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GazeLink: A Multi-language Low-cost Mobile Eye-gesture Communication
System with Large Language Models for People with Amyotrophic Lateral

Sclerosis

Xiangzhou Sun

Abstract

Amyotrophic Lateral Sclerosis (ALS) patients who have severe motor and speech impairments mostly rely
on their eyes and assistive technology to communicate. However, existing high-tech products are expensive and
hard to access, while low-tech products are ine�cient and restrictive.

To mitigate the limitations, this research proposes GazeLink, a multi-language low-cost mobile application
for ALS patients to communicate e�ciently with only eye movements. First, the system recognizes user eye
gestures like left or up with machine learning and a template-matching algorithm. Then, it converts the eye
gestures to words through a keyboard that supports English, Spanish, and Chinese. For e�ciency, the system
employs Large Language Models (LLMs) to generate a suitable sentence with words typed by the user and the
context. Finally, the system provides text-to-speech and social media post services for both verbal and digital
eye-gesture communication.

Simulations conclude that sentence generation with LLMs can reduce user keystrokes by 81% while main-
taining 90% of semantic similarity. Usability studies with 30 participants show that GazeLink can recognize eye
gestures with 94.1% accuracy in varying lighting. After rapidly learning the user interface in under 10 attempts,
first-time participants typed sentences of various lengths with their eyes at 15.1 words per minute, which is 7.2x
faster than the common low-tech solution E-Tran.

Experiments demonstrate GazeLink’s e�ciency, learnability, and accuracy in eye-gesture text entry. The
system is extremely a�ordable (less than $0.1 a month), portable, and easily accessible online. It also supports
di�erent users, lighting, smartphones, and languages. Product testing with ALS patients and personalized LLM
models will be the next step.

Keywords: Assistive Technology (AT), Eye Gesture, Amyotrophic Lateral Sclerosis (ALS), Human-Computer
Interaction (HCI), Large Language Model (LLM), Computer Vision (CV)
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1 INTRODUCTION

Amyotrophic lateral sclerosis (ALS), the umbrella term for Motor Neuron Disease (MND) in the United States,
describes a group of neurodegenerative disorders that causes motor neurons in the brain to malfunction and
degenerate prematurely, disabling muscle activity like swallowing, walking, or gripping [Kiernan et al., 2011].
In severe cases, the disorder evolves into an incomplete locked-in state (iLIS): the patients’ limbs become im-
mobile, and their speaking abilities worsen [Inform, 2023]. Patients in iLIS encounter many di�culties in their
quotidian routine and require assistance from clinicians. Since oculomotor functions are generally preserved in
ALS, most People with ALS (PALS) use eye movements to communicate [Kang et al., 2018].

Current solutions include low-tech and high-tech products to aid ALS user’s communication. Low-tech
methods include choosing letters on a communication board with a laser pointer such as E-tran, but they are both
time-consuming and limited in expression [Solutions, 2016, Amy and pALS, 2018]. Existing companies such
as Tobii Dynavox developed high-tech assistive technology with speech generation and dwell-free eye tracking
[Dynavox, 2024a]. However, most of their products like the TD I-Series cost around $19000, an exorbitant price
for underserved populations without adequate medical care. Additionally, both low-tech and high-tech solutions
have hefty physical components that are hard to carry, deliver, or fix.

Figure 1: TD Pilot by Tobii Dynavox, an ad-
vanced and expensive eye-tracking communication
tool[Dynavox, 2024b]

Figure 2: A low-tech eye-tracking solution named E-
tran [Solutions, 2016]

Under this context, this study proposes GazeLink, an eye-gesture-based mobile text-entry system powered
by LLMs to aid the communication of PALS. The specific functionalities of the GazeLink system include: 1)
Calibration for accurate eye gesture recognition, 2) Accurate real-time recognition of seven eye gestures with
the smartphone’s front-camera input, powered by face recognition machine learning models, and a template-
matching algorithm, 3) Typing keywords with the eye-gesture keyboard and a Dynamic Vocabulary Bank (DVB),
4) Converting the keywords into a suitable and grammatical sentence with fine-tuned LLM text generation, 5)
communicating the text with text-to-speech (TTS) functionality or posting it to social media for digital expres-
sion, 6) A visual-aligned and modular user interface (UI) for text entry and displays for calibration, settings
adjustment, and data evaluation.

Figure 3: A visual demonstration of GazeLink con-
verting eye gestures to sentences to facilitate commu-
nication

Figure 4: An example of the text entered through
GazeLink with eye gestures. The system is suited for
any standard Android phone.

GazeLink is e�cient, a�ordable, portable, and accessible. Compared to low-tech solutions, the system
is significantly faster and provides a substantially wider range of semantic expressions. The only hardware
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requirement of GazeLink is a standard smartphone equipped with a front-end webcam. To leverage the system’s
context-aware text generation capabilities, users must cover expenses associated with LLM cloud services, which
are minimal compared to the costs of existing eye-typing products available on the market. Users can download
the mobile application online without physical shipment and repair. The system will be scalable to tablets or
laptops in the future.

To evaluate GazeLink comprehensively, this research divides the system into key components. Computation
evaluations assess LLMs in terms of semantic similarity and keystroke savings, and results conclude that the
integration of text generation significantly increases the text-entry rate while preserving accuracy. Usability
studies with first-time participants demonstrate the system’s robustness in recognizing eye gestures and the
learnability of our eye-gesture keyboard. Finally, comprehensive system testing shows that most users can swiftly
type an accurate sentence with GazeLink after a training session of less than 20 minutes. A questionnaire
collected after the experiments also concludes that most users consider Gazelink to be easy to use and mentally
e�ortless.

The main contributions of GazeLink include 1) adaptable and robust eye gesture recognition on mobile
devices with machine learning and template-matching, 2) a user-centered eye-gesture keyboard to type words
in multiple languages, 3) multi-language sentence generation from keywords and context with LLMs for faster
text entry, 4) a new easy-to-learn eye-gesture keyboard layout that allows users to independently type a complete
sentence swiftly.

2 BACKGROUND

2.1 Related Works

A dwell-free gaze-tracking system named EyeK designed by Sarcar et al. reduces visual search time and dwell
time by testing novel keyboard layouts [Sarcar et al., 2013]. Their interface can achieve 15% higher text-entry
rates than existing interfaces. However, to track the user’s eyes, their study utilized an external eye-tracking
component developed by IT University of Copenhagen. Despite being low-cost, the external hardware is hard
for PALS to access, and production di�culties may hinder the globalization of the system.

A study by Fan et al. examines the recognition of eyelid gestures for people with motor impairments on
mobile devices [Fan et al., 2020]. They tested with both able-bodied participants and individuals with motor
impairments, concluding that the algorithm can detect 12 gestures with 0.76 accuracy. The accuracy may be
insu�cient for a highly e�cient text-entry system, but 12 gestures o�er many possibilities.

Cecotti et al. present a multimodal virtual keyboard that employs both eye and hand gestures for text entry
[Cecotti et al., 2018]. With ten commands, users use gaze-tracking to hover over a desired item and use hand
gestures to select the item. Their results demonstrate that participants can type at 8.77 ± 2.90 letters per minute.
However, this system is not suitable for most PALS, who cannot perform hand gestures due to their condition.

A portable, low-cost system named GazeSpeak developed by Zhang et al. allowed PALS to communicate
words with gesture-based eye typing on iOS smartphones [Zhang et al., 2017]. They extracted eye frames from
the smartphone’s camera and stored calibration files for template matching. Then, they interpreted the eye
gestures in real time and converted the inputs into words. However, there are several limitations to the system.
First, a trade-o� of an ambiguous keyboard is a constricted vocabulary bank due to the time complexity of word
prediction. Although the users rarely use complicated vocabulary, many specific or proper nouns such as France
or pizza are not included in the bank yet relevant in an average conversation. Similarly, the system is incapable
of typing grammatical sentences as the vocabulary bank lacks verbs of all tenses or plural nouns, which hinders
normal communication. Additionally, the system did not capitalize on the conversational context, including
previous turns in a dialogue, personal information, or previous inputs to improve their predictive text engine.

Another system named KWickChat proposed by Shen et al. generates grammatical and semantic sentences
with keywords and context information to accelerate the text-entry rate for ALS patients [Shen et al., 2022].
The context they collected includes previous dialogues, user inputs, and personal information. Using a Nat-
ural Language Processing (NLP) model named BERT, they shortened sentences into keywords, and, with the
extracted context, trained a GPT-2 model evaluated on semantic and grammatical accuracy. Since the model
can convert keywords into sentences, the user only needs to input keywords for e�ective communication. Their
results conclude that the system’s keystroke saving is around 71% compared to the baseline. However, the sys-
tem’s suitability is not applied and examined with an interactable text entry system. Moreover, the up-to-date
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GPT-3.5 model that may improve the results of sentence generations is not adopted.

2.2 Large Language Models

Transformer is a combination of encoders and decoders introduced in 2017 by Google [Vaswani et al., 2017].
Encoders translate the input text into a continuous representation, while decoders take the continuous repre-
sentation as input to generate an output sequence. The key mechanism of transformers is self-attention, which
allows the model to identify dependencies between di�erent parts of the input sequence and the most relevant
words. Self-attention improves the model’s understanding of context and its ability to manage long-range de-
pendencies in sequences of various lengths.

Figure 5: A diagram of a Transformer architecture. [Vaswani et al., 2017]

Adapting a transformer architecture, the Generative Pre-trained Transformer (GPT) is pre-trained with a
large dataset and analyzes a prompt given by the user to predict responses. The GPT-3.5 model is a GPT devel-
oped by OpenAI and used for a variety of Natural Language Processing (NLP) tasks. With significantly more pa-
rameters, GPT-4 is more robust than GPT-3.5 and multimodal but slower due to its complexity [Achiam et al., 2023].

Fine-tuning, a supervised learning process, further improves GPT performance for specific tasks. It requires
a labelled dataset that the LLM will use to update its weights. For OpenAI GPT models, A relatively small
dataset of around 100 examples is su�cient in significantly boosting performance for certain tasks.

3 SYSTEM DESIGN

GazeLink’s primary functionality is independent text entry for PALS, which follows a four-step process: 1)
the system extracts the user’s eye region in real-time and recognizes the eye gesture with a template-matching
algorithm, 2) an eye-gesture keyboard converts the eye gestures to keywords, 3) on-cloud LLMs use the keyword
and conversation context to generate a suitable sentence, 4) the user communicates the sentence via phone
speaker or social media upload.

GazeLink also implements a very user-centered design after observations and interviews with caretakers
in Table 1. Since the target audience is ALS patients, the needs are essential factors when maximizing user
experience.

Table 1: This table lists all the essential needs of
ALS patients we identified and how we address
them in GazeLink

Figure 6: An overview of the GazeLink system, includ-
ing set-up, recognition, keyboard, LLMs, and text-to-
speech.
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To facilitate the process, GazeLink implements a multipurpose, easy-to-learn UI with several parts:

• Data Interface displays a log that tracks the user’s gaze gestures chronologically and data that summarizes
the general performance of the user.

• Text-entry Interface allows users to type sentences with only eye gestures. It implements the multi-
language eye-gesture keyboard with LLM enhancements and text-to-speech functionalities.

• Quick Chat Interface allows users to rapidly type 25 common sentences for the communication of ALS
patients with only eye gestures.

• Settings Interface displays adjustable configurations like recognition sensitivity and text-entry method.
The interface also presents the user’s current gaze gesture and inputs for testing.

• Calibration Interface facilitates the calibration of each gaze gesture. The system will use the templates
for template-matching to accurately detect gaze gestures and store them locally for the next use.

GazeLink only requires the front-end webcam, touch screen, and speaker of a smartphone to function. An
Internet connection is also required for LLM services on the cloud. We recommend the user to pair the smart-
phone with a phone stand with adjustable height and orientation.

The main components of the system are: 1) an eye gesture interpreter, 2) a multi-language eye-gesture
keyboard engine with DVB 3) multi-language LLM implementations through cloud 4) a visual-aligned modular
UI.

4 EYE GESTURE RECOGNITION

GazeLink recognizes up to seven eye gestures (left, right, left up, right up, up, center, closed) with promising
accuracy for both eyes (see Figure 7). The recognition system uses Google ML Kit for face and eye detection
and OpenCV for image processing [Bradski, 2000].

There are many Machine Learning (ML) algorithms available for eye gesture detection, including template-
based and data-driven methods. Previous works conclude that, for eye gesture recognition systems with fewer
templates, template-based recognition methods are more accurate and adaptable compared to data-driven meth-
ods. Template-based algorithms first collect labeled templates of distinct eye gestures and compare them in
real-time to determine the most probable eye gesture [Li et al., 2021].

4.1 Calibration

For first-time users, the system must collect templates for every gaze gesture. The process begins with an
assistant pressing the “Continue” button on the device. The application will provide audio guidance such as
“look left,” and users are expected to hold the gaze gesture until the assistant stores the camera frame with the
“collect” button. Participants are asked to perform slightly exaggerated eye gestures and eschew vibrating the
phone or moving their heads.

The process takes around 30 seconds on average. Calibration is required for the first usage and recommended
with di�erent users or dramatic lighting changes. After capturing the frame, the system processes and stores the
template with the following steps:

1. Eye landmark extraction: With the Google ML Kit library, we detect the face from the frame and extract
the contour of the left and right eye.

2. Bounding Box Calculation: We take the 4 bounding points (maximum x and y, minimum x and y) in the
contour to extract the bounding box for the eyes.

3. Image Processing: The bounding box is grayscaled, normalized, and resized with OpenCV

4. Data Storage: We save the processed calibration templates on the Android device. When the user reopens
the application, the system automatically loads the templates from the device.

4
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Figure 7: Eye gesture recognition flowchart. First, we detect the face and extract eye landmarks with Google
ML Kit. Then, the image is resized and normalized. Finally, we compare the processed image with labeled
templates to determine the most likely eye gesture. All steps are computed on the device.

As shown in Figure 8, the calibration interface allows caretakers to assist the user during the calibration
process. The “Continue” button initiates the calibration, prompting the system to display text and audio in-
structions. The interface displays seven images that represent the eye templates the system will use for template
matching. Press the “Continue” button while the user is performing the eye gesture to record the template. Press
the “switch eyes” button to examine the collected templates from the other eye (default is left).

Figure 8: Calibration interface: (A) Top bar to change modes; (B) Instruction text that prompts the user; (C)
Button to the calibration templates of the other eye for verification; (D) Button for the next step of calibration;
(E) Image that shows calibration template.

4.2 Recognition Algorithm

After calibration, the user can switch to the settings interface to test the accuracy and adjust settings accordingly.
We use the risk function Mean Squared Error (MSE), which measures the average of squared errors between
two sets of values, to compare the processed image with the labeled templates. The template with the lowest
loss is the most probable eye gesture.

MSE =
1

n

nX

i=1

(yi � ŷi)
2 (1)

One di�culty in eye-typing is distinguishing accidental glances from intentional inputs. To ensure that the
system does not recognize users’ unintentional gestures as legitimate inputs, we set a dwell time of 0.25 seconds
(3 frames). Users must hold a gaze gesture until they hear a “beep” sound, which indicates that their input is
recognized.

4.3 User Configurations

Users can adjust configurations through the settings interface, which displays system outputs, real-time image
processing, and adjustable configurations. On the top right, we display the overall gaze type (gaze recognition of

5
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the current frame) and the overall error (the di�erence between the current frame and closest-matched templates)
for clinicians to evaluate the e�ectiveness of calibration templates (see Figure 9).

Figure 9: Settings interface includes information like overall gaze type, overall error, current language, and
text-entry mode.

The first configuration, gaze sensitivity controls the threshold for error in the system’s gaze recognition. If
the error between the current frame and the closest-matched template is less than the gaze sensitivity, the gaze
is considered valid. If the error is higher than the gaze sensitivity, it is ignored. Increase the sensitivity when
incorrect eye gestures are detected frequently.

Language controls the current language for Gaze Link. Users can choose between Chinese, English, and
Spanish. Language changes will only take e�ect after refreshing. Default language will be the user’s system
language if available.

Text-entry Method controls the current text-entry method implemented in the text-entry interface. There
are three modes: 1) LLM-enhanced method. This method allows GazeLink to leverage LLMs on the cloud
to improve text-entry rate and semantic accuracy. 2) Eye-gesture-keyboard-only method. If the internet is not
available, use this mode to type words with only an eye-gesture keyboard and a static vocabulary bank of 5000
words. 3) letter-by-letter method. Use this mode only when words cannot be expressed with the eye-gesture
keyboard. Letter-by-letter typing is exceeding slow yet very precise as every character is typed specifically.

5 KEYBOARD DESIGN

5.1 Multi-language Eye-gesture Keyboard

Compared to GazeSpeak’s keyboard which only allows the user to form sentences using words in the preset
corpus, we propose a new multi-language eye-gesture keyboard that allows users to type an enormous range
of words rapidly without any assistance. Considering it is ine�cient and fatiguing for users to specify each
character of a word using limited types of eye gestures, GazeLink incorporates all 26 letters of the alphabet
with four “blurry inputs” (A–F, G–M, N–T, and U–Z), each one representing a range of letters. For example,
letters A, B, C, D, E, and F will all correspond to the blurry input A-F. After the user completes typing the
blurry input, GazeLink lists out all the possible words, sorted by frequency, by searching through a word bank
of 5000 commonly used English words. A trie data structure optimizes the search to O(n) time complexity,
with n representing the number of blurry inputs [Zhang et al., 2017].

Multi-language Support

To adapt to two other languages, Spanish and Chinese, the eye-gesture keyboard uses di�erent vocabulary
banks for each. Since Spanish has many conjugations for its verbs, the vocabulary bank includes all the infinitives
instead of all separate conjugations. In case of adjective-noun agreement, we only included adjectives and nouns
in the masculine and singular form. All the verbs, adjectives, nouns, and other words are sorted by frequency to
maximize e�ciency.

For Chinese, we first computed all the possible combinations of pronunciations and organized them in a
table. Then, we extracted the top 5000 words in a collection of the most frequent Chinese characters by Jun
Da and determined the most common pronunciations. We sorted the pronunciation based on the frequency and
used it as the vocabulary bank for the Chinese eye-gesture keyboard.

GazeLink’s text-entry interface incorporates two types of UI layout elements: non-interactive text boxes to
display current inputs and eye gesture buttons activated with either eye gesture or touchscreen. To leverage the
small number of distinct eye gestures without over-complicating the system, the interface employs two switchable

6
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Figure 10: A diagram of the text-entry process involving the UI layout, system model, and interaction between
device and user. First, the user types the blurry input of the word with eye gestures. The system processes the
blurry input and updates the layout with possible matching words. Finally, the user selects the intended word
with an eye gesture.

modes, a letter mode that types the blurry input and a word mode that selects the intended word. All buttons
have one functionality for each mode. The closed-eye gesture button is always used to switch between modes.

For the user’s convenience, the eye gesture buttons are split between alphabetic buttons and modifier/control
buttons. Alphabetic buttons (left up, right up, left, and right gesture) manage the actual text entry, including
blurry input and word selection. In contrast, modifier/control buttons (up and closed) perform special actions,
including delete or speak. The interface distinguishes between the two types with color and size.

Table 2: A table that lists the function of each eye gesture button in letter and word mode.

5.2 Text-entry Interface

In addition to eye gesture buttons, the interface includes three non-interactive text boxes that display the follow-
ing: 1) the context of the conversation inputted through voice recording or hand-typing, 2) current text that the
user typed, 3) the sentence generated by LLM model.

GazeLink incorporates essential concepts summarized from previous papers and product analyses, like the
GazeSpeak system [Zhang et al., 2017], a hand and eye gesture virtual keyboard [Cecotti et al., 2018], and a
qualitative deployment study of Tobii Dynavox’s text-entry system [Kristensson et al., 2023].

Visual Alignment

The interfaces of GazeLink and Cecotti’s keyboard both align the position of UI elements with the intended
direction of input to leverage the user’s intuition. Instead of forcing the users to search for the gesture that
corresponds to a button on the screen, visual alignment conveys the gesture through the UI element’s relative
position on the screen, which reduces the visual search time. GazeSpeak implements a cross-section layout with
four eye gesture buttons. However, four eye gestures are insu�cient for text editing, such as deletion, which is
an essential part of text entry systems.

7
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Figure 11: Text Entry interface: (A) Top bar to change modes; (B) Left up eye gesture button to type A-F or
word 1; (C) Close eye gesture button to switch between letter and word mode; (D) Up eye gesture button to
delete or speak input, depending on the mode. (E) Right up eye gesture button to type G-M or word 2. (F) Text
that displays user input. (G) Text that displays the generated sentence. (H) Left down eye gesture button to type
N-T or word 3. (I) Text that displays the context of the conversation. (J) Record button to enter context with
Android’s voice-to-speech. (K) Left down eye gesture button to type U-Z or switch pages for word mode.

To ensure a higher eye-gesture recognition accuracy, inspired by Cecotti’s system that places hand gesture
buttons in a ring around the margins of the display, GazeLink enforces a similar design: for the eye gesture
buttons that correspond to left up, right up, left, and down, we position them in the four corners of the screen
accordingly [Zhang et al., 2017, Cecotti et al., 2018].

Input-output Separation

A commonality between the text-entry interfaces of all works is the separation of input and output, a common
design principle so each section of the display addresses a specific concern. GazeSpeak employs a left-right
layout, placing his eye gesture buttons on the left and system outputs on the right. Cecotti’s system displays
the system message in the middle and uses contrasting tones to distinguish input from output. Tobii Dynavox
implements a top-down layout and defines the output area to be above the input. We incorporate the same concept
in the system by splitting the interface into three columns. The center column manages system outputs while
the left and right columns are the input zone [Zhang et al., 2017, Cecotti et al., 2018, Kristensson et al., 2023].

5.3 Other Interfaces

The social media interface allows PALS to upload tweets and pictures with only their eyes (see Figure 12.) After
users finish entering text in the text-entry interface, they can switch to the social media interface by performing
eye gestures. After switching, they can 1) take a picture from the front-end camera, 2) delete text when necessary,
3) upload the text. We use the V2 X API with to upload tweets, so OAuth authentication is required.

Figure 12: Social Media Interface. All buttons are controllable by both touchscreen and eye gesture.

The quick chat interface allows PALS to rapidly speak common phrases like “I want to sleep” through
OpenAI text-to-speech service (see Figure 13). 25 common phrases that encompass di�erent aspects of the user’s
daily life are pre-stored in Gaze Link for th user to choose from. Future updates will allow users to personalize
the phrases to adapt to their own lifestyle. The quick-chat interface supports three languages: English, Chinese,
and Spanish.
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Figure 13: Quick Chat Interface. All buttons are controllable by both touchscreen and eye gesture.

6 LLM IMPLEMENTATIONS

6.1 Multi-language Keyword-based Sentence Generation

To ensure accurate and rapid text entry for the user, GazeLink uses Large Language Models (LLMs) such as
GPT-3.5 and GPT-4 for word generation, next-word prediction, and sentence retrieval. Both GPT-3.5 and GPT-4
are models based on the transformer architecture introduced in 2017 by Google [Vaswani et al., 2017].

GazeLink improves keystroke savings by implementing a keyword-based sentence generation model with a
fine-tuned GPT-3.5 model. Instead of requiring users to type complete sentences, the system only uses keywords
and the conversation context to automatically generate the intended response, drastically reducing the number
of keystrokes. Additionally, generated sentences ensure grammatical consistency, which is a limitation of the
GazeSpeak text-entry system.

To train the sentence generation model, we created a training and validation dataset named the GazeLink
dataset. Each entry in the dataset includes 1) a target sentence, the expected output for the model, 2) conver-
sation context, the previous turn in the dialogue, and 3) keywords, a subset of keywords in the target sentence
that preserves most of the meaning. To obtain the target sentence, we leveraged a crowdsourced corpus of aug-
mentative and alternative communication (AAC)-like communications [Vertanen and Kristensson, 2011]. The
corpus contains approximately 6000 sentences based on telephone conversations, social media, and newswire
text that encompass common communications of AAC users. However, the sentences provided in the corpus do
not contain the conversation context or keywords. Therefore, we generate the conversation context and keywords
with surrogate models.

Figure 14: The overall process of the sentence generation model. First, keywords and context are generated
from the AAC Crowdsourced Dataset with surrogate models. Then, the base model is fine-tuned with entries
of keywords, context, and target to create the sentence generation model. During inference, the model takes
keywords and context as input to generate a suitable sentence.

Surrogate Context Model

First, to generate conversation context from the AAC crowdsourced corpus, we trained a surrogate context
model with few-shot learning of GPT-4 and the ConvAI2 challenge dataset [Dinan et al., 2020]. The ConvAI2
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challenge dataset contains 11000 dialogues of natural conversations between crowd workers. In each dialogue,
the participants speak in turns while familiarizing themselves with each other. We randomly select 20 sentences
from the dialogues as the target sentence. For each sentence, we determine the preceding turn in the dialogue,
spoken by the conversation partner, as the context. We prompt the model for few-shot training and enter the
20 paired sentences (previous turn + target sentence) into GPT-4. Pre-trained with an enormous amount of text
information, GPT-4 can robustly recognize patterns in the training data with a small number of examples. After
few-shot training, We feed the 50 target sentences from the AAC corpus into the trained model and prompt it to
generate a conversation context for each sentence.

Surrogate Keyword Model

We also employ the GPT-4 model and few-shot training for bag-of-keyword extraction from the target sen-
tences. Rather than using previous datasets, we obtain targets in the training data by recruiting human partici-
pants to extract keywords. Since the system requires users to think of keywords themselves, incorporating human
judgment in the data labeling helps the model to understand human intuition in keyword extraction. We ran-
domly chose 20 more sentence pairs from the ConvAI2 challenge dataset context and gave it to the participants
for extracting bag-of-keywords [Dinan et al., 2020]. We define the optimal keywords as the minimum number
of words required for another participant to replicate the original sentence with the conversation content. We
ask the participants to select the keywords from the 20 sentences with the definition and use their selections as
the training data to train the GPT-4 model.

After completing the GazeLink dataset with the surrogate context and keyword models, we convert the en-
tries into JavaScript Object Notation Line (JSONL) format and upload the file to the OpenAI developer platform
for fine-tuning with a gpt-3.5-turbo-1106 model. The fine-tuned model is stored in the cloud and has a training
loss of 0.0496 after 3 epochs and 29670 tokens for English (See Table 3.) Our system can access the model via
the internet and the OpenAI API when the user inputs a keyword (see Figure 14).

Table 3: Fine-tuning for English, Spanish, and Chinese.

We also implemented a Google Gemini model with a similar methodology inside Gaze Link. Future work
will include accuracy and latency comparisons between di�erent fine-tuned LLMs.

6.2 Dynamic Vocabulary Bank

GazeLink applies a GPT-3.5 model to generate words for the DVB. Previous works’ eye-gesture keyboard re-
stricts the user’s vocabulary to a word bank of 5000 words. However, users may use specific or technical nouns,
like France or pizza, outside of the bank during their conversations. Therefore, we propose a DVB that extends
the traditional word bank by leveraging the dialogue’s context and previous inputs, providing users with a wider
range of semantic expressions (see Figure 15)

With the application’s UI, the conversation partner enters the dialogue context into GazeLink through an
editable textbox or a voice recording button. The system recognizes the change in context and sends a prompt
like “Generate 50 words related to the context: What do you want to eat?” via the internet to access the GPT-
3-turbo model with the OpenAI API. We leverage prompt engineering concepts like specificity and role-play to
improve the model’s accuracy. The model then generates several words related to the context, such as burger,
sushi, or fries, and transmits the words to the device via the internet. We insert the 50 dynamic words into the
DVB and display them in front of static words. Dynamic words from previous turns in the dialogue are deleted
to ensure e�ciency.
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Figure 15: A flowchart of DVB and next word prediction with prompt engineering. DVB word generation model
takes the conversation context as input and outputs 50 dynamic words for the DVB. The next word generation
model employs the user input to predict possible next words. The words are then displayed on the UI layout.

6.3 Next Word Prediction

GazeLink also implements next-word prediction with the GPT-3.5 model to improve the text-entry rate. After
a user enters a word, the system ranks possible succeeding words with the dialogue context and the last typed
word. For example, for the word “sleep”, the system displays predicted words like “now”, “peacefully”, or
“later” in the user interface.

7 EXPERIMENTS

7.1 Multi-language Sentence Generation Model Evaluation

We first evaluate the e�ectiveness of the model analytically by examining the trade-o� between semantic sim-
ilarity (%) and keystroke savings. Semantic similarity measures the closeness in meaning between the target
sentence and the generated sentence. Since all users have di�erent text-entry rates, we quantify the model’s
speed with keystrokes, the minimum number of eye gesture inputs required to type a sentence. We used a Win-
dows 11, 16G RAM, CPU Intel i9, GPU Nvidia RTX 4060, 1T storage computer to experiment.

Evaluation Metrics

There are multiple model-independent evaluation metrics to measure sentence similarity, including overlap-
based and embedding-based metrics. Overlap-based metrics such as the Bilingual Evaluation Understudy Score
(BLEU) analyzes the amount of word overlap between two sentences. However, according to recent studies,
BLEU only considers the lexical similarity and neglects the overall meaning of the sentence, which is more
significant than word overlaps in terms of accurate communication.

On the other hand, embedding-based metrics represent the sentence in a latent space instead of comparing
words on the surface like BLEU [Papineni et al., 2002]. Consequently, embedding-based metrics demonstrate a
higher correlation with human judgment and examine the semantic similarity more robustly [Reimers and Gurevych, 2019].
However, embedding-based metrics is slower and requires training. We resolve this limitation by employing an
open-sourced embedding-based sentence transformer model named all-MiniLM-L6-v2 on HuggingFace as the
evaluation metric [HuggingFace, 2024].

The experiment leverages a portion of the GazeLink dataset created with the AAC crowdsourced corpus and
surrogate models. Distinct from the training data, the testing data contains 40 entries of target sentences with
conversation context and keywords of di�erent sizes (min: 1, max: 5).

For each entry, we study how the size of keywords a�ects the semantic accuracy of the generated sentence
and the keystroke saving, the percentage of keystroke reduction from the baseline. The baseline does not im-
plement any LLMs, so every word in the sentence must be typed. However, the sentence generation model only
requires keywords as input.
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Figure 16: Two graphs to present how the number of keywords a�ects average semantic accuracy (%) and
average keystrokes savings (%) over 38 samples. The blue line is the model with context, and the red line is the
model without context.

The left graph of figure 16 shows that as the number of keywords increases, the average semantic accuracy
(%) increases, which signifies that the generated sentence more closely corresponds to the target sentence. This
reveals that if more information is provided, the model can more accurately generate a sentence. However, the
model’s pattern of change di�ers depending on the presence of the conversation context. At a low level of infor-
mation (keywords = 1), context is exceptionally important in preserving semantic accuracy because it provides
essential background knowledge for the model. For example, if the target sentence is “I want to eat pizza,” a con-
text like “What do you want to eat?” would only require the keyword “pizza” for an accurate prediction. When
keywords increase from 1 to 2, a rapid climb in accuracy is observed in the model without context because the
second keyboard is crucial in forming a sentence. For example, the word “water” by itself has many possibilities
as a sentence, but two words “drink, water” narrows it down significantly. As information further increases, the
model reduces its dependency on the context, and both line plateaus at around 96% semantic accuracy.

The right graph of figure 16 demonstrates that as the number of keywords increases, keystrokes savings
decreases. Since typing more keywords requires more keystrokes, it reduces the user’s text-entry rate. Therefore,
although more information benefits semantic accuracy as shown in the left graph, it also slows the speed of text
input.

To further evaluate the trade-o� between speed and accuracy, this research determines the average keystrokes
savings for each semantic similarity (%) threshold (min: 50, max: 100, step: 5) The experiment is also repeated
without including the context.

Similar to the results of Figure 16, Figure 17 shows the inverse correlation between semantic accuracy and
keystroke savings with context. Since the curve is concave down, significantly more information is required to
achieve a high semantic accuracy threshold like 90%. The presence of conversation context also has a notable
impact on the percentage of keystrokes saved. The keystrokes savings tend to be approximately 10% lower when
context is not present. The graph is beneficial in quantifying the relationship between speed and accuracy. We
conclude that, when context is present, a semantic accuracy threshold of 85% can save 55.5% of keystrokes,
which potentially reduces more than half of the text entry time. To put in perspective, the sentences “I want to
sleep later” and “I want to sleep in a while” have a semantic similarity of 84.7%.

This research also evaluated the e�ectiveness of sentence generation in Spanish and Chinese, shown in
Figure 17 (with context) and Figure 18 (without context). The procedure is similar except for the dataset creation.
New datasets are needed for the di�erent languages since Spanish and Chinese are fundamentally di�erent
from English. In the Spanish dataset, I included vocabulary with accents. In the Chinese dataset, I used the
pronunciations (Pin Yin) for the Chinese characters as the keywords and Chinese characters for the context to
align with the eye-gesture keyboard.

All three LLM sentence generation models can reduce at least 50% of keystrokes while maintaining a se-
mantic accuracy of 85%, which increases by text entry rate by around two times. The Chinese LLM performs
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Figure 17: Graph of the performance of LLMs for
each language with context.

Figure 18: Graph of the performance of LLMs for
each language without context.

the best, reducing 81% of keystrokes while maintaining 90% of semantic accuracy.

7.2 Usability Testing

We recruited 30 able-bodied participants (5 for pilot testing) within the community to evaluate the e�ectiveness
of the GazeLink system. ALS is a low-incidence disease that impacts only 0.3% of the general population, and
ALS patients with severe motor disabilities are even more rare. In addition, experiments with PALS require
time-consuming approval from the U.S. Food and Drug Administration (FDA) and ethical review boards. Even
though testing on able-bodied participants reduces the validity of the experiments, it is essential to evaluate and
improve GazeLink’s baseline performance before testing on PALS.

Based on convenience sampling, participants within a high school community are contacted through email
and asked to sign a human consent form before the experiments. For participants under 18, the form also
requires a signature from a parent or guardian. Since all participants do not have previous experiences with
a similar text-entry system, their testing provides valuable data on GazeLink’s learnability for first-time users.
The participants have an average age of 22.17 (min: 12, max: 57). 24 were male and 6 were female. 12 wore
glasses while others had perfect vision or contact lenses. The eye and skin color of participants also varied.

The testing session has 3 parts: layout learnability, eye gesture recognition, and system testing (35 minutes).
Most testing was conducted in the Thornton Lab of The Webb Schools in Claremont, LA, between 2024/1/14
and 2024/2/2.

For all experiments, we use the Android smartphone Xiaomi MIUI 14.0.10 with 8.0 + 3.0 GB RAM, Octa-
core MAX 3.0GHz CPU, and a 50MP camera. We stabilize the phone on a tripod placed on a table and adjust the
height to the participant’s eye level. Only the front-facing camera of the smartphone is used so the participant
can see the screen at all times. Since glasses significantly a�ect the ML eye detection functionality, we ask
participants to take o� their glasses during the experiments and adjust the phone’s distance so the text is visible.

After setup, we play a 3-minute tutorial that introduces the product and text-entry method so all partici-
pants possess a controlled understanding of the system. Then, we test the participants on two key components
of GazeLink: the eye-gesture keyboard and eye gesture recognition. Finally, the users combine their previous
experience to type complete sentences with only eye gestures. We also ask participants to complete a question-
naire for qualitative data concerning their experience of using the system.

7.3 Layout Learnability

Before using eye gestures to input text, all participants must first learn the eye-gesture keyboard. Since this ex-
periment only assesses the learnability of the text-entry interface, we ask the participants to speak their intended
input instead of using eye gestures. For example, the user will verbally say “left up,” and then we will physically
enter the input via the touchscreen. This interaction prevents eye fatigue as many trials are conducted to examine
the learning curve.
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We temporarily remove the phone from the tripod and block the front-facing camera with tape to prevent
the system from recognizing eye gestures. We also prepare a corpus with 10 groups of words, one for each
trial. Each group contains 4 words randomly selected from the AAC crowdsourced dataset. The participant is
allowed to practice with one simple word (water) before the experiment begins. The participants’ experience
with the interface must be limited to observe their learning process. For each trial, we display one group of
words in the corpus on another computer screen. No timer is necessary because the system records a timestamp
for each input. The participant will speak the gaze gestures, and we will tap the corresponding button on the
screen until all words are typed out. Then, we navigate to the clinician interface where a log records all input
types and timestamps. We subtract the initial timestamp from the final timestamp to obtain the total input time
of the participant. This procedure continues until all 10 trials are completed.

Figure 19 shows the learning trend of participants testing out GazeLink’s text-entry keyboard. The line of
best fit signifies that for every new attempt, the text-entry rate of participants increases by 0.98 characters per
minute. We observe that participants achieve a maximum performance of 27.0 characters per minute, a 12.8
increase from the first attempt. A one-way ANOVA test shows that the two trials are significantly di�erent (f-
score=39.3). The error bars show the standard deviation of each trial (average = 3.4). Overall, the graph verifies
that with only 10 attempts, the participants already demonstrated a significant improvement.

7.4 Eye Gesture Recognition Performance

After completing the text-entry learnability study, we examine GazeLink’s ability to recognize the eye gestures
of the participant. We ensure that the smartphone is stable on the tripod and aligned with the participant’s eye
level. Participants are asked to remove their glasses for controlled ML eye detection. Then, we assist them in the
eye gesture calibration process. The audio instruction prompts participants to perform an eye gesture, and we
capture the frame at a suitable time. After calibration, we test each eye gesture in settings mode while adjusting
the sensitivity for optimal recognition. If system recognitions are frequently defective or unresponsive, re-
calibration is required. If the problem persists after 2 re-calibrations, then we will proceed with the experiment.

After calibration and setting adjustments, we record the recognition of each gaze gesture for 5 trials. For
each trial, we instruct the participant to perform an eye gesture (up, left, right, right up, left up, closed) in random
order. Participants must maintain the gesture until they hear a “beep” sound from the device, signaling that the
eye gesture is recognized, or 3 seconds have passed. If the eye gesture is recorded within the period and matches
the instruction, the trial is considered successful. Else, it is unsuccessful. The participant may request a break
anytime during the experiment.

Figure 19: A plot that indicates the change in av-
erage text-entry rate (Characters per Minute) and
variability as the number of attempts increases. The
error bars are the standard deviation of the average
text-entry rate of each attempt. The trend line is the
line of best fit.

Figure 20: A bar graph that compares baseline eye ges-
ture recognition (orange) with GazeLink eye gesture
recognition (green). GazeLink recognized two extra
eye gestures, left up and right up, that the baseline did
not recognize.

Figure 20 shows that, compared to the baseline (GazeSpeak system), GazeLink’s eye gesture recognition
is overall superior. The system also recognizes two extra eye gestures, left up and right up, with no baseline
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data. We observe GazeLink’s robust performance in recognizing the closed and left-up gesture with 99.0% and
100% accuracy respectively. This is because the calibration templates of these two gestures are usually very
distinct from other templates, which makes them easier to distinguish. Similarly, the substandard performance
of the up gesture is likely due to its resemblance with the left-up and right-up gestures. The baseline does not
recognize them and thus performs better. Overall, the system has an average recognition accuracy of 94.1%, an
8.9% increase from the baseline.

7.5 Overall System Testing

After the participants are familiar with both gaze recognition and text-entry UI, we conduct a comprehensive
system testing to examine their ability to combine both skills and type suitable sentences with only eye gestures.
Since all participants are first-time users of the text-entry system, we begin with a lower di�culty and gradually
increase the keyword size within the participant’s ability.

Figure 21: A back angle view of a participant per-
forming system testing.

Figure 22: A side angle view of a participant per-
forming system testing.

For the first trial, an entry from the GazeLink testing dataset with only 1 required keyword is selected
randomly. We enter the context into the system through voice and inform the participant of the keyword. After
the participant enters the keyword through eye gestures, the system will generate a suitable sentence based on
the keywords and context. We record the time di�erence between the first and last input as the text-entry time.
We also ask the user to subjectively rate the semantic similarity between the generated and target sentence on a
scale of 1-10. Then, we randomly select an entry with one extra keyword and repeat the process for 2-3 trials,
depending on the ability and eye fatigue of the participant.

Figure 23: Three box plots to show Gaze Link’s semantic accuracy, text-entry rate, and questionnaire response
distribution.

The box plots in Figure 23 demonstrate the high semantic accuracy of GazeLink during system testing
verified with two di�erent metrics, user rating and embedding-based model. The median of user rating and
embedding-based model is 92.5% and 97.5% respectively. One possible reason for this is that the user rating is
based on a 10-point scale with a step of 0.5. Therefore, some sentences with extremely close meanings are at
most rated 9.5 (95%). However, the embedding-based model can output more specific values like 97.6%. The
25th percentile (1st quartile) of both metrics is 80, meaning that 75% of the generated sentences will have a
semantic accuracy between 80% to 100%.
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The box plots in Figure 23 analyze the text-entry rate for entering keywords during system testing with
di�erent units. The system can type 17.7 characters per minute (IQR=9.0, min=7.7, max=37.6), 3.7 words per
minute (IQR=1.9, min=1.9, max=9.4), or 31.1 keystrokes per minute (IQR=14, min=13.4, max=65.8).

This research evaluates the user experience of GazeLink through recording observations during the exper-
iments and collecting an optional questionnaire inspired by the NASA Task Load Index (NASA TLX) scale,
which measures the mental workload of a participant while performing a task [Hart and Staveland, 1988]. The
questionnaire asks the participant to quantify the physical (eye stress level), temporal (text-entry time pressure),
and mental (UI complexity) demands of entering text through GazeLink from a scale of 1 to 10. Participants
can also leave suggestions and remarks concerning their experience.

The results from Figure 23 demonstrate that most users do not consider GazeLink to be mentally or tem-
porally demanding. The median for the UI Complexity and Text-entry Time Pressure rating are respectively 2
(IQR=3, min=1, max=6), and 3 (IQR=2, min=1, max=8). However, the eye stress rating is relatively higher than
the other two demands with a median of 5.5 (IQR=4, min=1, max=9). This is because first-time participants
are not familiar with using an eye-gesture communication tool, so their eyes may be stressed and uncomfortable
after many trials.

Below is a summary of comments first-time participants wrote in the questionnaire:

• The text entry is surprisingly functional after calibrations and a few attempts. Some participants are
surprised that after a few attempts and re-calibration, GazeLink’s text-entry system can smoothly detect
their eye gestures and type the desired prompt. However, the sense of surprise also suggests uncertainty
and a lack of confidence when first approaching the system.

• The UI is “simple” and “easy to grasp.” Most participants consider the text-entry UI to be easy to use and
straightforward, which reduces their cognitive load while using GazeLink. However, a few participants
expressed confusion with the UI but wrote that more practice may reduce the uncertainty.

• Eye gesture recognitions are accurate except for one particular gesture. A few participants who reflected
on their experience with GazeLink’s eye gesture recognition remarked that the recognition is overall accu-
rate, but one particular eye gesture, especially left or up, is di�cult to detect. However, most participants
did not encounter this problem, and a few others resolved the issue after re-calibration.

• Eyes are stressed and tired after the experiments. Many participants mentioned eye fatigue after com-
pleting the experiment, which matches the overall rating of physical demand for the text-entry process.

7.6 System Comparisons

We evaluate the contribution of GazeLink by comparing its text-entry performance to two other systems: A low-
tech gaze-transfer board named E-tran and another mobile gaze-tracking communication system named Gaze-
Speak [Zhang et al., 2017]. We extract the data of these two systems from a previous work that also recorded
the time taken to type out a sentence with only eye gestures. Although the previous work uses another phrase
set created by Mackenzie and Sourkero� while this research uses an AAC crowdsourced dataset, both datasets
are taken from online and are similar in representing daily communications [MacKenzie and Soukore�, 2003].
We calculate the text-entry rate of baseline data by dividing the total time taken by the number of words typed.

Figure 24 shows that GazeLink is significantly faster than baseline systems in text-entry rate. While E-tran
and GazeSpeak took 143.4 and 77.1 seconds on average to complete a sentence, GazeLink only took 24.7 sec-
onds on average, which is 3.12x faster than GazeSpeak. However, both systems had approximately the same stan-
dard deviation (GazeSpeak=11.5, GazeLink=12.2). When converted to text-entry rate, GazeLink (15.07wpm)
is around 3.87x faster than GazeLink (3.89wpm) and 7.2x faster than E-tran (2.09wpm).

8 DISCUSSION

This research presents GazeLink, a low-cost, accessible, and portable communication system for PALS, to re-
solve the limitations of low-tech and high-end devices on the market. GazeLink is scalable to any mobile device
and only requires a standard smartphone to type grammatical sentences independently. The only running cost
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Figure 24: Bar graph comparing three eye-gesture communication systems: E-trans, GazeSpeak, and GazeLink
in terms of time taken to type a sentence (s) and the average text-entry rate (wpm). The error bars on the left
graph represent standard deviation.

of GazeLink is cloud-based LLM services for text generation. Assuming that the user can type 1000 words
(1334 tokens) a day, the cost per month would be around $0.06. This price is significantly lower than physical
products with specialized hardware such as the E-trans board ( $100) or the Tobii Dynavox TD I-13 ($8800
$19000) [Dynavox, 2024a]. As a mobile application, GazeLink is distributed online and avoids the complica-
tions of shipment and repair, facilitating access for PALS in remote areas. The system is highly portable since
smartphones are smaller and lighter than existing AAC devices like E-trans boards or Tobii Dynavox’s TD Pilot
[Dynavox, 2024b, Solutions, 2016].

In addition, GazeLink demonstrates robust e�ciency, learnability, and usability, which aligns with the hy-
pothesis. The system incorporates on-cloud LLMs to enhance the current keyboard in many aspects, including
an AI-driven DVB that adds new vocabulary to a static word bank according to the conversation context, a next-
word prediction model that provides possible words from the current text input, and a sentence retrieval model
that generates grammatical sentences based on keywords and the context. Computer simulations and system
testing validate LLM’s e�ectiveness in improving text-entry rate while preserving semantic accuracy. This re-
search analyzes previous eye-tracking systems and designs a visual-aligned, modular UI for di�erent roles. The
text-entry UI allows PALS to type and speak the text with only eye gestures. Usability studies demonstrate that
most participants swiftly comprehend the text-entry UI and text-entry method. A questionnaire collected after
the experiments shows that although some participants experienced eye fatigue, the cognitive task load of text
entry was low.

GazeLink also includes many personalizable features to accommodate di�erent users and conditions. When
the user or lighting condition changes, a quick re-calibration can drastically improve accuracy and consistency.
Users can also adjust the sensitivity of eye gesture recognition. Finally, GazeLink provides three selectable
text-entry methods (letter-by-letter, eye-gesture keyboard only, eye-gesture keyboard with LLMs) depending on
the user’s need and internet access.

To download the GazeLink mobile application or watch a video demonstration, see section 11 for hyperlinks.

8.1 Errors and Limitations

One possible error is that the usability studies are conducted in varying lighting environments, which may cause
the data for the eye gesture recognition accuracy to vary. Although calibration allows GazeLink to adapt to
di�erent lighting, it would be more insightful to analyze how variables like brightness or contrast level impact
recognition accuracy.

Another error is that during calibration and system testing, the moderator’s verbal instructions to the partic-
ipants are not standardized. This may cause participants to interpret the system di�erently, impacting the data
for learnability. However, the overall e�ect of this is minimal as users are given multiple attempts to learn the
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system.
One limitation identified during the usability study and user feedback is that, for a few participants, one

particular eye gesture may be hard to recognize, preventing the participant from performing certain operations.
Since GazeLink functions with limited inputs, an unrecognizable eye gesture will severely hinder the system’s
capability. A solution is to verify the validity of eye gestures during calibration to ensure that no eye gesture
is unrecognizable or too similar to another eye gesture. Enlarging the eye frames and adjusting sensitivity may
also resolve the issue.

8.2 Future Work

Although this research only tested with able-bodied participants, it is necessary to evaluate GazeLink’s baseline
capabilities before recruiting PALS for more experiments. Since usability studies demonstrate GazeLink’s ro-
bustness, the next stage of GazeLink’s development is to collaborate with ALS research teams or hospitals and
conduct system testing with PALS after obtaining authorization from the government. We are already in contact
with numerous ALS associations. These experiments will reinforce GazeLink’s validity to help underserved
PALS globally communicate.

Currently, GazeLink leverages the eye gestures as inputs. However, PALS with less severe conditions may
possess motor control over more body parts, such as their head, mouth, and face. Instead of limiting inputs to
eye gestures, GazeLink can provide options to choose a di�erent text-entry system based on the number of inputs
they can perform. More inputs may increase the text-entry rate, but minimum inputs can perform the same task.

Finally, the AAC crowdsourced dataset used to train text generation LLMs may not fully encompass the
verbal requirements of all users since every individual’s speaking habits vary. For personalization, further studies
can collect participants’ previous conversations and train a personalized LLM that mimics their tone and style.
We can also extract the user voice through ML models and incorporate it into the text-to-speech service for
more realism in conversations. We can test the features in longitudinal studies, which are di�cult to conduct
but extremely valuable in examining the long-term learning rate and e�ect of GazeLink on PALS.

9 CONCLUSION

Currently, advanced systems for ALS patients are overly expensive and di�cult to access, while low-tech systems
are ine�cient and require human assistance. In addition, both solutions include specialized hardware that is
di�cult to deliver, carry, and fix. To mitigate the limitations, this research proposes GazeLink, a low-cost multi-
language mobile application that helps ALS patients to communicate e�ciently and independently. Compared
to existing products, GazeLink is distributed online, costs approximately less than $0.1 per month, and only
requires a standard smartphone to function. With the device’s front-end webcam, the system can robustly detect
six eye gestures in real-time with a 94% accuracy on average and convert them to inputs on an eye-gesture
keyboard. Computational evaluations demonstrate that LLMs used in GazeLink can increase baseline text-
entry rate by 81% while maintaining more than 90% semantic accuracy. Usability studies and questionnaires
a�rm the system’s learnability and low mental load, rated 2.7 (very low) out of 10 (very high) on average. With
only 20 minutes of training, most first-time users can independently type sentences at 15.1 words per minute
on average, which is 3.87x faster than the baseline and 7.2x faster than the low-tech solution E-tran. Overall,
experiment results reinforce GazeLink’s potential to notably assist the communication of PALS in their daily
life. The next step is to directly evaluate the text-entry system on PALS and introduce GazeLink to more target
users with internet services.
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11 APPENDIX

Link to GazeLink Application on Google Play Store: App Link
Link to GazeLink’s source code on Github: Source Code
Link to GazeLink’s o�cial YouTube channel: YouTube Link
Link to GazeLink’s user manual: Document Link
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