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Abstract

In computer vision, combining visual and language models has become the future of image-text
processing and captioning. Recently, due to the high demand for Artificial Intelligence in modern life and
work, accuracy and precision are needed for every model that is brought to work. Furthermore, combining
multiple lightweight models and algorithms for partial computing can yield a highly efficient yet accurate
Multimodal framework. Our approach combines the strengths of each model to address complex problems
that require further knowledge and relational understanding of both Vision and Language.

In this paper, we propose a novel framewaork according to this description: CelsiaNet, a Multimodal
Vision-Language Model Framework that integrates partial techniques from LLaVA, BLIP-2, BERT, and
Q-Former and employs a multi-stage training strategy to.bolster the model’s generalization capabilities.
Initially, we utilize a pre-trained vision transformer, convolution network, and a large-scale language
model for efficient bootstrapped multimodal representation learning. Subsequently, the entire model
undergoes end-to-end fine-tuning on a vastmultimodal dataset to achieve a rich integration of visual
and linguistic modalities. Moreover, we adopt.a Context-Object Split (COS) factorization that partitions
the latent space into contextual and object-specific components, diversifying generated descriptions and
the model’s ability to handle novel objects not encountered during training. Finally, we introduce a
context-based pseudo-supervision module that diversifies the contextual descriptions of similar images in
the latent space:

This architecture performs well in generating diverse and accurate image captions handling vari-
ous queries, and our model achieves zero-shot captioning through unsupervised training(with pseudo-
supervision) on the Visual Genome (VG), VG-COCO, and RefCOCO datasets. Our experimental results
show that our framework significantly outperforms existing models in various vision-language tasks,
highlighting Multimodal VLM’s potential, which should be explored further.

Key words: Multimodal Learning, Vision-Language Model, Context-Object Split, Bootstrapped
Learning; End-to-End Fine-Tuning
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1. Introduction
1.1. Purpose of the Multimodal Vision Language Models

Multi-modal vision language models(VLMs) are developed for the need of an integrated system of
programs(neural networks) that could understand and react to the relationship between Visual.and Lingual
data when state-of-the-art models in both fields could cooperate in synergy. This approach reduces the
need for extensive, specially crafted datasets that directly relate text to images and vice versa,.instead
utilizing existing text-only and image-only datasets along with techniques to align these modalities [ 1].

One of the primary purposes of VLMs is to accurately generate and translate visual data to language
outputs. These systems are needed in fields such as image captioning services,.visual question-answering
services, automobile autopilot systems, and Artificial General Intelligence(AGI) development. For
instance, when these models are applied in image captioning, the system.would-need to generate a
descriptive text that could explain the relationships and actions in the image, like how and what humans
can observe [2]. Another purpose for designing these systems is to efficiently.leverage the vast amount
of training data on the internet into developing a multi-purposed model composed of respective related
networks. By training on a large amount of data, VLMs can learn to generalize across different contexts
and relationships, which could improve their zero-shot capabilities. This means that the models working
in coherence inside the main system could predict the results of unfamiliar situations without needing
an excessive amount of situation-specific training [1].-Furthermore; VLMs help develop techniques to
integrate multiple models into a single framework. This involves sophisticated mechanisms such as
cross-attention layers, contrastive learning objectives, and embedding alignment, ensuring that the model
can coherently fuse visual and textual features and understand.them. All of the improvements stated
above have allowed VLMs to be versatile and accurate in various applications while being (cost and data)
efficient [3].

1.2. Previous Weakness in VLMs

Although Vision-Language Models(VLMs) have received many research developments and improve-
ments, they still encounter difficulties understanding detailed regional visual components. These chal-
lenges have occurred due to many older technical problems unsolved but were still implemented into the
task:

During previous research development on'VLMs, VLMs have not been good at capturing fine-grained
spatial relationships within the images [4]. For example, when a VLM is called on to analyze the
interactions of the objects inside an'image, the VLM can only interpret the physical existence of the
objects inside the image due to the'lack of spatial and action understanding. This is very problematic
in tasks that would.require the'model to clearly identify the layout and situation, such as in the case of
indoor navigation for autonomous systems [5], or the interpretation of the arrangements of compositions
in an antique artwork.

At the same time; the quality of training data has also often been a constraining factor in VLM
development. .Since the quality of a dataset depends on the images’ content and resolution, the tags’
ambiguity(the less, the better), and the diversity in both images and tags, it is hard to create an initial
dataset. Many existing datasets provide only general descriptions without keywords that could pinpoint
the specific characteristics of the regions described within the images. This results in a model that would
generate non-precise answers when given a task [6]. Furthermore, human bias is another crucial factor to
be solved.as different tag rankings would cause the model’s interpretation to skew while also affecting



future models that train on an extended dataset crafted by former captioning models [7].

Specific regional analysis has been another struggle point for VLMs, as older VLMs find it hard to
link or anchor particular objects and elements in a region of an image to the part of the text that exactly
describes them, which results in the disconnection between the visual and textual modalities. This is
due to the failure to make connectors that could translate and map features between text-and images.
More disconnections can lead to incorrect or incomplete interpretations, especially in tasks where the
model must explain a verbally given region inside the image or other kinds of analysis regarding good
relatability between vision and text [8]. Another significant weakness in previous VLMs is that they
cannot understand the holistic meaning of an entire picture after identifying the components-in the image.
Even if the model was capable of seeing what is visually presented upon the image, the inability to'reason
what the purpose or the background situation can result in disjointed captions or failure to-make a valuable
analysis of the function of the visual content [9].

All of the mentioned problems during VLM development have caused: VLMs to sometimes tend to
generate overgeneralized captions that lack the specificity needed to.describe‘an image fully. These are
parts of the difficulties we also deal with to overcome in this paper,swhere a multi-modal VLM will
require higher accuracy, precision, and collaboration between models.

1.3. Proposed Strategy

In this study, we aim to present our Vision Language Model(VLM) architecture framework that we
designed for the model’s better recognition of the relationships between text and images and, hence,
generating fine image captions. Our strategy used a multi-stage method, resulting in strength in efficient
pretraining integrating BLIP-2’s method and end<to-end fine-tuning inspired by LLaVA’s approach [10]
[11]. Most importantly, we have added a Context-Object'Split (COS) latent space factorization [12], which
segments the representation space to boost caption diversity and accurately manage object detection in the
image. Furthermore, we also added a context-based pseudo-supervision that ensures the accurate matching
of features and data between multiple models and datasets. For the pretraining process, we applied K-
means clustering for unsupervised feature grouping. -During the alignment phase, we incorporate BERT’s
ability for textual embeddings [13] and pair it.with the excellent feature extraction capabilities of the
pre-trained vision transformers and CNNs to assist the alignment.

Architecturally, our modelis based.on a visual transformer for image encoding and uses a multimodal
mixture of encoder-decoder (MED) framework, seamlessly integrating BLIP-2’s alignment mechanism
through a lightweight Querying Transformer (Q-Former) to connect image encoding with language
modeling. The pretraining proeess applies the three losses: Image-Text Contrastive Loss (ITC), Image-
Text Matching/Loss (ITM), and Language Modeling Loss (LM)—to amplify the model’s interpretative
and generative ability [14]. We also implement the Captioning and Filtering (CapFilt) method, enhancing
the textual dataset’s quality through a dual mechanism of web image captioning and noise elimination [14].
In the final-phase, the model employs a caption generation mechanism that utilizes the Q-Former as the
primary encoder{15]. This is complemented by a refining encoder that extracts and processes complex
feature relationships. The system culminates in a decoder that integrates visual and textual information,
producing contextually appropriate and visually grounded captions.

The contributions of this study are listed as follows:

. Context-Object Split Architecture: Enhancing our VLM architecture with Context-Object Split
(COS) factorization to adeptly capture diverse contexts and improve performance on novel objects,
inspired by the COS-CVAE approach [12].



* Lightweight Model and High Performance: By Implementing multiple state-of-the-art modules
together and stating our own highly efficient and accurate linking mechanisms, our model demon-
strates state-of-the-art performance at 4.2B parameters compared to many previous works, such as
Osprey, which operates on 7B parameters [16].

* Unsupervised Image Training with Pseudo-Supervision Training: Throughout our model,
we separated the images and the text to be trained separately, whereas the images are_trained
unsupervised with clustering algorithms. Later, the bootstrapped features are trained using a
self-supervision mechanism(or pseudo-supervision) that relates captions from a captioned image to
the ones that had similar underlying caption relations, inspired by the paper, Unicom[17].

* Multi-stage Training with Attention Mechanisms: Implementing a multi-stage training process
that incorporates self-attention mechanisms and a projection layer-from the frozen image encoder
at the end of the processes. This approach allows the model to-better relate the final output with the
original visual content, improving the coherence between generated text and input images.

* Better Zero-Shot Capability with Multi-Modal Structure: Our model is trained under an
unsupervised manner with a pseudo-supervision module, which allows the captions of different
content to be related or be used to learn the underlying relationships in each image or content.
The basis of our framework is on strong performing models-and methods, which has enabled the
model to perform exceptionally well when our-introduced modules can connect them with perfect
consistency and attention mechanisms.

2. Related Work
2.1. Vision Language Models
2.1.1 Development of Current State Visual Language Models (VLMs)

Vision Language Models(VLMs) have become a significant focus of the development of Artificial intelli-
gence; these models integrate visual'and lingual processing capabilities to process complex understanding
tasks. These tasks include generating captions for images and responding to visual and lingual ques-
tions [9]. This kind of model could be created by integrating vision models alongside Large Language
Models(LLM) as a multi-modal or all-in-one approach by making a model relatable between vision and
text contents.

2.1.2 Classification of VLMs

If we classify based on their functionalities, there are three main types of VLMs: models dedicated
to vision-language relational understanding, models that process multiple types of inputs (images and
texts) to generate unimodal outputs and models that accept and produce multimodal inputs and outputs
of vision-language data. VLMs are mainly designed in these categories, and there is a wide range of
subtasks that each distinctive VLM model chooses one or many to achieve. Their common aim is to
create a model that evolves from only being able to deal with specialized understanding tasks to be more
versatile in multi-input-output tasks. [2].



2.1.3 Architectural Choices and Training Techniques

Recent developments in visual-based Multimodal Large Language Models (MLLMs) have taken multiple
architectural, alignment, and training approaches [18]. The goal is to fit the language model towards the
language processing section of the task while aligning the vision model to the corresponding visual task,
using a newly trained feature mapping mechanism that can relate the image and text features of the two
or multiple models.

The newest architectures for vision-based MLLMs have been developed to make a more efficient cross-
modal attention mechanism for better fusing different models. For example, the LAVIS framework [19],
which we will use for training our network, is a unified structure that can be applied to many different
vision-language tasks. The architecture can integrate many different advantages of the vision model. For
example, it can apply vision networks like BLIP [14]that use novel pretraining strategies.to improve
image-text alignment; the Flamingo model [20] introduces an interleaved architecture.formore efficient
multimodal reasoning; and CLIP [21] which employs contrastive learning.on vast amounts of image-text
pairs from the internet, enabling zero-shot classification capabilities(which BEIP refines the network by
using captioning and filtering to create high-quality training data).

The developments in architectures and training methods of vision-based'MLLMs have improved
multiple capabilities and the model’s performance on various tasks. However, cross-modal attention and
understanding abilities remain major points that need to be.solved, as understanding linked models would
cause accuracy deficits or potential biases in large-scale pretraining datasets.

2.1.4 Performance Analysis

Knowing that Vision-Language Models (VLMs) have the capabilities to be used in a diverse set of tasks,
standardized performance analysis tests should be made in order to reduce the incomplete reports and
problems on lack of transparency in orderto demonstrate the effectiveness of new VLMs that are being
developed [22].

To address these limitations, such‘analysis‘frameworks, like the Holistic Evaluation of Vision-Language
Models (VHELM) v1.0 [22] and"'scalable solutions that rely on already annotated benchmarks are
implemented to test the overall'ability of the VLM. Task-specific tests also have evaluation benchmarks,
such as the METEOR and CIDEr benchmarks, regarding the captioning ability of VLMs, which also
demonstrate the model’s ability to handle specific needs and datasets. These frameworks aim to increase
transparency and provide a more fair.and comprehensive understanding of VLMs [23].

Based on the given frameworks, VLMs have been analyzed to have deficits in their abilities to handle
training and validation on imbalanced datasets, where the given dataset is skewed or poor in maintaining
a normal distribution, causing minor classes to be ignored due to model bias [24] [25]. Encountering this
performance error was likely.caused by the dataset preparation, preprocessing, and alignment steps.

As larger models with more parameters and layers have been believed to learn more relations between
contents, and the learning abilities drop when too many layers are added [?], larger VLMs are hard
to fine<tune and.correct minor errors once it was trained. No current method could escape the long
fine-tuning process; however, researchers have designed benchmark probing tasks that would classify
tasks with specific properties as each evaluation field with annotations provided as ground truth. However,
these.methods.are not scalable and may not cover all limitations of a certain VLM [23].

Regarding VLLMs’ performance, many tests and benchmarks can evaluate certain aspects of the
model. However, analysis and fine-tuning the model are expensive, resulting in improvements in model
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architecture more often than retraining on a slightly optimized model. As we used in our experiments,
we will use the standard benchmarking methods such as BLEU-N, ROUGE-L, CIDEr, METEOR; and
SPICE to evaluate our model. with previous works.

2.1.5 Applications

Vision-Language Models (VLMs) can be applied across various visual recognition tasks, such as Visual
Grounding.

In this task, models need to understand texts and their regions of interest inside:the image, aiding
in object detection, scene understanding, and human-computer interaction. This.also relates to.image
captioning, where obtaining a decent answer to a situation requires knowledge of all the relationships of
the features inside each region group of a single image.

VLMs have been adapted for specific domains to meet production requirements or'dailylife usage. In
the automotive industry, for example, VLMs assist in autonomous driving by interpreting visual data with
textual inputs like traffic signs or navigation commands, and this would be the implementation of multiple
models that would be working on image captioning and system task understanding. In security, they help
surveillance by analyzing video feeds and generating reports. In the photography industry, they could
assist in making suggestions for modifications to the color.of-an image or to include other generative
components.

Another major field that is separated from individual research VLLMs is medical applications, particu-
larly in medical report generation and visual question answering, where super-leveled VLMs with perfect
accuracy are needed that would require government project investment or company research. These
models can interpret medical images, generate detailed-diagnostic reports, and answer questions related
to patient data and medical imagery, thus aiding healthcare professionals in diagnosis and treatment
planning.answering [2].

2.2. Captioning

For captioning images, early methods to caption image-to-text tags were based on retrieval and template
methods. They were very limited in their ability.to generate diverse and contextual accurate captions [26].
This was primarily due to the incoherence between the image and text models, as each model can finish
their task in feature extracting but faces problems when collaborating on a single query.

Later on, the introduction of deep learning has revolutionized the field of image captioning. Deep
learning-based techniques typically employ an encoder-decoder framework, where the encoder extracts
features from the image, and the decoder generates the corresponding caption. Attention mechanisms
have also supported.the model by focusing on the region of interest (Rol) on the image; these mechanisms
allow the model to generate 'more contextually accurate captions [27]. Training strategies, including
reinforcement learning and adversarial training, have been explored to improve captioning performance.

Large-scale models'with more layers, parameters, or training contexts are more effective for the learning
ability of visual neural networks. This could be implemented during the pre-training and fine-tuning
phases, but they increase the cost of training the models and the challenge to make a perfect dataset or its
processing program [28].
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Figure 1. Overview of the proposed method. Encoded Image and Text passes through a content-object split latent
space into one feature and LLM into the final context.

3. Method

3.1. Overview

Our proposed model framework has integrated multiple new cutting-edge methodologies presented
recently by other researchers while reducing their inherent problems.

In the preprocessing stage, we have standardized all the images into the same dimension while removing
all the tags on the images to train the unsupervised model. Next, in the pre-training stage, we encoded
the image and the text separately. The images were encoded with a pre-trained ResNet. The encoded
feature vectors will pass through a K-Means clustering through the Instance and Cluster Discrimination
processes implemented from the paper.Unicom [17]. On the other hand, the text will be preprocessed and
encoded using the BERT model{13].

We have employed a multi-stage training process inspired by LLaVA and BLIP-2. The model brings in
the first step of bootstrapping multimodal representation learning from BLIP-2 [10]. Here, the program
projects the outputs of the pre-trained Convolutional Neural Network(ResNet as the image encoder [29])
with the pre-trained language encoder’s output. This ensures that the pre-training method is relatively
computationally-efficient compared to training a multipurpose unimodal model, and it enhances the
understanding of the model’s image and textual content.

After that; the features are forwarded into the context-object split (COS) factorization that we integrated
from the COS-CVAE paper [12]. This module partitions the latent space into the contextual and object-
specific'components for the model to capture a broad view of the entire picture depicted in the inputted
feature and the specific components of all the details in the feature array. This can ensure the accuracy
and the relational awareness of the generated captions. This also greatly enables the model to predict and



handle objects not encountered during the training procedure. Additionally, the model uses a pseudo-
supervision mechanism to retrieve partial captions from other similar images when one image lacks a
caption while diversifying the captions that are possible to be accurately generated from each picture.

In the second step, we used the finetuning method introduced from LLaVA [11]. A projection layer is
added from the original frozen image encoder(which will not be finetuned). Then, the projection layer
and the language model are fused for finetuning. This helps the language model learn the relationships
between the features of the projection layer and the text without making a combinednetwork that can
interpret text and images at the start.

We are integrating the abovementioned mechanisms in a robust and versatile model. This architecture
will have the advantages of efficient pre-training methodologies, end-to-end multimodal-integration,
multi-image processing capabilities, and context-object split latent space factorization:

3.2. Vision-Language Model Pre-training

To begin with, the pre-training process for vision-language models-consists.of 'standardizing all input
images to uniform dimensions to ensure consistent input for the model. At the same'time, all the labels for
the images are removed to enable the model to undergo unsupervised training..After the preprocessing,
the images and text are encoded separately. We will first discuss the pre-training method for the image
and then for the text.

3.2.1 Vision Model Pre-training

For image encoding, the pre-trained vision convolution networks(ResNet [29]) are dedicated to extracting
the high-dimensional feature vectors, capturing visual characteristics and spatial relationships in the
whole picture level of the images. Furthermore, this prevents requiring training from scratch(which is
very costly and computationally expensive). These feature vectors are combined into a single dataset,
which will encounter a clustering process using the. K-means algorithm. This unsupervised learning
approach enables the model to obserye relationships.between image features with underlying patterns and
associations within the visual information.

Cluster
o . o
e 9g @
© e

Figure 2. Encoding and clustering process for input images

Here, we have applied and adapted the Instance and Cluster Discrimination in feature representation
learning fromUnicom’s paper [17].

A set.of n images used for training is represented as X = {z1, z, ..., x,}. The primary objective of
feature representation learning is to train a mapping function f that can project images X onto a set of



embeddings F = {eq, e, ..., e,}, where each e; = f(z;). This mapping is able to relate similar features
among the set of images.
Instant Discrimination uses the contrastive loss function in order to complete the mapping process,

where the formula is:
exp el Te,
mstance - Z 10 ) (1)

> i Oexp(e e;)’

where ¢; and e; represent the positive embeddings of instance i, and ¢/; includes one positive embedding
for ¢ and m negative embeddings from different instances [17].

In contrast, Cluster Discrimination involves two key steps: clustering and disctrimination. During
the clustering stage, pseudo-class labels are assigned to each instance to facilitate a pseudo-supervised
training process. K-Means Clustering is performed automatically on features e; = f(z;).to define k
clusters, with each centroid w; representing the archetype of the i-th cluster. The training dataset {z; }7_,
is thus divided into k classes, each represented by the prototypes W= {w;}%_,

The discrimination stage refines a conventional softmax classification loss:

exp(wie;
cluster = Z 10 p ) (2)

3 . exp(ijei) ’

where ¢; is the embedding of the image x;, and x; is an example of the class represented by w;.

The k-means clustering algorithm is applied here, which would divide the set of vectors or the features
we have obtained into k& distinct groups based on proximity. To enhance the accuracy of the representation,
we combine image and text features as provided by the'pre-trained ResNet model, leveraging their
combined attributes. The clustering step simultaneouslylearns a d x k centroid matrix W and the cluster
assignments y; for each image x; by solving the following optimization problem:

n

1
min —» - min O(f{a,) (7)) - Wyl sty =1, 3)

WeRdxk 1 = y;{0,1}*
1=

where f(z;) and f’(z}) are the image and text feature embeddings, respectively, ® is a feature ensemble
function, W € R¥** is the eentroid matfix, y; € {0, 1}" is a binary label assignment vector, and 1; is a
vector of ones of dimension k. A simple averaging mechanism is used as the ensemble function, utilizing
the aligned visual-textual representation provided by the pre-trained vision model [17].

3.2.2 Language Model Pretraining

The pretraining method for the language model is based on the BERT (Bidirectional Encoder Repre-
sentations from Transformers) methodology, which creates contextual embeddings for the text in the
datasets [13]. The text or labels associated with each image are tokenized using BERT’s WordPiece
tokenizer, forming out of vocabulary words as sub-word units. The tokenized text is then processed
through a pre-trained BERT model.

BERT’s self-attention mechanism allows it to consider the entire context related to each word and
output-a high dimensional vector(usually 768 or 1024 dimensions). To align with the image features, the
representation of the special [CLS] token or the aggregate embedding derived from the mean pooling of
all token vectors as the final text representation.
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Figure 3. Pre-processing of textual data using the Bidirectional Encoder Representations from Transformers(BERT)
method [13]

This encoding procedure allows the textual features to be understood with linguistic constructs and
relationships. In contradiction to the image preprocessing phase, no clustering is executed on the linguistic
features.

As delineated in Figure 3, we designate the-input embedding as £/, the terminal hidden vector of the
special [CLS] token as C' € R and the terminal hidden vector for the i input token as T; € RY. The
input question and passage are encapsulated as a singular packed sequence, with the question harnessing
the A embedding and the passage leveraging the B embedding. Solely during the fine-tuning phase are a
start vector S € R and an'end vector B € R introduced. The likelihood of the word 7 marking the
inception of the answer span is-ecalculated as a scalar product between 7; and .S, succeeded by a softmax
operation across.all the words in the paragraph:

6S T

- Zj 5T

A parallel computational mechanism is implemented for the termination of the answer span. The
quantitative assessment of a candidate span extending from position ¢ to position j is formulated as
S'- T, + E< I, where the span exhibiting the maximal score under the constraint j > 4 is employed for
prediction. The optimization criterion is defined as the summation of log probabilities corresponding to
the true initiation and termination positions. The model undergoes parameter optimization for 3 epochs
utilizing a learning rate of 5 x 1075 and a batch size of 32 [13].

P “4)
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3.3. Vision and Text Feature Alignment

To effectively align visual and textual information, we used both visual transformers and conyolution
networks as image encoders. Firstly, the static encoder(CNN) will encode the image into features. Then,
visual transformers partition the features into patches and encode them into a sequence of embeddings.
After that, the Q-Former aligns the image and text features to input them into the LLM. The following
section explores the implementation of the alignment.

3.3.1 Visual Transformer Assisting Image Encoder

— |

Feed Forward Feed Forward
O

O
Sel
Attention

" A |

Feed Forward
U Attention - Attention

——0
Bi Self-Att
S e e

grounded Text
Text Encoder | A [Decode]+ [...]

[CLS+ [ -] [Encoder]+ [...]

i

Image Encoder

l
g

Figure 4. Image and Text encoded passes through a‘content-object split latent space into one feature and LLM into
the final context.

On the bottom level, we use a pre-trained ResNet model as a static image encoder to extract high-
dimensional feature vectors from images. We fine-tune and optimize the network during training to
integrate multiple computing moedules'in our VLM model. Extracted high-level features are then passed
to the visual transformers.

Visual transformers can efficiently help the encoding process before feeding the encoded features
into the LLLM. This approach; first introduced by BLIP v1, significantly reduces computational load and
memory usage ‘compared to utilizing pre-trained object detectors for visual feature extraction [10] and has
been increasingly adopted by recent methodologies in comparison to utilizing pre-trained object detectors
for'visual feature extraction. A visual transformer will be used to partition an input image(here, it will be
the encoded feature list from the static CNN encoder instead) into discrete patches and encode them into
a sequence of embeddings. An addition [CLS] token will be added [14].

Continuing and adapting the method proposed by BLIP V1 into parts of our framework for our
model to understand the image-text pairs and generate captions requires a multimodal mixed encoder-
decoder (MED) architecture. The mechanism processes text and images separately in their respective
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encoder models. Specifically, we use an Image Grounded Text Encoder, which incorporates an additional
cross-attention (CA) layer within each transformer block of the text encoder, positioned between the
self-attention (SA) layer and the feed-forward network (FFN). A task-specific [Encode] token is
appended to the text, and the resulting embedding of [Encode] serves as the multimodal representation
of the image-text pair. For decoding, the bidirectional self-attention layers of the image-grounded text
encoder are replaced with causal self-attention layers. A [Decode] token marks the beginning of a
sequence, and an end-of-sequence token indicates its termination.

3.3.2 Vision-Language Representation Learning

After the visual transformer outputs the embeddings, we utilize the Q-Former, which employs learnable
query vectors to identify the most relevant visual features. This aligns visual'representations with textual
information, reducing the language model’s computational load for synchronized feature learning.

We integrate BLIP-2’s alignment mechanism into our pretraining mechanism to-enhance the alignment
between visual and textual modalities. This approach consists of two pretraining strategy phases using a
lightweight Querying Transformer (Q-Former). The Q-Former is the bridging mechanism that facilitates
the understanding of information between trained image encoders and large-scale language models
(LLMs).

The Q-Former is set in this phase with the pre-frozen large language model (LLM). The Q-Former
is conditioned to generate text from visual inputs by interpreting the visual representations in a manner
perceptible to the LLM. Consequently, in the generative phase, the visual model’s outputs are channeled
to the Q-Former for transmutation into textual form.

Pre-training Objectives: We jointly optimize three objectives during pretraining, with two understanding-
based objectives and one generation-based objective..Each image-text pair only requires one forward
pass through the computationally heavier visual transformer, and three forward passes through the text
transformer, where different functionalities are-activated to compute the three losses as delineated below:

Image-Text Contrastive Loss (ITC): <The ITC loss activates the unimodal encoder. It aims to align
the feature space of the visual transformer.and text transformers’ feature space by encouraging positive
image-text pairs to have similar representations in contrast to the negative pairs. It is an effective method
for improving vision and language understanding. We follow the ITC loss, where a momentum encoder
is introduced to produce features. Soft labels are created from the momentum encoder as training targets
to account for the potential positives in the negative pairs.

Image-Text Matching Loss (ITM): The ITM loss activates the image-grounded text encoder. Specif-
ically, we have used the Contrastive Loss method for the image model according to I'TM. This aims
to learn an‘image-text multimodal representation that captures the fine-grained alignment between vi-
sion and-anguage while allowing a wide diversity of image features and language tags to exist in the
model:ITM is a binary classification task where the model uses an I'TM head (a linear layer) to pre-
dict whether an image-text pair is positive (matched) or negative (unmatched) given its multimodal feature.
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In order to find more informative negatives, we adopt the hard negative mining strategy, where negative
pairs with higher contrastive similarity in a batch are more likely to be selected to compute the loss.

3.4. Language Modeling Loss

To complete the alignment and integration process, we focus on generating textual descriptions
from visual inputs using Language Modeling Loss(LM Loss), which activates the image-grounded text
decoder to generate textual descriptions from visual inputs. It undergoes a Cross-Entropy Loss (CEL)
optimization, which allows the model to maximize the likelihood of the text in an auto-regressive way. A
label smoothing technique with a coefficient of 0.1 is integrated during the loss computation.

In pursuit of efficient pre-training with multi-task learning, the text encoder and image-decoder share
parameters, except the Self-Attention (SA) layer, since the SA layers are pivotal in capturing the nuances
between encoding and decoding tasks. Specifically, the encoder utilizes bidirectional.self-attention to
construct representations of the current input tokens, whereas the decoder employs causal self-attention
to predict subsequent tokens. Conversely, the embedding layers, Cross-Attention (CA) layers, and
Feed-Forward Network (FFN) perform similar functions in both tasks;-thus, sharing these layers can
augment training efficacy and capitalize on the synergies of multi-task learning.

4. Caption Decoder
4.1. CapFilt: Enhancement of Text Corpus Quality

Due to the high annotation costs, there is a‘need for high=quality, human-annotated image-text pairs
{(In, Ty)}, such as those found in the COCO dataset. Current résearches tries to leverage more extensive
datasets of image and alt-text pairs {(Iy, 7).}, procured automatically from the web. However, these
alt-texts must be more aligned with the visual content, reducing the noise that detracts from learning
vision-language relationships.

Here, we will use the method Cationing and Filtering (CapFilt) [14] to enhance the quality of the
textual dataset. It encompasses two distinct modules:

» Captioner: Generating descriptive captions from web-sourced images.

* Filter: Eliminating non-relevant or incorrect image-text associations from the dataset.

Both modules-are initialized with a pre-trained MED model and undergo independent fine-tuning using
the COCO dataset. The captioner,an image-grounded text decoder, is refined with the LM objective to
transcribe texts given images, ylelding synthetic captions 7 for web images I,,.

The filter, an image-grounded text encoder, is fine-tuned with objectives ITC and ITM to detect text-
image correspondence: This eliminates noisy texts from the original web texts 7T}, and the synthetic texts
Ty, identifying a‘text as noisy if the ITM head detects it as incongruent with the image.

The filtered image-text pairs are combined with manually annotated pairs to create a new novel dataset
that can train.complex and advanced models.

Unlike traditional pre-trained Convolutional Neural Networks or the more efficient R-CNN frameworks,
we have.used the Transformer architecture as our model’s primary visual encoder. The encoder extracts a
set of grid features V; = v, v, . . ., v,, from input images, where v; € R?, D represents the embedding
dimension of each grid feature, and m denotes the total number of grid features.
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Based on the transformer architecture, a novel encoder is implemented to refine these initial grid
features, capturing how they relate. A mean-pooled global feature v, is also integrated into the Window
Multi-Head Self-Attention (W-MSA) and Shifted Window Multi-Head Self-Attention (SW-MSA ) mecha-
nisms. The refining encoder includes N sequentially stacked blocks, each alternating between W-MSA
and SW-MSA modules, followed by a feedforward layer. The formulation for the /-th block-is.as follows:

Acl: = (V(l;_l + (WéVé_l, Wi [VGZ_I;U;_I]S W [Vé_l;vé*L)) : (5)
= (ot (Wl Wi Ve o T W v L)) ©)
VCl?: <Aé+(Aé)>a (7
vy = (% + (95)) (8)

N

The output refined grid features V2 and global feature v p

content processing [14].

are subsequently input to the decoder for visual

4.2. Multi-Modal Decoder

The decoder sequentially generates captions based on the encoder’s processed global and grid features.
This stage is essential for integrating visual and textual-modalities. The decoder architecture comprises
N sequentially arranged blocks, each containing four primary.components that we referenced from the
paper on End-to-end transformer based model [30]:

Pre-Fusion Module: This stage starts the inter-modal interaction by combining the previously generated
words with the refined global features.

Language Masked MSA Module:. This‘module will help the related interactions between the generated
captioning words, which will result'in-better.caption coherence.

Cross MSA Module: Including a Multi-Head Self-Attention mechanism followed by a FeedForward
layer, this is the second inter-modal interaction in the process to further relate visual and textual data.

Word Generation Module: _Finally; to generate the texts sequentially in a normal probability of the
learned content; a linear layer with a softmax function is employed in this module

By leveraging both global'and grid features from the encoder and employing multiple stages of inter-
modal interaction, our model can produce a more nuanced and comprehensive integration of visual and
textual information with better caption coherence by the Language Masked MSA Module. This decoder
structure complements the Context-Object Split (COS) architecture we used during the encoding process,
providing an effective mechanism to utilize contextual and object-specific information during caption
generation.
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5. Experiment
5.1. Implementation Details

Our model, named CelsiaNet, is derived from our previous project’s name, CELSIA [31]. However, it
distinctly differs as it reoriented the goal to focus on multi-modal vision-language models(VLMs) rather
than the computer vision automation framework of the earlier CELSIA project. CelsiaNet is developed
within the LAVIS framework [19], which uses BLIP-2’s visual encoder for image processing, [.LaVA’s
language model for text generation, and a Q-former for multimodal alignment. The/Q-former, similar
to BERT architecture, utilizes learnable query vectors to refine the extraction of visual features, thereby
enhancing multimodal alignment. Our model is trained on eight NVIDIA A100-80GB GPUs, uses the
Adam optimizer, and has a batch size of 768. Our models are trained for fiverepochs.with an initial
learning rate of 1 x 10~%, utilizing a cosine decay schedule. The LLM’s beam-size.is set to three during
inference, and a solitary caption is produced for each referenced region: This training periodicity is
similar to the one stated by ControlCap [32], which we used in order to.compare statistics in a controlled
manner.

5.2. Datasets

For dense captioning, CelsiaNet is trained to utilize the-Visual Genome (VG) and VG-COCO datasets,
while the model is trained on the Visual Genome (VG)-and RefCOCOg datasets for referring expression
generation. The VG dataset consists of annotations.of objects, attributes, and relationships, while
VG-COCO combines the data from parts of VG V1.2 and MS.COCO. RefCOCOg includes detailed
descriptions of specific regions from diverse perspectives [32]:

5.3. Evaluation

We follow the evaluation methods established in previous research, “ControlCap” and “DynRefer” [32]
[33] to measure the performance of CelsiaNet in. dense captioning tasks on VG and VG-COCO datasets,
as well as in referring expression generation tasks on.VG and RefCOCOg datasets. We use Mean Average
Precision (mAP) as the primary metric for dense captioning, calculated across various localization and
language accuracy thresholds. We use Intersection Over Union (IoU) thresholds of 0.3, 0.4, 0.5, 0.6,
and 0.7 for evaluating localization and METEOR score thresholds of 0, 0.05, 0.1, 0.15, 0.2, and 0.25 for
evaluating language generation. We use a GRiT model trained on VG to determine object locations, as
CelsiaNet does not specialize in object location detection.

To evaluate the region-level-.captioning performance without the influence of localization, we asses
the model using ground-truth bounding boxes during inference. For referring expression generation, we
use METEOR and CIDEr scores to measure the quality of the captions produced by CelsiaNet. Unlike
previous methods, CelsiaNet'ecan generate customized captions based on interactive controls. The first
noun in'the ground-truth caption is utilized as the interactive control during inference to test this feature.
For example, in the caption, “A tall building stands against the skyline,” the word “building” is used as
the interactive.control [32].

5.4. Results and Analysis

By running the experiment and testing the mAP, evidenced by the results in Table 1, our approach
achieves the-highest mAP scores of 43.2%, 44.0%, and 44.4% on VG V1.0, VG V1.2, and VG-COCO
datasets respectively on the With Ground Truth Test, surpassing the previous best results by a substantial
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Table 1. The Results for Different Methodologies on Visual Genome Dataset. (Metrics from other works obtained
from: [32])

Methods GT localization VG VIO ‘ VI?}A\I; 1(%)‘ VG-COCO
FCLN N 54 5.2 -
JIVC N 9.3 10.0 -
ImgG N 9.3 9.7 -
COCD N 94 9.8 79
COCG N 9.8 10.4 8.9
CAG-Net N 10.5 - -
TDC N 11.5 11.9 11.9
GRIiT N 15.5 16.4 -
CapDet N - 154 14.0
DCMSTRD N 13.6 13.4 16.1
ControlCap [32] N 18.2 185 18.4
Ours N 19.5 194 20.2
FCLN Y 27:0 - -
JIVC Y 33.6 - -
CAG-Net Y 36.3 - -
GRIT Y 40.0 40.3 -
BLIP2 Y 37.7 37.9 36.9
ControlCap [32] Y 424 42.8 43.2
Ours Y 43.2 44.0 44.4

margin, with another improvement from the Control Cap’s results. The results correlate to higher
performance at a better and larger dataset(from VG V1.0 to VG-COCO).

We analyze this change and improvement to be baselined by the end-to-end finetuning and the Content-
Object Split(COS) that we-have.introduced from previous research. This explains the overall performance
to increase a long range from BLIP V2(37.7—37.9—36.9 VS 43.2—44.0—44.4). Additionally, our
design of the attention mechanisms derived from BLIP V2 at the end of each image encoding process
redirects the embeddings to be more concentrated. Consequently, adding preprocessor methods from
language processing algorithms also improves the total performance, as we have used the combinations
of BERT preprocessor alongside the finetuned Q-Former at the end of the text encoding stage. As
demonstrated in the test, older models tend to perform indifferently with a finer and larger dataset; due to
the absence of self-attention and projection at the end of their encoding processes, their understanding
of the original content is insufficient to differentiate from the experimental results. With the newly
developed Control Cap algorithm, which has also integrated the BLIP V2 method in their encoders,
we have improved the statistics by a substantial amount. This is due to the projection method, which
better relates the textual encodings to the text when compositing in the ITC. We also have demonstrated
a momentum on correlation to the given dataset, which symbolizes that the model does take in more
understanding each time when better data are given to relate to. This has contributed to the increase in
precision that our model has made.
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Table 2. Parameters and Results for Different Methodologies on RefCOCOh and VG tests. (Metrics from other
works obtained from: [32])

. RefCOCO VG
Method - Model size "yeTEOR | CIDEr | METEOR [ CIDEr
SLR+Rerank <1B 15.9 66.2 - -
GRIT  <IB 152 | 716 | 171 | 1420
Kosmos-2 1.6B 14.1 62.3 - -
GPT4Rol 7B - . 174 - 1452
RegionGPT 7B 169 | 109.9 |  17.0- . 145.6
GLaMM 7B 162 | 1050 | 186 | 1578
Alpha-CLIP+LLaVA 7B 167 | 1092 |, 189 | 1603
Osprey 7B 16.6 108.3 - -
ControlCap ~ 4.2B 170 | 1114 | 1204,/ | 1819
Ours 42B | 173 | 1126 | 217 1826

As for the No Ground-Truth Localization of our model, our model performs scores around 1 point
more than the ControlCap model on VG V1.0 and VG V1.2 datasets while gaining a larger gap of
around two more points than ControlCap on the VG-=COCO dataset. 'As our model’s images are trained
under the unsupervised learning approach (that'drops out the annotations at the start) in contradiction
to ControlCap’s supervised approach, our model has performed exceptionally well on the VG-COCO
dataset by the outstanding accuracy on unannotated, no ground truth test. However, the absence of
annotations did not cause much deficiency'in understanding the model of images that come with annotated
results(VG V1.0 and VG V1.2 datasets).. Fromthe results, with or without ground truth, our model
demonstrates a better understanding ability than previous supervised learning models such as ControlCAP,
DCMSTRD, and CapDet, even without the annotations given in the dataset. This proves our model’s
zero-shot capability in determining the caption for the images and our approach’s improvement in the
research of VLMs.

We evaluated our model’s.understanding: ability using METEOR and CIDEr on RefCOCOg and
VG datasets to test our model’s understanding ability. As shown in Table 2, our model significantly
outperforms recently-developed models' (CVPR 24’), especially on the VG test, achieving the highest
improvement. With a smaller model size (4.2B vs. 7B), these strong results are attributed to our fine-tuned
language methods (Q-Former and'BERT preprocessor) and the integration of projected features with
image features (post-self-attention), which enhances information exchange in the ITC portion. The new
attention-and projection methods improve performance compared to previous research.

In our.model’s offline evaluation results of our proposed model and other existing state-of-the-art
models on'the MSCOCO “Karpathy” test split(Table 3), for fair comparisons, we evaluated our model
using both the single model and ensemble model test by training four models using SCST. Our results in
Table 3 show.that our model has achieved state-of-the-art performance across all metrics compared to
previous works. For the single model experiment, we attained a CIDEr score of 139.2%, overcoming the
scoresof RSTNet [34] and DLCT [35] by 3.6% and 5.4% respectively; It also shows an improvement
of 0.8%.in BLEU-1, 1.3% in BLEU-4, 0.9% in METEOR, 1.1% in ROUGE-L, and 1.3% in SPICE,
compared to the best statistics of the listed newly developed state-of-the-art models.
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Table 3. Results of the offline evaluation for our model alongside other leading models on the MSCOCO “Karpathy®’
test split. The metrics B-IV, M, R, C, and S correspond to BLEU-N, METEOR, ROUGE-L, CIDEr, and SPICE,

respectively. (Metrics from other works obtained from: [30])
Single Model Ensemble Model

Models

B-1 B4 M R C S B-1 B4 M R C S

CNN-LSTM based models
SCST - 342 267 557 114.0 - - 354 27.1 566 1175 -
RFNet 79.1 365 277 573 1219 212 804 379 283 5831257 217
Up-Down 79.8 363 277 569 120.1 214 - - - - - -
HAN 809 37.6 278 581 121.7 21.5 - - - - - -
GCN-LSTM 80.5 382 285 583 1276 22.0 809 383 28.6/( 58.5 128.7 221
SGAE 80.8 384 284 58.6 127.8 22.1 81.0 39.0 284 589 129.1 222
AoANet 80.2 389 292 588 1298 224 81.6 402, 293 1594 '132.0 2238
X-LAN 80.8 395 295 592 1320 234 816 403 298 59.6° 133.7. 23.6
CNN-Transformer based models

ORT 80.5 38.6 287 584 1283 22.6 - - - - - -
ETA 815 399 289 590 127.6 22.6 815 399 289 590 127.6 22.6

X-Transformer 809 39.7 295 59.1 1328 234 8L7 40.7 299 597 1353 238
M? Transformer 80.8 39.1 292 586 131.2 22.6 .82.0v 40.5. 297595 1345 235

RSTNet 81.1 393 294 585 1333 23.0 - - - - - -
RSTNet 81.8 40.1 29.8 595 1356 233 - - - - - -
GET 81.5 395 293 589 131.6 .228..82.1/ 406, 29.8 59.6 135.1 23.8
DLCT 814 398 295 59.1 1338 .23.0 822 <40.8 299 598 1375 233
Ours 82.6 414 30.7 60.6 1392 .24.7 .839 42.6 31.0 613 142.0 248

Table 4. Results from the online evaluation of our proposed model compared to other state-of-the-art models on the
MSCOCO dataset. (Metrics from other works obtained from: [30])

Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40
SCST 78.1 937 61.9+ 86.0 47.0 759 352 645 270 355 563 707 1147 116.7
GCN-LSTM 80.8 952 655 .893 50.8 803 387 697 285 37.6 585 734 1253 126.5
Up-Down 80.2 952 64.1 888 49.1.1794 369 685 276 367 571 724 1179 120.5
SGAE 81.0 953 .656 895507 804 385 697 282 372 586 73.6 1238 126.5
AoANet 81.0. 95.0 ..658 896 514 813 394 712 29.1 385 589 745 1269 129.6

X-Transformer 819" 95777 669 9057524 825 403 724 296 392 595 750 131.1 1335
M? Transformer 81.6°196.0 66.4 90.8° 51.8 827 397 728 294 390 592 748 1293 132.1

RSTNet 82.1 964 (670 913 522 83.0 400 731 29.6 39.1 595 746 1319 1340
GET 81.6° 96.1-,.665909 519 828 397 729 294 388 59.1 744 1303 1325
DLCT 824 966 674 917 528 838 406 740 298 39.6 598 753 1333 1354
Ours 834 (977 68.6 923 541 844 419 746 306 404 614 764 1375 1393

On the other hand, our ensemble model has demonstrated high consistency across different training
runs and outperforms other models by more than 1.0% across all metrics. Notably, the ensemble model
achieves a CIDEr score of 142.0%, outperforming DLCT and GET by 4.5% and 6.9%, respectively.

In Table 4, we list the performance of our model in comparison to previous state-of-the-art models
on the MSCOCO official online test server. We used five reference captions(c5) and forty reference
captions(c40) for each testing method. Our model has achieved the highest scores across all metrics by a
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decent improvement of around 0.8% to 1.0%, while our CIDEr scores for ¢5 and c40, which are 137.5%
and 139.3%, respectively, representing improvements of 4.2% and 3.9% over the metrics of DLCT.
These results underscore the robustness of our model across different evaluation criteria. The consistently
excellent performance under the tests for having either 5 or 40 reference captions demonstrates the model’s
ability to generate captions that align well with human-generated descriptions while outperforming other
models by having a significant lead under situations when fewer reference captions were given(c5).
Another notable improvement is that the CIDETr scores(sensitive to caption quality and-relevance); similar
to the last test, perform with excellent accuracies that surpass the results of the other models. Our model
has outperformed other models in all the comparison metrics, especially for CIDEr, demonstrating our
framework’s effectiveness and efficiency. Moreover, in order to take into account.this, we analyze this
in two aspects: From a module-level analysis, in contrast to models utilizing region-level features or
a combination of region and grid-level features, our approach offers a better-computationally efficient
method using Content Object Split. The end-to-end fine-tuning method allows the model to better relate
the possible relationships in image scenarios. On the other hand; the‘basis of the program has enabled
impressive performance improvements and a stable architecture in our.model. By integrating a multi-stage
training process inspired by LLaVA and BLIP-2 [10] [11], along with-the context-object split (COS)
factorization [12], the model achieves a more detailed understanding of both image context and specific
object details. For the training method, the unsupervised training with.the pseudo-supervision mechanism
enhances caption diversity while maintaining accuracy; while the fine-tuning method allows for better
text-image relationship learning. These synchronous.components produce more coherent, accurate, and
diverse captions, resulting in gains across all test scores and state-of-the-art results in image captioning
tasks.

6. Conclusion

In this research, we have developed an advanced Multimodal Vision Language Model for better zero-
shot image captioning. We have integrated advantageous modules from previous researchers’ works
and adapted them with our mechanisms that assure coherence. These include the methods: Mechanisms
derived from BLIP V2, implementing a Content-Object-Split(COS), creating an effective combination
of BERT preprocessor with the. fine-tuned Q-Former for text encoding, and utilizing the Image-Text
Composer(ITC). All of these are carried out using an end-to-end fine-tuning approach.

Our proposed model consistently outperforms existing state-of-the-art methods across various datasets
and evaluation mettics, including Visual Genome, RefCOCOg, and MSCOCO. We achieve the highest
scores in mAP, METEOR, CIDEr, BLEU, and ROUGE-L, showing the effectiveness of our approach in
both region-level captioning and overall image captioning tasks. This superior performance is attributed to
its ability to effectively leverage model size and architectural innovations, as evidenced by the significant
improvements over solid baseline models like ControlCap and DLCT.

There-are several avenues for developing VLMs, as we can use more complex attention techniques,
such as multi-headed attention, to improve the model’s ability to focus on relevant image features. Unlike
basic image regional analysis, we can also leverage a layer-of-depth calculation model to give the model
spatial awateness that it can precisely compute. Integrating more recent language models or fine-tuning
techniques could improve the text generation component. These are all ways the VLM may be improved,
and we will continue exploring them in future research.
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