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Abstract

Geometric graph theory is the study of various geometric representations of graphs. We

are interested in how the crossings between edges of a drawing are distributed, extending

previous work on the crossing number of various graphs. Let Dn denote a rectilinear drawing

(all edges are drawn as line segments) of the complete graph Kn in R2. We prove tight lower

and upper bounds on the number of edges in Dn that are crossed at most k times by other

edges, a quantity denoted by Sk(Dn). We also consider the number of edges in Dn that

are crossed exactly k times, denoted by ek(Dn), and show a non-trivial lower bound for

this quantity. Some additional minor results are also presented throughout the paper. Our

results greatly expand on prior knowledge about the number of edges in Dn involved in 0

crossings and other work on the number of edges in a (general) drawing of Kn with at most

k crossings.
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1 Introduction

A graph consisting of vertices and edges joining its vertices is planar if it can be drawn
in the plane so that no two edges cross each other. The study of planar graphs dates back
to Euler, who first proposed Euler’s polyhedron formula in 1750 [1]. The formula relates the
number of faces, edges, and vertices of a three-dimensional convex polyhedron and has been
extended to planar graphs. More precisely, this result states that if a connected planar graph
has v vertices, e edges, and f faces, then the equation v − e+ f = 2 always holds. Another
natural question one might ask about planar graphs is whether or not they can always be
drawn in the plane without crossings between edges using only line segments (instead of
curves) to represent the edges. It turns out that the answer is always yes, and this result is
known as Fáry’s theorem [2, 3, 4].

A natural extension on the classical study of planar graphs is to study how often the edges
of a non-planar graph drawn in the plane intersect each other. A version of this concept was
first explored by Turán during World War II. In Turán’s brick factory problem, we are given
a factory where wagon tracks directly connect every kiln and storage site. Because wagons
are harder to push across the tracks at places where two distinct tracks cross, Turán wanted
to minimize the total number of crossings between two edges [5].

Given a drawing of a graph G in the plane, a crossing is a point where two distinct
edges intersect each other. Moreover, the crossing number cr(G) is the smallest possible
total number of crossings in a drawing of G across all drawings of G. Turán’s brick factory
problem is equivalent to determining the crossing number of the complete bipartite graph,
a graph where the vertices are split into two sets, and two of them are joined by an edge if
and only if they belong to different sets.

As of now, the precise value of the crossing number of the complete bipartite graph
Km,n is not known [6]. The same statement holds for the complete graph on n vertices
Kn, where every two vertices are connected by an edge, as well as for the corresponding
rectilinear drawings of the complete bipartite graph and the complete graph, where all edges
are represented as line segments. In fact, even the asymptotic behaviour of these quantities
is not well understood. More precisely, if cr(G) denotes the smallest possible total number of
crossings in a rectilinear drawing of G across all rectilinear drawings of G, then it is known
that the limits of the four quantities

cr(Kn)(
n
4

) ,
cr(Kn,m)(

n
4

) ,
cr(Kn)(

n
4

) ,
cr(Kn,m)(

n
4

)
exist as n goes to infinity and are non-zero, but the precise values remain unknown [7, 8, 9].

In recent times, the study of crossing numbers has found applications in the field of graph
visualization, where the goal is to discover pictographic representations of graphs that are
easy to read and quickly convey the important properties and structure of the graph. We
refer the reader to the extensive handbook by Tamassia et al. on graph drawing and graph
visualization [10].

Geometric graph theory is also connected to very-large-scale integration (VLSI), an area
of computer science that aims to design circuits in ways that allow a great number of tran-
sistors to fit into a single chip. Some early papers in this direction include [11, 12, 13].

Many more results about crossing numbers and geometric graph theory in general can

3
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be found in [14, 15].

1.1 Our Focus and Organization of Paper

Although planar graphs have been studied extensively, far less is known about drawings
with crossings between edges. At a high level, the main goal of this work is to improve our
understanding of the crossings between the edges in a rectilinear drawing Dn of the complete
graph on n vertices Kn. We study the number of edges in Dn that are crossed exactly k
times, denoted by ek(Dn), and the number of edges in Dn that are crossed at most k times,
denoted by Sk(Dn).

In Section 2, we provide an introduction to necessary definitions and new notation,
review previous results that are related and applicable to our work, and share a few initial
observations. In Section 3, we present an intricate geometric construction that achieves
ek(Dn) = Ω(n) for all positive integers k such that ek(Dn) > 0 is achievable, share an easy
upper bound on ek(D(G)), and provide some speculation on how a Dn achieving a larger
value for ek(Dn) may look from a structural perspective. In Section 4, we share our strongest
bounds on max e1(Dn) and maxS1(Dn) and also explore when min ek(Dn) = 0 is guaranteed
to hold. In Section 5, we show tight upper and lower bounds on Sk(Dn), fully resolving the
rectilinear versions of problems mentioned and explored in [16, 17].

2 Preliminaries

2.1 Drawings and Crossings

Geometric graph theory is the study of various geometric representations of graphs. In
particular, we are interested in certain types of graph embeddings in R2.

Definition 2.1. Let G = (V,E) be a graph. A drawing D(G) consists of mapping the
vertices of G to distinct points in R2 and the edges of G to simple continuous curves in R2

that connect their respective endpoints. We also assume that no edge intersects a vertex
other than at one of its endpoints, any two edges share at most one point1 and are never
tangent at a point, and no three edges share an interior point.

The stipulation that any two edges intersect at most once is motivated by the following
special class of drawings in R2.

Definition 2.2. Let G be a graph. A rectilinear drawing D(G) is a drawing of G such that
every edge is a line segment.

In moving onward from planar graphs, we consider the points other than vertices where
two edges of a drawing meet.

Definition 2.3. Let D(G) be a drawing of the graph G. A crossing of D(G) is a shared
interior point of two distinct edges in D(G).

1Other authors do not necessarily assume that any two edges of a drawing have at most one point in
common, instead using the term simple drawing or good drawing to encode this condition.

4
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One way to measure how close a graph G is to being planar is by determining the smallest
total number of crossings a drawing of G can have.

Definition 2.4. Let G be a graph. The crossing number cr(G) is the smallest possible total
number of crossings in D(G) across all possible drawings of G. Similarly, the rectilinear
crossing number cr(G) is the smallest possible total number of crossings in D(G) across all
possible rectilinear drawings of G.

The following notable result yields a lower bound on the crossing number of any simple
graph.

Theorem 2.1 (Crossing lemma, Ajtai et al. and Leighton, [18, 11]). Let G = (V,E) be a
simple graph on n vertices. If

∣∣E(G)
∣∣ ≥ 4n, then

cr(G) ≥
∣∣E(G)

∣∣3
64n2

.

It follows easily from this inequality that dense simple graphs, i.e., graphs G = (V,E)
on n vertices where

∣∣E(G)
∣∣ = Ω(n2), have cr(G) = Ω(n4). Moreover, every simple graph has

crossing number at most O(n4) since simple graphs contain at most
(
n
2

)
edges and any two

edges can cross at most once.

2.2 Crossing Profile

We aim to further understand the crossings of a drawing by studying the distribution of
crossings across the edges of a graph, namely deducing how many edges can have a fixed
number of crossings.

Definition 2.5. Let D(G) be a drawing of the graph G. For k ≥ 0, define the k-crossing
set Ek(D(G)) as the set of edges in D(G) that are part of k crossings. Additionally, the
k-crossing index ek(D(G)) =

∣∣Ek(D(G))
∣∣ is the number of edges in D(G) that are crossed k

times.

Now, we coin a new term that showcases how the edges of D(G) are distributed across
the sets Ek(D(G)).

Definition 2.6. Let D(G) be a drawing of the graph G. The crossing profile of D(G) is the
sequence

cp(D(G)) = (e0(D(G)), e1(D(G)), . . .).

Observe that a drawing D(G) is k-planar if and only if all the non-zero terms of cp(D(G))
are among the first k + 1 entries of the sequence.

2.3 Notational Simplifications and Additional Assumptions

For fixed k, we denote by max ek(D(G)) and min ek(D(G)) the maximum and mini-
mum values, respectively, attained by ek(D(G)) across all drawings of G. Analogously, for
fixed k, we denote by max ek(D(G)) and min ek(D(G)) the maximum and minimum val-
ues, respectively, attained by ek(D(G)) across all rectilinear drawings of G. In addition,

5

 20
24

 S.
-T

. Y
au

 H
igh S

ch
ool S

cie
nc

e A
war

d

仅
用
于

20
24
丘
成
桐
中
学
科
学
奖
公
示



we always assume that the vertices of D(G) are in general position, as sufficiently small
perturbations can always be made to the vertices to ensure this condition. For the sake of
convenience and to avoid overwhelming notation, we let Dn denote a rectilinear drawing of
Kn for the remainder of this paper. Finally, we also write max ek(Dn) = max ek(D(Kn)) and
min ek(Dn) = min ek(D(Kn)).

In addition, we use the convention [n] = {1, 2, . . . , n} for all n ∈ Z+.

2.4 Previous Results on e0(D(Kn)) and e0(Dn)

Previous explorations of i-crossing indices focused on edges with 0 crossings within both
general and rectilinear drawings of complete graphs.

In 1963, Ringel discovered a tight upper bound on e0(D(Kn)).

Theorem 2.2 (Ringel, [19]). For n ≥ 4, we have max e0(D(Kn)) = 2n− 2.

Looking at the other direction, Harborth and Mengersen found the exact values of
min e0(D(Kn)) for n ≥ 2.

Theorem 2.3 (Harborth and Mengersen, [20]). The values of min e0(D(Kn)) for n ≥ 2 are
displayed in Table 1.

n 2 3 4 5 6 7 Z≥8

min e0(D(Kn)) 1 3 4 4 3 2 0

Table 1: Smallest number of edges with 0 crossings in drawings of Kn.

Moreover, they showed that e0(D(Kn)) can attain every value between min e0(D(Kn))
and max e0(D(Kn)) inclusive except for e0(D(K4)) = 5 and e0(D(K5)) = 7 [20].

Now, we shift our attention to the 0-crossing index for rectilinear drawings of Kn. In
1996, Harborth and Thürmann demonstrated that max e0(Dn) is the same as max e0(D(Kn))
for n ≥ 4.

Theorem 2.4 (Harborth and Thürmann, [21]). For n ≥ 4, we have max e0(Dn) = 2n− 2.

We provide an example of their construction attaining e0(Dn) = 2n− 2.

6
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Figure 1: Construction attaining e0(Dn) = 2n− 2 for n = 7.

As demonstrated in 1, Dn consists of △AP1Pn−1 and a convex polygon P1P2 . . . Pn−1

contained in the interior of △AP1Pn−1. In particular, the 2n− 2 edges of Dn that belong to
E0(Dn) are P1P2, P2P3, . . . , Pn−1P1 and AP1, AP2, . . . , APn−1.

In the same paper, the authors fully characterized min e0(Dn) as well for n ≥ 3.

Theorem 2.5 (Harborth and Thürmann, [21]). We have min e0(Dn) = 5 for n ≥ 8 and the
values of min e0(Dn) for n ∈ [3, 7] are displayed in Table 2.

n 3 4 5 6 7

min e0(Dn) 3 4 5 5 6

Table 2: Smallest number of edges with 0 crossings in rectilinear drawings ofKn for n ∈ [3, 7].

Figure 2 depicts the constructions achieving e0(Dn) = 5 for n = 10 and n = 13, respec-
tively.

7
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Figure 2: Constructions achieving e0(Dn) = 5 for n = 10 (left) and n = 13 (right), respec-
tively.

2.5 Partial Sums Sk(D(G)) and Known Results

Instead of analyzing individual entries of the crossing profile, we can also consider the
set of edges that are part of at most k crossings, which is equivalent to taking partial sums
of the crossing profile sequence.

Definition 2.7. Let D(G) be a drawing of the graph G. For k ≥ 0, the k-crossing sum
Sk(D(G)) is the number of edges in D(G) that are crossed at most k times. Equivalently,

Sk(D(G)) =
k∑

i=0

ek(D(G)).

For fixed k, we let maxSk(D(G)) and minSk(D(G)) denote the maximum and minimum
values, respectively, attained by Sk(D(G)) across all drawings of G.

Now, we exhibit previous work on k-crossing sums in drawings. In addition to their
work e0(Dn) seen in Subsection 2.4, Harborth and Mengersen proved strong bounds on
maxS1(D(Kn)) and found the exact values of this quantity for n ∈ [9].

Theorem 2.6 (Harborth and Mengersen, [16]). For n ≥ 8, we have

2n+

õ
n− 1

2

û
− 2 ≤ maxS1(D(Kn)) ≤ 2n+

õ
n− 1

2

û
+ 7,

and the exact values of maxS1(D(Kn)) for n ∈ [9] are displayed in Table 3.

n 1, 2, . . . , 6 7 8 9

max e1(D(Kn))
(
n
2

)
18 20 22

Table 3: Largest number of edges with at most 1 crossing in drawings of Kn for n ∈ [9].
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Observe that a graph G = (V,E) is k-planar if and only if Sk(D(G)) =
∣∣E(G)

∣∣ holds for
some drawing D(G) of G. First, we introduce a known upper bound on the number of edges
in a simple k-planar graph.

Theorem 2.7 (Pach and Tóth, [22]). Let G = (V,E) be a simple k-planar graph on n
vertices. For k ≥ 1, we have

E(G) ≤ n
√
16.875k.

We provide an upper bound for Sk(D(G)) using this result about k-planar graphs.

Proposition 2.8. Let G be a simple graph on n vertices. For all D(G) and k ≥ 1, we have

Sk(D(G)) = O(n
√
k).

Proof. Consider the subgraph H of G that consists of all the edges in D(G) involved in at

most k crossings, i.e., the subgraph of G consisting of edges in
k⋃

i=0

Ei(D(G)). H is clearly a

k-planar graph, so Theorem 2.7 directly implies H has at most n
√
16.875k edges, or rather

Sk(D(G)) ≤ n
√
16.875k, which suffices.

2.6 Cutting Lemma

The following result from computational and discrete geometry helps us obtain the lower
bound presented in Section 5.

Theorem 2.9 (Cutting lemma, Matoušek, [23]). Let S be a set of n lines in R2 and t ∈ (1, n)
be a parameter. Then, R2 can be subdivided1 into r ≤ Ct2 generalized triangles (regions that
are the intersection of three half-planes), where C is an absolute constant, such that the
interior of each generalized triangle is intersected by at most n

t
lines of S.

Higher dimensional analogs and various applications of this statement can be found in
[24, 25].

3 Constructive Lower Bound and an Easy Upper Bound on
max ek(Dn) for k ≥ 1

In this section, we demonstrate a lower bound for max ek(Dn) obtained via elaborate ge-
ometric constructions, share an established upper bound on max ek(Dn), and briefly mention
additional instincts concerning the value of max ek(Dn).

3.1 Constructions for max ek(Dn) = Ω(n)

We first introduce a geometric construction that achieves a linear k-crossing index with
respect to n for k ∈ Z+ such that ek(Dn) > 0 is achievable.

1We assume that the regions are pairwise interior disjoint and cover all of R2.

9
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Theorem 3.1. If k ∈
ñ
1,

õÄ
n−2
2

ä2ûô
, we have max ek(Dn) = Ω(n).

Remark. Suppose P1 and P2 are two vertices of Dn such that there are x vertices on one side

of
←−→
P1P2. Then the number of edges crossing P1P2 is at most x((n − 2) − x) ≤

Ä
n−2
2

ä2
by

the AM-GM inequality. Thus, this theorem applies to all k ∈ Z+ for which ek(Dn) > 0 is
attainable.

Proof. Let k = (m− 2)2+ r where r ∈ [1, 2m− 3], whence m =
†√

k
£
+1. First, we produce

configurations of 2m− 1 or 2m points yielding Ω(m) edges with k crossings. Afterwards, we
string together sufficiently many copies of such configurations such that they do not interfere
with each other to obtain Ω(n) edges in Ek(Dn).

We start with the construction for n even. One can check k ∈
ï
1,
Ä
n−2
2

ä2ò
implies

2m ≤ n.

Figure 3: A configuration of 16 points for m = 8 and k = 39.

Case 3.1. If m = 2j, place m vertices P1, P2, . . . , Pm on a minor circular arc in clockwise

order such that ṖiPi+1 are pairwise congruent for i ∈ [m− 1]. We also construct m vertices
Q1, Q2, . . . , Qm such that Qi is sufficiently close to Pi for i ∈ [m]. Henceforth, take all indices
modulo m.

Our goal is to perturb Q1, Q2, . . . , Qm so that the j interior diameters

Q1Qj+1, Q2Qj+2, . . . , QjQ2j

are each crossed k times. Notice that QiQi+j is crossed by all (m − 2)2 edges of the form
PaPb, QaQb, PaQb, and QaPb for a ∈ [i+ 1, i+ j − 1] and b ∈ [i+ j + 1, i+ 2j − 1]. Now, we
address the edges that are incident to at least one of Pi and Pi+j.

For all i ∈ [m], we begin by perturbing Q1, Q2, . . . , Qm so that Qi lies in between
−−−−→
PiPi+j

and
−−−−→
Pi−1Pi. This ensures that the m− 1 rays

−−−−−→
PiQi+j−1,

−−−−−→
PiPi+j−1,

−−−−−→
PiQi+j−2,

−−−−−→
PiPi+j−2, . . . ,

−−−−→
PiQi+1,

−−−−→
PiPi+1,

−−−−→
Pi−1Pi (1)

10
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appear in counterclockwise order with respect to Pi and that the m− 1 rays
−−−−−→
Pi+jQi−1,

−−−−−→
Pi+jPi−1,

−−−−−→
Pi+jQi−2,

−−−−−→
Pi+jPi−2, . . . ,

−−−−−−−→
Pi+jQi+j+1,

−−−−−−−→
Pi+jPi+j+1,

−−−−−−−→
Pi+j−1Pi+j (2)

appear in counterclockwise order with respect to Pi+j. Moreover, because Qi and Qi+j lie on
different sides of PiPi+j, it follows that PiPi+j also crosses QiQi+j. Now, we proceed with a
series of more precise secondary perturbations.

If r ∈ [1,m − 1], then we perturb Qi so that it lies in between
−−−−→
PiPi+j and

−−−−−→
PiQi+j−1.

Additionally, we perturb Qi+j so that it lies in between the (r− 1)th and rth rays of 2, where

the 0th ray is defined as
−−−−→
Pi+jPi. This ensures that the set of edges incident to exactly one of

Pi and Pi+j that cross QiQi+j are the edges corresponding to the first r− 1 rays of 2. Thus,
the total number of edges crossing QiQi+j is indeed

(m− 2)2 + 1 + (r − 1) = (m− 2)2 + r = k.

Because these secondary perturbations of Qi and Qi+j do not alter the crossings of any other
interior diameters, we can perturb Qi and Qi+j in this fashion for all i ∈ [j] to transform

Q1Qj+1, Q2Qj+2, . . . , QjQ2j

into edges with k crossings.
If r ∈ [m, 2m − 3], then we perturb Qi so that it lies in between the (r −m + 1)th and

(r −m + 2)th rays of 1. Additionally, we perturb Qi+j so that it lies in between
−−−−−−−→
Pi+jPi+j+1

and
−−−−−−−→
Pi+j−1Pi+j. This ensures that the set of edges incident to exactly one of Pi and Pi+j

that cross QiQi+j are the edges corresponding to the first r−m+ 1 rays of 1 and the edges
corresponding to the first m− 2 rays of 2. Thus, the total number of edges crossing QiQi+j

is indeed

(m− 2)2 + 1 + (r −m+ 1) + (m− 2) = (m− 2)2 + r = k.

Once again, because these secondary perturbations of Qi and Qi+j do not alter the crossings
of any other interior diameters, we can perturb Qi and Qi+j in this fashion for all i ∈ [j] to
transform

Q1Qj+1, Q2Qj+2, . . . , QjQ2j

into edges with k crossings. Thus, we have covered k ∈
(
(2j − 2)2, (2j − 1)2

]
where j ∈ Z+.

Case 3.2. If m = 2j+1 and r ∈ [2, 2m−4], we once again place m vertices P1, P2, . . . , Pm on

a minor circular arc in clockwise order such that ṖiPi+1 are pairwise congruent for i ∈ [m−1]
and construct m vertices Q1, Q2, . . . , Qm such that Qi is sufficiently close to Pi for i ∈ [m].
Henceforth, we also take all indices modulo m.

Our goal is for the j interior diameters

Q1Qj+1, Q2Qj+2, . . . , QjQ2j

to each get crossed k times. Observe that QiQi+j is crossed by all (m− 1)(m− 3) edges of
the form PaPb, QaQb, PaQb, and QaPb for a ∈ [i+1, i+ j−1] and b ∈ [i+ j+1, i+2j]. Now,
we address edges that are incident to at least one of Pi and Pi+j. For all i ∈ [m], we begin by

perturbing Q1, Q2, . . . , Qm so that Qi lies in between
−−−−→
PiPi+j and

−−−−→
Pi−1Pi. This ensures that
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the m− 2 rays
−−−−−→
PiQi+j−1,

−−−−−→
PiPi+j−1,

−−−−−→
PiQi+j−2,

−−−−−→
PiPi+j−2, . . . ,

−−−−→
PiQi+1,

−−−−→
PiPi+1,

−−−−→
Pi−1Pi (3)

appear in counterclockwise order with respect to Pi and that the m rays
−−−−−→
Pi+jQi−1,

−−−−−→
Pi+jPi−1,

−−−−−→
Pi+jQi−2,

−−−−−→
Pi+jPi−2, . . . ,

−−−−−−−→
Pi+jQi+j+1,

−−−−−−−→
Pi+jPi+j+1,

−−−−−−−→
Pi+j−1Pi+j (4)

appear in counterclockwise order with respect to Pi+j. Moreover, because Qi and Qi+j lie on
different sides of PiPi+j, it follows that PiPi+j also crosses QiQi+j. Now, we proceed with a
series of more precise secondary perturbations.

If r ∈ [2,m − 1], then we perturb Qi so that it lies in between
−−−−→
PiPi+j and

−−−−−→
PiQi+j−1.

Additionally, we perturb Qi+j
1 so that it lies in between the rth and (r+1)th rays of 4. This

ensures that the set of edges incident to exactly one of Pi and Pi+j that cross QiQi+j are the
edges corresponding to the first r rays of 4. Thus, the total number of edges crossing QiQi+j

is indeed

(m− 1)(m− 3) + 1 + r = (m− 2)2 + r = k.

Because these secondary perturbations of Qi and Qi+j do not alter the crossings of any other
interior diameters, we can perturb Qi and Qi+m in this fashion for all i ∈ [j] to transform

Q1Qj+1, Q2Qj+2, . . . , QjQ2j

into edges with k crossings.
If r ∈ [m, 2m − 4], then we perturb Qi so that it lies in between the (r −m + 1)th and

(r −m + 2)th rays of 3. Additionally, we perturb Qi+j so that it lies in between
−−−−−−−→
Pi+jPi+j+1

and
−−−−−−−→
Pi+j−1Pi+j. This ensures that the set of edges incident to exactly one of Pi and Pi+j

that cross QiQi+j are the edges corresponding to the first (r−m+1) rays of 3 and the edges
corresponding to the first m− 1 rays of 4. Thus, the total number of edges crossing QiQi+j

is indeed

(m− 1)(m− 3) + 1 + (r −m+ 1) + (m− 1) = (m− 2)2 + r = k.

Once again, because these secondary perturbations of Qi and Qi+j do not alter the crossings
of any other interior diameters, we can perturb Qi and Qi+m in this fashion for all i ∈ [j] to
transform

Q1Qj+1, Q2Qj+2, . . . , QjQ2j

into edges with k crossings.

Case 3.3. If m = 2j+1 and r = 1, then we start with the previously presented construction
consisting of 2m− 2 points for edges with (m− 3)2 + (m− 2) crossings2 and turn it into a
configuration consisting of 2m− 1 points that has Ω(m) edges with (m− 2)2 + 1 crossings.

For the sake of completeness, we reproduce a description of this previously presented
construction. Place m − 1 vertices P1, P2, . . . , Pm−1 on a minor circular arc in clockwise

order such that ṖiPi+1 are pairwise congruent for i ∈ [m − 2] and construct m − 1 vertices

1The condition given in the initial perturbation implies that Qi+j must lie in between
−−−−−−→
Pi+jPi−1 and

−−−−−−−−→
Pi+j−1Pi+j , and this stipulation forces r ≥ 2 to hold for this perturbation of Qi+j to be valid.

2Because m − 1 is even and (m − 3)2 + (m − 2) ∈
(
(m− 3)2, (m− 2)2

]
for m ≥ 3, it follows that this

construction was already covered in 3.1.
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Q1, Q2, . . . , Qm−1 such that Qi is sufficiently close to Pi for i ∈ [m− 1]. Henceforth, take all

indices modulo m− 1. For all i ∈ [j], we know Qi lies in between
−−−−→
PiPi+j and

−−−−−→
PiQi+j−1, while

Qi+j lies in between
−−−−−−−→
Pi+jPi+j+1 and

−−−−−−−→
Pi+j−1Pi+j.

Figure 4: A configuration of 17 points for m = 9 and k = 43.

Now, we add the arc midpoint A of P̄1P2 and consider how many edges incident to A
cross the j − 2 interior diameters

Q2Qj+2, Q3Qj+3, . . . , Qj−1Q2j−1.

First of all, for each i ∈ [2, j − 1], the m − 2 points on the opposite side of
←−−−→
QiQi+j with

respect to A are Pi+1, Qi+1, Pi+2, Qi+2, . . . , Pi+j−1, Qi+j−1, Pi+j, and the m− 3 edges

APi+1, AQi+1, APi+2, AQi+2, . . . , APi+j−1, AQi+j−1

clearly cross QiQi+j. Now, we focus on APi+j.

For any i ∈ [2, j − 1], it’s easy to see A lies in between
−−−−→
Pi+jPi and

−−−−−−−→
Pi+jPi+j+1. Now,

the characterizations of Qi and Qi+j given above imply that ∠QiPi+jQi+j fully contains

∠PiPi+jPi+j+1, whence A lies in between
−−−−→
Pi+jQi and

−−−−−→
Pi+jQi+j. This means APi+j does

indeed cross QiQi+j, so the number of edges crossing each of the j − 2 interior diameters

Q2Qj+2, Q3Qj+3, . . . , Qj−1Q2j−1

is precisely (m− 3)2 + (m− 2) + (m− 2) = (m− 2)2 + 1, as required.

Case 3.4. Lastly, we consider r = 2m−3 or k = (m−1)2. In fact, we just place 2m vertices
P1, P2, . . . , P2m on a minor circular arc in clockwise order, as in this case

P1Pm+1, P2Pm+2, . . . , PmP2m

are all edges with k = (m− 1)2 crossings.

Thus, we have covered all k ∈
(
(2j − 1)2, (2j)2

]
where j ∈ Z+.

Now, we find working constructions for n odd and k ∈
ï
1,
Ä
n−3
2

ä2ò
. Because 2m < n

holds for k in this interval, we can utilize the appropriate constructions presented above
to once again obtain configurations of 2m − 1 or 2m points containing Ω(m) edges with k
crossings.
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Figure 5: Grouping together 6 copies of a 16 point configuration from 3 for n = 99 total
vertices.

For all n and k already addressed above, we now describe a method for placing t =
ö

n
2m

ù
configurations of 2m−1 or 2m points together so that no additional edges in such a Dn inter-
fere with any interior diameters of individual configurations. Place pointsA1, B1, A2, B2, . . . , At, Bt

on a circle C in clockwise order1. For each AiBi where i ∈ [t], we construct a minor circu-
lar arc ci containing Ai and Bi that is fully contained inside C, as seen in 5, and create a
configuration of 2m − 1 or 2m points using ci as the minor circular arc. Finally, place any
leftover vertices in a cluster near the center of C.

We can make each ci sufficiently flat to ensure that no relevant interior diameters of the
configuration based at ci are intersected by additional edges of Dn. Thus, all of the relevant

1Note that none of these 2t points are vertices of Dn.
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interior diameters of each configuration still have k crossings, meaning for this setup we have

ek(Dn) ≥ t · Ω(m) =

õ
n

2m

û
· Ω(m) = Ω(n),

as desired.

Lastly, we invent new constructions for n odd and k ∈
ÇÄ

n−3
2

ä2
,

õÄ
n−2
2

ä2ûô
, as 2m ≤ n

does not hold in this case.

Case 3.5. If n−3
2

is odd, then set m = n−1
2

and write k = (m − 2)2 + 2(m − 1) + d where
d ∈ [0,m− 2].

We utilize the previously presented construction from 3.1 consisting of 2m points for edges
with (m− 2)2+(m− 1)+ d crossings, noting (m− 2)2+(m− 1)+ d ∈

(
(m− 2)2, (m− 1)2

]
,

and turn it into a configuration of 2m+ 1 points that has Ω(m) edges with k = (m− 2)2 +
2(m− 1) + d crossings. Noting m is even, set m = 2j.

Figure 6: A configuration of 17 points for m = 8 and k = 50.

We add the center O of ˇ�P1P2 . . . Pm and consider crossings between edges incident to O
and the j − 1 interior diameters

Q1Qj+1, Q2Qj+2, . . . , Qj−1Q2j−1

from the previously presented construction. For each i ∈ [j−1], we know the m−1 points on

the opposite side of
←−−−→
QiQi+j with respect toO are Pi+1, Qi+1, Pi+2, Qi+2, . . . , Pi+j−1, Qi+j−1, Pi+j.
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Furthermore, the m− 2 edges

OPi+1, OQi+1, OPi+2, OQi+2, . . . , OPi+j−1, OQi+j−1

clearly cross QiQi+j. Now, we focus on OPi+j.

For any i ∈ [j − 1], it’s easy to see O lies in between
−−−−→
Pi+jPi and

−−−−−−−→
Pi+jPi+j+1 since

∠PiPi+jPi+j+1 is obtuse. Now, the characterizations of Qi and Qi+j given in the previously
presented construction imply that ∠QiPi+jQi+j fully contains ∠PiPi+jPi+j+1, whence O lies

in between
−−−−→
Pi+jQi and

−−−−−→
Pi+jQi+j. This means OPi+j does indeed cross QiQi+j, so the number

of edges crossing each of the j − 1 interior diameters

Q1Qj+1, Q2Qj+2, . . . , Qj−1Q2j−1

is precisely
(
(m− 2)2 + (m− 1) + d

)
+ (m− 1) = (m− 2)2 +2(m− 1) + d = k, as required.

Case 3.6. If n−3
2

is even and k ∈
ñÄ

n−3
2

ä2
+ 2,

õÄ
n−2
2

ä2ûô
, then set m = n−1

2
and write

k = (m− 2)2 + (m− 1) +m+ d where d ∈ [0,m− 3].
We utilize a variation the previously presented construction from 3.2 consisting of 2m

points for edges with (m − 2)2 + (m − 1) + d crossings, noting (m − 2)2 + (m − 1) + d ∈(
(m− 2)2, (m− 1)2

]
, and turn it into a configuration of 2m+ 1 points that has Ω(m) edges

with k = (m− 2)2 + (m− 1) +m+ d crossings. Noting m is odd, set m = 2j + 1.

Placem vertices P1, P2, . . . , Pm on a minor circular arc in clockwise order such that ṖiPi+1

are pairwise congruent for i ∈ [m− 1] and construct m vertices Q1, Q2, . . . , Qm such that Qi

is sufficiently close to Pi for i ∈ [m]. Henceforth, take all indices modulo m. For all i ∈ [m],

we perturb so that Qi lies in between
−−−−→
PiPi+j and

−−−−→
Pi−1Pi. Our goal is to ensure the j − 1

interior diameters

Q1Qj+2, Q2Qj+3, . . . , Qj−1Q2j

each have k crossings.

For every i ∈ [j + 2, 2j], we perturb so that Qi lies in between
−−−−→
PiPi+1 and

−−−−→
Pi−1Pi and

Qi+j lies in between the (d + 2)th and (d + 3)th rays of 4. Using reasoning similar to that
from 3.2, we can now deduce that the number of edges from the complete graph on the 2m
existing vertices that cross each of the j − 1 interior diameters

Q1Qj+2, Q2Qj+3, . . . , Qj−1Q2j

is precisely

(m− 1)(m− 3) + 1 + (m− 3) + (d+ 2) = (m− 2)2 + (m− 1) + d.

Now, we add the center O of ˇ�P1P2 . . . Pm and consider crossings between edges incident
to O and the j − 1 interior diameters

Q1Qj+2, Q2Qj+3, . . . , Qj−1Q2j.

For every i ∈ [j + 2, 2j], we know Pi+j+1, Qi+j+1, Pi+j+2, Qi+j+2, . . . , Pi−1, Qi−1, Pi are the m

points on the opposite side of
←−−−→
QiQi+j with respect to O. Furthermore, the m− 1 edges

OPi+j+1, OQi+j+1, OPi+j+2, OQi+j+2, . . . , OPi−1, OQi−1

clearly cross QiQi+j. Now, we focus on OPi.
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For any i ∈ [j + 2, 2j], it’s easy to see O lies in between
−−−−→
PiPi+j and

−−−−→
PiPi+1 since

∠Pi+jPiPi+1 is obtuse. Now, the characterizations of Qi and Qi+j presented in this case

imply that ∠Qi+jPiQi fully contains ∠Pi+jPiPi+1, whence O lies in between
−−−−→
PiQi+j and

−−→
PiQi. This means OPi does indeed cross QiQi+j, so the number of edges crossing each of
the j − 1 interior diameters

Q1Qj+1, Q2Qj+2, . . . , Qj−1Q2j−1

is precisely
(
(m− 2)2 + (m− 1) + d

)
+m = k, as required.

Case 3.7. If n−3
2

is even and k =
Ä
n−3
2

ä2
+1, then setm = n−1

2
, which means k = (m−1)2+1.

We take the previously presented construction from 3.2 consisting of 2m points for edges
with (m− 2)2 +m crossings and turn it into a configuration of 2m+1 points that has Ω(m)
edges with k = (m− 1)2 + 1 crossings. Noting m is odd, set m = 2j + 1.

We add the center O of ˇ�P1P2 . . . Pm and consider crossings between edges incident to O
and the j interior diameters

Q1Qj+1, Q2Qj+2, . . . , QjQ2j

from the previously presented construction. For each i ∈ [j], we know the m−2 points on the

opposite side of
←−−−→
QiQi+j with respect to O are Pi+1, Qi+1, Pi+2, Qi+2, . . . , Pi+j−1, Qi+j−1, Pi+j.

Furthermore, the m− 3 edges

OPi+1, OQi+1, OPi+2, OQi+2, . . . , OPi+j−1, OQi+j−1

clearly cross QiQi+j. Now, we focus on OPi+j.

For any i ∈ [j], it’s easy to seeO lies in between
−−−−→
Pi+jPi and

−−−−−−−→
Pi+jPi+j+1 since ∠PiPi+jPi+j+1

is obtuse. Now, the characterizations of Qi and Qi+j given in the previously presented con-
struction imply that ∠QiPi+jQi+j fully contains ∠PiPi+jPi+j+1, whence O lies in between
−−−−→
Pi+jQi and

−−−−−→
Pi+jQi+j. This means OPi+j does indeed cross QiQi+j, so the number of edges

crossing each of the j interior diameters

Q1Qj+1, Q2Qj+2, . . . , QjQ2j

is precisely
(
(m− 2)2 +m

)
+ (m− 2) = (m− 1)2 + 1 = k, as desired.

Thus, we have also covered k ∈
ÇÄ

n−3
2

ä2
,

õÄ
n−2
2

ä2ûô
for n odd, exhausting all necessary

cases, which finishes.

3.2 Easy Upper Bound on ek(D(G)) for k ≥ 1

Now, we present a standard proof of an upper bound on ek(D(G)) for k ≥ 1.

Proposition 3.2 (Folklore). Let G be a graph with n vertices. For all D(G) and k ≥ 1, we
have ek(D(G)) = O(n

√
k).

Although directly applying Proposition 2.8 to D(G) gives

ek(D(G)) ≤ Sk(D(G)) ≤ n
√
16.875k,
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there exists a simpler proof of this result, albeit with a worse constant, based on the crossing
lemma, which we share here.

Proof. Let Gk denote the subgraph of G consisting of all the edges in D(G) that are part
of k crossings. We consider the drawing D(Gk) induced by D(G). If ek(D(Gk)) < 4n, then
the desired bound follows immediately. Otherwise, we assume ek(D(Gk)) ≥ 4n and apply
the crossing lemma on Gk. Because every edge of D(Gk) is crossed k times by other edges
of D(G) and D(Gk) ⊆ D(G), a simple double counting argument on the crossings of D(Gk)
yields

k · ek(D(G))

2
≥ cr(Gk) ≥

ek(D(G))3

64n2
,

where the second inequality follows from the crossing lemma. This inequality chain implies
ek(D(G)) ≤ 4n

√
2k, which suffices.

3.3 Discussion of Further Work on max ek(Dn)

At this moment, we have no further knowledge on the asymptotic behavior of max ek(Dn),
although we believe structural results concerning the vertices of Dn under the condition that
ek(Dn) = Ω(n

√
k) are within reach. In particular, under such a condition, the vertices of Dn

should in some sense trace out the border of a smooth convex shape.

4 Progress on max e1(Dn), maxS1(Dn), and min ek(Dn) = 0

In this section, we present a constructive lower bound on max e1(Dn), look at the range
of maxS1(Dn), and show min ek(Dn) = 0 is true for nearly all k when n is sufficiently large.

4.1 Best Bounds on max e1(Dn) and maxS1(Dn)

Claim 4.1. For n ≥ 8, we have

max e1(Dn) ≥



7

5
(n− 3) , n ≡ 3 (mod 5);

7

5
(n− 4) , n ≡ 4 (mod 5);

7

5
(n− 5) , n ≡ 0 (mod 5);

7

5
(n− 6) + 2, n ≡ 1 (mod 5);

7

5
(n− 7) + 4, n ≡ 2 (mod 5).

Proof. We start by constructing for n ≡ 3 (mod 5), setting n = 5m+ 3.
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Figure 7: Full construction for n = 25 achieving e1(D25) = 28 with the edges of E1(Dn)
marked in purple.

Place points P1, P5, . . . , P4m+1 in that order along a large circular arc with center O so
that P4i−3P4i+1 are pairwise congruent for i ∈ [m] and sufficiently short. Now, we construct
congruent inward-facing circular arcs Ci for every i ∈ [m], each fully contained inside the
original circular arc, so that P4i−3, P4i−2, P4i−1, P4i, P4i+1 appear in that order on Ci. More-
over, we set P4i−1 as the arc midpoint of Ci and place P4i−2 and P4i sufficiently close to P4i−1.
For every i ∈ [m], we also add a point Qi on the perpendicular bisector li of P4i−3P4i+1 and in
the interior pentagon formed by the diagonals of pentagon P4i−3P4i−2P4i−1P4iP4i+1. Lastly,
we consider the region in R2 that is to the left of all m perpendicular bisectors l1, l2, . . . , lm
and let A be the image of a sufficiently small perturbation of O into this region. Point B is
defined analogously for the region that is to the right of all m perpendicular bisectors. The
5m+ 3 vertices of Dn consists of all the aforementioned points except for O.

If we make each Ci sufficiently flat, then no edge that spans between two points ly-
ing on different inward-facing circular arcs enters the interior of any pentagon. More-
over, no edge between two points not on or inside Ci can enter the interior of pentagon
P4i−3P4i−2P4i−1P4iP4i+1. This implies that the only edges that can enter P4i−3P4i−2P4i−1P4iP4i+1

are incident to Qi. Thus, the only edge that crosses QP4i−3 is P4i+1P4i−2 and similarly for
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QP4i−2, QP4i−1, QP4i, QP4i+1, which means these 5 edges all belong to E1(Dn).

Figure 8: Zoomed-in view of an inward-facing arc with edges of E1(Dn) marked in purple.

Now, because P4i−2 and P4i are sufficiently close to the arc midpoint of Ci in P4i−1, we can
assume that all edges spanning from a point on or inside Ci to a point on or inside another
inward-facing circular arc either intersects no sides of P4i−3P4i−2P4i−1P4iP4i+1, P4i−3P4i−2,
or P4iP4i+1. However, AQi clearly intersects P4i−2P4i−1 and BQi clearly intersects P4i−1P4i,
which means P4i−2P4i−1 and P4i−1P4i both belong to E1(Dn) as well. Thus, we have e1(Dn) =
7m for this case, as desired.

Figure 9: Highly zoomed-in view of an inward-facing arc with edges of E1(Dn) marked in
purple.

When n ∈ [5m+ 4, 5m+ 7], we add another (possibly degenerate) congruent inward-
facing circular arc Cm+1 to the left of Cm that is also anchored on the large circular arc. For
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n = 5m+6, we obtain e1(Dn) = 7m+2 because convex quadrilateral P4m+1P4m+2P4m+3P4m+4

contributes two diagonals with exactly one crossing, respectively. For n = 5m + 7, we can
place P4m+1, P4m+2, P4m+3, P4m+4 on Cm+1 so that P4m+3 is the arc midpoint of Cm+1, P4m+2

is sufficiently close to P4m+3, and add another point Qm+1 that lies on the perpendicular
bisector lm+1 of P4m+1P4m+4 and inside the triangle formed by P4m+1P4m+3, P4m+2P4m+4,
and P4m+3P4m+4.

Figure 10: Zoomed-in view of C5 in the construction for n = 27 achieving e1(D25) = 28 with
edges of E1(Dn) marked in purple.

Using reasoning analogous to that from the n = 5m + 3 case, one can deduce that
Qm+1P4m+1, Qm+1P4m+2, P4m+2P4m+3, and P4m+3P4m+4 all belong to E1(Dn), whence e1(Dn) =
7m+ 4, as desired.

Claim 4.2. For n ≥ 8, we have

2n+

õ
n− 2

2

û
− 2 ≤ maxS1(Dn) ≤ 2n+

õ
n− 1

2

û
+ 7.

Proof. First of all, observe

maxS1(Dn) ≤ maxS1(D(Kn)) ≤ 2n+

õ
n− 1

2

û
+ 7.

where we directly apply Theorem 2.6 to obtain the second inequality. Now, we provide

constructions that achieve S1(Dn) = 2n+
ö
n−2
2

ù
−2. If n = 2m, then we take the construction

for m+1 points depicted in 1 and add points Q1, Q2, . . . , Qm−1 so that AQi and PiPi+1 cross
each other and Qi is sufficiently close to PiPi+1 for i ∈ [m− 1].
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Figure 11: Construction achieving S1(D12) = 27.

Figure 12: Construction achieving S1(D11) = 24.

If n = 2m−1, then we just alter the aforementioned construction for n = 2m by deleting
Qm−1. See the transformation between 11 and 12 for an example of this alteration.
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Note that our bounds on maxS1(Dn) are nearly identical to those for maxS1(D(Kn))
stated in Theorem 2.6.

Fully pinpointing the values of e1(Dn) and S1(Dn) remains an open problem. In particu-

lar, there is no known upper bound on e1(Dn) other than e1(Dn) ≤ 2n+
ö
n−1
2

ù
+7. However,

because this bound is obtained through a long inequality chain, we naturally suspect that it
is not tight.

4.2 Achieving ek(Dn) = 0 for k ≥ 1

Now, we present an approach for achieving ek(Dn) = 0 when n is sufficiently large and
k /∈ (n, n1+ϵ) that is based on two circular arcs forming a complete bipartite graph.

Lemma 4.3. For any ϵ > 0, there exists some Nϵ ∈ Z+ such that for any n ≥ Nϵ, we have
min ek(Dn) = 0 for k /∈ (n, n1+ϵ).

Proof. Clearly, we can assume ϵ << 1.
First, we deal with with k ∈ [n]. Let P1, P2, . . . , Pn denote the n vertices of Dn. If

P1P2 . . . Pn is a convex polygon, then ek(Dn) = 0 holds for every k ≥ 1 other than k ∈ Tn

where

Tn =

{
a((n− 2)− a) | a ∈

ñ
1,

õ
n− 2

2

ûô
∩ Z+

}
.

When n ≥ 9, n− 3 is the only element of Tn less than or equal to n. But one can check via
simple bounding that the construction demonstrated in 1 achieves en−3(Dn) = 0 for n ≥ 11,
whence min ek(Dn) = 0 when k ∈ [n] and n ≥ 11.

To address k ≥ n1+ϵ, we utilize a result from analytic number theory.

Theorem 4.4 ([26]). For any ϵ > 0, there exists some rϵ ∈ Z+ such that all n ≥ rϵ satisfy
τ(n) < nϵ.

If ⌊nϵ⌋ = nϵ1 , then we set Nϵ = max (rϵ1 , 11). Consider two circular arcs C1 and C2

containing m and n−m points, respectively, that are facing each other.

Figure 13: Example of C1 and C2 for n = 10 and m = 4.
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Clearly, edges between two vertices of C1 are only crossed by other edges connecting two
vertices of C1, and similarly for C2. This means the number of times an edge between two
vertices of C1 is crossed must belong to Tm, and similarly for C2 and Tn−m.

Now, consider the set of arrangements given by m = 1, 2, . . . , ⌊nϵ⌋. Because k > rϵ1 , the
characterization of Tn−m and Theorem 4.4 implies there exists at least one arrangement so
that no edge between two vertices of C2 has k crossings. Moreover, the number of times an
edge between two vertices of C1 gets crossed is at mostÅ

m− 2

2

ã2

≤
Ç
⌊nϵ⌋ − 2

2

å2

< n < k,

so no edge between two vertices of C1 can have k crossings.
Moreover, edges connecting vertices from C1 and C2 only cross other edges between

vertices from C1 and C2. This means the maximum number of crossings an edge spanning
from C1 to C2 can have is

(m− 1)(n−m− 1) < mn ≤ n1+ϵ ≤ k,

whence no edge connecting vertices from C1 and C2 can have k crossings.
Thus, we have shown at least one of the ⌊nϵ⌋ arrangements contains no edges with k

crossings, which suffices.

We conjecture that our approach involving two circular arcs can be extended to also cover
k ∈ (n, n1+ϵ) for sufficiently large n.

Conjecture 4.5. For sufficiently large n and all k ≥ 1, we have min ek(Dn) = 0.

5 Tight Upper and Lower Bounds on Sk(Dn)

We first prove Sk(Dn) = O(n
√
k) is tight for k ≥ 1. Then, we demonstrate Sk(Dn) =

Ω

ÅÄ
k
n

ä2
log
Ä
k
n

äã
holds when C1n ≤ k = O(n

3
2 ), where C1 is an absolute constant charac-

terized in the proof of Claim 5.4, and Sk(Dn) = Ω

ÅÄ
k
n

ä2
log
Ä
n2

k

äã
holds for k = Ω(n

3
2 ).

Finally, we show that both of these lower bounds are tight in Subsection 5.3.

5.1 Tight Upper Bound on Sk(Dn)

Theorem 5.1. For k ≥ 1, we have the asymptotically tight upper bound Sk(Dn) = O(n
√
k).

Proof. Observe that applying Proposition 2.8 to Dn immediately implies Sk(Dn) = O(n
√
k).

Now, we formulate a construction for Dn that shows this bound is asymptotically tight.
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Figure 14: Construction attaining Sk(Dn) = Ω(n
√
k) for n = 33 and k ∈ [4, 8].

Letm = 2⌊
√
k⌋+2 and j = ⌊ n

m
⌋, noting that k ≤

Ä
n−2
2

ä2
ensuresm ≤ n. We place points

A1, B1, A2, B2, . . . , Aj, Bj
1 in that order on a circle C so that AiBi are pairwise congruent

for i ∈ [j]. For every i ∈ [j], erect a minor circular arc ci with endpoints Ai and Bi that is
fully contained inside of C, and let Ri denote the finite region of R2 bounded by AiBi and
ci. Finally, we add m distinct vertices to each ci and place any leftover vertices in a cluster
near the center of C.

If each ci is sufficiently flat, then no edge incident to a vertex that does not lie on
ci intersects the interior of Ri. Thus, the interior of Ri only consists of edges with both
endpoints on ci. Now, it is easy to see that any edge between two vertices of ci is crossed at
most Å

m− 2

2

ã2

= ⌊
√
k⌋2 ≤ k

1Note that none of these 2j points are vertices of Dn.
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times, whence there are at least

j

Ç
m

2

å
= Ω(n

√
k)

edges in Dn that are crossed at most k times, as desired.

5.2 Lower Bound on Sk(Dn)

Theorem 5.2. For C1n ≤ k = O(n
3
2 ), where C1 is an absolute constant characterized

in the proof of Claim 5.4, we have Sk(Dn) = Ω
(

k2

n2 log
Ä
k
n

ä)
. For k = Ω(n

3
2 ), we have

Sk(Dn) = Ω
(

k2

n2 log
Ä
n2

k

ä)
.

Before fully proving this theorem, we start by considering a subset of the n vertices of
Dn defined by a region of the plane bounded between two lines and show a lower bound on

the number of edges between two vertices of the subset that belong to
k⋃

i=0

Ei(Dn).

Lemma 5.3. Let l1 and l2 be two vertical parallel lines in R2 such that l1 is to the left of l2

and the open region in between l1 and l2 contains the set P of m ∈
Ç

2k
n
,min

Å
1
C2

Ä
k
n

ä2
, n
2

ãå
vertices of Dn, where C2 is an absolute constant specified in the proof of Claim 5.4. Suppose
a ≤ m vertices of Dn lie in the open half-plane R1 on the left of l1 and the remaining
n− (a+m) vertices of Dn lie in the open half-plane R2 on the right of l2. Then there exists

Ω

ÅÄ
k
n

ä2ã
edges between two vertices of P that belong to

k⋃
i=0

Ei(Dn).

Proof. We say an edge of Dn is contained in a set of points V if both endpoints of the edge
belong to V .

Let L denote the set of edges in Dn that are either incident to a vertex of P or have an
endpoint in R1 and R2. Observe that no edges between two vertices of R1 or two vertices of
R2 can cross an edge contained in P . Hence, we only have to consider the edges in L when

counting the number of edges contained in P that belong to
k⋃

i=0

Ei(Dn). Using this setup,

we now prove a claim that is stronger than this lemma.

Claim 5.4. Let L′ be the set of lines in R2 formed by the extensions of the line segments in
L. If Q denotes the set of edges contained in P that are intersected by at most k lines in L′,

then |Q| = Ω

ÅÄ
k
n

ä2ã
.

Proof. We apply the cutting lemma on the lines of L′ with parameter t = |L′|
k
. First, we
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check that t ∈ (1, |L′|) is satisfied. Notice∣∣L′∣∣ = m(n−m) +

Ç
m

2

å
+ ab ≥ m(n−m) +

m(m− 1)

2

= m

Å
n− m+ 1

2

ã
≥ m

Ç
n−

n
2
+ 1

2

å
≥ mn

2
,

whence

t =
|L′|
k
≥ mn

2k
> 1.

By setting C1 > 1, we clearly have

t =
|L′|
k
≤ |L

′|
C1n

< |L′|,

which shows t ∈ (1, |L′|) is satisfied under these conditions.
Let T1, T2, . . . , Tr denote the r generalized triangles formed by the cut. Observe that the

interior of Ti is intersected by at most |L′|
t

= k lines of L′. Thus, if Pi is the set of points in P
that belong closed finite region bounded by Ti, then any edge contained in Pi is intersected
by at most k lines of L′. Now, applying Jensen’s Inequality yields

|Q| ≥
r∑

i=1

Ç
|Pi|
2

å
≥ r

Ç1
r

r∑
i=1

|Pi|

2

å
≥ r

Ç
m
r

2

å
=

m(m
r
− 1)

2
≥ m2

4r
, (5)

where the last inequality holds if and only if m
r
≥ 2.

Now, we check that m
r
≥ 2 always holds. First, compute∣∣L′∣∣ = m(n−m) +

Ç
m

2

å
+ ab ≤ m(n−m) +

m(m− 1)

2
+mb

= m

Å
n− m+ 1

2
+ b

ã
≤ m(n+ b)

≤ 2mn.

The cutting lemma implies that there exists an absolute constant C such that

r ≤ Ct2 = C

Ç
|L′|
k

å2

≤ C

Å
2mn

k

ã2

= 4Cm2

Å
n

k

ã2

< 4Cm2

Å
1

C2m

ã
=

4Cm

C2

,

so taking C2 = 8C guarantees r ≤ m
2
.

Now, we verify that the permitted range of m from the statement of Lemma 5.3 contains
at least one positive integer by considering the differences between both possible supremums
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and the infimum of the given open interval. Setting C1 ≥ 32C, observe that

1

C2

Å
k

n

ã2

− 2k

n
≥ C1

8C

Å
k

n

ã
− 2k

n
≥ 4k

n
− 2k

n
> 2,

where the last inequality follows from k
n
≥ C1 > 1. Furthermore, we have

n

2
− 2k

n
=

n2 − 4k

2n
≥ n2 − (n− 2)2

2n
=

2n− 2

n
≥ 1

for n ≥ 2, which suffices.
Thus, setting C1 > max(1, 32C) and C2 = 8C satisfies all the necessary conditions. To

finish, we compute 5

|Q| ≥ m2

4r
≥ m2

4Ct2
=

1

4C

Ç
mk

|L′|

å2

≥ 1

4C

Å
mk

2mn

ã2

=
1

16C

Å
k

n

ã2

,

whence |Q| = Ω

ÅÄ
k
n

ä2ã
.

Because an edge contained in P belongs to Q only if it belongs to
k⋃

i=0

Ei(Dn), Lemma 5.3

follows easily.

Now, we can attack Theorem 5.2 by splitting the vertices of Dn into groups and applying
Lemma 5.3 to add up the number of edges contained within each group that belong to
k⋃

i=0

Ei(Dn).

Proof of Theorem 5.2. We start by partitioning the vertices of Dn into different subsets with
vertical parallel lines via a sweeping line process that starts on the left of all n vertices and
progresses rightwards. Then, we obtain a lower bound on Sk(Dn) by applying Lemma 5.3
on each of these subsets and summing across all subsets.

If min

Å
1
C2

Ä
k
n

ä2
, n
2

ã
= n

2
, then k = Ω(n

3
2 ). Set r =

⌊
log2

Ä
n2

2k

ä⌋
and use r + 1 ver-

tical parallel lines to form r consecutive disjoint regions containing 2k
n
, 4k

n
, . . . , 2

rk
n

vertices

respectively. Because each of these r regions fully contains Ω

ÅÄ
k
n

ä2ã
edges in

k⋃
i=0

Ei(Dn) by

Lemma 5.3, we have

Sk(Dn) ≥ r · Ω
ÇÅ

k

n

ã2
å

= Ω

(Å
k

n

ã2

log

Ç
n2

k

å)
,

which finishes for k = Ω(n
3
2 ).

If min

Å
1
C2

Ä
k
n

ä2
, n
2

ã
= 1

C2

Ä
k
n

ä2
, then k = O(n

3
2 ). Set r =

⌊
log2

Ä
k

C2n

ä⌋
and use r + 1

vertical parallel lines to form r consecutive disjoint regions containing 2k
n
, 4k

n
, . . . , 2

rk
n

vertices

respectively. Because each of these r regions fully contains Ω

ÅÄ
k
n

ä2ã
edges in

k⋃
i=0

Ei(Dn) by
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Lemma 5.3, we have

Sk(Dn) ≥ r · Ω
ÇÅ

k

n

ã2
å

= Ω

ÇÅ
k

n

ã2

log

Å
k

n

ãå
,

which finishes for C1n ≤ k = O(n
3
2 ), as desired.

5.3 Tight Construction for Lower Bound on Sk(Dn)

We describe a construction for k ≥ C1n that shows both lower bounds on Sk(Dn) given
in Theorem 5.2 are tight.

Theorem 5.5. For C1n ≤ k = O(n
3
2 ), there exists a Dn attaining Sk(Dn) = O

(
k2

n2 log
Ä
k
n

ä)
.

For k = Ω(n
3
2 ), there exists a Dn attaining Sk(Dn) = O

(
k2

n2 log
Ä
n2

k

ä)
.

Proof. We will assume that n is a multiple of 3, as it is easy to extend our construction to
the general case. Moreover, because the desired bound for this theorem is meaningless when
k = Ω(n2), we assume k = o(n2) for the remainder of this proof.

Let m = n
3
. We place the vertices of Dn in the plane so that they form m concentric

equilateral triangles T1, T2, . . . , Tm with center O such that Ti+1 is the image of Ti under a
homothety at O with scale factor −ϵ, where ϵ ∈ (0, 1) is sufficiently small.

Figure 15: Three consecutive equilateral triangles Ti−1, Ti, and Ti+1.
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Let the vertices of Ti be Pi,1, Pi,2, Pi,3 such that for r ∈ {1, 2, 3}, the points Pi,r are all
collinear1 where i ∈ [m]. Without loss of generality, assume P1,2P1,3 is horizontal.

Consider the edge e between Pi,r1 and Pj,r2 where i < j. For the sake of convenience,
henceforth we write a = i− 1, b = j − i− 1 and c = m− j. If j − i is odd, then we have the
following:

• For any Tx and Ty where x ∈ [i− 1] and y ∈ [i+1, j− 1], there exists at least one edge
spanning from a vertex of Tx to a vertex of Ty that crosses e;

• For any Tx and Ty where x, y ∈ [i + 1, j − 1], there exists at least one edge spanning
from a vertex of Tx to a vertex of Ty that crosses e;

• For any Tx and Ty where x ∈ [i+ 1, j − 1] and y ∈ [j + 1,m], there exists at least one
edge spanning from a vertex of Tx to a vertex of Ty that crosses e;

• For any Tx and Ty where x ∈ [i− 1] and y ∈ [j + 1,m], there exists at least one edge
spanning from a vertex of Tx to a vertex of Ty that crosses e.

In particular, taking ϵ small enough ensures these conditions hold.
When j − i is even, the first three conditions stated above are always true, but the last

condition does not necessarily hold when r1 = r2. Henceforth, we say that e is bad if and
only if j − i is even and r1 = r2. Otherwise, we say e is good.

Suppose that e is involved in at most k crossings. Because

Ω(b(n− 2)) = Ω(ab) + Ω(b2) + Ω(bc) ≤ k

must hold regardless of whether e is good or bad, we have b = O
Ä
k
n

ä
. But k = o(n2)

gives k
n
= o(n), so b = o(n) and thus a + c = Ω(n). Furthermore, if e is a good edge,

then Ω(ac) ≤ k also holds, which in conjunction with the previous asymptotic result implies

min (a, c) = O
Ä
k
n

ä
.

Now, we upper bound the number of good e involved in at most k crossings. Without loss
of generality, we can assume min (a, c) = a and multiply by 2 at the end. This assumption

yields a = O
Ä
k
n

ä
and b = O

Ä
k
n

ä
holds unconditionally, so the number of good edges is at

most

2(ab) = 2 ·O
Å
k

n

ã
·O
Å
k

n

ã
= O

ÇÅ
k

n

ã2
å
.

Next, we upper bound the number of bad edges with at most k crossings. First, we
perform an elaborate perturbation on the set of vertices of the form Px,r where x ∈ [m] has
fixed parity and r ∈ {1, 2, 3} is fixed. Without loss of generality, assume x is odd and r = 1.

First, using the relation b = O
Ä
k
n

ä
, we take some absolute constant C3 such that b ≤

C3k
n

holds unconditionally. We construct q =
†
8C3k
n

£
disjoint clusters of vertical lines each

containing at least n2

C3k
vertical lines that are arbitrarily close together. We also ensure all

vertical lines are sufficiently close to the vertical line
←−−→
OP1,1.

1Later on in this proof, we will perform an elaborate perturbation on the vertices of Dn which guarantees
the n vertices are in general position.
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Figure 16: A perturbation setup with 5 disjoint clusters of vertical lines each containing
5 vertical lines. The vertical positioning of 5 consecutive vertices from the set of vertices
involved in the perturbation is also shown.

Setting t =
†
m
2

£
, we consider the sequence of points P1,1, P3,1, . . . , P2t−1,1. We will not

alter the vertical positioning of any of these points through perturbations. Instead, we will
perturb them horizontally so that they lie on one of the vertical lines we have constructed.
Beginning with P1,1 and working our way inwards towards O, if p is the remainder of d
modulo q, then we shift the dth point of the sequence so that it lies on an unoccupied vertical
line in the pth cluster from the left.

Consider the set U of vertices in this grid-like shape that are below both P2i−1,1 and P2j−1,1

and also lie in between the vertical lines containing P2i−1,1 and P2j−1,1, respectively. Because
ϵ is sufficiently small, we know the (vertical) distance between consecutive horizontal lines
that determine the vertical position of (consecutive) vertices in the grid grows sufficiently
fast as we move further out from O. This implies that every single edge between a point in U
and a vertice above P2i−1,1 crosses P2i−1,1P2j−1,1. Now, we upper bound the number of edges
P2i−1,1P2j−1,1 that get crossed at most k times within this grid. Without loss of generality,
assume i < j.
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Case 5.1. If i = Ω(n), then we start by upper bounding the number of vertices in U . Clearly,

|U | ≤ k
i−1

or |U | = O
Ä
k
n

ä
must hold.

For y ∈ Z+, define the yth layer of the grid as the (yq−(q−1))th, (yq−(q−2))th, . . . , (yq)th
points of the aforementioned sequence. Now, recall that

j − i− 1 = b ≤ C3k

n
≤ q

8
. (6)

This implies that if P2j−1,1 belongs to the yth layer, then P2i−1,1 belongs to the yth or (y−1)th

layer of the grid such that there are at least j− i− 1 vertical clusters in between the vertical
clusters that P2i−1,1 and P2j−1,1 are contained in. Thus, if there are x completely full layers
below the layer that P2j−1,1 belongs to, the inequality |U | ≥ x(j− i−1) holds, and combining

this with |U | = O
Ä
k
n

ä
yields j − i = O

Ä
k
nx

ä
.

This deduction yields two useful conclusions. Firstly, because there are q = O
Ä
k
n

ä
vertices

in each layer, the number of edges P2i−1,1P2j−1,1 with at most k crossings such that P2j−1,1

belongs to the yth layer is O
Ä

k2

n2x

ä
. Second of all, now we know

x = O

Ç
k

n(j − i)

å
≤ O

Å
k

n

ã
, (7)

so the total number of layers in the grid is upper bounded by O
Ä
k
n

ä
. On the other hand,

the total number of layers is also upper bounded by

O(n)

q
=

O(n)†
8C3k
n

£ = O

Ç
n2

k

å
.

Thus, we have x ≤ min
(
O
Ä
k
n

ä
, O
Ä
n2

k

ä)
, whence the total number of such edges P2i−1,1P2j−1,1

with at most k crossings is

min

Ç
O( k

n),O
Å

n2

k

ãå∑
y=1

O

Ç
k2

n2x

å
= min

Ñ
O

(Å
k

n

ã2

log

Ç
n2

k

å)
, O

ÇÅ
k

n

ã2

log

Å
k

n

ãåé
, (8)

where the equality follows from evaluating a harmonic sum.

Case 5.2. If i = o(n), then a similar argument allows us to conclude there are O

ÅÄ
k
n

ä2ã
such edges P2i−1,1P2j−1,1 with at most k crossings.

It’s clear that the highest order term out of

O

ÇÅ
k

n

ã2
å
,min

Ñ
O

(Å
k

n

ã2

log

Ç
n2

k

å)
, O

ÇÅ
k

n

ã2

log

Å
k

n

ãåé
is just min

Ç
O

ÅÄ
k
n

ä2
log
Ä
n2

k

äã
, O

ÅÄ
k
n

ä2
log
Ä
k
n

äãå
. Moreover, because there are only n
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edges in Dn between vertices belonging to the same triangle, we know

Sk(Dn) = min

Ñ
O

(Å
k

n

ã2

log

Ç
n2

k

å)
, O

ÇÅ
k

n

ã2

log

Å
k

n

ãåé
(9)

has been proven, which suffices.

6 Main Takeaways and Future Directions

In Section 2, we coin the term crossing profile and draw attention to the importance of
studying how crossings are distributed across the edges of a graph rather than the global
trends of the crossing number. In Section 3, we present a construction that guarantees
max ek(Dn) = Ω(n) for all values of k where max ek(Dn) > 0 is possible. In Section 4, we
provide the first lower bound on max e1(Dn) and prove min ek(Dn) = 0 holds for nearly all k
when n is sufficiently large. In Section 5, we find tight upper and lower bounds for Sk(Dn)
when k is at least linear with respect to n.

In addition to pinpointing the precise value of max ek(Dn) and resolving smaller problems
such as achieving ek(Dn) = 0 for all k when n is sufficiently large, we are also interested in a
variant that was briefly considered during this project. This problem concerns intersections
between edges of Dn and lines through two vertices of Dn. This variant is closely related to
both our original question about crossings between edges of Dn and the well-studied k-sets
problem [27, 28]. During our brief exploration of this variant, we discovered tight bounds
on the number of edges that are crossed by at most k lines defined by two vertices of Dn,
which is the analog of Sk(Dn) and Section 5 for this variant.
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