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Modal Frequencies in a nonlinear beam-magnet coupled oscillator system

Wang Yunze

Abstract

The motion of a nonlinear coupled oscillator system consisting of two leaf springs secured to-a non-
magnetic base with magnets attached to the upper ends such they repel and are free to move was
investigated. My results showed that the system exhibits the beats phenomenan, and the frequency
shows a dependence on initial conditions. | hence hypothesized this sensitivity on initial conditions is
due to two sources of nonlinearities: geometric nonlinearity during=largeideflections of the leaf springs
and the nonlinearity in the magnetic force. To test this hypothesis, a nonlinear mathematical model
was developed, accounting for nonlinear beam effects up to third order and fully solving the nonlinear
magnetic force using a current cylinder modely accounting for the tilting of the magnets. An
approximate linear model was also developed for comparison. The theoretical models were validated
experimentally by investigating the dynamic motion of the springs through time, as well as how the
modal frequencies in the system/depend on the initial displacement, the length of the spring, and the
distance between the springs: The more accurate nonlinear model | derived shows good agreement
with experimental-results while the linear theory does not, highlighting the importance of nonlinearities
in this system: An<«improved understanding of these nonlinear systems could lead to advancements in

design and_efficiency;vand’safety in various applications such as energy harvesting.

Keywords: coupled oscillator, nonlinear vibrations, geometric nonlinearity, magnetically coupled dual
beams, large deformation of cantilever beam
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Modal frequencies in a nonlinear beam-magnet coupled oscillator system

Wang Yunze
(Dated: 28 July 2024)

The motion of a nonlinear coupled oscillator system consisting of two leaf springs
secured to a non-magnetic base with magnets attached to the upper ends such they
repel and are free to move was investigated. My results showed that the ‘System
exhibits the beats phenomenon, and the frequency shows a dependenceson initial
conditions. I hence hypothesized this sensitivity on initial conditions is due to two
sources of nonlinearities: geometric nonlinearity during large deflections of the leaf
springs and the nonlinearity in the magnetic force. To test this hypothesis, a non-
linear mathematical model was developed, accounting for nonlinear beam effects
up to third order and fully solving the nonlinear magnetic force using a current
cylinder model, accounting for the tilting of the magnets. An approximate linear
model was also developed for comparison. The theoretical models were validated
experimentally by investigating the dynamic motion of the springs through time,
as well as how the modal frequenei€s in the system depend on the initial displace-
ment, the length of the springsand the distance between the springs. The more
accurate nonlinear model\I derived shows good agreement with experimental re-
sults while the linear theory does not, highlighting the importance of nonlinearities
in this system. An, improved understanding of these nonlinear systems could lead
to advancements in design and efficiency, and safety in various applications such

as energy harvesting.
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I. INTRODUCTION

Release
mechanism

e
Magnet taped
to tip of spring

3D printed non-magnetic
block to separate springs
o B

FIG. 1. The magnetic mechanical oscillator (MMO) setup. The setup consists of two cantilever
beams clamped to a non-magnetic base, then attaching magnets to the upper ends such that
they repel and are free to moyen, A“lever release mechanism is used to minimize the initial

velocity given during release.

A coupled oscillator system is one where two or more oscillators are coupled together
via another force, such that the oscillations of one oscillator will affect the oscillation of the
others. In this paper, I will be focusing on the case of two oscillators. A linear coupled
oscillator «systemsis one where the restoring force on the oscillators and the coupling
force is a linear function of the displacements. Linear coupled oscillator systems are well
established, with the resulting motion being the superposition of two harmonic oscillations
whose frequencies are known as the modal frequencies, leading to interesting motion such
as beats'.

However, these results no longer apply when the system is nonlinear’. Compared to
the linear case, it is possible to obtain more complex motion where the modal frequencies
are not constants of the system but rather functions of the amplitude of oscillations.

In this paper, I investigated a nonlinear coupled oscillator system which I named the

Magnetic Mechanical Oscillator (MMO), comprising two cantilever beams clamped to a

2
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FIG. 2. Horizontal deflection of tip of the springs against-time for two identical setups released
with a &~ 2 cm initial displacement (top) and =~ 4cnmiinitial displacement (bottom). The dashed
vertical lines represent a “beat”. The frequency depends not just on the system parameters
but also initial conditions. As the amplitude of oscillations decreases due to damping, the beat
frequency decreases as well. The avérage frequency decreases too, although this is not as obvious

from the plot.

non-magnetic base with*magnets attached to the upper ends of the beams of such that
they repel and arefree to move (Fig. 1)’. The two cantilever beams act as oscillators that

are coupleditogether via the magnetic force between the magnets at the tip.

This MMO system exhibited the beats behavior where there was a “fast” oscillation at
a, high.frequenceywhich I called the average frequency, whose amplitude was modulated

by’a “slow” oscillation at the beat frequency (Fig. 2 top).

There are two sources of nonlinearities in the MMO system, one due to the nonlinear
force between the two magnets, and the other due to geometric nonlinearities in the
cantilever beams at larger deflections. These nonlinearities cause the beat frequency
to be amplitude-dependent, which is not the case for linear coupled oscillators (Fig. 2

bottom).

The whole concept of normal modes is based off the linearity of the system. If the

system is nonlinear, the superposition principle no longer applies and the solution is not
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just the sum of the normal mode oscillations.

However, one possible way to define a nonlinear normal mode is as synchronous peri-
odic solutions of the nonlinear equations of motion, where all coordinates of the system

oscillate with the same period, reaching the maximum and minimum at the same time".

If the system is linearizable with weak nonlinearities, these nonlinear model medes
approach the classical normal modes of the linearized system as the nonlineariti€s-tend

to zero . These normal modes are the ones that we investigate in this paper.

I developed two mathematical models for the MMO system. First, I approximated
it to the linear coupled oscillator system by linearizing simplified,equations of motion,
then more accurately model the system using a large deflection” Euler-Bernoulli beam
model and modelling the magnets as current cylinders, accounting for nonlinearities in
both the beam and the magnet. I then experimentally verified both models, showing
that the linearized model is inaccurate and cannot fully describe the motion, highlighting

nonlinearities in the system.

II. MATHEMATICAL MODELING OF MMO SYSTEM

A. Linear approximation

1. Linear leaf springs

The leaf springean/be approximated as an ideal linear spring. Throughout this paper,
anprime 2’ will be, used to represent a spatial derivative dz/ds and an overdot & will be

used to represent a temporal derivative dx/dt.

Consider a vertical cantilevered beam of length L, Young’s modulus F, second moment
of area I, and mass per unit length p with a tip mass m attached. v(s,t) is the horizontal

displacement of the beam at distance s along the beam.

The dynamic equation of motion for such a beam can be written as

EIV"" + puv =0 (1)

4
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where the boundary conditions are

v(0,t) =0, (2)
v'(0,t) =0, (3)
v'(L,t) = 0, (4)
EIV"(L,t) = md(L,t). (5)

Equations (2) and (3) represents the fixed end at s = 0, while Eq. (4) represents the free
end at s = L. The tip mass is included in Eq. (5).
Irvine” showed that this system is approximately equivalent to &, ideal spring-mass

system with effective spring constant

3E1
= ®)
and effective mass
Meg = 0.2246uL + m. (7)

2. Linear magnetic force

Consider two cylindrical magnets with radius R, height H and magnetizations M; and
M, respectively. We can approximate them as magnetic dipoles with a dipole moment
(TR*H)M,, (o =1,2)

Assuming the two magnets remain coaxial even when the cantilever beams bend, the

force betwéen the dipoles is

3uoMy My(m R2H )?
Frnag(d) = 222 1275 i . (8)

Defining thesdistance between the cantilever beams (which is approximately distance
between the two magnets at equilibrium) as dy, we can do a Taylor expansion to 1st order
around dy to obtain a linear approximation of the magnetic force which resembles the

linear spring equation:

Fraag(d) = ~kd + 0 + O(d) )
where
6/,60M1M27TH2R4 15M0M1M27TH2R4
ky, = = . Cm = . (10)
& 2ds
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3. Linearised equations of motion

Hence, we can write down the linearized equations as such:

Megt = —ksv1 + km(v2 — v+ dO) — Cm, (11)

Mefly = —ksvo — Ky (va — v1 + dg) + . (12)

This is similar to the traditional coupled oscillator with the addition of a constant term
in the force exerted by the “middle spring”, since the magnetic repulsion for¢e is never
ZEro.

If we apply the initial conditions of v1(0) = 0, v2(0) = a, and ¥1(0) = 02(0) = 0 this

set of equations has the solution

v, = +Ag + A coswit + Ag cosat, (13)
vy = —Ag + Ay coswit — As'eos wot, (14)
(15)
where
kmdo — Cm

Ay =—2 16
O A2k +k, (16)
RS g (17)

2¢,, — 2(a + do)k,, — aks
Ay = 18
? 22k + ks) ’ (18)

and the two modal, frequencies are:

| ks
= 19
w1 meff’ ( )
N (20)

Mefr

The solution i the superposition of two cosines, with the addition of a constant offset

term. This is not surprising since the equations of motion are still linear.

4. DBeats

For beams of length . = 12cm, separation distance dy = 4.5 cm, release amplitude
a = 1 cm and the other constants described in Sec. IIT A, the values of “spring constants”

are ks = 4.15N/m, k,, = 0.702N/m and ¢,,, = 0.0790 N, so the values for the amplitudes

6
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can be calculated as Ay = 8.53x 1073 m, A; = 5x 1073 m, and Ay = 3.53 x 1073 m. Using
the approximation A; ~ As, Eqgs. (13) and (14) become
v, = +Ag + A coswit + Aq coswat, (21)
vy = — Ay + Aj coswit — Aq cos wat. (22)

It is well known that we can rewrite Eqgs. (21) and (22) using the sum-to-produet

trigonometric identity cos + cos p = 2cos ((6 + ¢)/2) cos ((6 — ¢)/2) to become

v1(t) = +Ao + 2A; o8 (Waygt) COS <%t> : (23)
Va(t) = —Ap — 2A; sin (Waygt) sin (wb;at t) , (24)
where
g = 22, (25)
Wheat = |w1 — wa. (26)

When the two modal frequencies w; and wy arefsimilar, the difference between them is
small and the beat frequency wpea is small, leading to the beating phenomenon. Egs. (25)
and (26) are the mathematical expressions-for the beat and average frequency defined in
the introduction. The factor of halfsin the definition for wpe, 1s omitted because the
peaks in the amplitude appears twice every period, so we have defined the beat frequency

is double the frequency of,the cosine.

5. Limaitations

Note that this linear theory fails to account for more than just the nonlinearities
that arise from finite amplitudes. It assumes the magnets remain coaxial to each other,
although in reality the magnets become tilted when the springs bend, causing a decrease
in the magnetie force. The effects of gravity on the beam were also neglected. Since the
beams are vertically clamped at the bottom, gravity will oppose the restoring force of the
beam and cause a slight decrease in the frequency of oscillations, which is demonstrated

in Appendix D.

B. Full nonlinear model

Now, I will move on to the full nonlinear model of the MMO system, taking into

account both nonlinearities in the large deflections of the cantilevered beam as well as

7
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the magnetic force.

1. Large deflection beam model

The equations of motion for a vertical cantilever beam (see Appendix A for the deriva-

tion) are:

pi = —cpt — EI (V" + [V (v'0")]) — mgv’ —§$( / / 8t2 v'3) dyde)

(27)
mv// L 82 )
+pg(v" + (s — L)W") + > . @(v’ )ds F (Frag - €)u
" L 92
0
m@.’s:L = myg / m2U ﬁ(v,g) dy + EI (U/// + U///U/Q Q U//2U/)
0
. (28)
+ (Fmag - €z) £ (Fiag - €y) (v’ + 51/3>] 4
s=L
V(L 1) =0, (29)
(0, ¢) = v/(0,) = 0. (30)

where s, v, u, ¥ are defined in“Fig. 3 and y and 6 are dummy integration variables.
Equation (27) is the equatien of motion for the beam, taking into account nonlinearities

up to third order. Equatiens (28)—(30) are the boundary conditions.

2. Current cylinder magnet model

The.magnetic/dipole approximation becomes inaccurate as the magnets used were
dylindrical with finite size. We can more accurately model the magnets as current cylin-
ders with surface current K equal in magnitude to the magnetization, assuming the
magnetization is uniform in the axial direction".

a. Coordinate transforms There are three degrees of freedom for the magnets: the
horizontal and vertical displacements, as well as the tilt angle between the two magnets.
I denoted the frame of the left magnet the unprimed coordinates (z,y, z) and the frame
of the right magnet the primed coordinates (', 4/, z’), where ro = (¢, 0, 29) is the vector
pointing from the origin of the unprimed to the origin of the primed coordinate system

(Fig. 4). The centers of the magnets always lie in the plane with y = 0 since the beams

8



Research Report 2024 S.T. Yau High School Science Award (Asia)

Beam 1 Beam 2

N
v

do

FIG. 3. s and so are the coordinates along the two beams. Since the two beams are identical,
I will drop the subscripts and focus only onie beam. A global coordinate system is defined where
x points to the right, y is up and“z is‘out of the page. v(s,t) is the horizontal displacement of a
beam element, u(s, t) is the vertical displacement, and (s, t) is the angle the beam makes with

the vertical.

can only oscillate In that plane. The two frames are related by the coordinate transform

T cos 0 —sinf| |x
s =1 o 1 0 y (31)
2 sin 0 0 cos z

Note that the (Z, y, z) here are unrelated to the global coordinate system (z,y, z) used in

the beam formulation. The values of zy and 2, are related to the beam variables by

x siniy; cos Uy — Ug

= . (32)
2z —cosy sinyy | |vg—v1+dy— H

where the subscripts 1 and 2 denote the left and right beams respectively, and the values

of u and v are evaluated at the tip of the beams, and @ is simply

0=t — . (33)
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FIG. 4. The definitions of the unprimed and primed frameS used in the magnetic force
computation. The origin of the primed frame is at a coordinate (z,0,z9) in the unprimed
frame. The centers of the magnets will always lie in the plane y = 0 since the beams can only

oscillate in that plane.

b. Magnetic field According to Derbysand Olbert”, the radial and axial magnetic

field produced by such a current cylinder*with thickness 2b and radius a is

B, = Byl C'(ky, 1,1, -1) —a_C(k_,1,1,—-1)] (34)
and
_WBoa 9 2
Bz - [B+C(k+7’y ) 17 ’Y) - 570(157»7 ) 177)] (35)
a+r
respectively, where
By = Mnr (36)
T
2y = 240D, (37)
a
oy = , 38
VE At a)p )
Z4
By = , 39
* 22 4+ (p+a)? (39)
a—p
_ : 40
Lintrs (40)
2 _ )2
ky = M (41)

ZA+(a+p)*
These expressions give the magnetic field produced by the left magnet (in the unprimed

frame) in cylindrical coordinates.

10
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c. Magnetic force To determine the magnetic force, the Lorentz force

Frnag = // KdS x B (42)
S

can then be integrated over the surface S of the other magnet to find the magnetic force.
Here, B is the magnetic field produced by the left magnet, and K = M x 11 is the surface
current of the right magnet with a magnetization of M. For ease of integration, we. do

this in integral in the primed frame in cylindrical coordinates:

H/2 p2r
Finag = R/ / (M x @) x Bdpdz'. (43)
—H/2J0

By computing this numerically using the coordinate transforms, I"aceount for the fact
that the magnets are tilted and vertically displaced from each other when the beams

bend, hence addressing this limitation in the simplified linear model.

3. Numerical solution

The 4th-order nonlinear partial differential, equation for the beams and the integrals
for the magnetic force and are solved numerically.

At each time step, the magnetie force is computed using Eq. (42). Then, Eqgs. (27) —
(30) are solved for each beam by discretizing each beam into 15 evenly spaced grid points
and using a 4th-order finite-difference (central-difference) scheme’ to obtain the spatial
derivatives. A backwards Euler method” is used in the time domain with a small time

step of At = 2 x 107¥s_t6 minimize numerical error.

III. EXPERIMENTAL VERIFICATION AND DISCUSSION
A. “Experimental setup

I experimentally constructed the MMO system by clamping two brass plates with a
measured flexural rigidity of EI = 2.39 x 1073 Nm? (refer to Appendix B for how this
value was measured) and mass per unit length u = 0.0248kgm™ to a 3D printed block
to accurately control the distance between the two springs (Fig. 1). The springs were
aligned using a flat surface when clamping. The right spring was then released using
a lever to ensure minimal initial release velocity to set the system into oscillations. A
high-speed camera recorded the phenomenon at 250 FPS and the positions of the magnets

were tracked by a small green dot on the magnets using image processing techniques.

11
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Theory ----- Experiment

~0.01f

-0.02+

FIG. 5. Horizontal deflection of the tip of the-deft.and right springs (top and bottom plot
respectively) with parameter values described in ‘Sec. IITA and a length of L = 12cm and
separation distance dy = 4.5 cm, released with/an initial amplitude of A = 2 cm. Error bars are

omitted for visualization purposes.

In these experiments, cylindrical magnets were used with a mass of m = 1.774 g, radius
R = 0.5cm, height H = 0.3 cm, and the magnetization of the magnets were characterized
to be M; = 0.944%"10%A m~! and M, = 1.03 x 10° Am™! respectively by measuring the
axial magnetic field strength using a hall probe and fitting it to Eq. 35.

B. “Dynamic trajectory

For a beamslength of L = 12cm and separation distance of dy = 4.5cm, the two
modal frequencies in Egs. (19) and (20) are w; = /ks/meg = 41.2rads™ and wy =
V (ks + 2ky,) /meg = 47.7Trads™!.

Since the two modal frequencies are similar to each other, as explained in Sec. IT A 4,
we observe the beats phenomenon with a beat frequency wyeat = ws —w; = 6.47rads™! =
1.03 Hz.

In the plot of horizontal deflection v of the tip against time (Fig. 5), we observe the

beats phenomenon. The increasing deviations between the theory and experiment as time

12
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FIG. 6. The discrete Fourier transform of the graph of tip deflection against time, with the
peak amplitude normalized to be 1. It displays two main peaks representing the system’s two
modal frequencies. Additionally, a minorspeak near 15 Hz indicates the weak nonlinearities in
the system, while the peak at ( represents the equilibrium position being slightly deflected from

the springs being perfectly vertical due to the magnetic force.

goes on are likely.due“to small errors in the measurement of the value of flexural rigidity
ET or magnetization M which led to the predicted modal frequencies to be slightly higher

than the aetual valué:

Taking the discreté Fourier transform of the deflection-time plot (Fig. 6), we observe
twO main peaks, corresponding to the two modal frequencies respectively. The small peak
at around 15 Hz is due to the weak nonlinearities in the system causing the oscillations to
not be exactly harmonic (i.e. sinusoidal). There is also a peak at 0, which represents the
fact that the beams are not oscillating about the point where they are vertical, but rather
the equilibrium position is slightly offset due to the always-present magnetic repulsion

force. This corresponds to the first constant term in Eqgs. (21) and (22).

We see the nonlinear theory presented is able to accurately predict the modal frequen-

cies present.

13
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C. Varying amplitude

----- Fully linear Linear beam, nonlinear magnet Fully nonlinear Experiment
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(a) (b)

FIG. 7. The dependence of the (a) average and (b) beat frequencyon the initial displacement
at release, showcasing the frequency’s dependence on the«wmplitade of oscillations. A length of
L = 12 cm and separation distance of dy = 5.5 cm was used. The yellow line is computed with
the nonlinear terms in the beam removed, leaving just.the nonlinearity in the magnet. The blue
line includes all nonlinear terms. The fully linear theory (dashed line) is included for comparison.

The method for obtaining the beat and average frequency is described in Appendix C.

A key idea from Il A4%s that the modal frequencies are dependent solely on the
parameters of the system (i.e. the spring constants and masses). However, this is not true
in general for the nonlinear case. Recall from Fig. 2 that damping causes the amplitude

to decrease which causes the beat and average frequencies to decrease as well (Fig. 7).

In Fig. 7, I have plotted the prediction from the fully linear theory, as well as the theory
with*the nonlinear terms in the beam equations (Eqs. 27 — 30) removed, but keeping the
fulllnonlineatr)theory from the magnets. Comparing that to the fully nonlinear line, it is
apparent thatthe nonlinearities in the beam are significant in this setup. For a comparison

of the orders of magnitude of terms, see Appendix E.
As expected, the linear theory prediction remains constant.

The reason why the beat and average frequencies increase as the amplitude increases
is the magnets move closer to each other, so the magnetic coupling force becomes much
stronger due to the nonlinear nature of the magnetic force, hence the second modal

frequency ws increases and both the average and beat frequency increases.

14
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FIG. 8. The average and beat frequencies and their dependence on: (a), (b) the length of the
beams L, and (c), (d) the separation distance between the beams dy. Two sets of data were
taken with initial displacements of Tcm and 2 cm to highlight the frequencies’ dependence on
initial conditions. The theory lines are computed using the full nonlinear theory including both
magnet and beam nonlinearities. The fully linear approximation is shown in dashed line for
comparison, which-does not predict an amplitude dependence. All theory lines were computed

with the valties described in Sec. IIT A.

D. ( Varying béeam‘length

Increasing ‘the length of the beams causes the average frequency to decrease and the
beat frequency to increase (Figs. 8a and 8b). This cana be qualitatively explained by
using the linear approximation of the system (Sec. II A). When the length of the beam
increases, the effective beam constant of the leaf beam k; decreases (Eq. 6). Intuitively,

a longer beam is easier to bend than a shorter one.

When kg increases, both modal frequencies w; and w, increases (Egs. 19 and 20).
However, since w; < wy, w; will increase more than wo. As such, the difference between

them actually decreases and hence the beat frequency wyeat = we — wy decreases.

15
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E. Varying separation distance

Increasing the separation distance dy between the two beams causes both the average
and beat frequency to decrease (Figs. 8¢ and 8d). The beat frequency decreases because
the coupling strength between the two oscillators is weaker when the distance is farther,
so the kinetic energy takes a longer time to be completely transferred from one to/the
other.

When the separation distance increases, the effective spring constant for thie magnet
km (Eq. 10) increases. In that case, w; stays constant while wy increases,;so both the
average and the difference between the two modal frequencies increases-and the average

and beat frequency increases.

IV. CONCLUSION

In this paper, I have investigated how the modal frequencies are affected by different
parameters in a nonlinear continuum system; showing that the beat and average frequen-
cies increase as the amplitude of the systém increases, which is characteristic of nonlinear
systems.

This work highlights the. impertance of nonlinearities in coupled oscillator systems.
Contrary to linear systemsy these nonlinear systems are rarely discussed in most un-
dergraduate textbooks, begause the nonlinear equations of motion rarely have analytical
solutions’. However,(itis of important educational value to show the additional insights
that nonlinearities that occur in real world systems. An improved understanding of these
nonlinear systems could lead to advancements in design, efficiency, and safety of various

mechanical structuares:

AX. Future work

For certain parameters of the system, the nonlinearities might make it possible to ob-
tain spatially localized normal modes where most of the energy is confined predominantly
to one of the two beams".

However, in my experimental setup, we were unable to achieve this due to the large
degree of nonlinearities required. In the future, perhaps by using thinner beams and

stronger magnets, we can observe this effect.
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It would be interesting to investigate the critical parameter required to obtain such

localized normal modes, especially because they are unique to nonlinear systems.
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APPENDICES
Appendix A: Large deflection beam model derivation

Since the two beams are identical, we will focus on one beam in the derivation. The
following derivation is based off the work of Meesala '’ and the variables used are defined

in Fig. 3.

y o s

A A

Fy + F| ds

Y
—~M + M’ ds

Fz +F2’ ds

(a) (b)
FIG. 9. I define a local orthogonal coordinate system & and 1 where ¢ is along the axis of the
beam and 7 is transversesto the beam axis. (a) Free body diagram for an infinitesimal beam
segment of length™ds. The internal forces acting on the beam element are the normal force Fi,
shear force/k>, and the bending moment M. The external forces are its weight pgds and air
drag —cpods. (b) Free hody diagram for the tip of the beam. The forces are similar to that of

the beam segment, along with the addition of the magnetic force Fiag.

Zooming in“on a small beam element of infinitesimal length ds (Fig. 9a), we define a

local orthogonal coordinate system & and 7 as follows:

é cos1 —sin é
T = v UL (A1)
é¢ siny cosvy €y
The internal forces acting on this beam are the normal force F} and the shear force

F5, as well as the internal moment M about the z-axis. The external forces acting on

the beam element are it’s weight pgds and air drag —cpv ds where cp is the damping
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coefficient. With that, we can write down Newton’s second law for this beam element:

0
—(F1é,, + Fhé¢) — nugéy — cpié, | ds
0s (A2)
= pds(ié, — iié,).
In the RHS, I have subtracted wé, in order to keep u positive.
We can do the same analysis for the tip of the beam (Fig. 9b), this time including the

magnetic force:

Fip = (—F1é, — F2é¢)| _; — mgéy + Fiag (A3)

= m(i€y — itly)|sr.

Here, the £ F},ag comes from the fact that depending on if wesatedooking at beam 1 or
beam 2, the force can be positive or negative.
First, let us solve for the normal force F;. We can split Eqns. (A2) and (A3) into the

x and y components:

Eq. (A2) z-component:

%(Fl siny 4+ Fycos) — cpt = b, (Ad)

Eq. (A2) y-component:

0 . ..
%(Fl costp — Fysinth) » g = —pii, (A5)

Eq. (A3) z-component:
[—Fysinty = F;cosg) — cp® & (Frag - €y) cosY) £(Frag - €¢) sinv]| _, = mi|—r, (A6)

Eq. (A3) y-component:

(= costh + Forsint) F (Frag - €n) sin ) £(Fuag - €¢) cos ]| _, —mg = —mii[—r.

(A7)
We can integrate both sides of Eq. (A5) to obtain

*1o : o

—(Fycosyp — Fysine) — ug| ds = —piids (A8)
L LOs L

Fycosyp — Fysine — [Fycosy — Fysin]|s—r,

s (A9)
—pg(s — L) = —p/ i ds.
L
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In order to obtain an expression for [Fj cosy — Fysin]|s—r in Eq. (A9), we rearrange

Eq. (A7):

[F} cos ) — Fysin)]|s—r, = [mii F (Fiag - €y) sin
& (A10)
+ (Finag - €¢) cos ¥]|s=1, — myg.
We can then obtain an expression for F; by subbing Eq. (A10) into Eq. (A9) to obtain

1
1 pu—
cos 1

+ (Finag - €¢) cos V)| o=z (A11)

+ug(s—L)—,u/Lsdds}.

We solve for Fy by balancing the moments about the z-axis:

{FQ siny — mg + [(Mmit F (Fiag - €y) siny

then applying moment-curvature relationship from Euler-Bernoulli beam theory:
M = EIJ (A13)

to obtain

Py = —EI)". (A14)

In order to eliminate u frem, the equations, we apply the inextensibility constraint,
meaning the beam’s arc length has to remain constant. From Fig. 10, we arrive at the

following two equations

Y =sin"t v/ (A15)

cosp = w =1-u". (A16)
s

After-doing some Taylor expansions to 3rd order, we arrive at the relation

u = %UIQ + O>W"®). (A17)

Hence, u can be written in terms of v as

S S 1
u(s,t) = / u' dy = / 51/2 dy. (A18)
0 0

This equation will be used to eliminate u from the equations of motion.
We substitute in Eqgs. (A11), (A14), (A18) back into Eq. (A4) and again do a Taylor
expansion to third order, arriving at the following equation of motion for each cantilevered

beam:
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FIG. 10. The inextensibility constraint pips = p1p, which states the beam has to remain the
same length when it bends. Using this constraint, we cantexpress u in terms of v (Eq. A18) to

eliminate u from the equations.

pd + cpv + EI (V" + [/ (0'v")7) —i—mgv”+ 2 s ( / / &2 v"?) dy d@)

—pg(v' + (s —L)u" )

2 Jo oz’
Here, 6 and y are dummy integration variables. This equation takes into account up to

third order nonlinearities in the system.
One of the boundary conditions can be found by substituting Eqs. (A11), (A14), (A18)
into Eq. (A6), once again expanding to third order:

mv// 82
2/ 8t2(
+ EI (UW + U”/U/2 + U”QUI)

%) dy

mi)S:L: |:

(A20)
+ (Fmag - €x)
~ / ]‘ 13
+ (Fmag-€y) |V + Zv :
2 s=L
The remaining boundary conditions are moment equilibrium at the tip
v"(L,t) =0, (A21)

and the geometric constraint at the fixed end that the displacement and angle must be
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Zero:

v(0,t) =2'(0,t) =0 (A22)

Equations (A19) — (A22) are the full nonlinear equations describing the cantilevered

beams.

Appendix B: Flexural rigidity characterisation

The flexural rigidity is the product of the Young’s modulus F which,is dependent
on the beam material, and the second moment of area I which is(dependent on the
beam geometry. It appears in the moment-curvature relationship«(Eq. A13) from Euler-
Bernoulli beam theory. A higher value of E'I means the beam is, “stiffer” and bends less
easily.

To measure this value for the beams used in my experiment, I clamped the beam to
vibrate horizontally to eliminate the effects of grawity, then measured the frequency of

small vibrations for different lengths. The data points were then fitted to the curve

3ET
_ B1
“ \/ (0.22351L + m) L? (B1)

which came from Eq. (6) and, (%)"%0.find the value of E1 (Fig. 11).

Appendix C: Method.for determining beat and average frequency

Due to the effects of damping causing the amplitude as well as the frequency to de-
crease, taking the Fourier transform to find the modal frequencies does not give clear,
sharp peaks, especCially at larger amplitudes. Furthermore, due to practical limitations,
['was only able to take data for a short time interval, causing the Fourier transform to
be inaccurate and highly sensitive to the endpoint of the interval. As such, we are un-
able to accurately determine the two modal frequencies of the system from the Fourier
transform. Here, we investigate the initial modal frequency of the system at the release
amplitude. To address these issues, I investigated the initial beat and average frequency
at the release amplitude. I found the peaks in the oscillation, then found the mean of the
interval between each peak in just the first beat to find the average period, the reciprocal
of which is the average frequency of just the first beat. The initial beat frequency is

determined by fitting a curve in the form of Ae™? |sin ((wpeare™*/2) t + ¢)| where I have
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f/Hz
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| — Best fit line
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FIG. 11. Frequency-length plot used to measuré‘the”FE 1 of the beams used, by find the best

fit curve (red) to the data points (blue) using ‘Eq: B1.

assumed the beat frequency decreases‘exponentially with time, following the amplitude

which decreases exponentially’ with/time due to linear damping (Fig. 12).

Appendix D: Effects of gravity

In order to investigate the effects of gravity, the MMO setup was tilted on its side to
emulate thezlack of gravity, and the setup was turned upside down to emulate gravity

acting, upwards.

Average frequency / Hz Beat frequency / Hz

Upright 6.42 0.425
Sideways 6.76 0.461
Upside-down 7.01 0.557

TABLE 1. The beat and average frequencies of the MMO system when it is oriented upright,
sideways, and upside-down to investigate the effects of gravity. We see a increasing trend in
the frequencies as gravity goes from opposing the restoring spring force to being in the same

direction as the restoring spring force.
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—— Experimental data ¢ Peaks —— Best fit curve
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FIG. 12. The method used to determine the initi Q and average frequency. The peaks
were found and the interval between the peaks/in“the first beat were used to determine the

initial average frequency. The initial beat fre vy was determined by fitting a sine curve with

an exponentially decaying frequency@ peaks.

Experimentally, we see %@verage and beat frequency increases as the setup is

turned to sideways, then ide down (Table I). In the normal MMO setup, gravity is
acting against the resb@g force of the springs, while in the upside down case, gravity
is acting in the %ection as the restoring force of the spring. The apparent spring
constant &e leaf spring will increase as the setup is turned upside down, causing the

L 3
increase in

/t averaﬁind beat frequency.

S

b‘
v Vv
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Appendix E: Orders of magnitude of nonlinear terms

Term

Order of

magnitude / Nm™!

Damping cpv

"

Spring force Elv

1,01
(%

)T

Nonlinear spring force ET [v'(v

0 952
0 o0t2

; wo (a8
Nonlinear curvature 5 Bs (v f I
Tip mass mgv”

Gravity pug(v' + (s — L)v")

m,U/l

2

Nonlinear curvature (tip mass)

Magnetic force term (Fmag - €y)v"”

1072

1071
(v?) dy d9> 1071
1o
107!

L 92

0 ﬁ(vﬂ) ds 1071

1076

TABLE II. Maximum orders of magnitu

de of different terms in Eq. (27), for a initial displacement

of 1em, length L = 12 cm, and.separation distance dy = 5 cm.
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Term Order of
magnitude / N
Spring force ETv" 1071
Nonlinear spring force EI (v""v"? + v"%v') 1073
Tip mass mgv’ 1072
Nonlinear tip mass m;’” OL g—;(v’z) dy 1073
x-component magnetic force (Fmag - €x) 1072
y-component magnetic force (Fmag - €y) 1073
Magnetic force term (Fumag - €y) (v + 30'%) 104

TABLE III. Maximum orders of magnitude of different’terms in Eq. (28), for a initial displace-

ment of 1cm, length L = 12 cm, and separation distance dg = 5 cm.

26



