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Abstract

The investors in China are primarily retail investors, and retail investors’ information

sources rely on channels such as financial reports or news. They are prone to overreaction

to such information in a short period of time, exacerbating the asymmetry of stock returns,

thus affecting coskewness risk. This phenomenon is usually corrected by the market in a

relatively short period of time. Therefore, we speculate that coskewness risk is an impor-

tant risk in China’s A-share market, and its impact on stock returns is mainly reflected in

the short-cycle effect. This article explores the impact of co-skewness risk on asset pricing

in China’s A-share market, especially analyzing the pricing ability of co-skewness on stock

cross-sectional returns under different frequencies/cycles from a frequency domain perspec-

tive. By combining the skewness asset pricing model and the extended Wold representation

theorem, we calculate the coskewness at different frequencies and study its impact on stock

returns. The results show that short-period coskewness plays a more significant role in stock

return pricing. In particular, coskewness with a period of 1-4 months (consistent with the

earnings release cycle and the news impact cycle on stocks) still has a strong ability to

explain stock returns even after considering the impact of other factors. The research in

this article not only provides a new perspective for understanding the role of coskewness

in asset pricing, but also reveals the unique impact of retail investor behavior on China’s

A-share market. This finding has practical implications for short-term investment decisions

and risk management, while also offering theoretical support for improving risk regulation

in China’s capital markets.

Keywords: coskewness, frequency analysis, asset pricing, extended Wold representation,

China A-share stock market
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1 Introduction

As one of the largest emerging markets in the world, China’s A-share stock market

has a unique investor structure. Unlike developed markets, which are dominated by in-

stitutional investors, China A-share stock market is primarily driven by retail investors.

According to the 2019 Shanghai Stock Exchange Annual Report, the total number of

investors in China’s A-share market was approximately 214.5 million, of which 213.8 mil-

lion were retail investors, while only 700,000 were institutional investors. Retail investors

held 99.8% of the stock accounts1. Compared with institutional investors, retail investors

have weaker information collection capabilities and face challenges in accessing compre-

hensive and timely market information. This information asymmetry makes them more

prone to overreaction, contributing to the asymmetry in the distribution of stock returns.

When new information, such as news or earnings reports, emerges, retail investors,

due to their lack of professional expertise, often exhibit herding behavior. This leads

to a shift of skewness risk from individual stocks to the broader market, amplifying

systemic risk. For example, when a company releases an excellent quarterly financial

report, retail investors usually buy a large number of the company’s shares, causing the

stock price to rise sharply in the short term, thereby affecting the distribution of stock

returns. However, this overbought behavior caused by retail investors’ overreaction is

usually corrected by the market when the next quarterly earnings report is released.

This phenomenon shows that retail investors’ overreaction to earnings reports may have

a cyclical characteristic of about one quarter. The same is true for news information in

the market. A good (bad) piece of information may cause investors to be excited (panic)

in a short period of time, causing stock prices to rise (fall), but it does not last long.

Prices will return to their proper levels in the short term. These observations indicate

that the overreaction and information asymmetry among retail investors exacerbate the

asymmetry in the distribution of stock returns, and this effect generally exhibits a short-

1[See](Leippold et al., 2022)
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term cyclical pattern. Therefore, analyzing the cyclical nature of coskewness can help us

better understand stock pricing in China’s A-share market.

This paper combines the skewness asset pricing model with frequency domain anal-

ysis by employing the extended Wold representation to investigate the pricing ability of

coskewness at different frequencies (cycles). Using the extended Wold representation pro-

posed by Ortu et al. (2020), we could decompose stock returns and the market factor into

time series representing different frequencies. This allows us to calculate the coskewness

between stock returns and the market factor at various frequencies, thereby exploring

the explanatory power of coskewness across different frequencies/cycles in explaining the

cross-section of stock returns. It is worth noting that the representation of the extended

Wold representation is derived in the time domain. Therefore, although it has similar

insights with many frequency domain methods, this method is particularly suitable for

time series forecasting. Its adaptability of time and localization in both frequency and

time domain provide significant advantages in analytical applications.

By utilizing the extended Wold representation and combining it with traditional fi-

nancial models, we can examine the influence of different factors on stock returns across

different frequencies. In recent years, several studies have begun focusing on this area

(Chaudhuri and Lo, 2015,0; Bandi et al., 2019,0). For instance, Bandi et al. (2021) apply

the extended Wold representation to decompose the market factor into different frequen-

cies based on the Capital Asset Pricing Model (CAPM), thereby deriving market betas

corresponding to specific frequencies, and they refer the new model as the spectral factor

model. They find that a market beta with a cycle of 32- to 64-month horizon effectively

explain the cross-sectional variation in stock returns. The spectral factor model, con-

taining only this frequency component, exhibits the same explanatory power as other

multi-factor models. However, Bandi et al. (2021) build their spectral factor research on

CAPM, which is widely established in the literature that CAPM has several shortcomings

in explaining stock returns.
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CAPM posits that the expected return and risk of an asset can be described by its

mean and variance, and assume that asset return distributions follow a normal distribu-

tion. However, many scholars have found in subsequent studies that the return distribu-

tion of an asset does not necessarily follow a normal distribution, but instead exhibits

characteristics of ”peaked and thick-tailed” and ”skewed” distribution (Gray and French,

1990; Peiro, 1999). As a result, it has been argued that incorporating skewness into

CAPM is necessary (Levy, 1969; Alderfer and Bierman, 1970; Kraus and Litzenberger,

1976; Harvey and Siddique, 2000; Baruńık and Křehĺık, 2018). Notably, Kraus and Litzen-

berger (1976) firstly introduce the skewness asset pricing model (three-moment CAPM)

by utilizing the stochastic discount factor and investors’ utility function. The skewness

asset pricing model builds on CAPM by including the skewness of the return distribution,

allowing it to better capture asymmetry of return distribution and addressing CAPM’s

limitation of assuming normally distributed returns. In this model, expected returns are

influenced not only by the market factor but also by the systematic skewness factor, with

coskewness measured by the covariance between stock returns and the systematic skew-

ness factor. Their results indicate that the skewness factor could significantly explain

the cross-sectional differences in stock returns. Harvey and Siddique (2000) propose a

direct measurement for coskewness from a conditional expectation perspective based on

the work of Kraus and Litzenberger (1976) and develope a new coskewness factor. They

find that this new coskewness factor helps explain variations in expected returns across

different assets. Therefore, we believe that the study of spectral factors should not only

be based solely on CAPM but also consider the impact of skewness.

This article uses all stock data from China’s A-share stock market from January 1993

to December 2022 for research, and uses the direct measurement method of coskewness

proposed by Harvey and Siddique (2000) to calculate the coskewness between assets

and the market factor. By employing the extended Wold representation, we decompose

the market factor and stock returns into different frequencies and then use the direct

coskewness measurement to compute the coskewness at each frequency. Finally, we test
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the conditional skewness asset pricing model by utilizing the cross-sectional regression

from Fama and MacBeth (1973).

Following the approach of Bandi et al. (2021), we first decompose individual stock

returns and market returns into high-frequency (j ≤ 4) and low-frequency (j ≥ 4) com-

ponents, and apply Harvey and Siddique (2000)’s method to calculate the coskewness for

both high- and low-frequency components. Here, j describes different frequency compo-

nents, with larger values corresponding to lower frequencies. We subsequently perform

Fama-MacBeth cross-sectional regressions on total coskewness as well as the high- and

low-frequency coskewness components, finding that Both the coskewness and its high-

frequency component exhibit negative coefficients, which are statistically significant at

the 5% confidence level. This aligns with previous research, indicating that higher coskew-

ness is associated with lower expected stock returns.

Furthermore, we decompose the high-frequency component into four frequency com-

ponents (from j=1 to j=4) and find that the coskewness of frequency components at j=1

and j=2 is more significant and has a greater impact on expected stock returns than the

ones of j=3 and j=4. These results demonstrate that the impact of coskewness risk on

stock returns primarily manifests over short time period. This aligns with previous obser-

vations that short-term market information, such as earnings reports and news releases,

may lead to emotional investment decisions and overreactions by retail investors, causing

skewed stock return distributions. Moreover, the effects of these behaviors are typically

corrected by the market within a short time.

However, when we add other control variables into the regression, the coefficient of

overall coskewness becomes insignificant. This result indicates that overall coskewness is

not stable and has weak robustness, failing to remain significant under the interference

of other factors. Nevertheless, the coefficients of high-frequency coskewness (i.e., at j=1

and j=2) remain significant despite the influence of the multi-factor model, demonstrating

strong robustness. This suggests that even after controlling for other risk factors, high-
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frequency coskewness is still significantly negatively correlated with stock returns.

Furthermore, after applying the portfolio sorting method proposed by Fama and

French (1992), we find that a long-short strategy based on overall coskewness fails to

generate significant positive average returns or positive alpha. However, a long-short

strategy using high-frequency coskewness can produce significant positive average returns

and alpha. This indicates that by utilizing the extended Wold representation theorem,

we can extract the effective information from the factors, thereby enhancing their pric-

ing power. Additionally, we performed portfolio sorting analysis using β
(1)
SKD and β

(2)
SKD

separately, and found that only the long-short strategy based on β
(1)
SKD yields significant

positive average returns and alpha. This shows that the pricing source of coskewness

mainly comes from the high-frequency component of individual stock and market port-

folio returns, especially the frequency component with a period of 1-2 months.

Distinguished from existing literature, the main contributions of this paper are as

follows: First, this study demonstrates the critical role of coskewness risk in the pricing of

stock returns. Second, by combining the extended Wold representation with the skewness

asset pricing model, this paper offers a new perspective to the literature. Unlike previous

studies that primarily explore cross-sectional differences in stock returns using various

factor models, this research delves into the impact of coskewness at different frequencies

on stock returns in the cross-section. Third, the findings of this paper not only help

investors better understand the risk characteristics of the Chinese stock market but also

provide valuable insights for Chinese regulators to improve their risk supervision systems.

The structure of this paper is as follows: in Section 2 we review the relevant literature,

in Section 3 we introduce the data and how to build the model, in Section 4 we report

the main empirical analysis results and robustness tests, and finally, in Section 5 we

summarize the paper.
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2 Literature Review

2.1 Skewness and asset pricing

In traditional methods, investors describe an asset’s return and risk using its mean

and variance. Since the introduction of the mean-variance model by Markowitz (1952),

it has been widely applied in portfolio selection and has become the foundation of mod-

ern portfolio theory. This model uses variance and mean to depict an asset’s risk and

return, assuming that asset returns follow a normal distribution. Based on this theory,

Sharpe (1964), Treynor (1961a,9), Lintner (1969), and Mossin (1966) jointly proposed

the Capital Asset Pricing Model (CAPM). CAPM believes that there are two main parts

determine the assets’ expected return, the systematic risk related to the market and the

non-systematic risk unrelated to market factors. The sensitivity of an asset to systematic

risk is described by the coefficient,beta, of the market factor. The more sensitive the asset

is to the market factor, the higher the beta, and the higher its expected return should

be. Although the CAPM model first realized the quantification of risk and derived the

relationship between expected return and risk, subsequent studies on CAPM found that

it cannot explain many asset returns.

Many studies argue that one of the reasons for the failure of CAPM is its omission of

skewness. Kraus and Litzenberger (1976) firstly suggest that risk-averse investors have

preference for assets with positive skewness, which is similar to how they dislike variance

in their portfolios, and are willing to pay a premium for purchasing assets with positive

skewness. Friend and Westerfield (1980) tests Kraus and Litzenberger (1976)’s theory by

using various stock and bond return indices. Their findings support the argument made

by Kraus and Litzenberger (1976), showing that in addition to covariance, co-skewness

should also be considered to capture the variation of asset return, though this conclusion

may depend on the market index and estimation methods used. Harvey and Siddique

(2000) formalized the insights of Kraus and Litzenberger (1976) by emphasizing condi-
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tional skewness over unconditional skewness. Their results demonstrate that conditional

skewness significantly captures the variation in cross-sectional expected returns, even

when controlling for size and value factors.

The literature on skewness primarily focuses on two types: one stream of research

examines the role of systematic skewness in asset pricing, while another investigates the

effects of idiosyncratic skewness. Systematic skewness mainly refers to the skewness of

the market portfolio. Studies in this area focus on the skewness and co-skewness between

stock and market returns. Kraus and Litzenberger (1976) extend the CAPM by including

the systematic skewness factor, which is called the skewness asset pricing model. In this

model, they incorporate an quadratic form of themarket factor and name it systematic

skewness. Coskewness is measured by the covariance between the asset excess return and

systematic skewness, which is the numerator of the coefficient of systematic skewness.

It captures the contribution of the asset to the market portfolio skewness. Their result

confirm a significant risk price of systematic skewness. Yang et al. (2010) employ a

bivariate regime-switching model under the framework of the skewness asset pricing model

to describe the coskewness between stock and bond returns. Their findings demonstrate

that both stock and bond coskewness can generate significant and robust risk premiums.

Engle (2011) shows that the negative long-term skewness could rise the default rate

and high correlated defaults reinforce the possibility of another systematic risk. Chabi-

Yo et al. (2014) study the relation between demand in equilibrium and risk premium

incorporating the skewness risk. They show that an asset’s yield risk premium of market

skewness under the condition that both the co-skewness of it with market portfolio and

market skew-tolerance exist. Langlois (2020) investigate the effect of systematic skewness

on expected stock returns. Their results reveal that the estimated systematic skewness

risk factor is linked to a substantial and robust risk premium, ranging from 6% to 12%

per year.

Idiosyncratic skewness refers to the firm-level skewness. Some literature believe id-

iosyncratic skewness is generated by under-diversified portfolios and investors may remain
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under-diversified to obtain the likelihood of extreme positive large return. In this case,

idiosyncratic skewness should be priced (Mitton and Vorkink, 2007; Barberis and Huang,

2008; Boyer et al., 2010; Conrad et al., 2013; Amaya et al., 2015). For example, Mit-

ton and Vorkink (2007) document that portfolios owned by under-diversified investors

exhibit more positive skewed than those owned by diversified investors and a strong neg-

ative relationship exists between idiosyncratic skewness and the Sharpe ratio. Amaya

et al. (2015) report a negative correlation between future returns and individual realized

skewness, demonstrating that a long-short portfolio ranked by realized skewness produces

a significant average return.

Although both downside risk and coskewness risk describe some perspective of down-

side variation, they are two different risk in the literature (Ang et al., 2006; Huang et al.,

2012; Kelly and Jiang, 2014; Van Oordt and Zhou, 2016).For instance, Ang et al. (2006)

contend that downside beta specifically accounts for market downturns, whereas coskew-

ness does not explicitly highlight market asymmetries. Their result confirm that past

co-skewness could predict future return, but its predictive power is not due to the cap-

ture of exposure to downside risk indicating they are two different risk loading. Kelly

and Jiang (2014) show the tail risk premium is robust and significant after controlling

downside beta and coskewness.

2.2 Time-varying skewness

With the further study of skewness, some find that the persistence of skewness is not

consistent over time. Some studies focus on time-varying skewness by using different time

periods. Singleton and Wingender (1986) estimate skewness over 5 year time horizon

and find that positive skewness occurs at constant frequency over time. In contrast,

the skewness of individual stock and portfolio does not show persistence in different

time periods. Farago and Hjalmarsson (2023) derive a theoretical model for skewness in

compounded return in long-horizon to investigate the skew-inducing effect. They find that
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compounded returns have positive skewness and their skewness increase with the time

horizon. Aretz and Arisoy (2023) construct the realized return skewness over different

horizons suing block bootstrap estimator. They provide evidence that the pricing ability

of skewness is mainly driven by short-term instead of long-term return horizons.

Several studies employ time-series analysis to model time-varying skewness. Harvey

and Siddique (1999) estimate time-varying conditional skewness by extending the tradi-

tional GARCH model within a maximum likelihood framework, showing that autoregres-

sive conditional skewness is significant and influences variance persistence. Smith (2007)

apply the GMMmethod to estimate conditional two- and three-moment CAPM, rejecting

the two-moment CAPM but supporting the three-moment version. Their findings indi-

cate that both coskewness and investors’ preferences for skewness vary over time, with

greater concern for coskewness risk when the market exhibits positive skewness. Yang

et al. (2010) explore time-varying coskewness using a bivariate regime-switching model,

demonstrating that both stock and bond coskewness yield statistically and economically

significant risk premiums.

The literature mentioned above illustrate that there is an improving performance

after considering the time-varying skewness. Some literature provide the evidence that

skewness is related to earnings announcement events and return horizon. For example,

Albuquerque (2012) propose periodicity in earnings announcement events could lead to

positive skewness in firm return. It is natural to raise question whether skewness should

change with frequency. In recent two decades, a large amount of literature consider the

variation of the factor risk across different frequencies (Chaudhuri and Lo, 2015; Dew-

Becker and Giglio, 2016; Baruńık and Křehĺık, 2018; Neuhierl and Varneskov, 2021; Bandi

et al., 2021). For example, Dew-Becker and Giglio (2016) estimate frequency -specific

risk prices by a novel frequency domain decomposition and find that long-run risks that

is longer than business cycle are priced significant in the stock market. Neuhierl and

Varneskov (2021) provide a model-free framework to decompose the state vector into

different frequency and allow its risk prices change with frequency. They find evidence
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that the risk of low and high-frequency state vector are priced differently in the stock

market.

In China, there is no consensus on whether co-skewness risk is priced in the Chinese

A-share market. Wang (2006) explore the improvement of the traditional CAPM model

by incorporating higher moments, finding that higher-moment information significantly

enhances the predictive accuracy of models in the Chinese stock market. Gang and Lin

(2021) explore the role of skewness in asset pricing within the Chinese A-share market and

demonstrate that co-skewness is negatively correlated with expected excess stock returns,

while also improving the explanatory power of traditional factor models. However, Yu

(2017) find that co-skewness does not exhibit significant pricing power, suggesting that

higher-order risks are not fully rationally priced by investors.

In China, some literature has recognized the importance of skewness. Wang (2006)

studied the asset pricing role of skewness in China’s A-share market, showing that coskew-

ness is negatively related to expected excess returns and improves the explanatory power

of traditional factor models. Yu (2017) found that coskewness did not exhibit signifi-

cant pricing power, suggesting that higher-order risks are not fully rationally priced by

investors. Wang (2006) explored improving the traditional CAPM model by incorporat-

ing higher-order moments and found that higher-order moment information significantly

improved the prediction accuracy of the model in the Chinese stock market.

Although some Chinese studies have considered incorporating skewness into asset

pricing models, few of them have examined the relationship between skewness and cycles

from a frequency perspective. This paper uses the method of Harvey and Siddique (2000)

to construct conditional co-skewness and applies the extended Wold representation to

decompose asset return and the market factor into different frequencies. Then, we study

the impact of coskewness across different frequencies on stock returns.
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3 Data

The dataset used in this study comprises all stocks from China’s A-share market,

spanning the period from January 1993 to December 2022. All data are sourced from the

China Stock Market & Accounting Research (CSMAR) database. Given the necessity to

compute multiple indicators, the regression analysis focuses on the period from January

2000 to December 2022. There are two primary reasons for using data post-2000:

First, choosing data after 2000 could ensure the consistency of accounting data.

China’s financial reporting regulations were gradually refined around 1999. Although

the principles of fair trade and financial disclosure were introduced in 1993, the lack of

clear guidelines led to inconsistencies in the application of these standards by different

firms, limiting the comparability of accounting data. It was not until 1998 and 1999 that

more detailed laws and regulations were introduced to regulate transactions and financial

reporting.

Second, this time period provides a sufficiently robust data sample. To apply the

Fama-MacBeth regression analysis and ensure reasonable precision and statistical power,

each stock must have at least 35 months of data. The filtering criteria are as follows:

stocks listed for fewer than six months, stocks with fewer than 120 trading records in

the previous year, or fewer than 15 trading records in the prior month. The last set

of criteria is designed to mitigate the impact of stock returns after prolonged trading

suspensions. It is only after 1999 that the number of stocks in the market satisfies these

requirements. Additionally, data from the first six months following an IPO (including

the listing month) are excluded, along with ST (Special Treatment), *ST (delisting risk

warning), PT (Special Transfer) stocks, financial sector stocks, and stocks with negative

book values. These measures are implemented to further enhance the robustness of the

results.

[Insert Table 1 here]

Table 1 presents the descriptive statistics of individual stock returns and the five
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factors, along with the correlation coefficients between the factors. Panel A reports the

descriptive statistics of individual stock returns and each factor. First, the average stock

return is 1.112%, with standard deviation of 15.202% and skewness of 11.123%. This

positive skewness suggests that stock returns in the Chinese market exhibit a right-skewed

distribution. Among the five factors, the average return of market factor is 0.4948%, with

standard deviation of 8.0742% and skewness of 0.1575%. The positive skewness of the

market factor also reflects the ”right-skewed” nature of the returns in China’s A-share

market. Next, the mean return of the size factor is the highest among the five factors,

which is 0.8445%, while the investment factor has the largest skewness, which is 0.3263%.

Table 2 shows the construction methods of the factors.

[Insert Table 2 here]

Panel B displays the correlation between the factors. The market factor (MKT) has

weak correlations with other factors, with the highest correlation being 0.1573 with the

size factor (SMB). The strongest negative correlation is between the profitability factor

(RMW) and the size factor (SMB) at -0.6304. The investment factor(CMA) has a rela-

tively strong negative correlation with the profitability factor (RMW), with a correlation

of -0.6139.

4 Method

4.1 Why do investors prefer stocks with positive skewness?

[Insert Figure 1 here]

Skewness is measured by the third moment of stock returns. Intuitively, positive

skewness (negative skewness) means that there is a greater probability of small losses

(gains) and a smaller probability of large positive gains (losses). Figure 1 illustrates the

positively and negatively skewed distributions of stock returns, where the horizontal axis

represents stock return, and the vertical axis represents the probability of the return. In
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general, we assume the mean of stock returns is zero. For stocks with positive skewness,

the right tail of the distribution is longer, indicating a small probability of very large

positive returns, while the peak of the probability density function is on the left of the

mean, implying a higher probability of small losses. For stocks with negative skewness, the

situation is reversed. Avoiding potential large losses is crucial for a risk-averse investor,

which explains why they tend to prefer stocks with positively skewed returns. Coskewness

quantifies an asset’s contribution to the overall skewness of a portfolio. If an asset exhibits

positive coskewness with the market portfolio, adding it to the portfolio will increase the

portfolio’s total skewness. Since investors generally prefer assets with positively skewed

returns, assets that increase the overall skewness of the portfolio are more likely to be

favored by investors. However, merely relying on intuitive logic is not sufficiently rigorous;

we need to mathematically demonstrate that investors indeed prefer positively skewed

stocks.

[Insert Table 3 here]

In the next section, we will prove why investors prefer positively skewed stocks, start-

ing from the utility function, with the explanation of symbols provided in Table 3. Let w

represent the investor’s wealth, and x denote the investor’s income (a random variable).

Assuming the investor’s utility function, U , only depends on their total wealth and in-

come, and it can be defined as U = U(x̃ + w). The return of the investor’s investment,

w, is given by r̃ = x̃/w, and the utility function can be expressed as U = U(rw + w).

Next, let µ = E(w+ rw) denote the expected return of the investment. Expand U using

a Taylor series and take the expectation on both sides of the equation, then we could

obtain:

E(U) = U(µ) +
U2(µ)

2
σ2 +

∞∑
i=3

µi

i!
Un(µ) (1)

where Un denotes the n-th derivative of U , and µi represents the i-th moment of

U . In order to analyze the expected utility of investment returns w, it is necessary to
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define the relevant moments of the return distribution and the sign of the coefficient for

each moment. For certain specific return distributions, such as the normal distribution,

uniform distribution, and binomial distribution, the mean and variance can fully describe

the expected utility E(U). However, in the following cases: (i) the return distribution

of the portfolio is asymmetric, (ii) when the investor’s utility function is of a higher

order than quadratic,, and (iii) when the mean and variance alone are inadequate to fully

characterize the distribution, it becomes essential to account for the moments higher

than second moment, as well as the signs of their coefficients. For moments beyond

the variance, two questions can be posed: (1) Can the direction of preference for each

moment (i.e., the sign of Un in equation (1)) be determined? (2) If the direction could

be determined, what the direction of preference is for each moment?

According to Scott and Horvath (1980), an investor who exhibits strict consistency in

the direction of preference for the n-th moment should have a utility function which can

only result in the following three cases:

Un(w) > 0∀w,

Un(w) = 0∀w, or

Un(w) < 0∀w.

(2)

In financial theory, we typically assume that for a risk-averse investor, the first and

second derivatives of the utility function have the following signs:

U1(w) > 0∀w, and

U2(w) < 0∀w.
(3)

An investor with consistently positive marginal utility of wealth, stable risk aversion,

and strict preference consistency over time will favor positive skewness and exhibit an

aversion to negative skewness. This suggests that U3(w) > 0.
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Proof: We first assume that U3(w) < 0 for all w, or U3(w) = 0 for all w. By the

Mean Value Theorem, it follows that for any w2 > w1, there exists a w̄ ∈ (w1, w2) such

that:

U1 (w2)− U1 (w1) = U2(w̄) (w2 − w1)

By rearranging the above equation, we obtain:

U1 (w2) = U1 (w1) + U2(w̄) (w2 − w1)

U3(w) ≤ 0, therefore:

U2 (w1) ≥ U2(w̄)

U1 (w2) ≤ U1 (w1) + U2 (w1) (w2 − w1)

For w2 ≥ w∗ = w1 +
U1(w1)
−U2(w1)

, we obtain U1(w2) ≤ 0. For w2 > w∗, U1(w2) < 0. This

contradicts the assumption that U1(w) > 0, therefore U3(w) > 0. Consequently, it can

be concluded that investors prefer stocks with positively skewed return distributions.

4.2 Coskewness and measurement

From the above derivation, we can conclude that, all else being equal, investors prefer

assets whose return probability density function is positively skewed. For a portfolio,

assets that reduce its skewness are less favored by investors. In order to remain compet-

itive, such assets must offer higher expected returns. Similarly, assets that enhance the

skewness of a portfolio are expected to generate lower returns. Coskewness quantifies the

degree to which an asset contributes to the overall skewness of the portfolio. Harvey and

Siddique (2000) propose a method to directly measure co-skewness from a conditional

expectation perspective. This paper adopts the latter method, and the formula is as
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follows:

β̂SKDi
=

E
[
ϵi,t+1ϵ

2
M,t+1

]√
E
[
ϵ2i,t+1

]
E
[
ϵ2M,t+1

] , (4)

where ϵi,t+1 = ri,t+1 − α− βi(rM,t+1), represents the residual of corresponding CAPM

for the same period. ϵM,t+1 = rM,t+1−rf,t−µM denotes the difference between the market

portfolio return and its mean. βSKD represents a stock’s contribution to the skewness of

the market portfolio. A negative βSKD indicates that a stock reduces the skewness of the

market portfolio. As earlier derivation, a stock exhibiting negative coskewness with the

market is expected to have a higher return, implying that the coskewness risk premium

is negative.

4.3 The extended Wold representation

According to Wold (1938), a non-deterministic stationary process can always be rep-

resented as the sum of a moving average of white noise and a deterministic stationary

process. Suppose we have a bivariate covariance stationary non-deterministic process

X = (yt, xt)
T
t∈Z, which can represent stock and factor returns. Then, it can be ex-

pressed as:

X t =

yt

xt

 =
∞∑
k=0

α1
k α2

k

α3
k α4

k


ε1t−k

ε2t−k

 =
∞∑
k=0

αkεt−k + Vt (5)

where Vt is the deterministic process and is always omitted. The equation holds under

the L2 norm, and
∑∞

k=0 tr
1/2(αk

Tαk) < ∞, with α0 = I2 (I2 is a 2 × 2 identity matrix),

where tr() denotes the sum of the diagonal elements.

To make the explanation more intuitive, we begin with a finite one-dimensional se-

quence and consider a moving average process with seven lags, which is defined as follows:
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xt =
7∑

k=0

αkεt−k (6)

By calculating the means and differences between adjacent terms, xt can be alterna-

tively expressed as:

xt =
3∑

k=0

β
(1)
k ε

(1)
t−2k +

3∑
k=0

γ
(1)
k ε̄

(1)
t−2k (7)

where ε
(1)
t−2k contains high-frequency information, while ε̄

(1)
t−2k contains low-frequency

information 2. The coefficients β
(1)
k and γ

(1)
k describe the sensitivity of xt to ε

(1)
t−2k and

ε̄
(1)
t−2k, respectively. Specifically, β

(1)
k and γ

(1)
k can be obtained from the original coefficients

αh through the following linear transformation:

 1/
√
2 1/

√
2

−1/
√
2 1/

√
2


 β

(1)
k

γ
(1)
k

 =

 α2k

α2k+1

 (8)

Next, we concentrate on the low-frequency component π(1) =
∑3

k=0 γ
(1)
k ε̄

(1)
t−2k, and

combine the innovation terms in the same way as before:

ε
(2)
t−4k =

ε̄
(1)
t−4k − ε̄

(1)
t−4k−2√
2

, ε̄
(2)
t−2k =

ε̄
(1)
t−4k + ε̄

(1)
t−4k−2√
2

.

such that:

π(1) =
1∑

k=0

β
(2)
k ε

(2)
t−4k +

1∑
k=0

γ
(2)
k ε̄

(2)
t−4k

Through recursive iteration, the original sequence can be expressed as:

xt =
3∑

j=1

23−j−1∑
k=0

β
(j)
k ε

(j)

t−k2j
+ γ

(3)
0 ε̄

(3)
t (9)

2ε
(1)
t−2k can be seen as the difference between adjacent terms, while ε̄

(1)
t−2k can be seen as their mean.

In signal processing, averaging acts as a low-pass filter, while differencing acts as a high-pass filter.
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where each εt− k2j
(j)

and ε̄
(3)
t can be represented in terms of the white noise of the

original sequence as:

ε
(j)
t =

1√
2j

2j−1−1∑
i=0

εt−i −
2j−1−1∑
i=0

εt−2j−1−i

 , ε̄
(3)
t =

1√
23

23−1∑
i=0

εt−i

The coefficients β
(j)
k and γ

(3)
k can be expressed in terms of the original coefficients αk

as:

β
(j)
k =

1√
2j

2j−1−1∑
i=0

αk2j+i −
2j−1−1∑
i=0

αk2j+2j−1+i

 , γ
(3)
k =

1√
23

23−1∑
i=0

αk23+i

The parameter j describes different frequency components, with each frequency com-

ponent distinguished through averaging and differencing.

Now, we extend the finite time series process to an infinite process Xt = (yt, xt)
T
t∈Z,

which can be expressed as:

X t =

yt

xt

 =
∞∑
k=0

α1
k α2

k

α3
k α4

k


ε1t−k

ε2t−k

 =
∞∑
k=0

αkεt−k (10)

By applying the previous procedure, a bivariate stationary non-deterministic process

Xt with zero mean can be represented as:

X t =

yt

xt

 =
+∞∑
j=1

+∞∑
k=0

Ψ
(j)
k ε

(j)

t−k2j (11)

where the dependence between the rescaled ε
(j)
t and the original innovation is as follow:

ε
(j)
t =

1√
2j

2j−1−1∑
i=0

εt−i −
2j−1−1∑
i=0

εt−2j−1−i

 (12)
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and the coefficients are uniquely determined by:

Ψ
(j)
k =

1√
2j

2j−1−1∑
i=0

αk2j+i −
2j−1−1∑
i=0

αk2j+2j−1+i

 (13)

In this way, the original process can be represented as the sum of orthogonal compo-

nents at different frequencies:

X t =

yt

xt

 =
+∞∑
j=1

+∞∑
k=0

Ψ
(j)
k ε

(j)

t−k2j =
+∞∑
j=1

X
(j)
t (14)

where X
(j)
t =

∑+∞
k=0Ψ

(j)
k ε

(j)

t−k2j . The frequency components X
(j)
t and X

(k)
t are un-

correlated:

E
[
x
(j)

t−m2j
x
(k)

t−n2k

]
= 0 ∀j ̸= k, ∀m,n ∈ N0, ∀t ∈ Z

In summary, the bivariate time series X t can be expressed as the sum of infinitely

many orthogonal frequency components, i.e., X t =
∑∞

j=1X
(j)
t . Each frequency compo-

nent captures periods between 2j−1 and 2j. The interpretation of parameter j is shown

in Table 4.

[Insert Table 4 here]

4.4 Identification

In this section, we explain how to apply the extended Wold representation to real-

world data. Essentially, the Wold decomposition is a time series technique that distin-

guishes different frequency components within a time series. Thus, the target of the

decomposition is a time series, such as returns or other macroeconomic variables. Sup-

pose we have a series of stock returns and aim to decompose it into different frequencies

using extended Wold representation. First, we need to compute the Wold representation
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coefficients αk of xt.

We assume that xt follows a p-th order vector autoregressive process (VAR(p)) of the

form:

xt = A1xt−1 + ...+Apxt−p + εt (15)

where Ai are k dimension square matrices and εt is a k dimension white noise vector.

VAR(p) process could be transformed to VAR(1) process by stacking x into a larger

vector, that is:

X t = AX t−1 + εt (16)

If all eigenvalues of the matrix A lie outside the unit circle, the VAR process is stable,

and the Wold decomposition can be applied. The residuals in equation (16), also known

as innovations, represent the white noise process in the traditional Wold representation

described in equation (14). The above VAR(1) process can then be transformed into a

moving average representation:

X t =
∞∑
k=0

αkεt (17)

The coefficients αk for the Wold decomposition can be computed as αk = Ak.

To summarize this section: First, we assume that the stock return series follows a

VAR(p) process, and we convert it into a VAR(1) process as shown in equation (16). The

VAR(1) model can be estimated using unconstrained least squares. Then, we compute the

Wold representation coefficients using αk = Ak. Finally, we substitute the residuals of the

VAR(1) process into equation (17) to obtain the frequency-specific Wold representation

of the process X.
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4.5 Frequency-specific coskewness

To calculate the coskewness at each frequency, we perform regressions of individual

stock returns on market excess returns every 60 months to estimate βM and α, thereby

obtaining the residuals. Next, we use the extended Wold representation to decompose

the CAPM residuals of each stock and the market’s excess returns. Then, we use the

market return at each frequency to subtract its past 60-month average, which is denoted

as (RM − µRM). The coskewness of stock returns with the market at frequency j is

calculated as follows:

β̂
(j)
SKDi

=
E
[
ϵ
(j)
i,t+1 · (ϵ

(j)
M,t+1)

2
]

√
E
[
ϵ
(j)
i,t+1

2
]
E
[
ϵ
(j)
M,t+1

2
] (18)

where ϵ
(j)
i,t+1 is the residual series at frequency j obtained from the extended Wold

representation. ϵ
(j)
M,t+1 = (rM,t+1 − rf,t)

(j) − µ
(j)
M represents the difference between market

excess return and its past 60-month average at frequency j. β
(j)
SKD measures stock i’s

contribution to market skewness at frequency j.

5 Empirical results and discussion

In this section, we empirically examine the impact of coskewness at different frequen-

cies/cycles on stock returns in the China A-share stock market. Since we mainly focus on

individual stocks, the dependent variable is the return of individual stocks. The returns

of portfolios, on the other hand, are calculated by value-weighting the returns of multiple

stocks. Therefore, portfolio returns are less influenced by skewness and are not ideal

tested assets.
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5.1 Fama-Macbeth regression

This paper primarily employs the Fama-Macbeth cross-sectional regression method

(Fama and MacBeth, 1973) for regression analysis. The main drawbacks of traditional

cross-sectional regression are its neglect of time variation and its assumption of constant

coefficients, which can lead to unstable estimates and biased standard errors, reducing

the accuracy of significance tests and limiting its ability to capture dynamic changes in

data. In contrast, the Fama-Macbeth cross-sectional regression performs regressions at

each time point separately and averages the coefficients, allowing it to better account

for time variation. This approach provides more robust coefficient estimates and more

accurate standard errors while allowing for time-varying regression coefficients, enhancing

its ability to handle heterogeneity and dynamic characteristics. As a result, the Fama-

Macbeth method offers a significant advantage in validating asset pricing models and

conducting financial research.

[Insert Table 5 here]

Table 5 reports the result of the Fama-Macbeth cross-sectional regression. Our sample

period spans from January 2000 to December 2022. First, for each individual stock, we

estimate its exposure to the market factor, which is denoted as βRM , using time-series

regression based on the past 60 months of historical data. Then, at each time point,

we conduct a cross-sectional regression using the beta of all individual stocks and their

corresponding asset returns. This yields the coefficient of the market beta, also known

as the price of risk, at each time point. Finally, we calculate the average price of market

risk across all cross-sections to obtain the final market factor risk price.

In regression 1, we perform a Fama-Macbeth regression on individual stock returns

against βRM and βSKD. The result shows that the price of coskewness risk, which is the

coefficient of βSKD, is -0.713 and statistically significant at the 5% confidence level, with a

t-value of -2.30. However, the price of market factor risk is statistically insignificant, with

a t-value of only -0.81. The negative coskewness risk price is consistent with our earlier
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theoretical derivation, indicating that investors prefer stocks with positive skewness. If a

stock increases the skewness of the market portfolio, it should be preferred by investors,

and its expected return should be lower. This result demonstrates that coskewness risk

can significantly explain stock returns in the Chinese A-share market.

Next, to explore the separate effects of the high- and low-frequency components of

βSKD, we adopt the high- and low-frequency classification proposed by Bandi et al. (2021).

We sum all the frequency components less than or equal to 4 (j <= 4) to obtain the high-

frequency component (HF). Similarly, we sum all the frequency components greater than

4 (j > 4) to obtain the low-frequency component (LF).

In regressions 2 and 3, we perform Fama-Macbeth regressions on individual stock

returns against βRM , high-frequency βHF
SKD, and low-frequency βLF

SKD, respectively. The

results show that the coefficient of βHF
SKD is significant at the 1% confidence level, while

the coefficient of βLF
SKD is not significant. Their respective values are -1.622 and 0.245,

with t-values of -3.70 and 1.45. Only the coefficient of the high-frequency βHF
SKD aligns

with our previous theoretical derivation that stocks with higher coskewness tend to have

lower expected returns. The coefficient of βHF
SKD indicates that for every unit increase

in the coskewness between the stock and the market, the expected return of the stock

decreases by 1.622. In contrast, the coefficient of βLF
SKD suggests that for every unit

increase in coskewness, the expected return of the stock increases by 0.245. Meanwhile,

the magnitude of the coefficient of βHF
SKD is much larger than the one of βLF

SKD, which means

the expected return of a stock is primarily determined by the high-frequency component

of coskewness.

Through the above tests, we find that individual stock returns are mainly related to

the high-frequency component βHF
SKD. However, the high-frequency component consists

of four different frequency components, from j = 1 to j = 4, with their respective cycle

lengths shown in Table 4. To further investigate which specific frequency component

affects stock returns, we calculate the βSKD corresponding to j = 1 to j = 4, and include
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them in the Fama-Macbeth cross-sectional regression.

[Insert Table 6 here]

Table 6 presents the results of the Fama-Macbeth cross-sectional regression of indi-

vidual stock returns on coskewness across different frequency components from j = 1 to

j = 4. In regressions 1 and 2, we regress individual stock returns on the coskewness of

frequency components j = 1 and j = 2, and find that the risk prices of coskewness for

these two frequency components are statistically significant at the 5% confidence level.

The coefficients are -1.113 and -0.613, and t-values are -2.22 and -2.98, respectively.

In contrast, in regressions 3 and 4, the coefficients of βSKD for the frequency com-

ponents j = 3 and j = 4 are not significant, with t-values of -1.02 and -0.92. This

indicates that individual stock returns are primarily influenced by the coskewness of fre-

quency components j = 1 and j = 2, which correspond to cycles of 1-2 months and 2-4

months, respectively. This is consistent with the findings of Albuquerque (2012), who

discovered that the heterogeneity of earnings announcements leads to positive skewness

in individual stock returns and negative skewness in market factors. In their paper, they

mention that earnings announcements are concentrated in the second to eighth week of

each quarter, implying that about half of each quarter is earnings season. Thus, quarterly

earnings announcements, i.e., earnings reports, contribute to the skewness of individual

stock returns and market returns. This aligns with our earlier hypothesis: during the

release of quarterly financial reports, retail investors, due to their limited capacity to

gather comprehensive and timely market information, tend to overreact or delay their

responses. The overbought behavior or delayed reactions caused by earnings reports are

corrected by the market when the next report is released, thereby influencing the coskew-

ness between stock returns and the market. Therefore, the variation in stock returns is

primarily driven by the coskewness of market factors with cycles of four months or less.
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5.2 Robustness test

Based on the previous analysis, we have identified that high-frequency coskewness has

a significant impact on stock returns, particularly for frequency components with cycles

of 1 to 4 months. To ensure the robustness and reliability of this finding, we now conduct

a series of robustness tests. These tests further verify whether our conclusions hold when

additional control variables are included and whether the pricing ability of coskewness

across different frequency components remains consistent and robust. Through these

robustness tests, we aim to comprehensively confirm the critical role of high-frequency

coskewness in stock return pricing.

[Insert Table 7 here]

To test the robustness of our conclusions, we incorporate five factors as control vari-

ables in the regression: the market factor (MKT), size factor (SMB), value factor (HML),

profitability factor (RMW), and investment factor (CMA). We then reconstruct β
(HF )
SKD

by summing the frequency components of the CAPM residuals for the market factor and

individual stocks at j = 1 and j = 2, and calculate the new high-frequency component

using Equation 4.

Table 7 presents the regression results. In regression 1, the coefficient of βSKD is

only -0.0081, indicating that after accounting for the five additional factors, the overall

βSKD has a minimal effect on expected stock returns, with a t-value of -1.78, which is not

significant at the 5% confidence level. However, in regressions 2 and 3, the coefficients of

βSKD at j = 1 and j = 2 are -1.2684 and -0.7331, respectively, which are much larger than

the coefficient of the overall βSKD, indicating a greater impact on expected stock returns.

The t-values of the coefficients are -2.55 and -2.53, which shows that these coefficients

are significant at the 5% confidence level.

Finally, in regression 4, the coefficient of βHF
SKD is -0.6858, with a t-value of -2.27.

Table 7 illustrates that the overall coskewness is not sufficiently stable in the presence

of other factors and shows weak robustness. However, coskewness in the high-frequency
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components remains highly robust, further confirming the earlier conclusion that βSKD

has the most significant impact on stock returns when the cycle is between 1-4 months.

Additionally, it demonstrates that by utilizing the extended Wold decomposition, we can

extract the effective information from the factors, enhancing their pricing ability.

[Insert Table 8 here]

From the previous tests, we have established that the coefficient of coskewness between

individual stocks and the market is negative, meaning that the larger the coskewness

between an individual stock and the market, the lower the stock’s expected return. Using

the portfolio sorting method proposed by Fama and French (1992), we should observe

that a portfolio consisting of the 10% of stocks with the smallest coskewness with the

market factor should generate higher returns, while a portfolio consisting of the 10% of

stocks with the largest coskewness should produce lower returns. In this scenario, we

could long the portfolio of stocks with the smallest coskewness and short the portfolio of

stocks with the largest coskewness to hedge risk.

We calculate the coskewness of each stock with the market portfolio using the past 60

months of individual stock returns. In the 61st month, we rank all stocks based on their

calculated coskewness and divide them into 10 portfolios. Portfolio 1 consists of the 10%

of stocks with the smallest coskewness relative to the market, while Portfolio 10 includes

the 10% of stocks with the largest coskewness. The return of the long-short strategy is

obtained by subtracting the return of Portfolio 10 from that of Portfolio 1.

We mainly focus on whether the average return of the long-short strategy is sig-

nificantly different from zero, and whether the strategy’s return exhibits a significantly

positive alpha relative to the CAPM. A significantly positive alpha indicates that the

portfolio’s returns cannot be fully explained by the market factor and that the portfolio

outperforms the market portfolio with a positive excess return.

Table 8 reports the summary statistics of portfolios generated using different grouping

methods. For each portfolio, we report its average return, the CAPM alpha, and standard
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deviation, with p-values presented in parentheses. Panel A reports the statistics for

portfolios grouped by overall coskewness. From Portfolio 1 to Portfolio 10, we observe

a monotonic decrease in average returns, consistent with our previous results, which

indicated that the greater the coskewness between an individual stock and the market,

the lower the expected stock return. However, the average return of the long-short

portfolio is not significantly different from zero at the 10% confidence level. Additionally,

the calculated alpha of the strategy’s return is not significantly different from zero at the

10% confidence level, indicating that the long-short strategy based on overall coskewness

does not produce a significant alpha relative to CAPM.

Panel B reports the statistics of portfolios grouped by high-frequency coskewness. The

last column shows the average return and the market factor’s alpha for the long-short

strategy, with values of 0.489 and 0.485, respectively, and p-values of 0.096 and 0.054, both

of which are significantly different from zero at the 10% confidence level. This suggests

that high-frequency coskewness, indeed could lead the cross-sectional difference of stock

return. Moreover, the long-short strategy based on sorting high-frequency coskewness

generates significant positive returns and positive alpha. This further indicates that,

by using the extended Wold decomposition, we can extract the effective information

embedded in the original factors, enhancing their pricing ability.

Next, we aim to further refine the high-frequency components and investigate the

pricing ability of the j = 1 and j = 2 frequency components. Similarly, we calculate β
(1)
SKD

and β
(2)
SKD using the past 60 months of data, and in the 61st month, we sort individual

stocks based on the calculated frequency coskewness. Panels C and D present the data

for portfolios grouped by β
(1)
SKD and β

(2)
SKD, respectively. Again, we focus primarily on the

returns and alpha of the long-short strategy.

The long-short strategy grouped by β
(1)
SKD produces highly significant positive average

returns and positive alpha, with values of 1.026 and 1.027, and p-values of 0.001 and

0.000, respectively. Compared to the overall coskewness and high-frequency coskewness

29

20
24

 S
.-T

.Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
论
文
公
示



used earlier, the average positive return generated by β
(1)
SKD is approximately three times

larger. However, the long-short strategy grouped by β
(2)
SKD fails to generate significant

positive returns or positive alpha, with values of 0.378 and 0.400, and p-values of 0.133

and 0.140, respectively. Among these four panels, the long-short strategy consistently

shows the lowest standard deviation, demonstrating its ability to hedge risk effectively.

In this study, the empirical analysis of China’s A-share market reveals the critical

role of coskewness in asset pricing. The research finds a significant negative correla-

tion between coskewness and stock returns, particularly in the short term (cycles of 1-4

months), indicating that stock returns are mainly associated with high-frequency coskew-

ness. Further analysis shows that the explanatory power of overall coskewness weakens

when considering other factors, but high-frequency coskewness remains robust, suggest-

ing that high-frequency coskewness could significantly explain the stock returns. The

analysis of portfolios demonstrates that investment strategies based on high-frequency

coskewness can generate significant positive returns and market alpha, validating the

pricing efficiency of high-frequency coskewness. These findings provide new direction for

risk management and investment strategies in the Chinese A-share market.

6 Conclusion

This paper investigates the role of coskewness in asset pricing through an empirical

analysis of the Chinese A-share market, particularly examining the impact of coskew-

ness on cross-sectional stock returns from a frequency/cycle perspective. The study is

grounded in the context of the Chinese A-share market, where retail investors dominate.

Retail investors tend to overreact or delay their response to financial reports and news

over short cycles, leading to a deviation of market returns from a normal distribution.

To better understand this phenomenon, this paper introduces frequency-domain analysis,

combining the extended Wold representation with the skewness asset pricing model to

systematically analyze the effect of coskewness on stock cross-sectional returns at different
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frequencies.

The findings indicate that coskewness risk has significant explanatory power for stock

returns, with a negative correlation between high-frequency coskewness and stock returns.

This is consistent with the conclusions of Albuquerque (2012), who found that quarterly

earnings announcements trigger market reactions, leading to the change of skewness in

stock returns. Therefore, the impact of coskewness on stock returns typically spans a

cycle of approximately 1 to 4 months.

Further empirical analysis shows that, even after decomposing the market factor and

individual stock CAPM residuals into different frequency components, the high-frequency

portion of coskewness retains significant pricing power. Even when additional control

variables such as the market factor, size factor, and value factor are included, the high-

frequency component of coskewness still exhibits significant explanatory power. This

suggests that, even under the interference of other factors, high-frequency coskewness

remains significant in pricing stock returns, especially for frequency components with cy-

cles of 1-2 months. This result highlights the crucial role of high-frequency coskewness in

asset pricing. Moreover, this study validates the practical application of high-frequency

coskewness in investment strategies through portfolio sorting analysis. It is found that

a long-short strategy based on high-frequency coskewness can generate significant posi-

tive returns and positive market alpha, further confirming the pricing efficiency of high-

frequency coskewness. In contrast, strategies based on overall coskewness fail to produce

significant returns or alpha, indicating that extracting information from high-frequency

coskewness is more effective and offers more practical investment decision support. In

contrast, strategies based on overall coskewness fail to produce significant returns or al-

pha, indicating that the information from high-frequency coskewness is more effective

and offers more practical investment decision support.

This research has important implications for both academia and practice. It not only

enriches the theoretical study of coskewness in asset pricing and reveals the uniqueness
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of the Chinese A-share market, but also provides investors with practical investment

strategy references based on high-frequency coskewness. Additionally, the findings offer

scientific support for regulatory bodies in formulating market policies and promote the

application of frequency-domain analysis methods in financial market research, expanding

the boundaries of asset pricing theory and enhancing the precision of market dynamic

analysis.

Despite the valuable insights provided by this study, it has certain limitations. For in-

stance, the research primarily focuses on the Chinese A-share market, and future studies

could consider applying the coskewness pricing model to other markets to test its gener-

alizability. Moreover, the analysis relies on historical data for regression, which may not

fully reflect changes in future market conditions, posing challenges for the practical appli-

cation of investment strategies. Therefore, future research could expand the sample scope

or introduce more dynamic market models to further verify and refine the conclusions of

this paper.
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Figure 1: Representation of Positive and Negative Skewness in Stock Return Distributions
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Table 1: Summary statistics

This table reports the summary statistics and correlation of individual stock return and
five factors in the China A-share stock market. Panel A shows the summary statistics of
individual stock returns and five factors. The numbers are showed in percentage. Panel
B reports the correlation between five factors.

Panel A Summary Statistics

Variables Observation Mean Standard deviation Skewness P10 Median P90

Individual stock return 485988 1.112 15.202 11.123 -13.7017 -0.2012 17.035

Market factor(MKT) 348 0.4948 8.0742 0.1575 -8.7283 0.3795 10.5739

Size factor(SMB) 348 0.8445 4.3707 0.0474 -4.7835 0.8208 6.8337

Value factor(HML) 348 0.1629 3.2241 -0.3032 -3.6543 0.3127 4.1868

Profitability factor(RMW) 348 -0.1042 3.2613 -0.1241 -3.7304 -0.2607 4.0991

Investment factor(CMA) 348 0.1785 2.9171 0.3263 -3.3187 0.2669 3.3009

Panel B Factor correlation

MKT SMB HML RMW CMA

MKT 1

SMB 0.1573 1

HML -0.0857 -0.2984 1

RMW -0.3055 -0.6304 0.0552 1

CMA 0.1353 0.3934 0.2299 -0.6139 1
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Table 2: The construction of factors

Variables Factor Construction

Market factor(RM)
It consists of all stocks in the Chinese A-share stock market and are calculated as

the value-weighted returns of all stock returns.

Size factor(SMB)

It represents the difference between the portfolio return of the top 50% largest market

capitalization stocks and the portfolio return of the bottom 50% smallest market

capitalization stocks.

The monthly portfolio returns are calculated using a value-weighted method.

Value factor(HML)

It represents the difference between the portfolio return of the top 30% stocks with highest

book-to-market ratio and the portfolio return of the bottom 30% stocks with lowest

book-to-market ratio.

The monthly portfolio returns are calculated using a value-weighted method.

Profitability factor(RMW)

It represents the difference between the portfolio return of the top 30% stocks with robust

profitability and the portfolio return of the bottom 30% stocks with weak profitablity.

The monthly portfolio returns are calculated using a value-weighted method.

Investment factor(CMA)

It represents the difference between the portfolio return of the top 30% stocks with low

investment (conservation) and the portfolio return of the bottom 30% stocks with high

investment (aggressive).

The monthly portfolio returns are calculated using a value-weighted method.
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Table 3: Symbol interpretation

Symbol Definition

w The wealth of investor

x The income of investors(a random variable)

U The utility function used to measure the investor’s preferences for different outcomes of investors.

r The rate of return on investment w.

µ The expected return of investment.

Un The n-th derivative of U .

µi The i-th central moment of return.

ϵi,t+1 The residual of CAPM corresponding to stock i.

ϵM,t+1 The difference between the excess return of market factor and its average.

RM,t The excess return of the market factor at month t.

Ri,t The excess return of stock i at month t.
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Table 4: Scale Interpretation

This table provide the interpretation of the scale based on monthly time interval.

Scale Time horizon

j = 1 1 - 2 months

j = 2 2 - 4 months

j = 3 4 - 8 months

j = 4 8 - 16 months

j = 5 16 - 32 months

j = 6 32 - 64 months

j > 6 > 64 months
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Table 5: Individual-level Fama-Macbeth cross sectional regressions

This table presents the results of the Fama-MacBeth cross-sectional regression analysis. We regress the
one-month-ahead excess returns of individual stocks on βRM

and βSKD, corresponding to their high-
frequency and low-frequency components. To calculate the high-frequency component (HF), we sum
all frequency components with scales less than or equal to 4 (j ≤ 4). Similarly, the low-frequency
component (LF) is obtained by summing all frequency components with scales greater than 4 (j > 4).
These regressions are conducted monthly from January 2000 to December 2022. Newey-West t-statistics
are shown in parentheses, and adjusted R2 values are listed in the final column. Bolded numbers indicate
statistical significance at the 5% level or higher.

Intercept βRM
βSKD βHF

SKD βLF
SKD Adj.R2

(1) 1.461 -0.306 -0.713 0.023

(2.38) (-0.81) (-2.30)

(2) 1.459 -0.242 -1.622 0.023

(2.18) -(0.06) (-3.70)

(3) 1.304 -0.492 0.245 0.022

(2.18) (-1.36) (1.45)
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Table 6: Individual-level Fama-Macbeth cross sectional regressions

This table displays the outcomes of Fama-MacBeth cross-sectional regressions for frequency components
j = 1 through j = 4. The regressions are conducted on a monthly basis from January 2000 to December
2022. Newey-West t-statistics are shown in parentheses, while the adjusted R2 values are provided in
the final column. Bold values represent those that are statistically significant at the 5% level or higher.

Intercept βRM
β
(1)
SKD β

(2)
SKD β

(3)
SKD β

(4)
SKD Adj.R2

(1) 2.071 -0.476 -1.113 0.0215

(3.05) (-1.33) (-2.22)

(2) 1.545 -0.497 -0.613 0.0192

(2.65) (-1.75) (-2.98)

(3) 2.204 -0.543 -0.353 0.0192

(3.09) (-1.47) (-1.02)

(4) 1.926 -0.517 -0.177 0.0192

(2.66) (-1.38) (-0.92)
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Table 7: Individual-level Fama-Macbeth cross sectional regressions: Robustness test

This table presents the results of Fama-MacBeth cross-sectional regressions for frequency components
j = 1 and j = 2, incorporating size, value, investment, and profitability factors as control variables. The
regressions are conducted monthly from January 2000 to December 2022. Newey-West t-statistics are
shown in parentheses, while the adjusted R2 values are displayed in the final column. We use bolded
value to represent statistical significance at the 5% level or higher.

Intercept βSKD β
(1)
SKD β

(2)
SKD βHF

SKD βmkt βsmb βhml βrmw βcma Adj.R2

(1) 1.1069 -0.0081 -0.9083 0.1733 0.0210 -0.0554 -0.0302 0.0706

(1.87) (-1.78) (-0.26) (0.83) (0.15) (-0.39) (-0.31)

(2) 1.5455 -1.2684 -0.1498 0.1843 0.0039 -0.0330 -0.0840 0.0708

(2.13) (-2.55) (-0.43) (0.80) (0.03) (-0.22) (-0.83)

(3) 1.6121 -0.7331 -0.2319 0.2278 0.0004 -0.0504 -0.0857 0.069

(2.47) (-2.53) (-0.68) (0.99) (0.00) (-0.35) (-0.87)

(4) 1.5490 -0.6858 -0.1989 0.2083 -0.1478 -0.0643 -0.6277 0.0686

(2.42) (-2.27) (-0.57) (0.92) (-0.11) (-0.44) (-0.64)
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Table 8: Sorted portfolio statistics

This table presents the statistics for portfolios sorted by both original coskewness and frequency-specific
coskewness. The table includes the average return, single-factor stock market alphas (Alpha), and
standard deviations for various quantile portfolios. At the start of each month, individual stocks are
ranked based on coskewness, estimated using their past 60-month returns. The stocks with the highest
coskewness are assigned into portfolio10, while those with the lowest coskewness are included in the
portfolio 1. Portfolio returns are calculated using a value-weighted method. The sample period spans
from January 2000 to December 2022. P-values are reported in parentheses, and values in bold are
significant at the 5% confidence level.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P1-P10

Panel A: Sorted by βSKD

Mean 1.377 1.412 1.047 1.110 1.132 1.104 1.162 0.858 0.860 0.903 0.474

p-value (0.031) (0.031) (0.072) (0.059) (0.059) (0.060) (0.054) (0.146) (0.132) (0.115) (0.181)

Alpha 0.691 0.721 0.393 0.441 0.458 0.434 0.485 0.216 0.214 0.255 0.436

p-values (0.003) (0.004) (0.073) (0.040) (0.043) (0.042) (0.025) (0.292) (0.285) (0.248) (0.164)

Standard Deviation 9.269 9.460 8.813 8.930 9.108 8.946 9.041 8.568 8.536 8.721 5.509

Panel B: Sorted by βHF
SKD

Mean 1.025 1.161 0.922 0.783 1.211 0.763 0.841 0.835 0.650 0.537 0.489

p-values (0.095) (0.073) (0.096) (0.201) (0.037) (0.187) (0.152) (0.175) (0.285) (0.383) (0.096)

Alpha 0.508 0.617 0.489 0.276 0.722 0.270 0.342 0.333 0.152 0.023 0.485

p-values (0.026) (0.007) (0.029) (0.212) (0.002) (0.234) (0.151) (0.120) (0.512) (0.927) (0.054)

Standard Deviation 8.808 9.196 8.579 8.632 8.516 8.487 8.655 8.517 8.581 8.964 4.177

Panel C: Sorted by β
(1)
SKD

Mean 1.358 0.836 1.079 1.171 0.816 0.810 0.816 0.681 0.584 0.333 1.026

p-values (0.035) (0.154) (0.082) (0.062) (0.161) (0.190) (0.179) (0.271) (0.305) (0.570) (0.001)

Alpha 0.865 0.357 0.594 0.682 0.339 0.300 0.323 0.184 0.128 -0.162 1.027

p-values (0.000) (0.144) (0.013) (0.004) (0.160) (0.215) (0.143) (0.399) (0.593) (0.461) (0.000)

Standard Deviation 8.930 8.071 8.768 8.747 8.674 9.143 8.754 8.772 8.352 8.741 4.621

Panel D: Sorted by β
(2)
SKD

Mean 1.016 0.857 0.801 1.128 0.790 0.746 0.909 0.782 0.817 0.638 0.378

p-values (0.093) (0.176) (0.180) (0.058) (0.199) (0.221) (0.145) (0.187) (0.166) (0.300) (0.133)

Alpha 0.539 0.339 0.303 0.637 0.277 0.258 0.408 0.298 0.331 0.129 0.400

p-values (0.023) (0.127) (0.171) (0.010) (0.213) (0.295) (0.074) (0.227) (0.158) (0.614) (0.140)

Standard Deviation 8.540 8.909 8.612 8.718 8.842 8.659 8.752 8.613 8.541 9.028 4.459
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