuities, i.e., hallucinations.

However, they can be viewed as good guesses of likely proofs, and can be used to guide the ATP.

3.3 Formal Proof Candidate Generation & Verification

We leverage Isabelle to verify proofs for the formal statement. Isabelle [1] is one of the mainstream

formal theorem provers, along with Lean [14] and Coq [3], which have the ability to verify a proof

in formal language. We selected Isabelle for its powerful tools, such as Sledgehammer, which can 20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

10

help to fill in low-level proving gaps in proof generation and verification. The DeepSeek-coder-

v2 LLM creates templates of Isabelle proofs according to the statement and prior informal solution

candidates, prompted with few-shot examples. These templates do not contain the theorems

utilized in the proofs; those are instead filled in by the Sledgehammer tool in Isabelle. These

complete proofs are then checked by Isabelle to find a proof that has correct logical reasoning and

a correct answer.

Given informal statement 𝑃𝑖(�̂�) , the corresponding informal solution 𝑝𝑖 and formal statement

𝑠𝑓, we sample the formal proof 𝑝𝑓 as follows

𝑝𝑓 ~ 𝑝𝐹𝑜𝑟𝑚𝑎𝑙𝑃𝑟𝑜𝑣𝑒𝑟(∙ | 𝑃𝑖(�̂�), 𝑝𝑖 , 𝑠𝑓 , {(𝑃𝑖,𝑗(�̂�𝑗), 𝑝𝑖,𝑗 , 𝑠𝑓,𝑗)}𝑗=1
𝐷)

where 𝑝𝐹𝑜𝑟𝑚𝑎𝑙𝑃𝑟𝑜𝑣𝑒𝑟 is the distribution of the Formal Proof generation model, which we use the

DeepSeek-coder-v2 [5] LLM with in-context learning. These D triples, (𝑃𝑖,𝑗(�̂�𝑗), 𝑝𝑖,𝑗 , 𝑠𝑓,𝑗) , are the

few-shot examples for in-context learning.

3.4 Solution Auto-Informalization

If a complete formal proof is verified to be logically correct by Isabelle, it is translated back into

natural language by the LLM to give the more reliable informal solution, i.e., informalization. The

LLM is prompting with few-shot examples to perform informalization. This auto-informalized

solution is more reliable than the informal solution that is generated only conditioning on the

original informal problem.

Given informal statement 𝑃𝑖(�̂�), the corresponding informal solution 𝑝𝑖 and formal statement 𝑠𝑓

and verified complete formal proof 𝑝𝑓, we reconstruct a formal-proof-grounded informal solution

 as follows

𝑝�̃� ~ 𝑝𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑟(∙ | 𝑃𝑖(�̂�), 𝑝𝑖 , 𝑠𝑓 , 𝑝𝑓, {(𝑃𝑖,𝑗(�̂�𝑗), 𝑝𝑖,𝑗 , 𝑠𝑓,𝑗 , 𝑝𝑓,𝑗)}𝑗=1
𝐷)

where 𝑝𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑟 is the distribution of the informal solution generation model, which we use

the DeepSeek-coder-v2 [5] LLM with in-context-learning, too.

4. Experiment and Results

4.1 Experiment Setup

Evaluation Dataset. We evaluate our method on a constructed subset of the MATH dataset [2],

which is a prevalent high-school level mathematical problem-solving benchmark. It comprises

12,500 challenging problems (5,000 for test) sourced from high school mathematics competitions,

including the AMC 10, AMC 12, and AIME. These problems are categorized into different subjects 20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

11

with difficulty levels ranging from 1 to 5. In order to study the effect of using formal proving in

our method, we further select problems which have corresponding formal statements in the

miniF2F[15] dataset. The MiniF2F dataset is a benchmark in formal theorem proving, where some

of the problems originate from the MATH dataset, which has been formalized by experts in the

formal theorem proving field.

(a) a Number Theory problem

(b) an Algebra problem

Figure 2. Examples of informal problem and the formal statement of problems in the Number

Theory and Algebra subjects, respectively.

To avoid any too-heavy computation requirements of the LLM, we perform evaluation on a subset

of the original datasets. Specifically, we randomly sampled 60 Algebra problems and 60 Number

Theory problems from the intersection of MATH and miniF2F, leading to a total of 120 problems

in our evaluation set. The distribution of difficulty levels of the constructed test set is akin to the

original MATH dataset, while the number of all levels of problems are almost at the same size.

Note that since our method only relies on a pre-trained LLM with in-context learning, no training

data is needed except some few-shot examples as demonstrations. We construct the demonstration

examples from data sampled outside our evaluation dataset. Figure 2 above presents several

examples of informal problem and the formal statement in our evaluation dataset.Model. We use

the deepseek-coder LLM [5] in the experiments. The model has 236 billion parameters. Although

deepseek-coder is assumed to be a specialized AI model designed to assist developers and 20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

12

programmers in writing, optimizing, and debugging code, its training data contains many examples

of mathematics, too, and shows proficiency in solving math problems according to its technical

report [5].

Few-shot Prompting Examples. We construct 36 demonstrations from MATH train split. Each

demonstration consists of an informal problem, informal solution, formal statement and formal

proof. We use all the demonstrations in the pipeline of RGFV including (1) Informal Solution

Generation, (2) Statement Formalization, (3) Formal Theorem Proving, and the necessary fields

are used in each step. More details of demonstrations can be found in the appendix.

Informal Solution Generation. We few-shot prompt the deepseek-coder LLM to generate 𝑁 =

10 informal solutions per problem conditioned on the informal problem statement and

demonstrations of (informal problem, informal solution) pairs to leverage the in-context learning

ability of LLM to generate the informal solution. We use the default sampling parameters in

OpenAI API [28] where 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 0.7 and nucleus sampling with 𝑡𝑜𝑝_𝑝 = 1.0 . The

prompt can be found in the appendix.

Statement Formalization. We use the above 36 examples with (informal problem, informal

solution, formal statement) tuples for few-shot demonstrations. Because Isabelle theorem prover

is only capable of proving, not solving, the answer in the informal solution must combine with the

informal problem to construct an informal statement for statement formalization. We perform

single statement formalization concerning each informal solution generated in the informal

solution generation stage and in total 𝑁 = 10 formal statements are generated per problem. The

default sampling parameters in OpenAI API [28] where 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 0.7 and nucleus

sampling with 𝑡𝑜𝑝_𝑝 = 1.0 is adopted and the prompt can be found in the appendix.

Formal Proof Generation & Verification. We use the above 36 examples with (formal statement,

formal proof) pairs for few-shot demonstrations to perform formal proof template generation. To

save computation resources, we query the language model once (𝑀 = 1) for formal proof

generation for each formal statement sample so that each informal problem is in total formalized

𝑁 × 𝑀 = 10 × 1 times, generating 10 formal proof templates. We then use Isabelle to verify

the potential formal theorem (the formal statement together with the formal proof template). Since

the template might contain low-level proving gaps, we prompt the deepseek-coder LLM to use

sledgehammer [34] along with 11 common tactics (auto, simp, blast, fastforce, force, eval,

presburger, sos, arith, linarith, and auto simp: field simps) to close low-level open conjectures to

generate a complete formal proof. Then, the Isabelle theorem prover is called to verify the

correctness of the proof.

Proof Auto-Informalization. Once the formal proof passes the verification of the Isabelle theorem

prover, the original informal problem is viewed as being formally solved. The verified formal proof

will be utilized to perform informalization, also via the deepseek-coder LLM with in-context

learning, to generate a final informal solution with correct reasoning steps, and therefore resolving 20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

13

the issue of hallucination in the solution. The default sampling parameters are used as mentioned

above, and the prompt can be found in the appendix.

4.2 Baseline and Evaluation Metrics

Our task includes several steps: (1) generating informal solution candidates and potential answers

for a given problem, (2) constructing a formal statement based on the informal problem and a

potential answer, (3) generating formal proof templates based on the informal solution candidates,

(4) generating and verifying formal proofs using Isabelle and sledgehammer tools, (5) composing

the verified formal proof and generating a grounded informal solution. Therefore, for a

comprehensive evaluation, we evaluate from three perspectives.

Accuracy. To evaluate the effectiveness of RGFV, we measure its accuracy. In this evaluation, we

define "accuracy" as the ratio of correctly-answered problems among all the problems. Note that,

if ATP cannot find a correct proof, we will fall back to the most likely solution and answer

generated by the LLM without using formal proof. As shown in Figure 1, the formalization and

proving process will repeat k times, referred to as k trials. We use Acc@k to denote the accumulated

accuracy in k trials. The reason to try multiple trials is that the sampling process of the LLM gives

diverse outputs that are different each time, like a guessing machine. Therefore, iterating k trails

increases the coverage, increasing the chance of finding a correct proof.

Solution Quality. The goal of this project is to improve the quality of informal solutions for

mathematical problems. For a fair and objective evaluation, we leverage a supermodel GPT-4 [19]

to score the quality of solutions. Specifically, for each pair of solutions (e.g., one from baseline

method, and one from RGFV), we use 2-shot prompting to score the two solutions by {-1, 0, 1}.

We ask GPT-4 to compare the quality of the two solutions from four perspectives: Correctness,

Clarity, Readability and Rigor, and give a relative score comparing RGFV with the baseline. To

avoid the LLM's bias on the order of solutions presented, we randomly permute the two solutions

and repeat the scoring eight times. The final score is an average of these eight trials.

Verification Pass Rate. To analysis the robustness of formal verification, we also report pass rate,

which is the ratio of formally-verified problems among all the problems. We use Pass@k to denote

the accumulated pass rate in k trials.

We use the (1) single-best solution method and (2) self-consistency method proposed in [9]

recently as our baseline. Both baselines exploit a LLM with in-context learning to generate

informal solutions and answers given the original problem without using formal proofs. The former

uses the LLM to output the most likely solution, while the latter will perform a majority-vote to

determine the final answer so as to enhance the self-consistency. We compare accuracy on answers

with the above methods. As the ability of LLM’s auto-formalization has its limitations, and not all

the formal proof will pass the checking in theorem prover, we will also report the pass rate

concerning the auto-formalization process.

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

14

4.3 Main Experiment Results

The main results are shown in table 1 below. We compare our method with the (1) single-decoding

solution method and (2) self-consistency method [9]. Concerning the effect of verifier-grounded

proofs on the final accuracy on the problem, we report the Accuracy on answer of our proposed

method. The higher accuracy on answer shows the effect of verifier-grounded proofs helping the

LLM generate a more reliable answer.

Method Accuracy

(Overall)

Accuracy

(Algebra)

Accuracy (Number

Theory)

single-decoding method [9] 38.3% 58.3% 18.3%

self-consistency method [9] 46.7% 66.7% 26.7%

RGFV 65.8% 96.7% 35.0%

Table 1. Accuracy of RGFV compared with single-decoding and self-consistency method, with

number of trails k set to 10.

Results in Table 1 show that, compared to the stronger baseline of self-consistency method [9], the

RGFV boost the overall accuracy from 46.7% to 65.8%, a 19.1% absolute improvement,

demonstrating the effectiveness of grounding the reasoning on formal verification. We also

observed that the accuracy on the subject of Number Theory is relatively lower than Algebra, likely

due to the fact that Number Theory problems oftenrequire more steps of reasoning, which

highlights both the importance and challenge for AI to perform reasoning tasks. However, the

improvement is still very significant for Number Theory problems, improving from 26.7% to

35.0%, a 31.1% improvement relatively.

Additionally, we evaluated the quality of the informal solution generated by the auto-

informalization process. We adopt GPT-4 [19] as the super model to conduct the evaluation.

Comparing RGFV with the self-consistency method [9], we measure the relative quality of the

solutions generated by these two approaches from 4 perspectives: Correctness, Clarity, Readability,

Rigor. The relative score is ranged from -1 to 1.

perspective Correctness Clarity Readability Rigor

RGFV vs. self-

consistency

+0.2769 +0.6789 +0.4132 +0.7801

Table 2. GPT4 super model evaluation scores on Correctness, Clarity, Readability and Rigor.

Results in Table 2 show that RGFV outperforms the baseline in all four aspects, especially in the

category of Rigor, showing that our method gives significant advantages. Overall, RGFV 20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

15

outperforms the baseline by a large margin of 0.5373, which is very significant. We present typical

examples in section 4.5.

4.4 Ablation Study

In this section, we first evaluate the ability of the LLM to do statement formalization, i.e., its ability

of translation between informal and formal language. We provide the ground truth (GT) formal

statement in the pipeline to replace the LLM-generated formal statement. Since this concerns the

formal proving step, we measure the formal proof pass rate.

Method Pass Rate

(Oveall)

Pass Rate

(Algebra)

Pass Rate (Number

theory)

RGFV (w/ GT formal statement) 65.0% 93.3% 36.7%

RGFV (w/ LLM-generated

formal statement)

63.3% 91.7% 35.0%

Table 3. The pass rate of RGFV (with/without ground truth formal statement) on sub-category on

Algebra and Number Theory.

The result shows that (1) even with GT formal statement, the pass rate is still far from perfect,

especially on the Number Theory subject. This indicates that the bottleneck relates more to the

formal theorem proving process. This observation is consistent with the recent progress in Formal

Theorem Proving [13], that the PassRate@100 on miniF2f is around 50%. (2) the gap between

using GT formal statement vs. LLM-generated formal statement is quite small, in the range of only

1-2%. This shows that LLM performs reasonably well on the task of translation between informal

and formal languages. (3) the pass rate on Algebra is much higher than the pass rate on Number

Theory, showing RGFV is more capable of solving Algebra problem than Number Theory,

partially because Algebra problem focuses more on computation, which is relatively easier, while

Number Theory problems need more steps and reasoning.

Compared to the results in table 1, we also observed that the accuracy of RGFV is slightly higher

than its pass rate, indicating that there are a few cases where no correct formal proof can be found,

but the answer is still correct. Note that if ATP cannot find a correct proof, we will back off to the

answer generated by the LLM only. This indicates there are cases where although RGFV cannot

find any verified proof, the LLM still makes a good guess on the answer.

Insight into the iteration k with pass rate:

Figure 3 below shows that pass rate monotonically increases with respect to the iteration k, and

starts becoming saturated after k=8. We use the default sampling parameters with 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 =

0.7 and nucleus sampling with 𝑡𝑜𝑝_𝑝 = 1.0. This validates the saying held by Terence Tao that

LLM is a good guessing machine [18], and we let the LLM to guess multiple times so to increase

the chance for the ATP to find a valid proof. More iterations could improve the pass rate but will

cause a large cost to invocations of deepseek-coder API. Therefore, we will report pass@10. 20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

16

Figure 3: The accumulative pass rate up to 10 iterations, using the default value of temperature=0.7.

The effect of temperature for the LLM to generate formal proof:

Temperature is indeed an important hyperparameter in the context of LLMs when sampling the

output. It controls the randomness and diversity of the model's output. At low temperature, the

model tends to produce more deterministic and consistent outputs, while at high temperature, the

model becomes more exploratory and produces more diverse and random outputs. The model

outputs logits 𝑧𝑖 for each token in the vocabulary, and the Softmax function converts these logits

into probabilities 𝑝𝑖. The softmax function is given by:

𝑝𝑖 =
exp (𝑧𝑖/𝑡)

∑ exp(𝑧𝑗/𝑡)𝑗
,

When the temperature 𝑡 approaches 0, The system becomes fully deterministic, choosing the token

with the highest probability. As 𝑡 approaches infinity, the probability distribution becomes uniform,

meaning all tokens have an equal chance of being sampled.

We study the effect of temperature on the pass rate with 10 iterations, Figure 4 shows how different

temperature affect the final pass rate@10.

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

17

Figure 4: Accumulative pass rate curves with different temperature parameters.

Compared to the default sampling parameters in OpenAI API [28] where 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 0.7, a

higher temperature (temperature=1.25 or 1.5) yields even better performances, boosting the pass

rate up to 75%. High temperatures enable the large language model to generate more diverse

solutions, so as to increase the likelihood of having ones that lead to correct formal statements and

proofs that meet the verifier's check. This underscores the importance of exploiting LLM as a

guessing machine to solve challenging mathematical problems.

4.5 Case Study

RGFV can alleviate hallucination through formal verification. We show three cases below to

illustrate that, while LLM-generated informal solutions have some hallucination in their proving

steps such as computational errors, illogical reasoning steps, etc., our RGFV method can generate

a good informal solution grounded with formal verification to eliminate these hallucination errors.

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

18

 (a) LLM hallucination leading to incorrect computational steps in an algebra problem.

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

19

 (b) Hallucination where the LLM will generate illogical reasoning steps and computational

errors.

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

20

 (c) LLM-generated informal solution with a factual error in its reasoning.

Figure 5: Examples that show that, while LLM generated informal solutions have some

hallucinations in the proving steps, the RGFV method can generate a good informal solution

grounded with formal verification to eliminate these hallucination errors.

Figure 5 (a) is the case when a computation error occurs in the proving step where calculating

300−26√131

16
=

75−13√131

4
 . It’s wrong when reducing the equation to a simpler form, as

26

16
≠

13

4
 ,

leading to a final wrong answer.

Figure 5 (b) shows that the LLM makes a guess on A, B and C, and deceives itself through a

computational error where 123133212 mod 11 is not -1. In contrast, our RGFV method performs

step-by-step reasoning that was verified by Isabelle checker, which shows the proficiency of our

method.

Figure 5 (c) showcases that the LLM will generate solutions with factual errors, such as saying

that the integers between 15 and 85 that can be divided by 20 are 20, 40, and 60, which is wrong.

In our RGFV method, the informal solution generated by auto-informalization has been verified

by the Isabelle prover that the integers divisible by 20 between 15 and 85 are actually 20, 40, 60

and 80. The shows that RGFV can utilize Isabelle theorem prover to ground the reasoning steps. 20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

21

5. Conclusion and Future Work

In this paper, we present a novel LLM mathematical reasoning method Reasoning Grounded with

Formal Verification (RGFV) for solving mathematical problems to incorporate verified formal

proofs with LLMs to generate reliable natural language solutions. Our experiment shows the

proficiency of RGFV in solving mathematical problems without hallucination, compared with the

self-consistency reasoning method. The case study illustrates that RGFV can largely alleviate

hallucination in mathematical reasoning to mitigate computational errors, illogical reasonings and

factual errors. However, our method still has limitations, as we did not conduct thorough

experiments on more iterations on RGFV method to improve the accuracy and pass rate. Recently,

some researchers have studied the automatic research ability of LLMs [35] and found that LLMs

generate ideas that are more novel than those given by expert human researchers. This inspires the

future direction of extending our RGFV method to discover more formal theorems, and also

generate informal problems to help teachers produce exam papers with verifiable informal

solutions.

Just before this report was finished, on September 12, 2024, OpenAI introduced their latest large

model o1, which demonstrates strong reasoning ability far beyond all its predecessors, marking a

new milestone for LLMs. On the other hand, as it is a statistical model, Terence Tao’s view still

holds that a LLM is more a guessing machine. Rather than providing the rigorous solution to a

problem, it is more about helping the mathematician in solving problems. The RGFV method

proposed in this paper is agnostic to the choice of the LLM. Therefore, it will benefit from o1, too.

Looking forward, augmenting LLMs with formal proving and verification to generate rigorous

solutions is an exciting open research problem, and will lead to new breakthroughs in both AI and

mathematics.

6. Acknowledgements

My journey into the world of AI-assisted mathematic problem solving began with a great desire to

explore the intersection of these two fields. My previous experience with AI-generated digital

figures had ignited a passion within me, leading me to seek further exploration. I had also

understood the potential of using AI in mathematics, especially for proof problems, and I wished

to work on something that could combine the two fields of AI and mathematics. I talked with my

math teacher, Mr. Kennedy, and he also helped me to come up with this idea by combining his

own use of AI for teaching. During the winter break, while in Shanghai, I was fortunate to connect

with Professor Yan, a renowned figure in the AI community, through my father. Prof. Yan's

expertise in this domain was both inspiring and influential.

Through my father's connection, I was able to visit Prof. Yan's laboratory, where I was introduced

to the intricacies of formal theorem proving. Prof. Yan guided me through the fundamentals of

systems like Isabelle, revealing the power and elegance of formal proof methodologies. This 20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

22

helped us work together to come up with the answer to my previous idea of doing an AI-and-math-

related project.

The fruitful stay in Shanghai sparked a lasting connection with Prof. Yan. We continued to

exchange ideas, with Prof. Yan generously providing his expertise and guidance throughout the

project. His mentorship extended from the initial conceptualization of the topic to the final writing

of this paper; it encompassed all stages of research. Prof. Yan's dedication and support was

invaluable, and I am deeply grateful for his unwavering commitment to my growth as a researcher.

It is important to emphasize that Prof. Yan's assistance was driven by his passion for mentoring

and fostering young minds in the field of AI. I did not compensate him for his time, dedication,

and invaluable contributions.

Our shared interest in formal theorem proving led us to explore the potential of LLMs in assisting

this process. Prof. Yan, with his expertise in AI and formal methods, provided invaluable insights

and direction. The decision to utilize LLMs in this context was a natural progression, combining

my growing interest in AI with Prof. Yan's deep understanding of the field.

We selected the MATH and miniF2F datasets for our experiments, as they encompass a wide array

of problems representative of those encountered in formal theorem proving, and more importantly,

encompassing most of the types of problems I would encounter in my own math work. The datasets

provided a rich testing ground for evaluating the effectiveness of our LLM-based approach.

The experiments were conducted within Prof. Yan's AI lab, providing access to powerful

computational resources. This environment further enriched my learning experience and allowed

for the seamless execution of our research. My experiments were further assisted by Prof. Yan’s

graduate students Zijun Chen and Qi Liu, who answered many of my questions about accessing

pre-trained LLMs like DeepSeek-coder and GPT-4, and about coding problems I encountered

during the project. Zijun also provided much-needed feedback on my project’s results while

experimenting.

Prof. Yan’s assistance proved incredibly assistive throughout the writing process, as he helped me

navigate the complexities of academic writing and ensure the paper met high standards. His

expertise in research methodology and communication allowed him to provide accurate and

helpful feedback on the structure, organization, and clarity of the writing. His insights and

suggestions significantly enhanced the overall quality and impact of the paper, greatly improving

the quality of work.

This project was a journey of intellectual growth and discovery, made possible by the exceptional

guidance of Prof. Yan. His unwavering support and passion for knowledge have left an indelible

mark on my academic journey. It is with profound gratitude that I acknowledge his contributions

and express my sincere appreciation for his invaluable role in shaping this project and fostering

my passion for AI. 20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

23

References:
[1] Lawrence C. Paulson. Isabelle a Generic Theorem Prover. Springer Verlag, 1994.

[2] Hendrycks, Dan, et al. "Measuring mathematical problem solving with the math dataset." arXiv preprint

arXiv:2103.03874 (2021).

[3] The Coq Development Team. Coq, 2017.

[4] Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Altenschmidt, S. Altman, S.

Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

[5] Guo, Daya et al. “DeepSeek-Coder: When the Large Language Model Meets Programming - The Rise of Code

Intelligence.” ArXiv abs/2401.14196 (2024): n. pag.

[6] Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L., ... & Schulman, J. (2021). Training verifiers

to solve math word problems. arXiv preprint arXiv:2110.14168.

[7] Wei, Jason, et al. "Chain-of-thought prompting elicits reasoning in large language models." Advances in neural

information processing systems 35 (2022): 24824-24837.

[8] Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T., Cao, Y., & Narasimhan, K. (2024). Tree of thoughts: Deliberate

problem solving with large language models. Advances in Neural Information Processing Systems, 36.

[9] Wang, Xuezhi, et al. "Self-consistency improves chain of thought reasoning in language models." ICLR

2023 (2023).

[10] Zhou, Jin Peng, et al. "Don't Trust: Verify--Grounding LLM Quantitative Reasoning with

Autoformalization." arXiv preprint arXiv:2403.18120 (2024).

[11] Dong, Q., Li, L., Dai, D., Zheng, C., Wu, Z., Chang, B., ... & Sui, Z. (2022). A survey on in-context learning. arXiv

preprint arXiv:2301.00234.

[12] Wu, Yuhuai, et al. "Autoformalization with large language models." Advances in Neural Information Processing

Systems 35 (2022): 32353-32368.

[13] Jiang, Albert Q., et al. "Draft, sketch, and prove: Guiding formal theorem provers with informal proofs." arXiv

preprint arXiv:2210.12283 (2022).

[14] De Moura, S. Kong, J. Avigad, F. Van Doorn, and J. von Raumer. The lean theorem prover (system description).

In Automated Deduction-CADE-25: 25th International Conference on Automated Deduction, Berlin, Germany,

August 1-7, 2015, Proceedings 25, pages 378–388. Springer, 2015.

[15] Zheng, Kunhao, Jesse Michael Han, and Stanislas Polu. "Minif2f: a cross-system benchmark for formal

olympiad-level mathematics." arXiv preprint arXiv:2109.00110 (2021).

[16] Jiang, Albert Q., et al. "Draft, sketch, and prove: Guiding formal theorem provers with informal proofs." arXiv

preprint arXiv:2210.12283 (2022).

[17] Azerbayev, Zhangir, et al. "Proofnet: Autoformalizing and formally proving undergraduate-level mathematics."

arXiv preprint arXiv:2302.12433 (2023).

[18] Tao, Terence. "The Potential for AI in Science and Mathematics.” Oxford Mathematics London Public Lecture,

https://www.maths.ox.ac.uk/node/68243, July 2024 (2024). 20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

24

[19] Achiam, Josh, et al. "Gpt-4 technical report." arXiv preprint arXiv:2303.08774 (2023).

[20] Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017).

[21] Li, Junyi, et al. "Pre-trained language models for text generation: A survey." ACM Computing Surveys 56.9 (2024):

1-39.

[22] Zhang, Qin, et al. "A survey for efficient open domain question answering." arXiv preprint

arXiv:2211.07886 (2022).

[23] Sharma, Grishma, and Deepak Sharma. "Automatic text summarization methods: A comprehensive review." SN

Computer Science 4.1 (2022): 33.

[24] Maruf, Sameen, Fahimeh Saleh, and Gholamreza Haffari. "A survey on document-level neural machine

translation: Methods and evaluation." ACM Computing Surveys (CSUR) 54.2 (2021): 1-36.

[25] Brown, Tom B. "Language models are few-shot learners." arXiv preprint arXiv:2005.14165 (2020).

[26] Radford, Alec, et al. "Language models are unsupervised multitask learners." OpenAI blog 1.8 (2019): 9.

[27] Devlin, Jacob. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv

preprint arXiv:1810.04805 (2018).

[28] OpenAI API reference, https://platform.openai.com/docs/api-reference/chat/create

[29] Schulz, Stephan. "E–a brainiac theorem prover." Ai Communications 15.2-3 (2002): 111-126.

[30] Kovács, Laura, and Andrei Voronkov. "First-order theorem proving and Vampire." International Conference on

Computer Aided Verification. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

[31] Chou, Shang-Ching, Xiao-Shan Gao, and Jing-Zhong Zhang. "A deductive database approach to automated

geometry theorem proving and discovering." Journal of Automated Reasoning 25.3 (2000): 219-246.

[32] Jiang, Albert Qiaochu, et al. "LISA: Language models of ISAbelle proofs." 6th Conference on Artificial

Intelligence and Theorem Proving. 2021.

[33] Polu, Stanislas, and Ilya Sutskever. "Generative language modeling for automated theorem proving." arXiv

preprint arXiv:2009.03393 (2020).

[34] Lawrence C Paulsson and Jasmin C Blanchette. Three years of experience with sledgehammer, a practical link

between automatic and interactive theorem provers. In Proceedings of the 8th International Workshop on the

Implementation of Logics (IWIL-2010), Yogyakarta, Indonesia. EPiC, volume 2, 2012.

[35] Si, Chenglei, Diyi Yang, and Tatsunori Hashimoto. "Can LLMs Generate Novel Research Ideas? A Large-Scale

Human Study with 100+ NLP Researchers." arXiv preprint arXiv:2409.04109 (2024).

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

25

Appendix

Few-shot demonstrations

Below are some demonstrations constructed for few-shot prompting in RGFV pipeline.

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

26

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

27

 20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

28

Prompt for RGFV pipeline

Informal Solution Generation. Below is the prompt for informal solution generation.

Given a math problem, solve it step by step.

Here are some examples:

{demonstrations}

Statement Formalization. Below is the prompt for statement formalization.

Given an informal math problem, its solution and answer, please combine the problem with answer

and translate the it into a Formal Isabelle theorem.

Here are some examples:

{demonstrations}

Formal Proof Generation. Below is the prompt for formal proof generation.

Given an Isabelle theorem, the original informal problem and solution, please give a formal

Isabelle proof and you can refer to the origin informal problem and solution to better write the

proof.

Add `sledgehammer` in the sketch whenever possible if you don't know which tactics to use to

refine the proof goal. `sledgehammer` will be used to call the automated Sledgehammer to help

you to prove.

Here are some examples:

{ demonstrations}

Proof Auto-Informalization. Below is the prompt for proof auto-informalization.

Given an informal math problem and its informal solution, a formal statement and its formal proof,

please rewrite the informal solution based on the formal theorem and proof to correct the mistakes

in the origin informal solution..

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示

