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Modal Frequencies in a nonlinear beam-magnet coupled oscillator system 

 Wang Yunze 

Abstract 

    The motion of a nonlinear coupled oscillator system consisting of two leaf springs secured to a non-

magnetic base with magnets attached to the upper ends such they repel and are free to move was 

investigated. My results showed that the system exhibits the beats phenomenon, and the frequency 

shows a dependence on initial conditions. I hence hypothesized this sensitivity on initial conditions is 

due to two sources of nonlinearities: geometric nonlinearity during large deflections of the leaf springs 

and the nonlinearity in the magnetic force. To test this hypothesis, a nonlinear mathematical model 

was developed, accounting for nonlinear beam effects up to third order and fully solving the nonlinear 

magnetic force using a current cylinder model, accounting for the tilting of the magnets.  An 

approximate linear model was also developed for comparison. The theoretical models were validated 

experimentally by investigating the dynamic motion of the springs through time, as well as how the 

modal frequencies in the system depend on the initial displacement, the length of the spring, and the 

distance between the springs. The more accurate nonlinear model I derived shows good agreement 

with experimental results while the linear theory does not, highlighting the importance of nonlinearities 

in this system. An improved understanding of these nonlinear systems could lead to advancements in 

design and efficiency, and safety in various applications such as energy harvesting. 

Keywords: coupled oscillator, nonlinear vibrations, geometric nonlinearity, magnetically coupled dual 
beams, large deformation of cantilever beam 
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Modal frequencies in a nonlinear beam-magnet coupled oscillator system

Wang Yunze

(Dated: 28 July 2024)

The motion of a nonlinear coupled oscillator system consisting of two leaf springs

secured to a non-magnetic base with magnets attached to the upper ends such they

repel and are free to move was investigated. My results showed that the system

exhibits the beats phenomenon, and the frequency shows a dependence on initial

conditions. I hence hypothesized this sensitivity on initial conditions is due to two

sources of nonlinearities: geometric nonlinearity during large deflections of the leaf

springs and the nonlinearity in the magnetic force. To test this hypothesis, a non-

linear mathematical model was developed, accounting for nonlinear beam effects

up to third order and fully solving the nonlinear magnetic force using a current

cylinder model, accounting for the tilting of the magnets. An approximate linear

model was also developed for comparison. The theoretical models were validated

experimentally by investigating the dynamic motion of the springs through time,

as well as how the modal frequencies in the system depend on the initial displace-

ment, the length of the spring, and the distance between the springs. The more

accurate nonlinear model I derived shows good agreement with experimental re-

sults while the linear theory does not, highlighting the importance of nonlinearities

in this system. An improved understanding of these nonlinear systems could lead

to advancements in design and efficiency, and safety in various applications such

as energy harvesting.
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I. INTRODUCTION

3D printed non-magnetic 

block to separate springs

Magnetic 

mechanical 

oscillators

Magnet taped 

to tip of spring

Release 

mechanism

FIG. 1. The magnetic mechanical oscillator (MMO) setup. The setup consists of two cantilever

beams clamped to a non-magnetic base, then attaching magnets to the upper ends such that

they repel and are free to move. A lever release mechanism is used to minimize the initial

velocity given during release.

A coupled oscillator system is one where two or more oscillators are coupled together

via another force, such that the oscillations of one oscillator will affect the oscillation of the

others. In this paper, I will be focusing on the case of two oscillators. A linear coupled

oscillator system is one where the restoring force on the oscillators and the coupling

force is a linear function of the displacements. Linear coupled oscillator systems are well

established, with the resulting motion being the superposition of two harmonic oscillations

whose frequencies are known as the modal frequencies, leading to interesting motion such

as beats1.

However, these results no longer apply when the system is nonlinear2. Compared to

the linear case, it is possible to obtain more complex motion where the modal frequencies

are not constants of the system but rather functions of the amplitude of oscillations.

In this paper, I investigated a nonlinear coupled oscillator system which I named the

Magnetic Mechanical Oscillator (MMO), comprising two cantilever beams clamped to a

2
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FIG. 2. Horizontal deflection of tip of the springs against time for two identical setups released

with a ≈ 2 cm initial displacement (top) and ≈ 4 cm initial displacement (bottom). The dashed

vertical lines represent a “beat”. The frequency depends not just on the system parameters

but also initial conditions. As the amplitude of oscillations decreases due to damping, the beat

frequency decreases as well. The average frequency decreases too, although this is not as obvious

from the plot.

non-magnetic base with magnets attached to the upper ends of the beams of such that

they repel and are free to move (Fig. 1)3. The two cantilever beams act as oscillators that

are coupled together via the magnetic force between the magnets at the tip.

This MMO system exhibited the beats behavior where there was a “fast” oscillation at

a high frequency which I called the average frequency, whose amplitude was modulated

by a “slow” oscillation at the beat frequency (Fig. 2 top).

There are two sources of nonlinearities in the MMO system, one due to the nonlinear

force between the two magnets, and the other due to geometric nonlinearities in the

cantilever beams at larger deflections. These nonlinearities cause the beat frequency

to be amplitude-dependent, which is not the case for linear coupled oscillators (Fig. 2

bottom).

The whole concept of normal modes is based off the linearity of the system. If the

system is nonlinear, the superposition principle no longer applies and the solution is not

3
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just the sum of the normal mode oscillations.

However, one possible way to define a nonlinear normal mode is as synchronous peri-

odic solutions of the nonlinear equations of motion, where all coordinates of the system

oscillate with the same period, reaching the maximum and minimum at the same time4.

If the system is linearizable with weak nonlinearities, these nonlinear model modes

approach the classical normal modes of the linearized system as the nonlinearities tend

to zero4. These normal modes are the ones that we investigate in this paper.

I developed two mathematical models for the MMO system. First, I approximated

it to the linear coupled oscillator system by linearizing simplified equations of motion,

then more accurately model the system using a large deflection Euler-Bernoulli beam

model and modelling the magnets as current cylinders, accounting for nonlinearities in

both the beam and the magnet. I then experimentally verified both models, showing

that the linearized model is inaccurate and cannot fully describe the motion, highlighting

nonlinearities in the system.

II. MATHEMATICAL MODELING OF MMO SYSTEM

A. Linear approximation

1. Linear leaf springs

The leaf spring can be approximated as an ideal linear spring. Throughout this paper,

a prime x′ will be used to represent a spatial derivative dx/ds and an overdot ẋ will be

used to represent a temporal derivative dx/dt.

Consider a vertical cantilevered beam of length L, Young’s modulus E, second moment

of area I, and mass per unit length µ with a tip mass m attached. v(s, t) is the horizontal

displacement of the beam at distance s along the beam.

The dynamic equation of motion for such a beam can be written as

EIv′′′′ + µv̈ = 0 (1)

4
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where the boundary conditions are

v(0, t) = 0, (2)

v′(0, t) = 0, (3)

v′′(L, t) = 0, (4)

EIv′′′(L, t) = mv̈(L, t). (5)

Equations (2) and (3) represents the fixed end at s = 0, while Eq. (4) represents the free

end at s = L. The tip mass is included in Eq. (5).

Irvine 5 showed that this system is approximately equivalent to a ideal spring-mass

system with effective spring constant

ks =
3EI

L3
(6)

and effective mass

meff = 0.2246µL+m. (7)

2. Linear magnetic force

Consider two cylindrical magnets with radius R, height H and magnetizationsM1 and

M2 respectively. We can approximate them as magnetic dipoles with a dipole moment

(πR2H)Mα (α = 1, 2).

Assuming the two magnets remain coaxial even when the cantilever beams bend, the

force between the dipoles is

Fmag(d) =
3µ0M1M2(πR

2H)2

2πd4
. (8)

Defining the distance between the cantilever beams (which is approximately distance

between the two magnets at equilibrium) as d0, we can do a Taylor expansion to 1st order

around d0 to obtain a linear approximation of the magnetic force which resembles the

linear spring equation:

Fmag(d) = −kmd+ cm +O(d2) (9)

where

km =
6µ0M1M2πH

2R4

d50
, cm =

15µ0M1M2πH
2R4

2d40
. (10)

5
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3. Linearised equations of motion

Hence, we can write down the linearized equations as such:

meff v̈1 = −ksv1 + km(v2 − v1 + d0)− cm, (11)

meff v̈2 = −ksv2 − km(v2 − v1 + d0) + cm. (12)

This is similar to the traditional coupled oscillator with the addition of a constant term

in the force exerted by the “middle spring”, since the magnetic repulsion force is never

zero.

If we apply the initial conditions of v1(0) = 0, v2(0) = a, and v̇1(0) = v̇2(0) = 0 this

set of equations has the solution

v1 = +A0 + A1 cosω1t+ A2 cosω2t, (13)

v2 = −A0 + A1 cosω1t− A2 cosω2t, (14)

(15)

where

A0 =
kmd0 − cm
2km + ks

, (16)

A1 =
a

2
, (17)

A2 =
2cm − 2(a+ d0)km − aks

2(2km + ks)
, (18)

and the two modal frequencies are:

ω1 =

√
ks
meff

, (19)

ω2 =

√
ks + 2km
meff

. (20)

The solution is the superposition of two cosines, with the addition of a constant offset

term. This is not surprising since the equations of motion are still linear.

4. Beats

For beams of length L = 12 cm, separation distance d0 = 4.5 cm, release amplitude

a = 1 cm and the other constants described in Sec. IIIA, the values of “spring constants”

are ks = 4.15N/m, km = 0.702N/m and cm = 0.0790N, so the values for the amplitudes

6
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can be calculated as A0 = 8.53×10−3m, A1 = 5×10−3m, and A2 = 3.53×10−3m. Using

the approximation A1 ≈ A2, Eqs. (13) and (14) become

v1 = +A0 + A1 cosω1t+ A1 cosω2t, (21)

v2 = −A0 + A1 cosω1t− A1 cosω2t. (22)

It is well known that we can rewrite Eqs. (21) and (22) using the sum-to-product

trigonometric identity cos θ + cosφ = 2 cos ((θ + φ)/2) cos ((θ − φ)/2) to become

v1(t) = +A0 + 2A1 cos (ωavgt) cos
(ωbeat

2
t
)
, (23)

v2(t) = −A0 − 2A1 sin (ωavgt) sin
(ωbeat

2
t
)
, (24)

where

ωavg ≡
ω1 + ω2

2
, (25)

ωbeat ≡ |ω1 − ω2|. (26)

When the two modal frequencies ω1 and ω2 are similar, the difference between them is

small and the beat frequency ωbeat is small, leading to the beating phenomenon. Eqs. (25)

and (26) are the mathematical expressions for the beat and average frequency defined in

the introduction. The factor of half in the definition for ωbeat is omitted because the

peaks in the amplitude appears twice every period, so we have defined the beat frequency

is double the frequency of the cosine.

5. Limitations

Note that this linear theory fails to account for more than just the nonlinearities

that arise from finite amplitudes. It assumes the magnets remain coaxial to each other,

although in reality the magnets become tilted when the springs bend, causing a decrease

in the magnetic force. The effects of gravity on the beam were also neglected. Since the

beams are vertically clamped at the bottom, gravity will oppose the restoring force of the

beam and cause a slight decrease in the frequency of oscillations, which is demonstrated

in Appendix D.

B. Full nonlinear model

Now, I will move on to the full nonlinear model of the MMO system, taking into

account both nonlinearities in the large deflections of the cantilevered beam as well as

7
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the magnetic force.

1. Large deflection beam model

The equations of motion for a vertical cantilever beam (see Appendix A for the deriva-

tion) are:

µv̈ = −cDv̇ − EI
(
v′′′′ + [v′(v′v′′)′]

′)−mgv′′ − µ

2

∂

∂s

(
v′
∫ s

L

∫ θ

0

∂2

∂t2
(v′2) dy dθ

)
+ µg(v′ + (s− L)v′′) +

mv′′

2

∫ L

0

∂2

∂t2
(v′2) ds∓ (Fmag · êy)v

′′,

(27)

mv̈|s=L = mgv′ − mv′′

2

∫ L

0

∂2

∂t2
(v′2) dy + EI

(
v′′′ + v′′′v′2 + v′′2v′

)
± (Fmag · êx)± (Fmag · êy)

(
v′ +

1

2
v′3

)]∣∣∣∣
s=L

,

(28)

v′′(L, t) = 0, (29)

v(0, t) = v′(0, t) = 0. (30)

where s, v, u, ψ are defined in Fig. 3 and y and θ are dummy integration variables.

Equation (27) is the equation of motion for the beam, taking into account nonlinearities

up to third order. Equations (28)–(30) are the boundary conditions.

2. Current cylinder magnet model

The magnetic dipole approximation becomes inaccurate as the magnets used were

cylindrical with finite size. We can more accurately model the magnets as current cylin-

ders with surface current K equal in magnitude to the magnetization, assuming the

magnetization is uniform in the axial direction6.

a. Coordinate transforms There are three degrees of freedom for the magnets: the

horizontal and vertical displacements, as well as the tilt angle between the two magnets.

I denoted the frame of the left magnet the unprimed coordinates (x, y, z) and the frame

of the right magnet the primed coordinates (x′, y′, z′), where r0 = (x0, 0, z0) is the vector

pointing from the origin of the unprimed to the origin of the primed coordinate system

(Fig. 4). The centers of the magnets always lie in the plane with y = 0 since the beams

8
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𝑠2𝑠1

𝑢

𝑑𝑠

𝑣

𝜓

𝑑𝑠

𝑣 + 𝑑𝑣

𝑢 + 𝑑𝑢

𝑦

𝑥

Beam 1 Beam 2

𝑑0

𝐿

FIG. 3. s1 and s2 are the coordinates along the two beams. Since the two beams are identical,

I will drop the subscripts and focus only one beam. A global coordinate system is defined where

x points to the right, y is up and z is out of the page. v(s, t) is the horizontal displacement of a

beam element, u(s, t) is the vertical displacement, and ψ(s, t) is the angle the beam makes with

the vertical.

can only oscillate in that plane. The two frames are related by the coordinate transform
x′

y′

z′

 =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ



x

y

z

 (31)

Note that the (x, y, z) here are unrelated to the global coordinate system (x, y, z) used in

the beam formulation. The values of x0 and z0 are related to the beam variables byx′
z′

 =

 sinψ1 cosψ1

− cosψ1 sinψ1

 u2 − u1

v2 − v1 + d0 −H

 (32)

where the subscripts 1 and 2 denote the left and right beams respectively, and the values

of u and v are evaluated at the tip of the beams, and θ is simply

θ = ψ2 − ψ1. (33)

9
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𝑧

𝑥

𝑥′
𝑧′

𝑧

𝜃
𝑥0

𝑧0

FIG. 4. The definitions of the unprimed and primed frames used in the magnetic force

computation. The origin of the primed frame is at a coordinate (x0, 0, z0) in the unprimed

frame. The centers of the magnets will always lie in the plane y = 0 since the beams can only

oscillate in that plane.

b. Magnetic field According to Derby and Olbert 6 , the radial and axial magnetic

field produced by such a current cylinder with thickness 2b and radius a is

Br = B0[α+C(k+, 1, 1,−1)− α−C(k−, 1, 1,−1)] (34)

and

Bz =
B0a

a+ r
[β+C(k+, γ

2, 1, γ)− β−C(k−, γ
2, 1, γ)] (35)

respectively, where

B0 =
µ0

π
nI, (36)

z± = z ± b, (37)

α± =
a√

z2± + (ρ+ a)2
, (38)

β± =
z±√

z2± + (ρ+ a)2
, (39)

γ =
a− ρ

a+ ρ
, (40)

k± =

√
z2± + (a− ρ)2

z2± + (a+ ρ)2
. (41)

These expressions give the magnetic field produced by the left magnet (in the unprimed

frame) in cylindrical coordinates.

10
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c. Magnetic force To determine the magnetic force, the Lorentz force

Fmag =

∫∫
S

K dS ×B (42)

can then be integrated over the surface S of the other magnet to find the magnetic force.

Here, B is the magnetic field produced by the left magnet, and K = M× n̂ is the surface

current of the right magnet with a magnetization of M . For ease of integration, we do

this in integral in the primed frame in cylindrical coordinates:

Fmag = R

∫ H/2

−H/2

∫ 2π

0

(M× φ̂)×B dφ dz′. (43)

By computing this numerically using the coordinate transforms, I account for the fact

that the magnets are tilted and vertically displaced from each other when the beams

bend, hence addressing this limitation in the simplified linear model.

3. Numerical solution

The 4th-order nonlinear partial differential equation for the beams and the integrals

for the magnetic force and are solved numerically.

At each time step, the magnetic force is computed using Eq. (42). Then, Eqs. (27) –

(30) are solved for each beam, by discretizing each beam into 15 evenly spaced grid points

and using a 4th-order finite-difference (central-difference) scheme7 to obtain the spatial

derivatives. A backwards Euler method8 is used in the time domain with a small time

step of ∆t = 2× 10−5 s to minimize numerical error.

III. EXPERIMENTAL VERIFICATION AND DISCUSSION

A. Experimental setup

I experimentally constructed the MMO system by clamping two brass plates with a

measured flexural rigidity of EI = 2.39 × 10−3Nm2 (refer to Appendix B for how this

value was measured) and mass per unit length µ = 0.0248 kgm−1 to a 3D printed block

to accurately control the distance between the two springs (Fig. 1). The springs were

aligned using a flat surface when clamping. The right spring was then released using

a lever to ensure minimal initial release velocity to set the system into oscillations. A

high-speed camera recorded the phenomenon at 250 FPS and the positions of the magnets

were tracked by a small green dot on the magnets using image processing techniques.

11
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Theory Experiment
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t / s
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v1 / m

0.5 1.0 1.5 2.0 2.5
t / s

-0.02

-0.01

0.00

0.01

0.02

v2 / m

FIG. 5. Horizontal deflection of the tip of the left and right springs (top and bottom plot

respectively) with parameter values described in Sec. III A and a length of L = 12 cm and

separation distance d0 = 4.5 cm, released with an initial amplitude of A = 2 cm. Error bars are

omitted for visualization purposes.

In these experiments, cylindrical magnets were used with a mass ofm = 1.774 g, radius

R = 0.5 cm, height H = 0.3 cm, and the magnetization of the magnets were characterized

to be M1 = 0.944× 106Am−1 and M2 = 1.03× 106Am−1 respectively by measuring the

axial magnetic field strength using a hall probe and fitting it to Eq. 35.

B. Dynamic trajectory

For a beam length of L = 12 cm and separation distance of d0 = 4.5 cm, the two

modal frequencies in Eqs. (19) and (20) are ω1 =
√
ks/meff = 41.2 rad s−1 and ω2 =√

(ks + 2km)/meff = 47.7 rad s−1.

Since the two modal frequencies are similar to each other, as explained in Sec. IIA 4,

we observe the beats phenomenon with a beat frequency ωbeat = ω2−ω1 = 6.47 rad s−1 =

1.03Hz.

In the plot of horizontal deflection v of the tip against time (Fig. 5), we observe the

beats phenomenon. The increasing deviations between the theory and experiment as time

12
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Theory

Experiment
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FIG. 6. The discrete Fourier transform of the graph of tip deflection against time, with the

peak amplitude normalized to be 1. It displays two main peaks representing the system’s two

modal frequencies. Additionally, a minor peak near 15Hz indicates the weak nonlinearities in

the system, while the peak at 0 represents the equilibrium position being slightly deflected from

the springs being perfectly vertical due to the magnetic force.

goes on are likely due to small errors in the measurement of the value of flexural rigidity

EI or magnetizationM which led to the predicted modal frequencies to be slightly higher

than the actual value.

Taking the discrete Fourier transform of the deflection-time plot (Fig. 6), we observe

two main peaks, corresponding to the two modal frequencies respectively. The small peak

at around 15Hz is due to the weak nonlinearities in the system causing the oscillations to

not be exactly harmonic (i.e. sinusoidal). There is also a peak at 0, which represents the

fact that the beams are not oscillating about the point where they are vertical, but rather

the equilibrium position is slightly offset due to the always-present magnetic repulsion

force. This corresponds to the first constant term in Eqs. (21) and (22).

We see the nonlinear theory presented is able to accurately predict the modal frequen-

cies present.

13

 20
24

 S.
-T

. Y
au

 H
igh S

ch
ool S

cie
nc

e A
war

d

仅
用

于
20

24
丘

成
桐

中
学

科
学

奖
公

示



Research Report 2024 S.T. Yau High School Science Award (Asia)

C. Varying amplitude
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FIG. 7. The dependence of the (a) average and (b) beat frequency on the initial displacement

at release, showcasing the frequency’s dependence on the amplitude of oscillations. A length of

L = 12 cm and separation distance of d0 = 5.5 cm was used. The yellow line is computed with

the nonlinear terms in the beam removed, leaving just the nonlinearity in the magnet. The blue

line includes all nonlinear terms. The fully linear theory (dashed line) is included for comparison.

The method for obtaining the beat and average frequency is described in Appendix C.

A key idea from IIA 4 is that the modal frequencies are dependent solely on the

parameters of the system (i.e. the spring constants and masses). However, this is not true

in general for the nonlinear case. Recall from Fig. 2 that damping causes the amplitude

to decrease, which causes the beat and average frequencies to decrease as well (Fig. 7).

In Fig. 7, I have plotted the prediction from the fully linear theory, as well as the theory

with the nonlinear terms in the beam equations (Eqs. 27 – 30) removed, but keeping the

full nonlinear theory from the magnets. Comparing that to the fully nonlinear line, it is

apparent that the nonlinearities in the beam are significant in this setup. For a comparison

of the orders of magnitude of terms, see Appendix E.

As expected, the linear theory prediction remains constant.

The reason why the beat and average frequencies increase as the amplitude increases

is the magnets move closer to each other, so the magnetic coupling force becomes much

stronger due to the nonlinear nature of the magnetic force, hence the second modal

frequency ω2 increases and both the average and beat frequency increases.
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FIG. 8. The average and beat frequencies and their dependence on: (a), (b) the length of the

beams L, and (c), (d) the separation distance between the beams d0. Two sets of data were

taken with initial displacements of 1 cm and 2 cm to highlight the frequencies’ dependence on

initial conditions. The theory lines are computed using the full nonlinear theory including both

magnet and beam nonlinearities. The fully linear approximation is shown in dashed line for

comparison, which does not predict an amplitude dependence. All theory lines were computed

with the values described in Sec. IIIA.

D. Varying beam length

Increasing the length of the beams causes the average frequency to decrease and the

beat frequency to increase (Figs. 8a and 8b). This cana be qualitatively explained by

using the linear approximation of the system (Sec. IIA). When the length of the beam

increases, the effective beam constant of the leaf beam ks decreases (Eq. 6). Intuitively,

a longer beam is easier to bend than a shorter one.

When ks increases, both modal frequencies ω1 and ω2 increases (Eqs. 19 and 20).

However, since ω1 < ω2, ω1 will increase more than ω2. As such, the difference between

them actually decreases and hence the beat frequency ωbeat = ω2 − ω1 decreases.
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E. Varying separation distance

Increasing the separation distance d0 between the two beams causes both the average

and beat frequency to decrease (Figs. 8c and 8d). The beat frequency decreases because

the coupling strength between the two oscillators is weaker when the distance is farther,

so the kinetic energy takes a longer time to be completely transferred from one to the

other.

When the separation distance increases, the effective spring constant for the magnet

km (Eq. 10) increases. In that case, ω1 stays constant while ω2 increases, so both the

average and the difference between the two modal frequencies increases and the average

and beat frequency increases.

IV. CONCLUSION

In this paper, I have investigated how the modal frequencies are affected by different

parameters in a nonlinear continuum system, showing that the beat and average frequen-

cies increase as the amplitude of the system increases, which is characteristic of nonlinear

systems.

This work highlights the importance of nonlinearities in coupled oscillator systems.

Contrary to linear systems, these nonlinear systems are rarely discussed in most un-

dergraduate textbooks because the nonlinear equations of motion rarely have analytical

solutions9. However, it is of important educational value to show the additional insights

that nonlinearities that occur in real world systems. An improved understanding of these

nonlinear systems could lead to advancements in design, efficiency, and safety of various

mechanical structures.

A. Future work

For certain parameters of the system, the nonlinearities might make it possible to ob-

tain spatially localized normal modes where most of the energy is confined predominantly

to one of the two beams4.

However, in my experimental setup, we were unable to achieve this due to the large

degree of nonlinearities required. In the future, perhaps by using thinner beams and

stronger magnets, we can observe this effect.
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It would be interesting to investigate the critical parameter required to obtain such

localized normal modes, especially because they are unique to nonlinear systems.

REFERENCES

1D. Morin, Introduction to classical mechanics with problems and solutions (Cambridge

University Press, 2019).

2M. Lakshmanan and S. Rajasekar, “Linear and nonlinear oscillators,” in Nonlinear

Dynamics: Integrability, Chaos and Patterns (Springer Berlin Heidelberg, Berlin, Hei-

delberg, 2003) pp. 17–30.

3International young Physicist’s Tournament, “Problems for the 36th IYPT 2023,”

(2022).

4A. F. Vakakis, L. I. Manevitch, Y. V. Mikhlin, V. N. Pilipchuk, and A. A. Zevin, Normal

modes and localization in Nonlinear Systems (Wiley, 1996).

5T. Irvine, “Bending frequencies of beams, rods, and pipes,” (2012).

6N. F. Derby and S. Olbert, “Cylindrical magnets and ideal solenoids,” American Journal

of Physics 78, 229–235 (2009).

7B. Fornberg, “Generation of finite difference formulas on arbitrarily spaced grids,” Math-

ematics of Computation 51, 699–706 (1988).

8J. C. Butcher, Numerical methods for ordinary differential equations (Wiley Online

Library, 2008).

9D. Cline, “Introduction to Nonlinear Systems and Chaos,” (2021), [Online; accessed

2024-01-01].

10V. C. Meesala, “Modeling and analysis of a cantilever beam tip mass system,” (2018).

17

 20
24

 S.
-T

. Y
au

 H
igh S

ch
ool S

cie
nc

e A
war

d

仅
用

于
20

24
丘

成
桐

中
学

科
学

奖
公

示

https://doi.org/10.1007/978-3-642-55688-3_2
https://doi.org/10.1007/978-3-642-55688-3_2
http://www.vibrationdata.com/tutorials2/beam.pdf
https://api.semanticscholar.org/CorpusID:118655605
https://api.semanticscholar.org/CorpusID:118655605
https://api.semanticscholar.org/CorpusID:119513587
https://api.semanticscholar.org/CorpusID:119513587
https://phys.libretexts.org/@go/page/9579


Research Report 2024 S.T. Yau High School Science Award (Asia)

APPENDICES

Appendix A: Large deflection beam model derivation

Since the two beams are identical, we will focus on one beam in the derivation. The

following derivation is based off the work of Meesala 10 and the variables used are defined

in Fig. 3.
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𝑦

𝑥

𝐹2

𝐹1

𝑀

𝐹2 + 𝐹2
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−𝑐𝐷 ሶ𝑣 𝑑𝑠

𝜉

𝜓

𝑦

𝐹1 + 𝐹1
′  𝑑𝑠

𝑑𝑠

(a)

𝑦

𝑥

𝜓
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𝐹1

𝑀

𝜂

𝜉𝑦

𝑚𝑔

±𝑭𝒎𝒂𝒈

(b)

FIG. 9. I define a local orthogonal coordinate system ξ and η where ξ is along the axis of the

beam and η is transverse to the beam axis. (a) Free body diagram for an infinitesimal beam

segment of length ds. The internal forces acting on the beam element are the normal force F1,

shear force F2, and the bending moment M . The external forces are its weight µg ds and air

drag −cDv̇ ds. (b) Free body diagram for the tip of the beam. The forces are similar to that of

the beam segment, along with the addition of the magnetic force Fmag.

Zooming in on a small beam element of infinitesimal length ds (Fig. 9a), we define a

local orthogonal coordinate system ξ and η as follows:êη

êξ

 =

cosψ − sinψ

sinψ cosψ

êx

êy

 . (A1)

The internal forces acting on this beam are the normal force F1 and the shear force

F2, as well as the internal moment M about the z-axis. The external forces acting on

the beam element are it’s weight µg ds and air drag −cDv̇ ds where cD is the damping
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coefficient. With that, we can write down Newton’s second law for this beam element:(
∂

∂s
(F1êη + F2êξ)− µgêy − cDv̇êx

)
ds

= µ ds(v̈êx − üêy).

(A2)

In the RHS, I have subtracted üêy in order to keep u positive.

We can do the same analysis for the tip of the beam (Fig. 9b), this time including the

magnetic force:

Ftip = (−F1êη − F2êξ)|s=L −mgêy ± Fmag

= m(v̈êx − üêy)|s=L.
(A3)

Here, the ±Fmag comes from the fact that depending on if we are looking at beam 1 or

beam 2, the force can be positive or negative.

First, let us solve for the normal force F1. We can split Eqns. (A2) and (A3) into the

x and y components:

Eq. (A2) x-component:

∂

∂s
(F1 sinψ + F2 cosψ)− cDv̇ = µv̈, (A4)

Eq. (A2) y-component:

∂

∂s
(F1 cosψ − F2 sinψ)− µg = −µü, (A5)

Eq. (A3) x-component:

[−F1 sinψ − F2 cosψ − cDv̇ ± (Fmag · êη) cosψ ±(Fmag · êξ) sinψ]|s=L = mv̈|s=L, (A6)

Eq. (A3) y-component:

[−F1 cosψ + F2 sinψ ∓ (Fmag · êη) sinψ ±(Fmag · êξ) cosψ]|s=L −mg = −mü|s=L.

(A7)

We can integrate both sides of Eq. (A5) to obtain∫ s

L

[
∂

∂s
(F1 cosψ − F2 sinψ)− µg

]
ds =

∫ s

L

−µü ds (A8)

F1 cosψ − F2 sinψ − [F1 cosψ − F2 sinψ]|s=L

− µg(s− L) = −µ
∫ s

L

ü ds.
(A9)
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In order to obtain an expression for [F1 cosψ − F2 sinψ]|s=L in Eq. (A9), we rearrange

Eq. (A7):

[F1 cosψ − F2 sinψ]|s=L = [mü∓ (Fmag · êη) sinψ

± (Fmag · êξ) cosψ]|s=L −mg.
(A10)

We can then obtain an expression for F1 by subbing Eq. (A10) into Eq. (A9) to obtain

F1 =
1

cosψ

{
F2 sinψ −mg + [(mü∓ (Fmag · êη) sinψ

± (Fmag · êξ) cosψ)|s=L]

+µg(s− L)− µ

∫ s

L

ü ds

}
.

(A11)

We solve for F2 by balancing the moments about the z-axis:

M + F2 ds = 0 (A12)

then applying moment-curvature relationship from Euler-Bernoulli beam theory:

M = EIψ′ (A13)

to obtain

F2 = −EIψ′′. (A14)

In order to eliminate u from the equations, we apply the inextensibility constraint,

meaning the beam’s arc length has to remain constant. From Fig. 10, we arrive at the

following two equations

ψ = sin−1 v′ (A15)

cosψ =
ds− du

ds
= 1− u′. (A16)

After doing some Taylor expansions to 3rd order, we arrive at the relation

u′ =
1

2
v′2 +O(v′5). (A17)

Hence, u can be written in terms of v as

u(s, t) =

∫ s

0

u′ dy =

∫ s

0

1

2
v′2 dy. (A18)

This equation will be used to eliminate u from the equations of motion.

We substitute in Eqs. (A11), (A14), (A18) back into Eq. (A4) and again do a Taylor

expansion to third order, arriving at the following equation of motion for each cantilevered

beam:
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FIG. 10. The inextensibility constraint p1p2 = p1p
′
2 which states the beam has to remain the

same length when it bends. Using this constraint, we can express u in terms of v (Eq. A18) to

eliminate u from the equations.

µv̈ + cDv̇ + EI
(
v′′′′ + [v′(v′v′′)′]

′)
+mgv′′ +

µ

2

∂

∂s

(
v′
∫ s

L

∫ θ

0

∂2

∂t2
(v′2) dy dθ

)
−µg(v′ + (s− L)v′′)− mv′′

2

∫ L

0

∂2

∂t2
(v′2) ds± (Fmag · êy)v

′′ = 0.

(A19)

Here, θ and y are dummy integration variables. This equation takes into account up to

third order nonlinearities in the system.

One of the boundary conditions can be found by substituting Eqs. (A11), (A14), (A18)

into Eq. (A6), once again expanding to third order:

mv̈|s=L =

[
mgv′ − mv′′

2

∫ L

0

∂2

∂t2
(v′2) dy

+ EI
(
v′′′ + v′′′v′2 + v′′2v′

)
± (Fmag · êx)

± (Fmag · êy)

(
v′ +

1

2
v′3

)]∣∣∣∣
s=L

.

(A20)

The remaining boundary conditions are moment equilibrium at the tip

v′′(L, t) = 0, (A21)

and the geometric constraint at the fixed end that the displacement and angle must be
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zero:

v(0, t) = v′(0, t) = 0 (A22)

Equations (A19) – (A22) are the full nonlinear equations describing the cantilevered

beams.

Appendix B: Flexural rigidity characterisation

The flexural rigidity is the product of the Young’s modulus E which is dependent

on the beam material, and the second moment of area I which is dependent on the

beam geometry. It appears in the moment-curvature relationship (Eq. A13) from Euler-

Bernoulli beam theory. A higher value of EI means the beam is “stiffer” and bends less

easily.

To measure this value for the beams used in my experiment, I clamped the beam to

vibrate horizontally to eliminate the effects of gravity, then measured the frequency of

small vibrations for different lengths. The data points were then fitted to the curve

ω =

√
3EI

(0.2235µL+m)L3
(B1)

which came from Eq. (6) and (7) to find the value of EI (Fig. 11).

Appendix C: Method for determining beat and average frequency

Due to the effects of damping causing the amplitude as well as the frequency to de-

crease, taking the Fourier transform to find the modal frequencies does not give clear,

sharp peaks, especially at larger amplitudes. Furthermore, due to practical limitations,

I was only able to take data for a short time interval, causing the Fourier transform to

be inaccurate and highly sensitive to the endpoint of the interval. As such, we are un-

able to accurately determine the two modal frequencies of the system from the Fourier

transform. Here, we investigate the initial modal frequency of the system at the release

amplitude. To address these issues, I investigated the initial beat and average frequency

at the release amplitude. I found the peaks in the oscillation, then found the mean of the

interval between each peak in just the first beat to find the average period, the reciprocal

of which is the average frequency of just the first beat. The initial beat frequency is

determined by fitting a curve in the form of Ae−βt |sin ((ωbeate
−γt/2) t+ ϕ)| where I have
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FIG. 11. Frequency-length plot used to measure the EI of the beams used, by find the best

fit curve (red) to the data points (blue) using Eq. B1.

assumed the beat frequency decreases exponentially with time, following the amplitude

which decreases exponentially with time due to linear damping (Fig. 12).

Appendix D: Effects of gravity

In order to investigate the effects of gravity, the MMO setup was tilted on its side to

emulate the lack of gravity, and the setup was turned upside down to emulate gravity

acting upwards.

Average frequency / Hz Beat frequency / Hz

Upright 6.42 0.425

Sideways 6.76 0.461

Upside-down 7.01 0.557

TABLE I. The beat and average frequencies of the MMO system when it is oriented upright,

sideways, and upside-down to investigate the effects of gravity. We see a increasing trend in

the frequencies as gravity goes from opposing the restoring spring force to being in the same

direction as the restoring spring force.
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FIG. 12. The method used to determine the initial beat and average frequency. The peaks

were found and the interval between the peaks in the first beat were used to determine the

initial average frequency. The initial beat frequency was determined by fitting a sine curve with

an exponentially decaying frequency to the peaks.

Experimentally, we see that the average and beat frequency increases as the setup is

turned to sideways, then upside down (Table I). In the normal MMO setup, gravity is

acting against the restoring force of the springs, while in the upside down case, gravity

is acting in the same direction as the restoring force of the spring. The apparent spring

constant of the leaf spring will increase as the setup is turned upside down, causing the

increase in the average and beat frequency.
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Appendix E: Orders of magnitude of nonlinear terms

Term Order of

magnitude / Nm−1

Damping cDv̇ 10−2

Spring force EIv′′′′ 1

Nonlinear spring force EI [v′(v′v′′)′]′ 10−1

Nonlinear curvature µ
2

∂
∂s

(
v′
∫ s
L

∫ θ
0

∂2

∂t2
(v′2) dy dθ

)
10−1

Tip mass mgv′′ 10−1

Gravity µg(v′ + (s− L)v′′) 10−1

Nonlinear curvature (tip mass) mv′′

2

∫ L
0

∂2

∂t2
(v′2) ds 10−1

Magnetic force term (Fmag · êy)v′′ 10−6

TABLE II. Maximum orders of magnitude of different terms in Eq. (27), for a initial displacement

of 1 cm, length L = 12 cm, and separation distance d0 = 5 cm.

25

 20
24

 S.
-T

. Y
au

 H
igh S

ch
ool S

cie
nc

e A
war

d

仅
用

于
20

24
丘

成
桐

中
学

科
学

奖
公

示



Research Report 2024 S.T. Yau High School Science Award (Asia)

Term Order of

magnitude / N

Spring force EIv′′′ 10−1

Nonlinear spring force EI
(
v′′′v′2 + v′′2v′

)
10−3

Tip mass mgv′ 10−2

Nonlinear tip mass mv′′

2

∫ L
0

∂2

∂t2
(v′2) dy 10−3

x-component magnetic force (Fmag · êx) 10−2

y-component magnetic force (Fmag · êy) 10−3

Magnetic force term (Fmag · êy)
(
v′ + 1

2v
′3) 10−4

TABLE III. Maximum orders of magnitude of different terms in Eq. (28), for a initial displace-

ment of 1 cm, length L = 12 cm, and separation distance d0 = 5 cm.
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