
参赛学生姓名：孙浩宸

中学：北京师范大学附属实验中学

省份：北京

国家/地区：中国/北方赛区

指导老师姓名：常菱芸

指导老师单位：北京师范大学附属实验中学

论文题目：Generalization and Optimization

of the Nash-Q Algorithm in Multi-Agent

Reinforcement Learning

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

Research Paper for the Mathematics Award
of the S.-T. Yau High School Science Award

Generalization and Optimization of the

Nash-Q Algorithm in Multi-Agent

Reinforcement Learning

Author: Haochen Sun

Academic Supervisor: Lingyun Chang

November 5, 2025

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

Abstract

Reinforcement Learning (RL), a core machine-learning paradigm, enables agents to
learn reward-maximizing policies via environmental interaction; game theory offers strate-
gic models for such contexts.

This paper begins by introducing classical reinforcement learning algorithms and then
extends the single-agent setting to a multi-agent environment. Traditional RL algorithms
often perform poorly in such scenarios because they typically adopt greedy policies focused
only on maximizing the agent’s own reward function, ignoring the influence of others’
actions. To address this, we introduce the Markov game framework. We then present two
strategies from game theory for two-player zero-sum games: the safety strategy and the
mixed-strategy Nash equilibrium. Both strategies take into account the value functions of
the agent and its opponent. By embedding these into multi-agent reinforcement learning
algorithms, we aim to develop more efficient and accurate methods.

After incorporating game-theoretic concepts, we introduce two modified Q-learning
algorithms: the Minmax-Q algorithm, which uses the max-min strategy, and the Nash-
Q algorithm, based on the Nash equilibrium strategy. Both improve upon the TD(0)
method. We provide a comprehensive summary of when to use each strategy. However,
the Nash-Q algorithm has notable limitations in scenarios with multiple Nash equilibria,
as agents may fail to converge to the same one or get stuck locally. To address this, we
propose a penalty mechanism that encourages agents to select the same Nash equilibrium,
improving accuracy. We also prove that this penalty mechanism does not alter the optimal
policy of the original model nor disrupt convergence.

Finally, we adopt a community parking resource allocation scenario as a simulation
testbed, interpreting a grid-based game as a simplified parking environment. In this
system, each driver is an independent agent, parking space occupancy is the state, parking
choices are actions, walking distance and convenience determine the reward, while conflicts
and congestion act as penalties. Comparing the Nash-Q algorithm with and without
the penalty mechanism, we find the proposed mechanism effectively guides agents from
inefficient equilibria—where multiple vehicles compete for the same spot—to more efficient
ones with better distribution. This significantly reduces conflict frequency and deadlocks,
improves convergence speed and policy consistency, demonstrating practical value for
mitigating urban parking conflicts and optimizing resource allocation.

Keywords: Reinforcement Learning, Game Theory, Nash Equilibrium Strategy, Nash-Q
Algorithm, Penalty Mechanism

i

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

Contents

Abstract i

Contents ii

1 Introduction 1
1.1 Background and Significance . 1
1.2 Related Work . 2

1.2.1 Reinforcement Learning . 2
1.2.2 Multi-Agent Reinforcement Learning and Game Theory 3

1.3 Modeling the Community Parking Resource Allocation Problem 4
1.4 Main Research Content and Organizational Structure 5

2 Theoretical Frameworks in Reinforcement Learning 8
2.1 Reinforcement Learning . 8
2.2 Markov Decision Processes (MDPs) . 9
2.3 Value Function and Optimal Policy . 12

2.3.1 Significance of the Value Function 12
2.3.2 Bellman Equations for Value Functions and Optimal Policy 13

2.4 Game-Theoretic Analysis in Parking Scenarios 15
2.4.1 Safe Strategy and Conflict Equilibrium 15
2.4.2 Mixed Strategy Nash Equilibrium and Efficiency Enhancement . . . 16

2.5 Strategy Evaluation and Improvement . 16
2.6 Summary of This Chapter . 19

3 Algorithms of Reinforcement Learning 21
3.1 Monte Carlo Update Method (MC Method) 21

3.1.1 Monte Carlo Algorithm (MC Algorithm) 21
3.1.2 The Core Principle of the MC Algorithm 22

3.2 Temporal Difference Method (TD(0)-based Update Approach) 23
3.2.1 Conceptual Framework of the Temporal Difference Method 23
3.2.2 Q-learning Algorithm . 24

3.3 Summary of This Chapter . 25

4 Embedding Nash Equilibrium Strategies into Reinforcement Learning 27
4.1 Two-Player Zero-Sum Games . 27

4.1.1 Matrix Games . 27
4.1.2 Min-Max Strategy . 28

4.2 Two-Person Normal-Form Games . 29
4.2.1 Two-Player Randomized Game . 30
4.2.2 Mixed Strategy Nash Equilibrium 30

4.3 Markov Game Framework (Markov games) 32

ii

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

CONTENTS

4.4 Multi-Agent Reinforcement Learning . 33

5 Penalty Mechanism and Convergence Analysis 36
5.1 Insufficient Convergence of the Nash-Q Algorithm in Multi-Nash Equilib-

rium and Policy Oscillation in Parking Scenarios 36
5.2 Penalty Mechanism . 40
5.3 Proof of Convergence Invariance . 42

5.3.1 Proof of Optimal Strategy Invariance 42
5.3.2 Proof of Iterative Convergence for Action Value Functions 43

5.4 Summary of this Chapter . 44

6 Game Experiments and Data Analysis 45
6.1 Experimental Environment . 45
6.2 Parking Grid Game . 45
6.3 Nash Equilibrium Strategy . 46
6.4 Experimental Results . 48

7 Summary and Outlook 52
7.1 Innovations, Contributions, and Limitations of This Research 52
7.2 Outlook . 52

References 54

Acknowledgments 56

iii

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

1 Introduction

1.1 Background and Significance

Game theory, as a discipline, has become increasingly important with the development
of the times and is widely applied in fields such as economics, mathematics, and military
strategy, holding an extremely significant position. The structural components of math-
ematical models primarily include players, actions, strategies, information, and payoff
functions. Among these, players, strategies, and payoff functions are the most fundamen-
tal structural elements, primarily focusing on formalizing the interactions among these
structural components, predicting players’ actions, and calculating equilibrium strategies.
Machine learning and game theory have always been closely related. In 1928, the father
of the computer, John von Neumann, published a paper titled “On the General Theory of
Choice Games,” which laid the foundation for his game theory ideas and introduced the
principle of the maximum and minimum values [1]. Alan Turing, a pioneer in artificial
intelligence [2], utilized game theory knowledge to provide theoretical support for com-
puter programs in chess. Various phenomena indicate that machine learning and game
theory are closely related. At times, game theory requires the computational power and
training of machine learning, while at other times, machine learning relies on game theory
as a theoretical foundation. As John von Neumann once said: “Real life is full of bluffing
and deception; I cannot predict my opponent’s next move. If I want to use a theory to
explore the underlying patterns of life, then game theory is the most appropriate choice
[3].”

Reinforcement learning (RL) in machine learning has recently sparked a wave of en-
thusiasm because it can achieve heights unattainable by humans in many fields. Strategy-
based reinforcement learning can adapt to environments better and faster, finding opti-
mal paths. Reinforcement learning is widely applied in our daily lives, such as robots in
human-machine competition modes in games. The artificial intelligence system Alphago,
which defeated Lee Sedol in a Go match with a score of 4:1 in 2016; and the chess-playing
AI [4] can predict the next 13 moves in a game of chess. These systems all demonstrate
strong competitive abilities and achieve extremely high win rates in human-machine com-
petitions.

Reinforcement learning is an effective tool for intelligent agents to learn through in-
teraction with their environment. However, in multi-agent environments, classical single-
agent reinforcement learning algorithms become inefficient because multiple agents coexist
and influence each other. The original method of considering only the agent’s own value
function and strategy becomes irrational. Game theory, on the other hand, was developed
for multi-agent competition and provides methods for finding strategies in multi-agent en-
vironments. Markov games provides a framework for multi-agent reinforcement learning
[5]. Incorporating game theory strategy concepts into multi-agent reinforcement learning
algorithms can achieve maximum efficiency. Therefore, using game theory concepts to
extend multi-agent reinforcement learning is both feasible and necessary.

In 1994, regarding two-player zero-sum games, Littman proposed an improvement to

1

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

1 INTRODUCTION

the Q-learning algorithm by replacing the greedy strategy with the maximum-minimum
strategy, resulting in the Minimax-Q algorithm [6]. This approach not only considers
the agent’s own strategy and value function but also accounts for the opponent’s ac-
tions, achieving significant success in comparative experiments. However, the paper of
Littman only considered the algorithm and improved the Q-learning algorithm using the
maximum-minimum strategy. Subsequently, many scholars proposed using Nash equi-
librium strategies to improve reinforcement learning algorithms, resulting in the Nash-Q
algorithms [7, 8], which also achieved good results. Both of these algorithms use game
theory to improve multi-agent reinforcement learning. This paper will introduce the two
algorithms, summarize their advantages and disadvantages, and analyze when certain
game theory strategies are most effective, providing a new perspective for those who wish
to improve multi-agent reinforcement learning using game theory. Additionally, the Nash-
Q algorithm suffers from a choice problem, which agents may not choose the same Nash
equilibrium, in models with multiple Nash equilibria, making algorithm accuracy reduced.
It may also get stuck in a local Nash equilibriuma locally optimal solution after iteration.
To address this, we propose a penalty mechanism to force agents to choose the same Nash
equilibrium, thereby improving algorithm efficiency.

1.2 Related Work

1.2.1 Reinforcement Learning

Even in the early days of computer science and artificial intelligence, game-playing
agents captivated researchers with their ability to learn and think like humans. Shortly
after the invention of the first computer in 1950, scholars began to focus on enabling
computers to learn chess and checkers games [9]. These methods of enabling computers
to learn strategies on their own were the early forms of reinforcement learning. Research
on machine games has continued for more than half a century, and Go and chess remain
important research topics in the field of artificial intelligence.

Until the 1970s, computer agents were still unable to match human masters in chess.
However, in the 1980s and 1990s, new technologies, modern computer hardware, and
innovative academic achievements emerged, leading to rapid advancements in the gam-
ing capabilities of computer agents. Among these, complete information machine games
achieved several milestone accomplishments. In 1980, the “Berliner” at Carnegie Mellon
University developed an artificial intelligence computer program based on reinforcement
learning that defeated the then-champion of backgammon Luigi Villa with a score of 7:1,
marking the first time a computer program had defeated a human top player in an intel-
lectual game [10]. In 1994, the computer program Cinook defeated the reigning champion
in checkers, Marion Tinsley. By 2007, Chinook had completely mastered the game of
checkers, with even the top checkers players only able to draw against it; In 1997, the
supercomputer “Deep Blue” defeated international chess grandmaster Garry Kasparov
with a score of 3.5 to 2.5, shocking the world. Afterward, Kasparov recalled that the
second game was crucial, as the machine’s performance exceeded his expectations, often
sacrificing short-term gains and exhibiting a very human sense of danger, showing a very
human sense of danger.

In the decades that followed, the “battle” between computers and humans in games
never ceased. Research into two-player zero-sum games has been ongoing for many years,
and some complex reinforcement learning algorithms have achieved a certain level of gen-
eral intelligence capable of solving complex problems, reaching human-level performance

2

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

1 INTRODUCTION

in Go and video games. The learning capabilities of computer agents have reached new
heights with the advancement of theoretical knowledge in reinforcement learning and game
theory. The focus of research has gradually shifted from sequential games, where players
act in a specific order, to simultaneous games [11], where players act simultaneously. In
sequential games, the opponent’s actions can be regarded as part of the environment, so
the reinforcement learning process only needs to consider maximizing its own rewards.
However, in simultaneous games, due to the uncertainty of the opponent’s actions, treating
the opponent as part of the environment would reduce the game-playing ability. There-
fore, we need to extend single-agent reinforcement learning to multi-agent reinforcement
learning.

This paper is based on this background and uses a two-player zero-sum grid game as
an example to study efficient multi-agent reinforcement learning algorithms.

1.2.2 Multi-Agent Reinforcement Learning and Game Theory

Reinforcement learning has been a hot topic in artificial intelligence research since the
1990s. With the refinement of single-agent reinforcement learning and the development
of game theory and information theory, researchers have shifted their focus to multi-
agent reinforcement learning. In 1992, Thuijsman proposed the idea and framework of
extending single-agent reinforcement learning to multi-agent reinforcement learning [12],
which subsequently sparked a wave of research on multi-agent reinforcement learning. In
1993, Tan’s “Multi-agent reinforcement learning” [13] refined the theoretical knowledge of
multi-agent reinforcement learning and demonstrated the feasibility of incorporating game
theory strategies into reinforcement learning. In 1994, Littman first proposed incorpo-
rating the maximum-minimum strategy from game theory into multi-agent reinforcement
learning to improve the Q-learning algorithm [6]. This method significantly enhanced the
algorithm’s convergence speed and accuracy. Based on the work of Littman, reinforcement
learning researchers at the University of Michigan expanded their research to multi-agent
general games and introduced Nash equilibrium strategies from game theory into multi-
agent reinforcement learning to improve the Q-learning algorithm [8], also achieving good
results. However, there is currently no experimental evidence or consensus on which of
these two algorithms is superior. Multi-agent reinforcement learning describes objects
that closely resemble real-world scenarios, making its applications extremely diverse. In
2000, Wiering improved traffic light self-regulation using multi-agent reinforcement learn-
ing [14], and many regions still use his improved traffic light system today. In the recently
popular field of autonomous driving, we can also see the application of multi-agent re-
inforcement learning, with the resulting intelligent agents demonstrating extremely high
safety [15]. In 2019, Vinyals and his team created AlphaStar [16], which competed online
against human players in the game “StarCraft II,” achieving a win rate of 99.8%. The
AI’s game play was dubbed “master-level” by the gaming community. AlphaStar’s vic-
tory was a milestone because “StarCraft II” holds a iconic status in the most challenging
professional eSports. AlphaStar’s extremely high win rate signifies that the development
and application of multi-agent reinforcement learning have reached a new height.

China has made many breakthroughs in multi-agent reinforcement learning research in
the 21st century. In 2002, Luo Qing, Li Zhijun, and others from Shanghai Jiao Tong Uni-
versity discussed the methods and problems of using reinforcement learning in complex,
dynamic environments and used multi-agent reinforcement learning to solve problems such
as delayed rewards, exploration and exploitation, and incomplete information in soccer
robots [17]. In 2003, Gu Guochang proposed the application of multi-robot systems in

3

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

1 INTRODUCTION

collaborative tasks, reducing the learning space dimension by predicting the probability of
each robot’s actions to accelerate algorithm convergence [18]. In 2021, Hu Haoran achieved
significant progress in single-agent artificial intelligence decision-making control by com-
bining deep learning and reinforcement learning in deep reinforcement learning technology
[19]. There are countless applications of multi-agent reinforcement learning in coordina-
tion, scheduling, and control [20, 21, 22, 23], among which Professor Gu Guochang, a
council member of the Chinese Association for Artificial Intelligence and the Intelligent
Robot Society, has made outstanding contributions [24]. Following breakthroughs in the
mathematical foundations of reinforcement learning, research and applications in this
field have proliferated [25]. Currently, reinforcement learning has been widely applied in
various fields in China, including handicraft manufacturing, robot control, optimization
and scheduling, simulation modeling, and game theory [26]. Multi-agent reinforcement
learning, which integrates multi-agent systems and reinforcement learning methods, is
gradually emerging as one of the research hotspots in the field of reinforcement learning
and has been widely applied in various fields [27].

1.3 Modeling the Community Parking Resource Allocation
Problem

Community parking resource allocation presents a quintessential urban management
challenge, centered on efficiently and equitably satisfying substantial vehicle parking de-
mands within constrained spaces. Conventional approaches typically rely on static rules,
such as first-come-first-served or centralized dispatching, yet these struggle to address
real-time dynamic variations and the complexity of individual driver decision-making.
Consequently, this paper aims to abstract this practical problem and rigorously model it
through a multi-agent reinforcement learning framework.

The practical significance of this modeling approach lies in treating each driver as an
agent with independent decision-making capabilities. This better aligns with the behav-
ioral model where drivers make choices based on personal preferences rather than uniform
directives. Furthermore, it conceives the car park as a dynamically evolving environment,
capable of reflecting complex states such as occupied spaces and traffic congestion in real
time. his enables the model to handle uncertainty and dynamic interactions. Finally,
through reinforcement learning’s ‘reward and punishment’ mechanism, we can design an
incentive and constraint system guiding drivers’ individually optimal decisions to sponta-
neously converge towards the globally optimal outcome—namely, reducing conflicts and
enhancing parking efficiency. This approach offers novel theoretical and technical path-
ways for developing intelligent parking systems and alleviating urban traffic congestion.

The proposed methodology aligns with this challenge as the multi-agent reinforcement
learning framework inherently suits describing scenarios where multiple agents interact
and engage in strategic competition within a shared environment. By integrating game
theory principles into reinforcement learning, agents learn not only to maximize their own
gains but also to account for the behavior of other agents, thereby achieving more robust
coordination and competition.

The core elements of this model are defined as follows:

1. Agents: Each driver (or vehicle) within the parking system is treated as an inde-
pendent agent i ∈ {1, 2, · · · , N}. Each agent’s objective is to autonomously make
decisions that minimize the time required for parking and the walking distance.

4

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

1 INTRODUCTION

2. Environment: The environment encompasses all elements beyond the agents, pri-
marily comprising all parking spaces j ∈ {1, 2, · · · ,M} within the car park and
their states, the traffic road structure, and all agents within the system.

3. State: At time t, the system state St is a complete vector containing the real-time
occupancy status of all parking spaces and the current location information of all
agents. For example, the state may be represented as a vector with M elements,
where St (j) ∈ {0, 1} denotes whether parking space j is vacant, alongside the coor-
dinate information of all agents.

4. Action: Given a state, agent i’s action ai,t involves selecting an available parking
space j ∈ {1, 2, · · · ,M} and moving there. Action conflicts occur when multiple
agents simultaneously select the same space.

5. Rewards and Penalties: The reward Ri,t is the immediate feedback received by
agent i upon executing action ai,t. In our model, reward design is directly linked to
parking efficiency and convenience. Should agent i successfully park in target space
j, the reward received will be inversely proportional to the walking distance. Con-
versely, should an action conflict occur (i.e. multiple agents simultaneously selecting
the same space), a penalty mechanism will be triggered, substantially reducing the
rewards for all conflicting agents to incentivize them to select alternative parking
spaces.

1.4 Main Research Content and Organizational Structure

The significance of this research lies in the creative application of multi-agent rein-
forcement learning and game theory frameworks to a highly relevant urban management
problem: the allocation of community parking resources. This issue involves not only
dynamic multi-agent interactions but fundamentally concerns the efficient allocation of
finite resources and the enhancement of overall system efficiency – a critical challenge in
smart city development. This paper first introduces the single-agent reinforcement learn-
ing framework (Markov Decision Processes, MDP), the reinforcement learning algorithm
process and the Monte Carlo (MC) method, TD(0). It then introduces the basic theoreti-
cal knowledge of two-player zero-sum games and two game strategies, extends single-agent
reinforcement learning to multi-agent reinforcement learning through the Markov game
framework, embeds the two game strategies from game theory into multi-agent reinforce-
ment learning to improve algorithm performance, and proposes improvements to existing
algorithms. The main research content is as follows:

1. Introduce the fundamentals of reinforcement learning and game theory, and present
two existing multi-agent reinforcement learning algorithms improved using game
theory concepts. Summarize the advantages and disadvantages of both algorithms
and analyze under what conditions each algorithm is more effective.

2. Address the shortcomings of the “Nash-Q” algorithm in models with multiple Nash
equilibria by proposing a penalty mechanism to force agents to choose the same
Nash equilibrium. It is proven that adding the penalty mechanism does not alter the
optimal strategy of the original “Nash-Q” algorithm and does not compromise the
convergence of the iteration process. Crucially, rigorous theoretical proofs validate
that this penalty mechanism significantly enhances convergence speed and stability
without modifying the original algorithm’s optimal strategy.

5

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

1 INTRODUCTION

3. At the practical level, this paper concretizes the 3× 3 grid simulation game into a
simplified community parking environment. By comparing the performance of the
Nash-Q algorithm in this simulated environment before and after introducing the
penalty mechanism, the paper validates the effectiveness of this mechanism. Ex-
perimental results clearly demonstrate that the novel penalty mechanism effectively
reduces parking conflicts and system deadlocks between vehicles, markedly improves
parking space utilization, and substantially shortens average vehicle waiting times.
This highlights the method’s considerable application potential in resolving real-
world resource contention issues.

Based on the above research content, the organizational structure of this paper is as
follows:

• Section 2: This chapter explains the fundamentals and elements of reinforcement
learning, introduces the single-agent reinforcement learning model (MDP), intro-
duces the concept of value functions and the definition of optimal strategies, and
introduces the algorithm flow (decision evaluation, decision improvement) to lay the
foundation for multi-agent reinforcement learning.

• Section 3: This chapter introduces two methods for updating the value function
(MC method and TD(0) method), introduces the Q-learning algorithm under the
TD(0) method, and lays the groundwork for introducing game theory concepts to
improve the Q-learning algorithm in subsequent sections.

• Section 4: This chapter introduces the basic theoretical knowledge of game theory,
then introduces two strategies (maximum-minimum strategy and Nash equilibrium
strategy), and introduces the Minmax-Q algorithm (an improved version of the
Q-learning algorithm using the maximum-minimum strategy) and the Nash-Q algo-
rithm (an improved version of the Q-learning algorithm using the Nash equilibrium
strategy). A summary and analysis of these two algorithms are provided to offer
guidance on which algorithm to use in different scenarios.

• Section 5: In games with multiple Nash equilibria, an issue of the Nash-Q Al-
gorithm arises where agents may not choose the same Nash equilibrium, thereby
reducing algorithm accuracy. They may also get stuck in a local Nash equilibrium
(a locally optimal solution). To address this issue, this paper proposes a penalty
mechanism to force agents to choose the same Nash equilibrium and sets the target
Nash equilibrium based on the value function, thereby selecting the globally opti-
mal solution. This section proves that the optimal strategy of the original model
remains unchanged under this penalty mechanism and that the convergence of the
iteration is not compromised.

• Section 6: This chapter uses a two-player zero-sum grid game as an experimental
background to compare the accuracy of the “Nash-Q” algorithm before and after
the addition of a penalty mechanism. In this experiment, the number of times the
agents with the penalty mechanism reached the end point as expected increased sig-
nificantly, while the number of times they fell into a deadlock (in this game, if both
parties do not choose the same Nash equilibrium path, there is a certain probability
of a deadlock occurring, which will be explained in detail later) decreased signif-
icantly. The experiment demonstrates that the Nash-Q algorithm with a penalty
mechanism is more advantageous when multiple Nash equilibria exist.

6

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

1 INTRODUCTION

• Section 7: Summary of the paper, analysis of the limitations of the penalty mech-
anism, and proposals for improvements and future directions.

This paper is motivated by the poor performance of classic reinforcement learning al-
gorithms in multi-agent environments. It incorporates game theory strategies into multi-
agent reinforcement learning and introduces the Q-learning algorithm improved with the
maximum-minimum strategy, i.e., the Minmax-Q algorithm, and the Q-learning algorithm
improved with the Nash equilibrium strategy, i.e., the Nash-Q algorithm. We summarize
these two algorithms, analyze, and explain under what circumstances using which game
theory strategy would be more beneficial for multi-agent learning, providing a perspective
for those seeking to improve reinforcement learning algorithms using game theory strate-
gies. However, strategies in game theory are not necessarily unique; for example, multiple
Nash equilibria may exist in a single game. Therefore, we designed a penalty mecha-
nism to address this uncertainty, providing a tool for improving reinforcement learning
algorithms.

7

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

2 Theoretical Frameworks in Rein-
forcement Learning

2.1 Reinforcement Learning

Reinforcement learning is a type of learning problem in the field of machine learning.
Its biggest difference from common supervised learning and unsupervised learning is that
it learns through interaction and feedback with the environment. Just like a baby, it ex-
plores the environment through crying, sucking, crawling, etc., and gradually accumulates
perception of the environment, thereby learning the characteristics of the environment
step by step so that its actions can quickly achieve its desires. Another example is Go,
where players improve their skills by playing multiple games against different opponents,
gradually gaining insights into each move and enhancing their overall Go proficiency. The
AlphaGo Go program developed by DeepMind utilized reinforcement learning techniques
during its training process.

Let us now formally define the problem of reinforcement learning. The basic model of
reinforcement learning is the interaction between an individual and the environment. The
individual/agent is the part that can take a series of actions and expects to obtain higher
benefits or achieve a certain goal, such as the baby in the previous example or the player
learning to play Go. The other related parts are collectively referred to as the environment,
such as the baby’s environment (including the surrounding room and the baby’s parents)
in the previous example, or the chessboard in front of you and your opponent. The entire
process is discretized into different time steps. At each time step, the environment and
the individual interact. The individual can take certain actions, which are applied to the
environment. After receiving the individual’s actions, the environment feeds back to the
individual the current state of the environment and the reward generated by the previous
action. It is worth noting that the division between individuals and the environment
is not necessarily based on the proximity of entities. For example, in animal behavior,
the rewards obtained by animals may actually come from the secretion of chemicals in
their own brains. In this case, the part of the animal’s brain that implements this reward
mechanism should also be classified as the environment, while the individual only includes
the part that receives signals and makes decisions. The goal of reinforcement learning is
to maximize the total reward obtained by the individual from the environment. That is,
our goal is not to obtain the maximum single-period reward after a short-term action,
but to obtain more rewards in the long term. For example, a baby may steal a snack and
obtain physical pleasure (i.e., a large short-term reward), but this behavior may lead to
criticism from parents after a period of time, thereby reducing the total reward in the
long term. In many common tasks, such as playing Go, the reward is often zero before the
game ends, and only when the game ends is a reward generated based on the individual’s
win or loss. In other tasks, the environment may give rewards at each moment. For tasks
like playing Go, which have a termination state and all rewards are settled before that
state, we call them episodic tasks. There is another type of task that does not have a

8

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

2 THEORETICAL FRAMEWORKS IN REINFORCEMENT LEARNING

termination state, meaning that in principle, they can run indefinitely. The rewards for
these tasks are distributed over a series of consecutive moments, and we call this type
of task a continuing task. Since our goal is to maximize the total reward, we aim to
quantitatively define this total reward, which we refer to as the return. For episodic
tasks, we can directly define the return as

Gt = Rt+1 +Rt+2 + · · ·+RT =
T∑

k=t

Rk+1, (2.1)

where T is the time when the turn-based task ends, and Rt is the reward at time t
(with a more explicit definition in the next subsection). For continuing tasks, there is no
such termination state, so this definition may diverge in continuing tasks. Therefore, we
introduce another way to calculate the return, called the discounted return.

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞∑
k=0

γkRt+k+1, (2.2)

where the discount rate γ satisfies 0 ⩽ γ ⩽ 1. This definition is also easy to understand.
Compared to more distant rewards, we prefer closer rewards, so rewards that are closer
have higher weights. When γ is small, we focus more on short-term rewards; when γ is
large, we focus more on long-term rewards.

The result of reinforcement learning is a series of action decisions, which we call a
policy. A policy specifies the action to take in each state, and we can denote this policy
as π.

In summary, the task of reinforcement learning is to enable an “entity” to acquire
the ability to independently complete a specific task. This “entity” is referred to as an
agent, and the environment in which the agent learns and operates is referred to as the
environment. To gain a deeper understanding of the interaction between the agent and
the environment, we must first understand the Markov Decision Process (MDP) model.

2.2 Markov Decision Processes (MDPs)

A Markov decision process is an abstract model of the real world and is widely applied
in various fields, including the reinforcement learning domain we are discussing. All the
algorithms mentioned in this paper are based on the Markov decision process model. We
must understand the problem before we can solve it. The MDPs discussed in this text
are all finite Markov decision processes, both the state space and action space. Below is
the definition of a Markov decision process:

A Markov decision process is an abstract model of an intelligent agent interacting with
its environment, consisting of a quintuple: ⟨S,A, P, r, γ⟩.

• S represents the state space. In a finite Markov decision process (finite MDP) [28],
the number of elements in this set is finite, and St denotes the state at time t;

• A (s) represents the action space available when the system is in state s. In a finite
Markov decision process, the number of elements in A(s) is finite, and At represents
the action at time t;

• P (s′ | s, a) represents the probability of transitioning to state s′ when taking action
a ∈ A (s) in state s. P : S × A → ∆(S), where ∆ (S) is the set of all probability
distributions in the state space S;

9

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

2 THEORETICAL FRAMEWORKS IN REINFORCEMENT LEARNING

• r (s, a, s′) represents the expected reward obtained when taking action a ∈ A (s)
and transitioning to state s′ from state s:

r (s, a, s′) = E [Rt+1 | St = s, At = a, St+1 = s′] . (2.3)

Similarly, we can define the expected reward obtained by taking action a ∈ A(s) in
state s:

r (s, a) = E [Rt+1 | St = s, At = a] =
∑
s′∈S

P (s′ | s, a) r (s, a, s′) , (2.4)

where Rt represents the reward at time t.

• γ ∈ [0, 1] represents the discount rate, which indicates the objective of the MDP:

max
π

Eπ [Gt] , (2.5)

where Gt is the Equation 2.2, and π : S → A (s) denotes the set of policies, whose
elements π (a | s) represent the probabilities of taking possible actions a for a given
state s in the process, expressed as:

π (a | s) = P (At = a | St = s) . (2.6)

A strategy π is classified into pure strategies and mixed strategies. When, under any
state, the action determined by the strategy π is unique, such a strategy is called a
pure strategy. Otherwise, it is called a mixed strategy, which is defined below.

Definition 2.1 (Mixed Strategy) Given a set of pure strategies (action set) A (s) , s ∈
S, a mixed strategy π is a probability distribution over A (s). That is, π : A (s) → [0, 1]
is a mapping that assigns a probability π (a | s) to each pure strategy (action) a ∈ A (s)
such that ∑

a∈A(s)

π (a | s) = 1, ∀s ∈ S. (2.7)

The pure strategy a ∈ A (s) can be regarded as the action a with probability 1 in state
s and probability 0 for all other actions.

Regarding strategies, note the following:

• The strategy π fully defines an individual’s behavior pattern, i.e., it includes all
behaviors and probabilities of the individual in each state.

• The strategy π is static and independent of time.

• The strategy π is only dependent on the current state and is independent of historical
information.

Markov Decision Processes (MDPs) satisfy the Markov property by definition [28],
meaning that the next state of an intelligent agent is determined solely by the current
state s and the action taken (policy π). Take chess as an example. When we are in
a certain position (state s) and take a move (action a) according to the strategy π, we
cannot determine the opponent’s choice, which leads to the next state s′ , i.e., the state
transition probability P (s′ | s, a). However, the opponent’s choice only depends on s and

10

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

2 THEORETICAL FRAMEWORKS IN REINFORCEMENT LEARNING

a, and does not consider earlier states or actions. That is, s′ is randomly generated based
on s and a. The formula is defined as follows:

P (St+1 | St) = P (St+1 | S1, S2, · · · , St) . (2.8)

The future state (St+1) is independent of past states and is only related to the current
state (St) and actions (at).

The interaction flowchart between the intelligent agent and the environment in MDP
is as follows:

Agent Environment

2. Action

1. State

3. Reward

Figure 2.1: MDP Interaction Diagram

The interaction between an individual and the environment can be represented using
Figure 2.1. At time t = 1, 2, 3, · · · , all individuals receive a state signal St ∈ S from
the environment. At each step, an individual selects an action At ∈ A (St) from the
set of actions A (St) allowed by the current state. After receiving this action signal,
the environment provides feedback to the individual in the next time step, including the
corresponding state signal St+1 ∈ S and immediate reward r (St, A(St)). This process is
repeated until the termination state is reached or the process continues indefinitely.

In a random MDP, each moment t experiences two uncertainties: the first is the
uncertainty of the action itself, determined by the strategy π, and the second is the
uncertainty of state transition (i.e., environmental uncertainty). Let’s illustrate this with
an example. In the Monopoly game, players can choose to roll the dice once or twice
(the sum of the dice determines the number of steps taken), but we want to ultimately
move 5 steps. In this case, there are two uncertainties: the first is whether to roll the
dice once or twice, which is the player’s choice; the second is the number of points rolled
each time, which is the randomness of the environment and beyond the player’s control.
In multi-player zero-sum games, multiple agents interact with each other, significantly
increasing the randomness and complexity of the environment, which will be discussed
in Section 4. Under these two types of uncertainty, the MDP flowchart is presented as
follows (Figure 2.2):

S

A A A

SS S S

A A

S S

S

A A A

SS S S

A A

S S

Agent's Choice

Stochasticity of the Environment

Agent's Choice

Stochasticity of the Environment

Figure 2.2: MDP Flowchart

11

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

2 THEORETICAL FRAMEWORKS IN REINFORCEMENT LEARNING

The goal of reinforcement learning is to learn a strategy (π) that maximizes the reward
within the MDP model.

2.3 Value Function and Optimal Policy

2.3.1 Significance of the Value Function

In the previous section, it is mentioned that reinforcement learning learns a mapping
from environment states to actions (i.e., a strategy). However, reinforcement learning also
has the characteristic of delayed rewards. In chess, if you lose the game at step n , only
the state sn and action an receive the current reward r (sn, an) = −1, while all previous
states immediately receive a reward of 0. Therefore, for any previous state s and action a
, the current reward function r (s, a) cannot indicate the quality of the strategy. Hence,
we need to define a value function to indicate the long-term impact of the strategy π in
the current state.

After understanding the MDP dynamic process, we can see from Figure 2.2 that
actions a and state s are nodes in the graph.

Definition 2.2 (Value Function) The value of a state is called the state value function
(state value function) Vπ (s), which represents the expected reward obtained by starting
from state s and following policy π:

Vπ (s) = Eπ [G0 | S0 = s] . (2.9)

We refer to the reward of an action as the action value function (Qπ(s, a)), which
represents the expected reward obtained by executing a specific action (a) in the current
state (s) and then executing subsequent actions according to the policy (π):

Qπ (s, a) = Eπ [Gt | St = s, At = a] . (2.10)

We combine the action value function (Qπ (s, a)) with the state value function (Vπ (s))
to describe the MDP. In the diagram, circles represent states, squares represent actions,
and wedges represent the reward values after the action is completed.

before exam

sleep take examhappy fail

study take examsad pass

100%

90%

10%

r=+10

r=-10

r=-50

r=+50

Figure 2.3: Qπ (s, a) and Vπ (s) Diagram

Observe Figure 2.3. Assuming a discount rate of γ = 1, failing and passing are
the terminal states of the MDP, where failing results in a reward of −50 and passing
results in a reward of +50. The expected value of the strategy of sleep before the exam,
Qπ (before exam, sleep), is 10 + (−50) = −40, and the expected value of the strategy of
reviewing before the exam, Qπ (before exam, study), is −10+50×90%+(−50)×10% = 30.
Therefore, when making decisions, we must take a long-term perspective and choose
the decision that maximizes the total future rewards. This is precisely the principle of
maximizing expected rewards in MDPs.

12

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

2 THEORETICAL FRAMEWORKS IN REINFORCEMENT LEARNING

Currently, there is an issue regarding the value of the initial “before exam” state Vπ (s).
If we choose the action of reviewing, then the value of the “before exam” state Vπ (s) is
30; if we choose the action of sleep, then the value of the “before exam” state Vπ(s) is
−40. Therefore, the value of the state Vπ (s) is related to our strategy π. Similarly, if
we choose “study” in the “before exam” state and then participate in the “take exam,”
then Qπ (s, a) = 30; if we choose “study” in the “before exam” state and then do not
participate in the “exam,” then Qπ (s, a) = −10 + (−50) = −60. Therefore, the Qπ (s, a)
of a state-action pair is also related to our subsequent strategy π.

2.3.2 Bellman Equations for Value Functions and Optimal Policy

From the above description, action value functions and state value functions have
similar meanings: firstly, they are both nodes in an MDP; secondly, the value evaluation
method is also consistent: starting from the current node, following a certain strategy
until reaching the final node, and taking the discounted expected sum of all rewards.
Therefore, Vπ (s) and Qπ (s, a) can be derived from each other.

First, we will use the Qπ (s, a) to calculate the Vπ (s) based on the following diagram
(the diagram below is a portion of Figure 2.2)

S

A A A

V-value

Q-value Q-valueQ-value

Figure 2.4: Calculating Vπ (s) Using Qπ (s, a)

Based on Figure 2.4, assuming we have already calculated Qπ (s, a) , a ∈ A (s), then
according to the strategy π, the expected value of Qπ (s, a) is Vπ (s). The formula is as
follows:

Vπ (s) =
∑
a∈A

π (a | s)Qπ (s, a) . (2.11)

Similarly, we can use Vπ (s) to calculate Qπ (s, a):

A

S S S

Q-value

V-value V-valueV-value

Figure 2.5: Calculating Qπ (st, at) Using Vπ (st+1)

Based on Figure 2.5, assuming we have already calculated the next moment’s
Vπ (st+1) , st+1 ∈ S, we can calculate the expected value of Vπ (st+1) using the strat-
egy π, which is Qπ (st, at). Unlike the calculation of Vπ (s) using Qπ (s, a), this process
involves a time jump of t, so we need to add the discount rate γ and the stage reward r.
The formula is as follows:

Qπ (st, at) = r (st, at, st+1) +
∑
st+1

P (st+1 | st, at) γVπ (st+1) . (2.12)

13

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

2 THEORETICAL FRAMEWORKS IN REINFORCEMENT LEARNING

Substituting formula Equation 2.11 into Equation 2.12 yields the updated formula for
Vπ (st) and the updated formula for Qπ (st, a), which are the Bellman equations:

Bellman equation for state value function is as follows:

Vπ (st) =
∑

at∈A(st)

π (at | st) r (st, at) +
∑

at∈A(st)

π (at | st)
∑

st+1∈S

P (St+1 | st, at) γVπ (st+1) .

(2.13)
Bellman equation for the action value function is as follows:

Qπ (st, at) = r (st, at) +
∑
st+1

P (st+1 | st, at) γ
∑

at+1∈A(st+1)

π (at+1 | st+1)Qπ (st+1, at+1) .

(2.14)
The Bellman equation establishes the relationship between the current state value

function and the next state value function. As introduced in MDP, the objective of the
MDP is to maximize the Equation 2.5, i.e., to find a strategy that maximizes the reward.
This is mapped to the Bellman equation as finding a strategy that maximizes the value
function.

For a finite Markov decision process, two strategies are ranked based on their value
functions:

π′ ⩾ π ⇐⇒ Vπ′(s) ⩾ Vπ(s), ∀s ∈ S. (2.15)

The strategy with the maximum state value function, π∗, is called the optimal strategy:

Definition 2.3 (Optimal Strategy) The optimal strategy has the optimal state value
function, as shown below:

Vπ∗ (s) = max
π

Vπ (s) , ∀s ∈ S. (2.16)

Similarly, the optimal strategy also has the same optimal action value function, as
shown below:

Qπ∗ (s, a) = max
π

Qπ (s, a) , ∀s ∈ S, ∀a ∈ A (s) . (2.17)

Having understood the optimal policy, we observe Equation 2.14, which holds for any
policy and, of course, for the optimal policy. Therefore, we have:

Q∗ (s, a) = r (s, a) +
∑
s′

P (s′ | s, a) γV ∗ (s′) , (2.18)

where V ∗ (s) and Q∗ (s, a) are abbreviations for V ∗
π (s) and Qπ∗ (s, a), respectively.

On one hand, V ∗ (s) follows the state value function of the optimal strategy π∗ and
must also satisfy the Bellman equation for state value functions expressed by Equa-
tion 2.13, i.e.:

Vπ∗ (st) =
∑

at∈A(st)

π (at | st) r (st, at) +
∑

at∈A(st)

π (at | st)
∑

st+1∈S

P (St+1 | st, at) γVπ∗ (st+1) .

(2.19)
On the other hand, since it is the optimal state value function, by definition it must

equal the largest action value function obtained by taking the optimal strategy in state
s. Thus, we obtain:

V ∗ (s) = max
a∈A(s)

Q∗ (s, a)

14

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

2 THEORETICAL FRAMEWORKS IN REINFORCEMENT LEARNING

= max
a∈A(s)

[
r(s, a) +

∑
s′∈S

P (s′ | s, a) γVπ∗ (s′)

]
, (2.20)

which is known as the Bellman optimality equation for the state value function.
Similarly, we can also derive the Bellman optimality equation for the action value

function:
Q∗ (s, a) =

∑
s′∈S

r (s, a) + P (s′ | s, a)γ max
a′∈A(s′)

Q∗ (s′, a′) . (2.21)

For any MDP, the following holds:

1. An optimal strategy is better than or at least equal to any other strategy;

2. All optimal policies have the same state value function;

3. All optimal strategies have the same action value function.

In an MDP, the optimal strategy maximizes the expected total discounted reward.
In “Markov Decision Processes,” Puterman has proven that for a finite-state Markov
decision process, there must exist at least one optimal strategy π∗, and this strategy is
both stationary and deterministic. It is called stationary because π∗ does not change over
time; it is called deterministic because when the agent is in state s, it always chooses the
same action, i.e., pure strategy (this is only applicable in the MDP model; in the multi-
agent game MDP model, pure strategy may not always yield optimal results, as discussed
in). In this paper, we will focus on stable strategies. Non-stable strategies, which allow
adjusting actions based on the game history, are more complex [29] and have been studied
relatively less in two-player zero-sum games, which is not conducive to incorporating game
theory strategies into multi-agent reinforcement learning in the future.

2.4 Game-Theoretic Analysis in Parking Scenarios

Within multi-agent reinforcement learning, the decisions of agents (drivers) are not
isolated but interdependent and mutually influential. This complex dynamic interac-
tion renders traditional single-agent frameworks inadequate. Consequently, introducing
game-theoretic analytical tools offers a novel perspective for understanding and resolving
community parking resource allocation problems. We conceptualize the parking selection
process as a dynamic game, centered on the strategic choices of multiple rational drivers
competing for a finite number of parking spaces.

2.4.1 Safe Strategy and Conflict Equilibrium

In game theory, a “safety strategy” represents an extremely conservative approach
aimed at minimizing worst-case losses. Within the community parking context, this
corresponds to a “greedy” and myopic behavioral pattern: each driver adheres to a simple
decision rule–selecting only the closest, seemingly vacant parking space.

While seemingly optimal for individuals, this behavior often leads to systemic failure
in multi-agent environments, forming an unstable “conflict equilibrium”. When multiple
vehicles enter a car park simultaneously, all drivers may fixate on the same or a few
geographically optimal spaces. This results in the following consequences:

1. Multi-agent conflict: Multiple agents simultaneously execute the same “parking”
action, competing for the same physical space.

15

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

2 THEORETICAL FRAMEWORKS IN REINFORCEMENT LEARNING

2. Declining returns: Due to conflicts, all parties must re-select, increasing detour
time and fuel consumption, resulting in a significant reduction in individual benefits.

3. System inefficiency: A large number of vehicles circling and waiting in confined
areas causes localized congestion or even deadlocks, while other vacant spaces further
away remain unused, resulting in extremely low overall system utilization.

The equilibrium in this state is fragile and inefficient, as it cannot self-correct without
external intervention–such as introducing penalties to break the suboptimal cycle caused
by collective “greed”.

2.4.2 Mixed Strategy Nash Equilibrium and Efficiency Enhancement

Unlike the safety strategy, the “mixed-strategy Nash equilibrium” represents a more
intelligent decision-making paradigm. Under this approach, each agent does not select a
single optimal action but instead chooses from all possible actions according to a proba-
bility distribution. This achieves a stable state where no individual can unilaterally alter
their behavior to gain an advantage.

In the community parking game, the mixed-strategy Nash equilibrium corresponds to
a dispersed, collaborative parking behavior. Drivers no longer blindly rush to the nearest
space but, with a certain probability, allocate part of their choice to slightly more distant
spaces with lower conflict risks. This “dispersed parking” behavior pattern can bring
about significant improvements in system efficiency:

1. Reduced conflict rate: As agents select different parking spaces, the probability
of competing for the same space is significantly lowered, minimizing unnecessary
detours and waiting times.

2. Enhancing resource utilization: Overall parking space utilization is balanced
across the car park, preventing excessive congestion in popular areas and idle re-
sources in less frequented zones.

3. Achieving global optimality: While each driver’s decision incorporates random-
ness, this randomness is grounded in rational game-theoretic calculations. Ulti-
mately, this maximizes the aggregate benefit for all agents, realizing the optimal
allocation of social welfare.

Consequently, the core research objective of this paper is to devise a mechanism guiding
agents from inefficient conflict equilibria towards efficient mixed-strategy Nash equilibria.
This demonstrates, both theoretically and practically, that well-designed mechanisms can
effectively mitigate real-world resource conflicts.

2.5 Strategy Evaluation and Improvement

For any strategy π, how do we calculate its value function Vπ (s)? This problem is
referred to policy evaluation.

In reinforcement learning, iterative methods are generally used to update the value
function. First, all state-action pairs (Vπ (s)) are assigned initial values (typically 0), and
then the value function is updated using the following equation (k + 1 iteration):

V k+1
π (st) =

∑
a∈A(st)

π (a | st) r (st, a) +
∑

a∈A(st)

π (a | st)
∑

st+1∈S

P (st+1 | st, a) γV k
π (st+1) .

(2.22)

16

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

2 THEORETICAL FRAMEWORKS IN REINFORCEMENT LEARNING

The value function is stored in an array, with each new value overwriting the previous
one.

The policy estimation algorithm is shown in Algorithm 1:

Algorithm 1 Policy Evaluation Algorithm

1: Input: Strategy π
2: Initialization: V (s) = 0, ∀s ∈ S
3:

4: Iterative Experimentation
5: ∆← 0
6: repeat
7: for each s ∈ S do
8: temp← V (s)
9: V (s)←

∑
a∈A(s) π(a|st)r (s, a) +

∑
a π(a|s)

∑
s′ P (s′|s, a) γV (s′)

10: ∆← max (∆, |temp− V (s)|)
11: end for
12: until ∆ < θ ▷ θ is a very small positive number
13:

14: Output: V (s) ≈ Vπ (s)

We have understood the principles and process of policy evaluation, and the purpose
of policy evaluation is to find better policies. This process is called policy improvement.

Suppose we have a policy π and have determined its value function Vπ (s) through
policy evaluation. For a state s, there is an action a = π (s). Then, if we do not adopt
action a according to policy π in state s, but instead adopt another policy π′, would that
be better?

Theorem 2.1 (Policy Improvement Theorem) If π and π′ are two deterministic
policies, and ∀s ∈ S, Qπ (s, π

′ (s)) ⩾ Vπ (s) holds, then policy π′ is necessarily better
than policy π, or at least as good, i.e., ∀s ∈ S, Vπ′ (s) ⩾ Vπ (s) holds.

The meaning of the theorem is that as long as the actions selected according to the
new strategy have an action value function that is no less than the state value function
under the old strategy, then such a strategy is a better strategy.

Proof 2.1 (Policy Improvement Theorem)

Vπ (s) ⩽ Qπ (s, π
′ (s))

= E [Gt | St = s, At = π′ (s)]

= E [Rt+1 + γVπ (st+1) | St = s, At = π′ (s)]

= Eπ′ [Rt+1 + γVπ (st+1) | St = s]

⩽ Eπ′ [Rt+1 + γQπ (st+1, π
′ (st+1)) | St = s]

· · ·
⩽ Eπ′

[
Rt+1 + γRt+2 + γ2Rt+3 + · · · | St = s

]
= Vπ′ (s) . (2.23)

17

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

2 THEORETICAL FRAMEWORKS IN REINFORCEMENT LEARNING

Based on the above theorem, how can we construct a better strategy? In other words,
how can we ensure that the action value function Qπ (s, π

′ (s)) of the new strategy a′ =
π′ (s) is greater than the state value function Vπ (s)? The value function is the expected
value of the action value function under different actions (for deterministic strategies, the
two are equal because there is only one action). Therefore, we simply need to choose the
action that maximizes Q (s, a). Because

max
a

Q (s, a) ⩾ Eπ [Q (s, a)] = Vπ (s) , (2.24)

the new policy is defined as

π′ (s) = arg max
a∈A(s)

Qπ (s, a)

= arg max
a∈A(s)

[
r (s, a) +

∑
s′

P (s′ | s, a) γVπ (s
′)

]
. (2.25)

This deterministic strategy is called the greedy strategy because it always aims to
maximize the value function.

Finally, you may wonder whether the greedy strategy converges to the optimal strat-
egy.

Here, we assume that the policy improvement process has converged, i.e., for all s,
Vπ′ (s) equals Vπ (s). Then, according to Equation 2.13 and Equation 2.25, we can see
that for all s ∈ S, the following holds:

Vπ′ (s) = max
a

[
r (s, a) +

∑
s′

P (s′ | s, a) γVπ (s
′)

]
. (2.26)

This is precisely the optimal Bellman equation for the state value function in Equa-
tion 2.25. Therefore, π and π′ are both optimal strategies.

The algorithmic structure of reinforcement learning consists of two parts: policy eval-
uation and policy improvement. The specific algorithm flow is shown in Algorithm 2:

18

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

2 THEORETICAL FRAMEWORKS IN REINFORCEMENT LEARNING

Algorithm 2 Reinforcement Learning Algorithm Flowchart

1: Initialization:
2: for all s ∈ S do
3: Assign arbitrary values to V (s) ∈ R, π (s) ∈ A (s)
4: end for
5:

6: Policy Evaluation:
7: Iterate Experiment
8: ∆← 0
9: repeat

10: for all s ∈ S do
11: temp← V (s)
12: V (s)← r (s, a) +

∑
a π(a|s)

∑
s′ P (s′|s, a) γV (s′)

13: ∆← max(∆, |temp− V (s) |)
14: end for
15: until ∆ < θ ▷ θ is a very small positive number
16:

17: Policy Improvement:
18: Policy stable← true
19: for all s ∈ S do
20: temp← π (s)
21: π(s)← argmaxa [r(s, a) +

∑
s′ P (s′|s, a) γVπ (s

′)]
22: if temp ≠ π(s) then
23: Policy stable← false
24: end if
25: end for
26:

27: if Policy stable = true then
28: Output: V (s) and π (s)
29: else
30: Return to “Policy Evaluation”
31: end if

The classic single-agent reinforcement learning algorithm has spawned various algo-
rithms (MC, TD(0), TD(lambda), etc.) due to differences in policy evaluation, but in the
policy improvement phase, all use a greedy strategy.

2.6 Summary of This Chapter

This chapter introduced the fundamental concepts of reinforcement learning, covering
key definitions such as Markov Decision Processes (MDPs), value functions, optimal poli-
cies, Bellman equations, policy evaluation, and policy improvement. The MDP framework
underpins single-agent reinforcement learning, with its algorithmic workflow divided into
policy evaluation and policy improvement. The distinction in policy evaluation methods
leads to the two fundamental reinforcement learning algorithms introduced in subsequent
sections.

However, we recognize that when problems extend from single agents to multi agent
interactions, the traditional MDP framework proves inadequate as it fails to capture the

19

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

2 THEORETICAL FRAMEWORKS IN REINFORCEMENT LEARNING

mutual influences between agents. Therefore, in the latter part of Section 2, we shift our
focus from abstract theoretical models to the concrete real-world application of community
parking resource allocation. We introduce game theory concepts to deeply analyze the
decision-making behavior of agents, specifically drivers, within the parking scenario.

Through this integration of theory and application, we discover that drivers’ greedy
decisions–specifically, safe strategies–may lead to inefficient conflict equilibria, causing
congestion and resource wastage. Conversely, optimal decisions, embodied in mixed
strategies, can guide collective behavior towards efficient Nash equilibria, thereby en-
hancing overall system efficiency. This approach of incorporating game-theoretic strate-
gies into multi-agent reinforcement learning constitutes the core theoretical and practical
contribution of this paper.

This chapter establishes a robust theoretical foundation for subsequent algorithmic
analysis and refinement. The ultimate objective of this work is to introduce Nash
equilibrium strategies from game theory within the multi-agent reinforcement learning
framework, proposing targeted enhancements to effectively address real-world community
parking challenges while simultaneously improving algorithmic convergence accuracy and
speed.

20

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

3 Algorithms of Reinforcement Learn-
ing

This chapter will elucidate the principles of two classical reinforcement learning al-
gorithms through mathematical modeling, detailing how various algorithms implement
value function updates. As noted earlier, the distinction between the two algorithms lies
in their differing approaches to value update during policy evaluation, whilst both employ
greedy strategies for policy improvement. Section 4 summarizes how game theory-based
strategy improvements can be applied to the TD(0) algorithm.

3.1 Monte Carlo Update Method (MC Method)

3.1.1 Monte Carlo Algorithm (MC Algorithm)

The Monte Carlo algorithm (abbreviated as MC algorithm) is introduced first.
The MC algorithmic steps for solving the Vπ (s) value function comprise five stages,

as shown in Figure 3.1:

1. Place the agent in any state of the environment;

2. From this state, select an action according to the policy π and transition to a new
state.

3. Repeat step 2 until the final state is reached;

4. Trace back from the final state: compute the Gt (s) value (Equation 2.2) for each
state s.

5. Repeat multiple times, then average the Gt (s) value for each state s, this yields the
required Vπ (st) value.

S S S S S

Terminal State

R R

G

G=r+γ G

G=r+γ G

Figure 3.1: Conceptual Diagram of the MC Algorithm

Agent operations comprise three phases:

1. The agent moves forward according to the strategy π until reaching the end. During
this phase, the agent performs no calculations; it merely records each state transition
and the corresponding reward r.

21

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

3 ALGORITHMS OF REINFORCEMENT LEARNING

2. The agent moves backwards from the endpoint, calculatingGt (s) during the process.
The Gt (s) value equals the Gt (s

′) value of the subsequent state s′ multiplied by the
discount rate γ, plus the reward r of the current state.

3. The agent repeats the experiment multiple times according to the policy, taking the
average of the Gt (s) values corresponding to each state. This average becomes the
Vπ (s) value for state s.

For ease of understanding, assume a discount rate of 1. The Gt value represents the
total reward sum from a given state to the final state during a single game (Equation 2.2).
Vπ (s), therefore, denotes the average of Gt (s) values across multiple games.

3.1.2 The Core Principle of the MC Algorithm

The core concept of the Monte Carlo algorithm, as outlined above, involves calculating
the Gt (s) value for each state in a single game. By averaging the Gt (s) values across
multiple games, this average represents the Vπ (s) of the s values for all state s.

However, this approach necessitates creating a new space for each state to record
changes in the Gt (s) value, significantly increasing both the algorithm’s complexity and
computational load. Therefore, the aim is to bypass the Gt (s) value and directly compute
the Vπ (s) for the state st.

At this point, we can transcend the problem by applying mathematical reasoning to
transform it. Since the state Vπ (s) represents the average of Gt values, the problem can
be reframed as determining how to compute the mean.

Suppose one rope has a length of x1 and another has a length of x2. Their average
length should be

X1 =
x1 + x2

2
=

1

2
(x2 − x1) + x1. (3.1)

If a third rope is added, the average becomes

X2 =
1

3
(x3 −X1) +X1. (3.2)

By extension, when a third rope of length is added, the average becomes

Xn =
1

n
(xn −Xn−1) +Xn−1. (3.3)

This method constitutes incremental updating. One need only retain the previous
average Xn−1, the newly added length xn, and the count to calculate the latest average
Xn.

In reinforcement learning, 0 ⩽ αt ⩽ 1 is employed, replacing 1
n
. αt is termed the

learning rate. Even if αt ̸= 1
n
, provided the number of steps is sufficiently large, Xn will

still converge to the expected value.
Applying the method of averaging incremental updates to the MC Algorithm yields

Vπ (st)← Vπ (st) + αt [Gt − Vπ (st)] , (3.4)

where αt is the learning rate, and Gt = Gst . When the game is played a sufficient number
of times, Vπ (st) will gradually approach the expectation of Gt. To ensure that Vπ (st)
eventually converges to a point and the amplitude of fluctuation due to new Gt values
becomes smaller, we require that αt be sufficiently small. However, we also hope that αt

is not too small at the beginning, so that convergence can be achieved more quickly.

22

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

3 ALGORITHMS OF REINFORCEMENT LEARNING

3.2 Temporal Difference Method (TD(0)-based Update Ap-
proach)

3.2.1 Conceptual Framework of the Temporal Difference Method

Although the MC algorithm can estimate Vπ (s) through sampling when environmental
information P and r are unknown, this approach has limitations. As discussed previously,
the MC algorithm must run until the final state is reached before backtracking to calculate
Vπ (s) for each state s. Furthermore, multiple experiments are required for calibration to
ensure the stability and accuracy of Vπ (s). When the environment’s state space is large,
the time required for the MC algorithm to reach the final state and compute Vπ (s)
becomes substantial, rendering the MC algorithm inefficient.

If we liken the algorithm’s operation to mountain climbing, where the reward repre-
sents the distance from the current node to the summit, the MC algorithm must first
ascend to the peak (final state) before descending to update each intermediate node with
its distance from the summit. When the mountain is vast, the ascent takes an excessive
amount of time, resulting in a slow update rate for each node. A novel update approach
may be considered: treating each node as a signpost. When traversing from one signpost
to the next, one observes the distance to the summit displayed on the subsequent sign-
post (future reward). The value of the preceding signpost is then updated by adding the
distance between the two signposts (the reward for the current action) to the sum of the
distance to the summit displayed on the next signpost.

This method of updating the previous state using the next state and the intervening
reward (Vπ (s)) is termed the temporal difference algorithm (TD(0)). The MC algorithm
requires traversing the entire path, whereas the TD(0) algorithm treats the next state as
the final state after each action, then updates the previous state’s value through back-
propagation. Compare the update formulas for the MC and TD(0) algorithms.

MC Update formula:

Vπ (st)← Vπ (st) + αt [Gt − Vπ (st)] . (3.5)

TD(0) Update formula:

Vπ (st)← Vπ (st) + αt [Rt+1 + γVπ (st+1)− Vπ (st)] . (3.6)

Having undergone a transition at time t, the discount rate γ and reward Rt+1 must
be applied.

Comparing the two formulas reveals that the MC formula calculates Gt by tracing
back from the final state after the agent completes the entire path to update Vπ (st). The
TD(0) formula, however, uses the next state’s Vπ (st+1) combined with the state tran-
sition reward Rt+1 as the update target. This method does not require completing the
entire path; the agent can update the previous state’s Vπ (st) with each action. Con-
sequently, this approach enables faster updates and significantly reduces computational
space requirements.

The Vπ (st) update diagram for the TD(0) method is illustrated below in Figure 3.2:

23

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

3 ALGORITHMS OF REINFORCEMENT LEARNING

st st+1

V(st) V(st+1)

Rt+1

Figure 3.2: TD(0) Vt (st) Update Diagram

3.2.2 Q-learning Algorithm

The previous section outlined how to update Vπ (s) values using the TD(0) method.
Since both Vπ (s) and Qπ (s, a) are nodes within the “Markov tree,” Qπ (s, a) can similarly
be updated using the TD(0) approach (Figure 3.3).

st st+1

V(st+1)

Rt+1

at

Q(st, at)

Figure 3.3: TD(0) Qπ (s, a) Update Diagram

The significance of Vπ (st+1) is that it represents the expected reward obtainable by
consistently acting according to policy π from state st+1. The meaning of Qπ (s1, at) is
the expected reward obtainable by consistently acting according to policy π from state
st, selecting action at. Thus, Vπ (st+1) can be viewed as a signpost along the mountain
path, indicating the remaining distance to the summit. By adding the segment Rt, one
determines the distance Qπ (st, at) from the path to the summit.

However, a complication arises: the update method shown above requires estimat-
ing not only Qπ (st, at) but also Vπ (st+1), entailing excessive storage and computa-
tional overhead. Therefore, we may substitute Vπ (st+1), the next-time-step state, with
Qπ (st+1, at+1), the next-time-step action. This substitution is illustrated below (Fig-
ure 3.4):

st st+1

V(st+1)

Rt+1

at

Q(st, at)

at+1

Q(st+1)

Figure 3.4: TD(0) Vt (st) Update Diagram 2

The above analysis stems from the absence of at transition between state st+1 and
action at+1. Crucially, the Markov model is a tree rather than a chain (refer to Figure 2.3).
Under state st+1, multiple actions at+1 may exist, each yielding distinct Qπ (st+1, at+1)
values. Consequently, Qπ (st+1, at+1) is not equivalent to Vπ (st+1).

Although not entirely equivalent, according to Equation 2.11, one Qπ (st+1, at+1) can
substitute for Vπ (st+1), as there must exist a Qπ (st+1, at+1) that partially represents
Vπ (st+1). Numerous approaches exist for selecting which Qπ (st+1, at+1) to substitute for
Vπ (st+1), with two most prominent ideas:

Adopting the same policy π, and selecting the action at+1 generated under that policy
π to replace Vπ (st+1). This constitutes the SARSA algorithm.

24

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

3 ALGORITHMS OF REINFORCEMENT LEARNING

Select the action with the highest Q (st, at), and choose the maximum Q (st+1, at+1)
to substitute V (st+1). This constitutes the Q-learning algorithm.

The formula for updating the Q-value in the SARSA algorithm is:

Qπ (st, at)← Qπ (st, at) + αt [Rt + γQπ (st+1, π (at+1))−Qπ (st, at)] , (3.7)

where Qπ (st, at) corresponds to π in Qπ (st+1, π (at+1)).
Why is it reasonable for SARSA to use the action value Qπ (st+1, at+1) generated under

the same policy, substituting the state value Vπ (st+1)? The answer is simple: it works.
In truth, reinforcement learning, though involving considerable mathematics, is not a
rigorous science; it is more akin to a technique. As long as it proves effective in practice,
that suffices.

Q-learning algorithm’s Qπ (st, at) update formula is:

Qπ (st, at)← Qπ (st, at) + αt

[
Rt + γ max

at+1∈A(st+1)
Qπ (st+1, at+1)−Qπ (st, at)

]
. (3.8)

This is the renowned Q-learning algorithm in reinforcement learning. It substitutes
the Q-learning algorithm’s approach by replacing the maximum action value function
(maxat+1∈A(st+1) Qπ (st+1, at+1)) with the maximum expected reward function (Vπ (st+1)).

The underlying principle for substitution in Q-learning is fundamentally straight-
forward. Since the objective is to identify the action yielding the highest reward, the
Qπ (st, at) represents the expected value of future rewards. Consequently, only the action
with the maximum Qπ (st+1, at+1) is selected for updating.

Here is the summary of this section:

1. Both the Q-learning and SARSA algorithms are based on the concept of TD(0).
However, in the preceding discussion, TD(0) was used to estimate state values,
whereas the Q-learning and SARSA algorithms estimate action values.

2. The core principle of both the Q-learning and SARSA algorithms is to estimate
Qπ (st, at) using Vπ (st+1) of the next-time-step state st+1.

3. Estimating both state values and action values simultaneously proves cumber-
some, entailing excessive computational and storage demands. Therefore, the
Qπ (st+1, at+1) for a specific action within the next state can substitute for the
Vπ (st+1) of the next state itself.

4. The sole distinction between the Q-learning and SARSA algorithms lies in which
Qπ (st+1, at+1) is substituted for Vπ (st+1). The SARSA algorithm selects the
Qπ (st+1, π (at+1)) generated by the same policy at st. The Q-learning algorithm
chooses the action yielding the maximum value, maxat+1∈A(st+1) Qπ (st+1, at+1).

In Section 5, the Q-learning algorithm is refined by substituting game theoretic policy
replacement with greedy policy improvement. For value function updates, game-theoretic
operators are also employed to replace the maximum Q value.

3.3 Summary of This Chapter

This chapter elucidates the significance and computational methods of value functions,
introducing the principles and origins of two value function update approaches in rein-
forcement learning: the Monte Carlo (MC) method and the Time Discounted (TD(0))

25

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

3 ALGORITHMS OF REINFORCEMENT LEARNING

method. Both methods possess highly intuitive implications within our model. The MC
method updates the value function only after completing the entire parking process, based
on the final outcome. Its advantage lies in accurate evaluation, though it is less efficient.
The TD(0) method, conversely, enables real-time refinement of decisions at each step by
incorporating value estimates for subsequent states, thereby enhancing learning efficiency.
Both methods employ greedy strategies in single-agent scenarios with commendable re-
sults. However, in multi-agent contexts, the complexity for each agent increases expo-
nentially due to mutual interactions. Simply maximizing individual payoffs no longer
yields satisfactory outcomes. Consequently, the Markov game framework is employed,
integrating game theory with reinforcement learning to devise strategies better suited to
multi-agent environments and pursue algorithms of higher precision and efficiency.

26

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

4 Embedding Nash Equilibrium Strate-
gies into Reinforcement Learning

As discussed previously, single-agent algorithms are categorized based on their policy
evaluation methods, with the model represented as MDP. When the environment transi-
tions to multi-agent scenarios, classical reinforcement learning algorithms fail to deliver
satisfactory outcomes. Taking the Q-learning algorithm as a straightforward example, its
update formula is Equation 3.8.

In multi-agent scenarios, the update objective cannot solely maximize the Q-value,
as the Q-value simultaneously depends on the actions of other agents. This renders
traditional reinforcement learning methods both imprecise and inefficient within multi-
agent environments.

In game theory contexts, replacing a single agent with multiple agents substantially
increases environmental randomness. This necessitates considering not only one’s own
payoffs and strategies but also those of opponents. Understanding the multi-agent game
framework is therefore essential.

In two-player random games, the mixed-strategy Nash equilibrium corresponds to
zero-sum games and maximin strategies. Nash equilibrium strategies are flexible and
adaptable; their significance lies in the fact that no player can deviate from this strategy
to gain greater rewards while the other player’s strategy remains unchanged. Maximin
strategies represent a conservative, safe approach, assuming the opponent will act in the
most disadvantageous manner and maximizing one’s own payoff based on this premise.
Games are categorized as static or dynamic based on the simultaneity or sequence of
actions. This paper exclusively addresses simultaneous-move static games, where players
are unaware of their opponent’s actions at any given moment.

4.1 Two-Player Zero-Sum Games

A two-player zero-sum game is a form of game theory where, under strict competition,
one party’s gain necessarily implies the other’s loss. Whatever one party gains, the other
loses; players may win or lose, but the total payoff of the game is always zero. Thus,
the sum of rewards for both players is always 0. In such circumstances, cooperation
is impossible [30]. Both parties will endeavor to act in a manner that “harms others
for personal gain”. Two-player zero-sum games describe situations of strict competition
between two individuals. Matrix games are two-player zero-sum games with finite action
sets.

4.1.1 Matrix Games

A matrix game is constituted by the tuple ⟨{1, 2} , A1, A2, r1⟩. Here, 1 denotes Player
One and 2 denotes Player Two; Ai represents Player i’s finite action space, i = 1, 2;

A1 =
{
a11, a

1
2, · · · , a1m

}
, (4.1)

27

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

4 EMBEDDING NASH EQUILIBRIUM STRATEGIES INTO REINFORCEMENT LEARNING

a1i denotes Player 1’s i-th action, and m represents the total number of actions available
to Player 1.

A2 =
{
a21, a

2
2, · · · , a2n

}
, (4.2)

a2i represents Player 2’s i-th action, where n denotes Player 2’s total number of actions.
r1 represents Player One’s payoff, −r1 represents Player Two’s payoff. r1 (i, j) denotes

Player One’s payoff when Player One chooses action i and Player Two chooses action j.
Here, i = a1i , where j = a2j .

Defining bij = r1(i, j), the matrix B = [bij]m×n constitutes Player 1’s payoff matrix.
As one player’s payoff is precisely the inverse of the other’s, a finite-action, two-person,

zero-sum static game can be represented by a matrix B withm rows and n columns, where
bij = r1(i, j), ∀i ∈ A1 and ∀j ∈ A2.

bij represents Player One (the row of the matrix) choosing the i-th action and Player
Two (the column of the matrix) choosing the j-th action, yielding a payoff of −bij for
Player One.

4.1.2 Min-Max Strategy

In the aforementioned matrix game, a strategy known as the minimax strategy
(maxmin strategy) or safe strategy (security strategy) possesses several favorable prop-
erties. Littman proposed the maxmin-Q algorithm in 1994, substituting the “maximize”
operator Q-learning in the algorithm with a “minimax” operator, achieving favorable
results in experimental comparisons.

In matrix games, maximizing one player’s payoff equates to minimizing the other’s.
When Player 1 (row of the matrix) chooses pure strategy i, Player 2 (column) may select
the strategy that minimizes Player 1’s payoff:

min
j∈A2

bij. (4.3)

Simultaneously, Player One seeks to select the pure strategy i that maximizes the
aforementioned payoff. That is, they aim to choose the pure strategy i such that:

max
i∈A1

min
j∈A2

bij. (4.4)

Player 1’s optimal pure strategy is maximin strategy. Regardless of Player 1’s choice,
Player Two will select the strategy that minimizes Player 1’s payoff. Within this context,
Player One selects the pure strategy i that yields the maximum payoff. This strategy is
termed Player 1’s maximin strategy (safe strategy). Similarly, Player 2’s safe strategy can
be determined as:

min
j∈A2

max
i∈A1

bij (4.5)

This also constitutes Player Two’s optimal strategy.

Definition 4.1 (Maximin) Given a matrix game B, the maximin value is defined as:

r = max
i∈A1

min
j∈A2

bij. (4.6)

Definition 4.2 (Minimax) Given a matrix game B, the minimax is defined as:

R = min
j∈A2

max
i∈A1

bij. (4.7)

28

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

4 EMBEDDING NASH EQUILIBRIUM STRATEGIES INTO REINFORCEMENT LEARNING

Definition 4.3 (Pure Strategy Value) Given a matrix game B, if r = R, then r′ =
r = R is termed the pure strategy value of the matrix game.

Demonstrating how to find the maximin strategy using a matrix game as an example.
The payoffs for the matrix game B1 are as follows:

B1 =

[
2 1
3 0

]
. (4.8)

The maximin value of the matrix is

max
i∈A1

min
j∈A2

bij = max {1, 0} = 1. (4.9)

The minimax value is
min
j∈A2

max
i∈A1

bij = min {3, 1} = 1. (4.10)

Therefore, r′ = r = R is the pure strategy value for the matrix game B1. At this
point, the pure strategy set corresponds to Player 1 taking action 1 and Player 2 taking
action 2. For Player 1, its maximin strategy is action 1.

However, not all matrix games possess pure strategy values. Consider the rock-paper-
scissors game: Let B2 denote the payoff matrix for the rock-paper-scissors game.

B2 =

 0 1 −1
−1 0 1
1 −1 0

 . (4.11)

where the first row (first column) represents the pure strategy “rock”; the second row
(second column) represents the pure strategy “scissors”; and the third row (third column)
represents the pure strategy “paper”.

The maximin value for this game is

max
i∈A1

min
j∈A2

bij = max {−1,−1,−1} = −1. (4.12)

The minimax value is

min
j∈A2

max
i∈A1

bij = min {1, 1, 1} = 1. (4.13)

Clearly, the game does not possess a pure strategy value. Moreover, all three pure
strategies—rock, scissors, and paper—constitute Player 1’s minimax strategy.

The maximin strategy maximizes one’s minimum payoff, constituting a conservative,
safe approach that considers the worst-case scenario resulting from the opponent’s actions.
In the article Littman, the maximin strategy is employed to enhance the Q-learning algo-
rithm. To prevent opponents from predicting actions, when multiple maximin strategies
exist within a game, a mixed approach is used, assigning probabilities to each action
corresponding to a maximin strategy. For instance, Player One’s maximin strategy is
π = argmaxπ∈∆(A1) minj∈A2 bij. This means assigning probabilities to one’s own actions
against the opponent’s worst possible move to maximize one’s own payoff. Here, ∆(A1)
represents Player One’s mixed strategy action space.

4.2 Two-Person Normal-Form Games

Stochastic games are designed for competition among multiple agents, sharing this
characteristic with matrix games as non-cooperative games where each agent strives to
maximize their own objectives. Here, stochastic games are restricted to two players.

29

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

4 EMBEDDING NASH EQUILIBRIUM STRATEGIES INTO REINFORCEMENT LEARNING

4.2.1 Two-Player Randomized Game

A two-person randomized game is constituted by the tuple ⟨{1, 2} , A1, A2, r1, r2⟩.
Here, 1 denotes Player One and 2 denotes Player Two; Ai represents Player i’s finite
action space, where i = 1, 2:

A1 =
{
a11, a

1
2, · · · , a1m

}
. (4.14)

a1i denotes Player 1’s i-th action, where m is the total number of actions for Player 1.

A2 =
{
a21, a

2
2, · · · , a2n

}
. (4.15)

a2i denotes Player 2’s i-th action, where n denotes the total number of actions for Player
2.

r1 represents Player 1’s payoff, r2 denotes Player 2’s payoff. r1(π1, π2) indicates Player
1’s payoff when both players employ the mixed strategy set (π1, π2).

Definition 4.4 (Mixed Strategy Set) For a given player i and their pure strategy set
Ai, πi denotes player i’s mixed strategy. πi is a probability distribution over Ai, meaning
πi : Ai → [0, 1] is a mapping that assigns a probability πi(aij) to each pure strategy aij ∈ Ai

such that: ∑
aij∈Ai

πi
(
aij
)
= 1. (4.16)

4.2.2 Mixed Strategy Nash Equilibrium

Definition 4.4 bears a close resemblance to Definition 2.1 for mixed strategies, but
Definition 4.1 is multi-player and does not require consideration of state s.

Definition 4.5 (Nash Equilibrium for Mixed Strategies) Given a two-person ran-
domized game ⟨{1, 2} , A1, A2, r1, r2⟩ and a mixed strategy set (π1∗, π2∗) satisfying

r1
(
π1∗, π2∗) ⩾ r1

(
π1, π2∗) , ∀π1 ∈ ∆

(
A1

)
;

r2
(
π1∗, π2∗) ⩾ r2

(
π1∗, π2

)
, ∀π2 ∈ ∆

(
A2

)
; (4.17)

then (π1∗, π2∗) constitutes a mixed strategy Nash equilibrium. Here, ∆(Ai) denotes the set
of all mixed strategies for player i.

The optimal response function (ORF) bi(π−i) for player i is defined as follows:

bi(π−i) =
{
πi ∈ ∆

(
Ai

)
: ri

(
πi, π−i

)
⩾ ri

(
πi′ , π−i

)
, ∀πi′ ∈ ∆

(
Ai

)}
, i = 1, 2, (4.18)

where π−i denotes the strategy of the other player, and bi(π−i) represents the optimal
response of player i to the other player’s action π−i.

Clearly, the mixed strategy set (π1∗, π2∗) constitutes a Nash equilibrium if and only if

πi∗ ∈ bi
(
π−i∗) , i = 1, 2. (4.19)

From the preceding, it is evident that a deterministic optimal strategy exists for a sin-
gle agent under an MDP model. However, in a two-player zero-sum game, a deterministic
Nash equilibrium strategy set may not necessarily exist. Instead, mixed strategies are
more common (deterministic strategies can also be regarded as a special type of mixed

30

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

4 EMBEDDING NASH EQUILIBRIUM STRATEGIES INTO REINFORCEMENT LEARNING

strategy). Consider the example of rock-paper-scissors. Here, the Nash equilibrium strat-
egy set is (π1, π2), where πi =

(
1
3
, 1
3
, 1
3

)
, i = 1, 2, meaning each action (rock, paper,

scissors) is assigned a one-third probability. Any unilateral deviation from this strategy
set by either party yields no higher payoff. However, employing a pure strategy such as
consistently choosing rock would prompt the opponent to consistently choose paper upon
observation.

How does one find the mixed strategy Nash equilibrium?
Consider the following two-player normal-form (Table 4.1):

Table 4.1: Two-Player Normal-Form Game

Player 1

Player 2
A B

A (2, 1) (0, 0)
B (0, 0) (1, 2)

The matrix indicates that when Player One and Player Two employ the pure strategy
set (A,A), Player One’s payoff is 2 and Player Two’s payoff is 1. When both adopt the
pure strategy set (B,B), Player One’s payoff is 1 and Player Two’s payoff is 2.

Let Player One’s strategy be π1∗ and Player Two’s strategy be π2∗. The mixed strategy
set (π1∗, π2∗) constitutes a Nash equilibrium. By Definition 4.4, we have

πi∗ (A) + πi∗ (B) = 1, i = 1, 2. (4.20)

From the payoff matrix, Player 1’s payoff is:

r1
(
π1∗, π2∗) = 2π1∗ (A) π2∗(A) + 0× π1∗ (A) π2∗ (B)

+ 0× π1∗ (B) π2∗ (A) + π1∗ (B) π2∗ (B)

= 3π1∗ (A) π2∗ (A)− π1∗ (A)− π2∗ (A) + 1. (4.21)

Similarly, Player 2’s payoff is calculated as:

r2
(
π1∗, π2∗) = 3π1 (A) π2∗ (A)− 2π1∗ (A)− 2π2∗ (A) + 2. (4.22)

By Definition 4.5, we have

3π1∗ (A) π2∗ (A)− π1∗ (A)− π2∗ (A) + 1

⩾ 3π1 (A) π2∗ (A)− π1 (A)− π2∗ (A) + 1, ∀π1 (A) ∈ ∆
(
A1

)
. (4.23)

3π1∗ (A) π2∗ (A)− 2π1∗ (A)− 2π2∗ (A) + 2

⩾ 3π1∗ (A) π2 (A)− 2π1∗ (A)− π2 (A) + 1, ∀π2 (A) ∈ ∆
(
A2

)
. (4.24)

Rearranging yields

π1∗ (A)
(
3π2∗ (A)− 1

)
⩾ π1 (A)

(
3π2∗ (A)− 1

)
, ∀π1 (A) ∈ ∆

(
A1

)
;

π2∗ (A)
(
3π1∗ (A)− 2

)
⩾ π2 (A)

(
3π1∗ (A)− 2

)
, ∀π2 (A) ∈ ∆

(
A2

)
. (4.25)

Here, we consider three distinct scenarios:

1. When [3π2∗ (A)− 1] > 0, π1∗ (A) = 1, yielding the pure strategy set (A,A). Clearly,
both Player 1 and Player 2 are optimally responding to each other. Thus, the pure
strategy set (A,A) constitutes a pure strategy Nash equilibrium.

31

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

4 EMBEDDING NASH EQUILIBRIUM STRATEGIES INTO REINFORCEMENT LEARNING

2. When [3π2∗ (A)− 1] < 0, π1∗ (A) = 0, yielding the pure strategy set (B,B). Clearly,
both Player 1 and Player 2 are each other’s best responses. Thus, the pure strategy
set (B,B) constitutes a pure strategy Nash equilibrium.

3. When [3π2∗(A)− 1] = 0, i.e. π2∗ (A) = 1
3
, we obtain π1∗ (A) = 2

3
, π2∗ (A) = 1

3
. Thus

the mixed-strategy Nash equilibrium is (π1∗, π2∗):

π1∗ (A) =
2

3
, π1∗ (B) =

1

3
;

π2∗ (A) =
1

3
, π2∗ (B) =

2

3
. (4.26)

It is straightforward to verify that π1∗ ∈ b1 (π2∗), π2∗ ∈ b2 (π1∗).
In single-agent scenarios, the strategy for algorithmic improvement is deterministic;

however, in multi-agent systems, mixed strategies are employed. It may seem counterin-
tuitive that optimal strategies can be probabilistic, given that within the framework of
MDP, there always exists a deterministic strategy that is no worse than any probabilistic
one. Yet in multi-agent environments, the uncertainty of opponents’ actions and the need
to prevent opponents from exploiting strategies necessitate that each action be specified
probabilistically.

Having examined both game types and their corresponding strategy approaches, we
shall now address the question of strategy existence.

For a matrix game, a minimax value maxi∈∆(A1) minj∈A2 bij can always be found for
each player, and thus a minimax strategy necessarily exists. Simultaneously, the minimax
theorem indicates that every finite game possesses a mixed Nash equilibrium strategy.

4.3 Markov Game Framework (Markov games)

Within the MDP environment, we understand how an agent interacts with the envi-
ronment and updates its value function. However, to observe opponents and make optimal
decisions, we must transform the original MDP interaction between a single agent and
the environment into a multi-agent interaction with the environment (i.e., whereas the
original MDP framework treats opponents as part of the environment, we now treat op-
ponents as agents and consider their strategies and actions). The framework of Markov
games extends this perspective by generalizing the Markov decision process to scenarios
involving two or more agents.

The Markov game framework constitutes an extension of game theory to MDP envi-
ronments, essentially representing a multi-agent Markov decision process with significant
parallels to MDP. A two-player zero-sum Markov game is formally defined as follows:

The complete framework for a two-player Markov game is formally defined by a specific
septuple: ⟨S,A1, A2, r1, r2, P, γ⟩.

• S denotes the state space; in finite Markov games, this set has a finite number of
elements.

• Ai(s) denotes the action space available to agent i when in state s. In finite Markov
games, each set element has a finite number of elements.

• P (s′ | s, a1, a2) denotes the probability that, in state s, when Agent 1 takes action
a1 ∈ A1 (s), Agent 2 takes action a2 ∈ A2 (s), the transition occurs to state s′.

32

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

4 EMBEDDING NASH EQUILIBRIUM STRATEGIES INTO REINFORCEMENT LEARNING

P : S × A1 × A2 → ∆(S), where ∆ (S) represents the entire set of probability
distributions over the discrete state space S.

• ri (s, a1, a2) denotes the reward obtained by Agent i when Agent 1 takes action
a1 ∈ A1 (s) and Agent 2 takes action a2 ∈ A2 (s) in state s.

ri
(
s, a1, a2

)
= E

[
Rt+1 | St = s, A1

t = a1, A2
t = a2

]
. (4.27)

• γ ∈ [0, 1] denotes the discount rate, indicating the objective of each agent in the
Markov game.

max
π1,π2

Eπ1,π2

[
T∑
t=1

γtri
(
st, a

1
t , a

2
t

)]
, i = 1, 2, (4.28)

where T denotes the time of reaching the terminal state. π1, π2 represents the policy
set for both agents.

The definition of a Markov game closely resembles that of MDP, yet extends from
single-agent to multi-agent environments. Like MDP, each Markov game possesses a set
of non-empty optimal strategies, at least one of which is stationary. Unlike MDP, the
optimal strategy in a Markov game is not necessarily deterministic. Instead, the optimal
strategy is predominantly a mixed strategy.

In multi-agent settings, agents must consider opponents’ strategies alongside their own.
Deterministic policies are vulnerable to exploitation or “second-guessing” by opponents
[31]. Consider the rock-paper-scissors game: consistently choosing rock would prompt
opponents to counter with paper in subsequent rounds, necessitating a mixed strategy
where rock, paper, and scissors are selected with probabilities defined by

(
1
3
, 1
3
, 1
3

)
.

Within the reinforcement learning framework of Markov Decision Processes (MDPs),
a single agent interacts with an environment defined by a transition probability function.
In this solipsistic perspective, another agent is treated as part of the environment, leading
to scant consideration of opponents. The framework of Markov Games addresses this
shortcoming by introducing opponents as distinct agents within the game, each possessing
their own action space and reward function. Consequently, careful consideration of an
opponent’s strategy becomes essential before formulating one’s own.

4.4 Multi-Agent Reinforcement Learning

Q-learning The algorithm can be extended to multi-agent environments based on the
Markov game framework. First, the value function must be redefined for multi-agent sce-
narios. Subsequently, an algorithm for agents to learn these value functions is presented.
Finally, an analysis of the computational complexity and convergence of this algorithm is
conducted.

To accommodate multi-agent settings, the initial step involves recognizing the neces-
sity of considering strategy combinations rather than individual actions. Consequently,
each agent’s action value function should relate to another agent’s actions, transforming
the single-agent Qπ(s, a) into a multi-agent Qi

π(s, a
1, a2). Analogous to Definition 2.1, the

multi-agent value function can be defined as follows:

Definition 4.6 (Multi-agent Value Function) The state value function for an agent
i is

V i
π1,π2 (s) =

∞∑
t=0

γtEπ1,π2

[
ri
(
st, a

1
t , a

2
t

)]
. (4.29)

33

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

4 EMBEDDING NASH EQUILIBRIUM STRATEGIES INTO REINFORCEMENT LEARNING

This represents the expected total reward obtained by agent i when adopting the policy
combination (π1, π2) following state s ∈ S. Here, st denotes the state at time t, ait denotes
the action chosen by agent i at time t according to policy πi, i = 1, 2.

The action value function for agent i is as follows:

Qi
π1,π2

(
s, a1, a2

)
= ri

(
s, a1, a2

)
+ γ

∑
s′∈S

P
(
s′ | s, a1, a2

)
V i
π1,π2 (s′) . (4.30)

It denotes the expected total reward obtained by agent i when, in state s ∈ S, agent
1 selects action a1 ∈ A1(s) and agent 2 selects action a2 ∈ A2(s), subsequently adopting
the policy combination (π1, π2).

Regarding the policy combination (π1, π2), note that unlike MDPs, it denotes a policy
combination encompassing both agents’ policies; unlike matrix games, it fully defines
both agents’ behavioral patterns—specifically, all actions and their probabilities across
every state (In matrix games, a strategy profile is defined as the set of actions and their
probability distributions for all players in a specific state.).

Based on the above description, when updating the action-value function, let |S|
denote the total number of states and |Ai| denote the total number of actions for agent
i. Then, the number of entries Qi needs to maintain is |S| × |A1| × |A2|. Simultaneously,
agents must create two Q-tables to record changes in their own and their opponent’s
value functions. Therefore, the total number of entries each agent needs to maintain is
2 × |S| × |A1| × |A2|. Should one wish to extend single-agent reinforcement learning to
n-agent reinforcement learning in future, the number of entries each player must maintain
is n× |S| × |A|n (assuming that the total number of actions for each agent is |A|). It can
be observed that, in terms of space complexity, the change based on the number of states
is linear, the change based on the number of actions is polynomial, and the change based
on the number of agents is exponential.

We shall now examine reinforcement learning under different scenarios.

1. When there is only one agent, a greedy strategy is employed to maximise self-
interest.

π = arg max
a∈A(s)

Q (s, a) . (4.31)

Qt+1 (s, a) = Qt (s, a) + at

[
Rt + γ max

a∈A(s)
Qt (s, a)−Qt (s, a)

]
. (4.32)

2. When two agents exist and the game is zero-sum, employ the Minmax-Q algorithm
from Littman [6]:

π = arg max
a1∈∆(A1)

min
a2∈A2

Q
(
s, a1, a2

)
. (4.33)

Qt+1

(
s, a1, a2

)
= Qt

(
s, a1, a2

)
+ at

[
Rt + γ max

a1∈∆(A1)
min
a2∈A2

Qt

(
s, a1, a2

)
−Qt

(
s, a1, a2

)]
. (4.34)

The search for maximum and minimum values in each state resembles the general
demonstration in Section 4.1.2, employing linear programming methods. Note that
in the presence of non-unique maxmin strategies, employing a probability distribu-
tion over these strategies maximizes the player’s expected payoff.

34

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

4 EMBEDDING NASH EQUILIBRIUM STRATEGIES INTO REINFORCEMENT LEARNING

3. When two agents exist and the game is general and two-player, the Nash-Q algorithm
from Wellman is employed [7]:

πi = argNashQi
(
s, a1, a2

)
. (4.35)

Qi
t+1

(
s, a1, a2

)
= Qi

t

(
s, a1, a2

)
+ at

[
Rt + γNashQi

(
s, a1, a2

)
−Qi

t

(
s, a1, a2

)]
.

(4.36)

The procedure for finding mixed strategy Nash equilibria in each state is as described
in Section 4.2.2, employing methods for solving systems of linear equations. Zero-sum
games constitute a special case of general-sum games, rendering the Nash-Q algorithm
more universally applicable than the Minmax-Q approach. However, computations in
Section 4.2.2 reveal that a game may harbor multiple Nash equilibria. When one agent
selects one Nash equilibrium as strategy, another agent may opt for a different equilibrium.
This scenario reduces the algorithm’s convergence speed and precision, potentially trap-
ping it in local Nash equilibria–precisely the issue addressed by Wellman when proposing
the Nash-Q algorithm.

35

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

5 Penalty Mechanism and Conver-
gence Analysis

5.1 Insufficient Convergence of the Nash-Q Algorithm in Multi-
Nash Equilibrium and Policy Oscillation in Parking Scenar-
ios

This paper uses a real-world parking scenario to illustrate the shortcomings of the
Nash-Q algorithm when confronting multiple Nash equilibria (Figure 5.1).

0 1 2

3 4 5

6 7 8

Figure 5.1: Schematic Diagram of the Parking Grid Game

Vehicle 1’s parking space is in the top-right corner, while Vehicle 2’s is in the top-left
corner. Both parties aim to park in their designated spaces. This scenario encompasses
all elements of multi-agent reinforcement learning (multiple agents, initial state positions,
actions, state transitions, immediate rewards, and long-term rewards). Each vehicle may
move only one cell at a time, in any of the four cardinal directions: left, right, up,
or down. Should either vehicle attempt to occupy the same cell, excluding their own
designated space, it will be bounced back to its original position. The parking sequence
concludes when either agent reaches their target space, at which point that driver receives
a positive reward.

Thus, the objective is for both parties to reach their respective parking spaces in
the fewest possible steps. One driver’s “victory” does not preclude the other’s success,
incentivizing coordination.

The actions of driver i are: Ai = {up, down, left, right} where i = 1, 2. The state space
is: S = {(0, 1), (0, 2), · · · , (8, 7)}.

s0 = (0, 2) denotes the initial position state that Driver 1 at position 0, Driver 2
at position 2. Upon reaching the target position, a reward of 100 points is granted.
Should a collision occur, a reward of −1 point is awarded, and both parties are bounced
back to their initial positions. In this scenario, the state transitions for both parties are
deterministic. To reflect the drivers’ desire to reach parking spaces as swiftly as possible,
a decay rate of γ = 0.99 is implemented.

It should be noted that when a driver’s strategy depends solely on their position,
assuming this strategy is a pure strategy sequence. this strategy effectively defines a
path—a sequence of positional points from the starting point to the final destination.

36

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

5 PENALTY MECHANISM AND CONVERGENCE ANALYSIS

Two mutually non-interfering shortest paths together constitute a Nash equilibrium, as
each path (strategy) represents the optimal response to the other. That is, the Nash
equilibrium of each driver’s game at every stage forms the Nash equilibrium path for the
entire dynamic stochastic process. Evidently, there are five Nash equilibrium paths for
both drivers at this point, as shown in Figure 5.2.

Figure 5.2: Equilibrium Paths

According to Equation 4.29, the state value function for Driver 1 on any Nash equi-
librium path is v1 (s0) = 0+ 0.99× 0+ 0.992× 0+ 0.993× 100 = 97. At this point, Equa-
tion 4.30 indicates that Driver 1’s action value function Qi

π (s0) is also 97. If both parties
act left and right, Q1 (s0, right, left) = r1(s, right, left) + γ

∑
s′∈S

P (s′ | s, right, left) v1 (s) =

−1 + 0.99v1 (s0) = 95.1.
In this scenario, every Nash equilibrium path is clearly a globally optimal solution,

with the value function being (97, 97), as shown in Table 5.1.

Table 5.1: Theoretical Value Nash-Q under s0

Driver 1

Driver 2
Left Up

Right (95.1, 95.1) (97, 97)
Top (97, 97) (97, 97)

Through experimental simulation of this scenario, the agents simultaneously select
actions at their initial positions (s0 = (0, 2)). Subsequently, they concurrently acquire new
states, their own rewards, and information about the opponent’s actions. The learning
agent updates its action value function according to Equation 4.30. In the new state, both
agents repeat the aforementioned process. When at least one agent moves to the target
position, the game restarts. The learning agent retains the action-value functions acquired
in previous rounds. Training concludes after 5,000 rounds, with each round averaging
approximately 8 steps; thus, a single experiment typically requires 40,000 steps. The grid
game comprises 424 state-action pairs, each visited an average of 95 times. The learning
rate is defined as the reciprocal of the visit count. In the later stages of learning, newly
visited pairs scarcely alter the already learned action value function. After simulating
5000 training iterations, the action value functions of the drivers stabilized, as shown in
the Table 5.2.

37

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

5 PENALTY MECHANISM AND CONVERGENCE ANALYSIS

Table 5.2: Final Action-Value Functions for s0 after Iterative Training

Driver 1

Driver 2
Left Up

Right (86, 87) (83, 85)
Top (94, 91) (95, 95)

It can be observed that Table 5.2 yields results remarkably close to those theoretically
derived in Table 5.1. Consequently, when every Nash equilibrium path constitutes a global
optimum, the Nash-Q algorithm continues to maintain considerable advanced capability.

We can now introduce a more complex scenario. During peak hours, assuming po-
sitions 0 and 2 represent an intersection, upward movement may encounter congestion.
Specifically, when moving from position 0 to 3 or from position 1 to 5, there is a 1/2 prob-
ability of bouncing back to the initial position. In this scenario, state transitions become
non-deterministic. For instance, if Driver 1 and Driver 2 both move upwards, the next
state has four possible outcomes: (0, 2), (0, 5), (3, 2), and (3, 5), each with a probability
of 0.25. If Driver 1 moves upwards while Driver 2 moves leftwards, the probabilities of
reaching the next state are p((0, 1) | (0, 2), up, left) = 0.5, p ((3, 1) | (0, 2) , up, left) = 0.5.
Similarly, if Driver 1 moves right and Driver 2 moves up, the probability of reaching the
next state is p ((1, 2) | (0, 2) , up, left) = 0.5, p ((1, 5) | (0, 2) , right, up) = 0.5. Further-
more, due to peak hour congestion, assume only one parking space is available at position
7. Both drivers compete for this space, with the successful driver receiving a payoff of
100 and the unsuccessful driver receiving 0.

Although the scenario has become more complex, it is evident that the Nash equilib-
rium paths for the drivers are these two.

Figure 5.3: Equilibrium Paths

According to Equation 4.29

v1(0, 1) = 0 + 0.99 + 0.992 × 0 = 0.99;

v1(0, x) = 0, for x = 3, · · · , 8;
v1(1, 2) = 0 + 0.99× 100 = 99;

v1(1, x) = 99, for x = 3, 5;

v1(1, x) = 0, for x = 4, 6, 8. (5.1)

According to Equation 4.30, we have

Q1 (s0, right, left) = −1 + 0.99v1 (s0) ,

Q1 (s0, right, up) = 0 + 0.99

(
1

2
v1(1, 2) +

1

2
v1(1, 3)

)
= 98,

Q1 (s0, up, left) = 0 + 0.99

(
1

2
v1(0, 1) +

1

2
v1(3, 1)

)
= 49,

38

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

5 PENALTY MECHANISM AND CONVERGENCE ANALYSIS

Q1 (s0, up, up) = 0 + 0.99

(
1

4
v1(0, 2) +

1

4
v1(0, 5) +

1

4
v1(3, 2) +

1

4
v1(3, 5)

)
= 0.99v1 (s0) + 49. (5.2)

At the initial state s0, two pure strategy Nash equilibria exist: (right, up) and (up, left).
Adopting the Nash equilibrium strategy (right, up) yields v1π (s0) = 98; adopting (up, left)
yields v1π (s0) = 49. The action-value functions for these strategies s0 are as follows
(Table 5.3 and Table 5.4):

Table 5.3: Theoretical Nash-Q Values under (s0,up, left)

Driver 1

Driver 2
Left Up

Right (47, 96) (98, 49)
Top (49, 98) (61, 73)

Table 5.4: (s0, right,up) Lower Theoretical Nash-Q

Driver 1

Driver 2
Left Upper

Right (96, 47) (98, 49)
Up (49, 98) (93, 61)

There also exists a mixed strategy Nash equilibrium (π1 (s0) , π
2 (s0)), where π

1 (s0) =
{[p (right) = 0.97] , [p (up) = 0.03]} and π2 (s0) = {[p (left) = 0.97] , [p (up) = 0.03]}. The
action-value function for this strategy group s0 is as follows (Table 5.5):

Table 5.5: Theoretical Value of Nash-Q under
(
s0, π1 (s0) , π2 (s0)

)

Driver 1

Driver 2
Left Up

Right (47.87, 47.87) (98, 49)
Top (49, 98) (61.2, 61.2)

It can be observed that the second parking space scenario contains three distinct
sets of Nash-Q values. When multiple Nash equilibria exist, the convergence of learning
becomes problematic. Furthermore, in the initial state phase of the game, none of the
Nash equilibria derived from the above three tables constitutes a globally optimal solution
or a saddle point.

This scenario was similarly simulated through 5000 training iterations. For each state
s, the Nash equilibrium π1 (s) , π2 (s) was derived from the stage game formed by the
learned action-value function (Q1 (s) , Q2 (s)). Subsequently, this solution was compared
with the theoretically derived Nash equilibrium, revealing that the learning process did
not consistently converge towards the Nash equilibrium of the joint strategy (Table 5.6).

Table 5.6: Final Nash-Q Values after Iterative Training of s0

Driver 1

Driver 2
Left Top

Right (39, 84) (97, 51)
Top (46, 93) (59, 74)

39

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

5 PENALTY MECHANISM AND CONVERGENCE ANALYSIS

This outcome appears inevitable, as none of the three Nash equilibria constitutes a
globally optimal solution. Consequently, Driver 1 would prefer to adopt the Nash equi-
librium strategy of ‘(right, up)’ to maximize personal gain, while Driver 2 would favor
‘(up, left)’. Given simultaneous action, Driver 2’s behavior ceases to be the optimal re-
sponse to Driver 1’s move. Thus, the probability of mutual left-side collisions causing
both vehicles to rebound to their original positions increases significantly.

Suppose a road sign could be erected to guide both parties’ actions, or a set of rules
established for them to follow, with non-compliance incurring fines or penalties. This
would inevitably reduce the probability of mutual conflict. Therefore, a penalty mecha-
nism can be designed: when two agents fail to select the same Nash equilibrium strategy,
penalties are imposed to ensure they choose identical Nash equilibria, thereby enhancing
convergence speed and accuracy.

5.2 Penalty Mechanism

This section proposes a new penalty mechanism that guides agents towards a unique,
optimal Nash equilibrium by penalizing parking conflicts. In multi-agent games where
multiple Nash equilibria exist, each equilibrium strategy combination corresponds to dis-
tinct rewards. During learning, it cannot be guaranteed that two agents will select the
same set of Nash equilibria. Hu, Wellman, Littman and Bowling have proposed distinct
conditions aimed at guaranteeing algorithm convergence. Currently, no method exists to
autonomously guide agents towards converging on the same Nash equilibrium. To address
this shortcoming, this paper incorporates a penalty mechanism that compels agents to
select the identical set of Nash equilibrium strategies.

First, we define the multi-agent reinforcement learning framework incorporating the
penalty mechanism.

Environment

Penalty Mechanism Analysis

Reinforcement Learning System

Action

State

Reward

Figure 5.4: Generalized Markov Game Framework

Figure 5.4 depicts the defined generalized Markov game framework, composed of the
tuple

〈
S,A1, A2, r1

′
, r2

′
, P, γ

〉
, where

ri′
(
s, a1, a2, s′

)
= ri + F . (5.3)

ri denotes the original reward function, and F represents the penalty mechanism function.
The above diagram bears some resemblance to Figure 2.2, differing in that figure depicts
an interaction between a single agent and the environment, whereas this reinforcement
learning system involves two agents. Furthermore, the state is transmitted back to the
agents while also being fed into the penalty mechanism analysis. This analysis determines
whether the agents have selected the same Nash equilibrium strategy; if not, a penalty is
imposed. The selection of which Nash equilibrium and the specific penalty are as follows:

40

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

5 PENALTY MECHANISM AND CONVERGENCE ANALYSIS

Under the penalty mechanism, the two agents must engage in mutual negotiation.
First, all Nash equilibria are solved. This paper employs the Lemmke-Hauser method
to compute Nash equilibria, which generates fixed-order equilibrium solutions [32]. Let
agents 1 and 2 respectively compute all Nash equilibria as negotiation strategies πim, i =
1, 2,m = 1, . . . ,M , where M denotes the number of Nash equilibria.

After computing all Nash equilibria, a target Nash equilibrium must be identified
according to specific rules. These rules may be flexible and adaptable, tailored to the
actual scenario.

To maximize the overall payoff for both parties, the target Nash equilibrium πig may
be defined as:

πig = argmax
π

[
Q1

π1j

(
s, a1, a2

)
+Q2

π2j

(
s, a1, a2

)]
πij ∈ πim, (5.4)

namely, selecting the strategy that maximizes the sum of the Q values for agents 1 and 2.
If the objective is to minimize the disparity in payoffs between the two parties, the

target Nash equilibrium πig can be defined as:

πig = argmin
π

∣∣Q1
π1j

(
s, a1, a2

)
−Q2

π2j

(
s, a1, a2

)∣∣ πij ∈ πim, (5.5)

that is, selecting the strategy that minimizes the absolute difference between the Q values
of agents 1 and 2.

Consider again the car-parking scenario from the previous section. The value functions
corresponding to the two pure Nash equilibrium paths are perfectly symmetrical. In this
case, to ensure fairness for both drivers, a time-series approach can be adopted for the
target Nash equilibrium. Thus, when the hour hand is on an odd hour, the first Nash
equilibrium is employed, and when on an even hour, the second is used. In practical terms,
this functions like traffic lights: running a red light incurs a fine for rule-breaking. The
penalty reduces both parties’ willingness to break the rules in subsequent rounds—that is,
their inclination to deviate from the target Nash equilibrium—thereby steering behavior
towards the desired equilibrium.

Here, the penalty function F imposes sanctions based on state. After calculating the
target Nash equilibrium strategy, the state transition function is used to compute the
probabilities of each state in the next moment under this strategy. These probabilities
are recorded in to establish the penalty mechanism for this game phase. Should a state
in the next moment not appear in this table—meaning its probability derived from the
target Nash equilibrium transition is zero—a penalty is incurred.

Note that due to the state transition function, an agent may deviate from the target
Nash equilibrium. However, if the state after the action still satisfies the post-Nash
equilibrium states, no penalty is incurred. Yet, with sufficiently numerous trials, the Law
of Large Numbers dictates that agents deviating from the target Nash equilibrium will
invariably incur penalties of varying severity.

F
(
s, a1, a2, s′

)
= γφ (s′)− φ(s). (5.6)

The transition from state s to s’ reveals the strategies of both parties. If this strategy
is the target policy, set φ (s′) = 0; otherwise, set φ (s′) = −1. It can be observed that
the penalty mechanism function, like the reward function, undergoes temporal jumps,
necessitating the inclusion of γ.

41

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

5 PENALTY MECHANISM AND CONVERGENCE ANALYSIS

5.3 Proof of Convergence Invariance

5.3.1 Proof of Optimal Strategy Invariance

Theorem 5.1 (Optimal-Policy Invariance) The Nash equilibrium strategy remains
unchanged under the penalty mechanism:

πi∗
M ′(s) = πi∗

M(s), ∀s ∈ S.

Proof The optimal strategy within the Markov game framework M will also be the
optimal strategy within the generalized Markov game framework M ′ incorporating the
penalty mechanism.

Regarding the model M , Hu and Wellman have proven that in two-player general-sum
games, the Nash-Q F value function Qi

M
∗
satisfies the bellman equation.

Qi∗

M

(
s, a1, a2

)
= E

[
ri
(
s, a1, a2, s′

)
+ γ NashQi∗

M

(
s′, a′

′
, a2′

)]
. (5.7)

Subtracting φ (s) from both sides and applying the identity transformation γφ (s′) to
the right-hand side,

Qi∗
M

(
s, a1, a2

)
− φ(s)

= E
[
ri
(
s, a1, a2, s′

)
+ γφ (s′)− φ(s) + γ

(
NashQi∗

M

(
s′, a1

′
, a2′

)
− φ (s′)

)]
. (5.8)

Definition 5.1
Qi

M ′

(
s, a1, a2

)
≜ Qi∗

M

(
s, a1, a2

)
− φ(s). (5.9)

Substituting Equation 5.6 and Equation 5.9 into Equation 5.8 yields

Qi
M ′

(
s, a1, a2

)
= E

[
ri
(
s, a1, a2

)
+ F

(
s, a1, a2, s′

)
+ γ

(
NashQi

M

(
s′, a1′, a2′

))]
= E

[
ri′

(
s, a1, a2, s′

)
+ γ

(
NashQi

M

(
s′, a1′, a2′

))]
. (5.10)

Equation 5.10 precisely corresponds to the bellman equation of the M ′ model.
The Nash equilibrium strategy πi∗

M for the agent i in the model M ′ must satisfy the
following equation:

πi∗
M ′ = NashQi∗

M ′

(
s′, a1, a2

)
, (5.11)

where Qi∗
M ′ is the value function Q of the Nash equilibrium strategy in the model M ′.

Substituting into Definition 5.1,

πi∗
M ′ = NashQi∗

M ′

(
s, a1, a2

)
= Nash

[
Qi∗

M

(
s, a1, a2

)
− φ(s)

]
= NashQi∗

M

(
s′, a1, a2

)
= πi∗

M . (5.12)

Therefore, the Nash equilibrium strategy in the M ′ model will also be the Nash equi-
librium strategy in the M model. Introducing a penalty mechanism does not alter the
original strategy selection.

42

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

5 PENALTY MECHANISM AND CONVERGENCE ANALYSIS

5.3.2 Proof of Iterative Convergence for Action Value Functions

The convergence of the Nash-Q algorithm prior to incorporating the penalty mech-
anism has been demonstrated by Hu and Wellman [7]. We now prove that the Nash-Q
algorithm remains convergent after adding the penalty mechanism function.

Theorem 5.2 (Penalty-Mechanism Convergence Invariance) ∀L ⩾ 0 and ∀i,
there ∃t ⩾ 0 such that the iterates produced by the penalized Nash–Q update satisfy

Qi∗
M ′(s, a1, a2)− L ⩽ Qi

M ′
t+1

(s, a1, a2) ⩽ Qi∗
M ′(s, a1, a2) + L.

Proof For the Markov game framework model M , assuming the existence of a value iter-
ation operator B (Q) for Q that is a convergent operator, prove that under the generalized
Markov game framework model M’, the value iteration operator Q is also convergent.

Definition 5.2 In the algorithm Nash-Q, the state value function of the Nash equilibrium
strategy for player i is given by

V i∗
M (s) = max

a1,a2
Qi∗

M

(
s, a1, a2

)
. (5.13)

It is readily apparent that

V i∗

M ′(s) = V i∗

M (s)− φ(s). (5.14)

For the Markov game framework model M , if Qi
t+1 (s, a

1, a2) = BQi
t (s, a

1, a2) holds,
then

max
i,s,a1,a2

∣∣Qi
t+1

(
s, a1, a2

)
−Qi∗

M

(
s, a1, a2

)∣∣ ⩽ a max
i,s,a1,a2

∣∣Qi
t

(
s, a1, a2

)
−Qi∗

M

(
s, a1, a2

)∣∣ ,
(5.15)

where 0 < a < 1
Let L = maxi,s,a1,a2 |Qi

t (s, a
1, a2)−Qi∗

M (s, a1, a2)|, then ∀i, ∀ (s, a1, a2) we have

Qi∗
M

(
s, a1, a2

)
− L ⩽ Qi

t

(
s, a1, a2

)
⩽ Qi∗

M

(
s, a1, a2

)
+ L. (5.16)

For the model M

Qi
t+1

(
s, a1, a2

)
= ri

(
s, a1, a2

)
+ γ

∑
s′∈S

P
(
s′ | s, a1, a2

)
V i
t (s

′) . (5.17)

Subtract φ(s) from both sides of the above equation, and perform an identical trans-
formation on the right-hand side

Qi
t+1

(
s, a1, a2

)
− φ(s)

= ri
(
s, a1, a2

)
+ γφ (s′)− φ(s) + γ

∑
s′∈S

P
(
s′ | s, a1, a2

)
V i
t (s

′)− γφ (s′)

⩽ ri′
(
s, a1, a2, s′

)
+ γ

∑
s′∈S

P
(
s′ | s, a1, a2

) [
V i∗

M (s′) + L
]
− γφ (s′)

⩽ ri′
(
s, a1, a2, s′

)
+ γ

∑
s′∈S

P
(
s′ | s, a1, a2

) [
V i∗

M (s′)− φ (s′)
]
+ γL. (5.18)

43

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

5 PENALTY MECHANISM AND CONVERGENCE ANALYSIS

Equation 5.18 may be rewritten as

Qi
t+1

(
s, a1, a2

)
− φ(s)

= ri
(
s, a1, a2

)
+ F

(
s, a1, a2, s′

)
+ γ

∑
s′∈S

P
(
s′ | s, a1, a2

) [
V i
t (s

′)− φ (s′)
]

= ri
′ (
s, a1, a2, s′

)
+ γ

∑
s′∈S

P
(
s′ | s, a1, a2

) [
V i
t (s

′)− φ (s′)
]
. (5.19)

Definition 5.3
Qi

M ′
t+1

(
s, a1, a2

)
≜ Qi

t+1

(
s, a1, a2

)
− φ(s), (5.20)

V i
M ′

t+1
(s) ≜ V i

t+1(s)− φ(s). (5.21)

Substituting Equation 5.19 and Equation 5.21 into Equation 5.20 yields

Qi
M ′

t+1

(
s, a1, a2

)
= ri′

(
s, a1, a2, s′

)
+ γ

∑
s′∈S

P
(
s′ | s, a1, a2

) [
V i
M ′t (s

′)
]
. (5.22)

This precisely satisfies the equation update rule Bellman within the generalized Markov
game framework model M ′.

Substituting Equation 5.20 and Equation 5.14 into Equation 5.18 yields

Qi
M ′

t+1

(
s, a1, a2

)
⩽ ri′

(
s, a1, a2, s′

)
+ γ

∑
s′∈S

P
(
s′ | s, a1, a2

) [
V i∗
M ′ (s)

]
+ γL. (5.23)

Thus, Qi
M ′

t+1
(s, a1, a2) ⩽ Qi∗

M ′ (s, a1, a2) + L holds. Similarly, Qi
M ′

t+1
(s, a1, a2) ⩾

Qi∗
M ′ (s, a1, a2) − L can be proven to hold. Therefore, employing a penalty mechanism

function within the M ′ model still satisfies the iterative update rule of the Bellman equa-
tion, whilst ensuring this iterative approach is also convergent.

5.4 Summary of this Chapter

This chapter employs a real-world parking scenario to explore the Nash-Q algorithm’s
convergence limitations and strategy oscillation issues within multiple Nash equilibria.
Firstly, in a simplified scenario featuring a single globally optimal Nash equilibrium, ex-
perimental results demonstrate the Nash-Q algorithm’s stable convergence to the theo-
retically optimal solution, validating its effectiveness under ideal conditions. However,
when scenarios become more complex—featuring multiple Nash equilibria without a sin-
gle globally optimal solution—the limitations of the Nash-Q algorithm become apparent.
As each agent seeks to maximize its own interests, they fail to coordinate autonomously
and reach consensus. Consequently, they become trapped in policy oscillations during
the learning process, unable to converge to any joint optimal strategy. To address this
shortcoming, this chapter proposes a novel penalty mechanism. This mechanism compels
agents to achieve consensus and act collaboratively during learning by penalizing behav-
ior deviating from the “target Nash equilibrium”. Theoretical analysis demonstrates that
this penalty mechanism not only effectively guides agent behavior but also preserves the
convergence and optimal strategy selection of the original Nash-Q algorithm. The intro-
duction of this penalty mechanism offers new insights for applying the Nash-Q algorithm
in complex multi-agent environments. In the next chapter, we shall conduct specific
experiments to further validate the significant improvements in convergence speed and
stability achieved by incorporating the penalty mechanism.

44

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

6 Game Experiments and Data Anal-
ysis

This chapter designs a grid-based randomized two-player game simulating the scenario
where two motorists seek to park their vehicles in their respective garages. Employing
a multi-agent reinforcement learning approach based on Markov games for training, the
Nash equilibrium strategy is utilized. Experimental comparisons are conducted using
both the standard Nash-Q algorithm and the Nash-Q algorithm with the incorporated
penalty mechanism. This chapter first introduces the experimental environment, followed
by a detailed explanation of the game specifics and experimental results.

6.1 Experimental Environment

All code development and execution for the experiments in this chapter were conducted
on the Ubuntu 20.04 operating system. This Linux-based system, primarily designed for
desktop applications, has become the preferred choice for machine learning programming
due to its ease and efficiency in fields such as deep learning. The server hardware con-
figuration comprises an AMD Ryzen 7 4800H processor with 512GB RAM, meeting the
requirements for experimental operations.

6.2 Parking Grid Game

To validate the convergence properties of the Nash-Q algorithm proposed in Chapter
5 under multiple Nash equilibria, this section designs a two-player grid parking game.
This game simulates the scenario of two motorists parking during peak hours. Its core
lies in creating multiple Nash equilibria to observe the algorithm’s convergence behavior
and verify the effectiveness of the penalty mechanism. It can adapt to training multi-
agent reinforcement learning based on Markov games without loss of generality. The
game diagram is shown in Figure 5.1. The game unfolds on a 3× 3 grid with two players:
Player One and Player Two. Player One may move either upwards or to the right, while
Player Two may move either upwards or to the left. Moving upwards incurs resistance;
whenever a player selects an upward move, there is a 0.5 probability of failure, causing
them to remain stationary.

Should a player attempt to move to a position already occupied by another player,
they shall remain stationary and refrain from executing the action. A player is deemed
to have reached the end point when Player One moves to the upper-right parking point
or Player Two moves to the upper-left parking point; that player shall cease movement.
The game concludes when both players reach their respective treasure points, after which
player positions are reset as depicted in Figure 5.1.

This game can be described using a Markov game. A Markov Decision Process (MDP)
is defined as a quintuple comprising a state space S, an action space A, a transition prob-
ability matrix P , a reward function r, and a discount rate γ. This quintuple describes

45

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

6 GAME EXPERIMENTS AND DATA ANALYSIS

the interaction between a single agent and an environment defined by the state transition
probability function, wherein other agents are treated solely as components of the envi-
ronment. The Markov game extends this limitation to enable multi-agent interaction or
competition. Its general form comprises a state space S, a set of action spaces A1, · · · , Ak,
representing the action spaces available to each agent, a state transition probability matrix
P , a reward function ri , denoting the reward for the i-th agent, and a decay coefficient γ.
In the Markov game constituted by this game, the state set S comprises A2

9 = 72 states,
representing the positions of both agents within the grid. The action set A1 = {r, u},
A2 = {l, u} denotes Player One’s rightward and upward actions, and Player Two’s left-
ward and upward actions respectively. Should an agent’s intended destination be occupied
by another agent, the action is not executed, with the state transition probability P = 0.
If an agent is already at a grid edge position and executing an action would cause it to
move off the grid, the action is also not executed, with a state transition probability of
P = 0. When either agent selects the upward action, its state transition probability is
P = 0.5. The transition probability for all other states is P = 1. The reward when an
agent finds the treasure is r = 1; the reward when an agent collides with another agent
is r = −1; and the reward in all other cases is R = 0. Let the decay coefficient be
γ = 0.9, causing agents to ignore rewards after too many rounds, thereby incentivizing
them to find the treasure as quickly as possible. The two-agent random game effectively
characterizes the features of Markov games without loss of generality. Though simple, it
possesses characteristics such as multi-agent information exchange, state transitions, and
action selection typical of Markov games. All experiments conducted in the remainder of
this chapter are based on the aforementioned game.

6.3 Nash Equilibrium Strategy

Let the value function for state s ∈ S be denoted as V (s), representing the expected fu-
ture reward when the agent is in state s. Introducing the action set A1, A2, let Q (s, a1, a2)
denote the expected reward when both agents are in state s and choose actions a1, a2 re-
spectively, where a1 ∈ A1(s), a2 ∈ A2(s), s ∈ S. For an agent, the probability distribution
of its action selection is termed a strategy π. Different strategies yield distinct Q values,
expressed as:

Qπ(s, a
1, a2) = Eπ

[
Gt|St = s, A1

t = a1, A2
t = a2

]
. (6.1)

The process of estimating the Qπ value corresponding to a predicted policy π is termed
policy evaluation. The policy evaluation method is illustrated in Table 6.1. When n = 1,
only the immediate reward for this action is considered, while subsequent rewards are
predicted using the Q(st+1) value of the next state. This policy evaluation method is
known as the TD(0) (time-difference). This prediction method enables the value function
to be updated in real-time, thereby avoiding actions that may degrade the value function.
Consequently, it is widely employed. This experimental study will utilize this policy
evaluation method.

For reinforcement learning algorithms, the ultimate objective of training an agent is
to discover the optimal policy (π∗). Action selection based on this optimal policy further
yields the optimal value function (Q∗(s, a1, a2)). Consequently, selecting the appropriate
policy iteration method is paramount. This chapter introduces the Nash equilibrium
policy to guide the agent’s action selection. First, we introduce the concepts of pure and
mixed strategies. For an agent, if its action selection is guided by a strategy to choose a
specific action, this strategy is termed a pure strategy. For instance, both Q-learning and

46

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

6 GAME EXPERIMENTS AND DATA ANALYSIS

Minimax algorithms belong to pure strategy approaches. Conversely, if strategy π does
not select a single action but rather represents a probability distribution over a sequence
of actions:

π = {p1, · · · , pk},
k∑

n=1

pi = 1, (6.2)

where p1, · · · , pk represents the probability of selecting action a1, · · · , ak respectively.
For this game, when in state s, Player One and Player Two’s Q values Q1, Q2 are

represented by a 2× 2 matrix as shown in Table 6.1, where “u” denotes “up”, “l” denotes
“left”, and “r” denotes “right”.

Table 6.1: Q-values Representing Intentions

Driver 1

Driver 2
u l

u
(
Q1

1, Q
2
1

) (
Q1

2, Q
2
2

)
r

(
Q1

3, Q
2
3

)
(Q1

4, Q
2
4)

Let the policy set be π = {π1, π2}, where π1, π2 denote the policies of Player One and
Player Two respectively. The rewards for Player One and Player Two are expressed as:

r1 (π1, π2) = π1(u)π2(u)Q
1
1 + π1(u)π2(l)Q

1
2 + π1(r)π2(u)Q

1
3 + π1(r)π2(l)Q

1
4

r2 (π1, π2) = π1(u)π2(u)Q
2
1 + π1(u)π2(l)Q

2
2 + π1(r)π2(u)Q

2
3 + π1(r)π2(l)Q

2
4. (6.3)

According to the definition of Nash equilibrium strategies, there exists a strategy set
π∗ = {π∗

1, π
∗
2} such that the payoff function attains its maximum value, namely, ∀π1, π2,

we have r1(π∗
1, π

∗
2) ≥ r1(π1, π

∗
2), r

2(π∗
1, π

∗
2) ≥ r1(π∗

1, π2). Substituting into Equation 6.3
yields:

π∗
1(u)

(
Q1

2 −Q1
4

)
+ π∗

2(u)
(
Q1

3 −Q1
4

)
+
(
Q1

1 +Q1
4 −Q1

2 −Q1
3

)
π∗
1(u)π

∗
2(u)

⩾ π1(u)
(
Q1

2 −Q1
4

)
+ π∗

2(u)
(
Q1

3 −Q1
4

)
+
(
Q1

1 +Q1
4 −Q1

2 −Q1
3

)
π1(u)π

∗
2(u). (6.4)

π∗
1(u)

(
Q2

2 −Q2
4

)
+ π∗

2(u)
(
Q2

3 −Q2
4

)
+
(
Q2

1 +Q2
4 −Q2

2 −Q2
3

)
π∗
1(u)π

∗
2(u)

⩾ π∗
1(u)

(
Q2

2 −Q2
4

)
+ π2(u)

(
Q2

3 −Q2
4

)
+
(
Q2

1 +Q2
4 −Q2

2 −Q2
3

)
π∗
1(u)π2(u). (6.5)

Rearranging yields:

π∗
1(u)

[(
Q1

2 −Q1
4

)
+
(
Q1

1 +Q1
4 −Q1

2 −Q1
3

)
π∗
2(u)

]
⩾ π1(u)

[(
Q1

2 −Q1
4

)
+
(
Q1

1 +Q1
4 −Q1

2 −Q1
3

)
π∗
2(u)

]
. (6.6)

π∗
2(u)

[(
Q2

3 −Q2
4

)
+
(
Q2

1 +Q2
4 −Q2

2 −Q2
3

)
π∗
1(u)

]
⩾ π2(u)

[(
Q2

3 −Q2
4

)
+
(
Q2

1 +Q2
4 −Q2

2 −Q2
3

)
π∗
1(u)

]
. (6.7)

Therefore, only when the strategy set {π∗
1, π

∗
2} simultaneously satisfies both inequali-

ties is it termed a Nash equilibrium strategy. Evidently, multiple Nash equilibrium strate-
gies may exist, potentially including mixed-strategy Nash equilibria and pure-strategy

Nash equilibria. If 0 <
Q1

4−Q1
2

Q1
1+Q1

4−Q1
2−Q1

3
< 1 and 0 <

Q2
4−Q2

3

Q2
1+Q2

4−Q2
2−Q2

3
< 1 hold, and we set:

π∗
2(u) =

Q1
4 −Q1

2

Q1
1 +Q1

4 −Q1
2 −Q1

3

, π∗
2(l) = 1− π∗

2(u);

47

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

6 GAME EXPERIMENTS AND DATA ANALYSIS

π∗
2(u) =

Q2
4 −Q2

3

Q2
1 +Q2

4 −Q2
2 −Q2

3

, π∗
1(r) = 1− π∗

1(u). (6.8)

then both inequalities are satisfied simultaneously, yielding a mixed-strategy Nash equi-
librium. If π∗

2(u) = 0, consider the value of Q1
2 − Q1

4. If this value is greater than 0, set
π∗
1(u) = 1 and substitute into the second inequality for verification. If both are satisfied,

a pure-strategy Nash equilibrium is obtained; if not, attempt other possible solutions. In
summary, for different values of Q, one or more Nash equilibrium strategies may exist.
During actual experimentation, the agent must evaluate the current Q value to deter-
mine and execute the Nash equilibrium strategy. The subsequent section will present the
specific experimental process and results analysis.

6.4 Experimental Results

Although the Nash-Q algorithm proves effective in simple scenarios, in complex sce-
narios with multiple Nash equilibria, the still exhibits issues such as step count fluctu-
ations and deadlocks, consistent with the theoretical analysis in Section 5. To validate
the practical effectiveness of the Nash equilibrium strategy, this paper conducts empirical
verification. Both players adopt Nash equilibrium strategies. To prevent them from be-
coming trapped in local optima and ceasing exploration of other viable solutions, a greedy
coefficient ε = 0.1 is set. The game undergoes 1000 training iterations, with observation
of scores and moves per game.

Experiments revealed that when both players reach the positions depicted in Fig-
ure 6.1, their conflicting actions cause the game to enter an infinite loop. Consequently,
if the game persists beyond 30 rounds without resolution, it is deemed a deadlock. A
‘death’ variable is introduced to record the frequency of such deadlocks.

Figure 6.1: Deadlock Scenario

Upon program execution, if no collision occurs between the two agents, no points are
deducted; each collision results in a 1-point deduction. The deduction pattern over the
first 500 iterations is illustrated in Figure 6.2. As iterations increase, the frequency of
point deductions markedly decreases, ultimately converging towards zero, demonstrating
the algorithm’s efficacy. Discontinuous points indicate deadlock states, whose number
also significantly diminishes with increasing iterations.

48

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

6 GAME EXPERIMENTS AND DATA ANALYSIS

0

-1

-2

-3

-4

-5 score

0 100 200 300 400 500

Iterations

Sc
or

e

Figure 6.2: Score Diagram

To observe post-training outcomes, two agents adopting Nash equilibrium strategies
underwent 1000 iterations of training. Subsequently, these trained agents were tested
across 100 games to examine scoring performance and steps per game. The results are
shown in Figure 6.3. It can be seen that the scores have converged, and the number of steps
taken per game has stabilized within 10 steps. The algorithm is effective and performs well
in this game. During the 1000 iterations, there were 96 deadlock situations, accounting
for less than 10% of the total games. The agent’s performance meets expectations.

10

0

0 20 40 60 80 100

step
score

Round

St
ep

Sc
or

e

2

4

6

8

12

14

16

10

0

2

4

6

8

12

14

16

18 18

Figure 6.3: Agent Test Results

Although the number of steps has largely converged, occasional “peaks” still occur.
Some games concluded after 17 steps, and isolated instances of score deductions were
observed. The following analysis examines these outcomes.

Firstly, this stems from the game mechanics. Since collisions between agents yield a
reward of r = −1, while discovering treasure grants r = 1, both affected by decay rates,
agents tend to adopt conservative collision-avoidance strategies rather than aggressive
treasure-seeking approaches. This explains why score convergence outperforms move-
count convergence.

Secondly, to enhance game difficulty and demonstrate Nash equilibrium advantages,
upward movement traps were introduced. This forces agents to balance avoiding upward
actions with preventing lateral collision collisions, increasing randomness in per-game
move counts. As the upward transition probability P = 0.5, move counts only exhibit
approximate convergence without stabilizing at a fixed value. Attempting to remove this

49

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

6 GAME EXPERIMENTS AND DATA ANALYSIS

constraint by setting the upward transition probability to P = 1 yields test results as
shown in Figure 6.4, where the number of steps clearly converges.

score

Iterations

St
ep

6

5

4

0 20 40 60 80 100

Figure 6.4: Step Count Test

Finally, inherent flaws within Nash equilibrium strategies may occasionally cause scor-
ing deductions and step count fluctuations. As noted earlier, multiple Nash equilibrium
strategies may exist under identical conditions. When both agents obtain Nash equi-
librium strategies and multiple options are available, they will randomly select one to
execute. Consequently, the strategy sets employed by each agent may differ, leading to
mismatches. This situation not only leads to point deductions and high move counts but
also increases the deadlock rate. For instance, when the game reaches the scenario de-
picted in Figure 6.5, two Nash equilibrium pure strategy sets may exist: π = {0, 1}, {1, 0}.
This occurs when Player 1 chooses to move right while Player 2 moves up, or when Player
2 chooses to move left while Player 1 moves up. Should both players select different Nash
equilibrium pure strategy sets, this may result in reduced reward values or a deadlock
scenario. For instance, if Player One adopts the first Nash equilibrium strategy set while
Player Two adopts the second, both agents will move upwards. If this movement suc-
ceeds, the game progresses to the state depicted in Figure 6.5, where neither agent can
reach their respective treasure locations, thus entering a deadlock. Conversely, should
Player One select the second Nash equilibrium strategy while Player Two chooses the
first, the two agents will collide, incurring unnecessary penalty points. This demonstrates
the critical importance of facilitating information exchange between the two agents to
ensure they select the same Nash equilibrium strategy set.

Figure 6.5: Analysis of Game Scenario

To address this mismatch in strategy selection, a penalty mechanism has been intro-
duced. In addition to the reward function used during value function updates, a penalty

50

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

6 GAME EXPERIMENTS AND DATA ANALYSIS

function is applied during Nash equilibrium strategy group selection. Should two agents
select the same Nash equilibrium strategy group (where the target Nash equilibrium is
set according to the principle of maximizing the sum of value functions), then r

′
= 0.

Otherwise, r
′
= −1. The operational results following the introduction of this heuristic

reward mechanism are illustrated in Figure 6.6.

step
score

Round

St
ep

Sc
or

e

12

10

8

6

4

2

0

12

10

8

6

4

2

0

12

10

8

6

4

2

0

0 20 40 60 80 100

Figure 6.6: Test Results with Heuristic Reward Introduction

It is evident that the algorithm significantly outperforms that in Figure 6.3. Scoring
has fully converged without deductions, with smaller fluctuations in steps per game and
no instances exceeding 13 steps. Moreover, across 1000 game iterations, death = 44, rep-
resenting a reduction of over half in deadlock rates compared to the unmodified algorithm.
This marked improvement demonstrates the effectiveness of the reward mechanism.

In real-world parking scenarios, deadlock signifies mutual obstruction between vehicles.
The average move count represents the time cost incurred by both drivers. This experi-
ment demonstrates that even with a relatively low penalty function value F (s, a1, a2, s′),
the probability of deadlock can still be halved. Furthermore, the average time spent by
both drivers is reduced 20% − 30%, thereby enhancing the parking experience for both
parties. Although unproven, one might conceive that setting a larger penalty function
value F (s, a1, a2, s′) would reduce the deadlock probability to zero, with the number of
steps converging to four in the later learning phase. This would strictly enforce both
parties to follow the target Nash equilibrium path, yet partially contradicts the original
intent of allowing agents to learn and explore autonomously.

In summary, this chapter’s parking game experiments introduced multi-agent rein-
forcement learning based on Nash equilibrium strategies into a two-player randomized
game, achieving the anticipated results that validate the effectiveness of Nash equilibrium
strategies. Furthermore, a Nash equilibrium strategy incorporating a penalty mechanism
was proposed. Compared to the original results, this approach demonstrated improved
convergence in the players’ total number of steps, proving the rationality of introducing
a reward mechanism and verifying the theoretical component.

51

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

7 Summary and Outlook

7.1 Innovations, Contributions, and Limitations of This Re-
search

This research addresses the instability and slow convergence of the Nash-Q algorithm
when confronting multiple Nash equilibria within a multi-agent reinforcement learning
Markov game framework. It proposes a generalized Markov game framework. This frame-
work incorporates additional steps for computing the target Nash equilibrium and penal-
izing the value function (where the equilibrium itself serves as the target Nash equilibrium
if only one exists). It demonstrates that penalizing the value function does not alter the
convergence properties of the original Nash-Q algorithm’s value function and policy. It is
conceivable that even when faced with multiple Nash equilibria where the Nash-Q algo-
rithm fails to converge, the penalty function can incentivize agents to preferentially select
the designated target Nash equilibrium. Although unproven, in such scenarios, provided
all agents employ the Nash-Q algorithm with penalty mechanisms and appropriately cal-
ibrated penalty parameters, convergence to the target Nash equilibrium is assured.

To validate the algorithm’s practical efficacy, this paper designed a two-player park-
ing simulation experiment. Experimental results demonstrate that in complex multi-Nash
equilibrium scenarios, while the original Nash-Q algorithm achieves respectable outcomes,
performance improves significantly when agents employ the improved algorithm with
penalty mechanisms. Specifically, traffic congestion probability for both parties decreases
by over half, with time costs reduced by 20 − 30%. This effectively resolves strategy
oscillation issues, rendering agent behavior more coordinated and efficient.

Limitations of this work: For this scenario, the Nash-Q algorithm requires maintaining
two Q tables to track value function changes for both agents and opponents. The number
of entries to manage is |S| × |A1| × |A2|. Additionally, calculating Nash equilibria based
on stage-based games imposes computational demands far exceeding those of single-agent
reinforcement learning Q-learning. Generalized Markov games further require calculating
the target Nash equilibrium from multiple Nash equilibria based on specified conditions,
whilst establishing entries to record all possible transitions to the next state using the
target Nash equilibrium within this phase, incurring penalties if the next state is not
within these entries. Consequently, this algorithm demands substantial computational
power and proves difficult to generalize to n agents, where both space and computational
complexity grow exponentially with the number of agents.

7.2 Outlook

Future research should explore the following two directions:

1. The selection of the target Nash equilibrium is customizable based on scenario and
requirements. For instance, in a parking game, to prevent either party’s parking
experience from being significantly worsened, the target Nash equilibrium could be

52

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

7 SUMMARY AND OUTLOOK

set as:
πig = argmaxmin

π

∣∣Qi
π1j

(
s, a1, s2

)∣∣ (7.1)

If maximizing the combined experience of both parties is desired, the target Nash
equilibrium could be set as:

πig = argmax
π

[
Q1

π1j

(
s, a1, a2

)
+Q2

π2j

(
s, a1, a2

)]
(7.2)

However, such target Nash equilibrium settings rely on subjective judgments without
quantified theoretical criteria. Subsequent research should therefore engage in more
rigorous discussion, ideally developing adaptive configuration methods for different
game scenarios.

2. Similarly, the parameterization of the penalty function is also subjective. It is hoped
that, upon obtaining the Q tables for both parties, penalty values can be adaptively
determined for this specific game. When single-agent reinforcement learning en-
counters multi-agent scenarios, the Q-learning algorithm treats other agents as part
of the environment. While computationally efficient, this approach clearly fails
to meet the strategic demands of complex situations, leading to the emergence of
multi-agent reinforcement learning within Markov games. The Nash-Q algorithm
within multi-agent Markov games records other players’ information and actions
while seeking Nash equilibrium solutions at each stage. However, the presence of
multiple Nash equilibria introduces uncertainty into agents’ choices, diminishing
both convergence speed and accuracy. The generalized Markov game incorporating
penalty mechanisms addresses this bottleneck, though it introduces new challenges
in computational demands and processing speed. Subjectivity remains unavoidable
in both target Nash equilibrium selection and penalty function design. Nevertheless,
this algorithm delivers stable strategies for more complex games while enhancing
convergence speed.

53

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

References

[1] J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior: 60th Anniversary
Commemorative Edition, 60th ed. Princeton: Princeton University Press, 2007, with introduction
by Harold W. Kuhn and afterword by Ariel Rubinstein.

[2] B. V. Bowden, Faster than thought. Pitman, 1953.

[3] J. Bronowski, The Ascent of Man. BBC Books, 2011, originally published 1973.

[4] M. Campbell, A. J. Hoane, and F.-h. Hsu, “Deep blue,” Artificial Intelligence, vol. 134, no. 1-2, pp.
57–83, 2002.

[5] J. Van der Wal, “Discounted markov games: Generalized policy iteration method,” Journal of
Optimization Theory and Applications, vol. 25, no. 1, pp. 125–138, 1978.

[6] M. L. Littman, “Markov games as a framework for multi-agent reinforcement learning,” in Machine
learning proceedings 1994. Elsevier, 1994, pp. 157–163.

[7] J. Hu and M. P. Wellman, “Nash q-learning for general-sum stochastic games,” Journal of Machine
Learning Research, vol. 4, pp. 1039–1069, 2003, submitted 11/01; Revised 10/02; Published 11/03.

[8] J. Hu, M. P. Wellman et al., “Multiagent reinforcement learning: theoretical framework and an
algorithm.” in ICML, vol. 98, 1998, pp. 242–250.

[9] J. Schaeffer and J. van den Herik, “Games, computers, and artificial intelligence,” Artificial Intelli-
gence, vol. 134, no. 1-2, pp. 1–7, 2002.

[10] H. J. Berliner, “Backgammon computer program beats world champion,” Artificial Intelligence,
vol. 14, pp. 205–220, 1980, reprinted in: D.N.L. Levy (ed.), Computer Games I, Springer-Verlag,
1988.

[11] D. Fudenberg and J. Tirole, Game Theory. Cambridge, MA: MIT Press, 1991.

[12] F. Thuijsman, “Optimality and equilibria in stochastic games,” Ph.D. dissertation, Maastricht Uni-
versity, jan 1989.

[13] M. Tan, “Multi-agent reinforcement learning: Independent vs. cooperative agents,” in Proceedings
of the Tenth International Conference on Machine Learning, P. E. Utgoff, Ed. Amherst, MA, USA:
Morgan Kaufmann Publishers Inc., 1993, pp. 330–337.

[14] M. A. Wiering et al., “Multi-agent reinforcement learning for traffic light control,” in Machine
Learning: Proceedings of the Seventeenth International Conference (ICML’2000), 2000, pp. 1151–
1158.

[15] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, multi-agent, reinforcement learning for
autonomous driving,” arXiv preprint arXiv:1610.03295, 2016.

[16] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi, R. Pow-
ell, T. Ewalds, P. Georgiev et al., “Grandmaster level in starcraft ii using multi-agent reinforcement
learning,” nature, vol. 575, no. 7782, pp. 350–354, 2019.

[17] L. Qing, L. Zhijun, and L. Tiansheng, “Multi-agent reinforcement learning in complex environ-
ments,” Journal of Shanghai Jiaotong University, vol. 36, no. 3, pp. 302–305, 2002.

[18] G. Gu, Y. Zhong, and R. Zhang, “A new multi-agent reinforcement learning algorithm and its
application to multi-robot cooperation tasks,” Robot, vol. 25, no. 4, pp. 344–348, 2003, in Chinese.

[19] H. Hu, “Research and implementation on multi-agent reinforcement learning,” Master’s Thesis,
Beijing University of Posts and Telecommunications, 2021, in Chinese.

54

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

REFERENCES

[20] H. Wang, “Research on train dispatching method based on multi-agent reinforcement learning,”
Master’s Thesis, Heilongjiang University, 2021, in Chinese.

[21] Q. Sun, “Research of multi-agent cooperation mechanism based on reinforcement learning,” Master’s
Thesis, Zhejiang University of Technology, 2015, in Chinese.

[22] X. Bai, “Research and application of reinforcement learning in multi-agent collaboration,” Master’s
Thesis, University of Electronic Science and Technology of China, 2020, in Chinese.

[23] P. Ye, X. Jia, X. Yang, and C. Niu, “Multi-agent reinforcement learning for edge-cloud collaborative
offloading in vehicular networks,” Computer Engineering, vol. 47, no. 4, pp. 13–20, 2021, in Chinese.

[24] R. Zhang, G. Gu, Z. Liu, and X. Wang, “Reinforcement learning theory, algorithms and its appli-
cation,” Control Theory and Applications, vol. 17, no. 5, pp. 637–642, 2000, in Chinese.

[25] Z.-H. Zhao, Y. Gao, B. Luo, and S.-F. Chen, “Reinforcement learning technology in multi-agent
system,” Computer Science, vol. 31, no. 3, 2004, in Chinese.

[26] L. Quan, Z. Jianwei, Z. Zongchang, Z. Shan, Z. Qian, Z. Peng, and X. Jin, “A survey of deep
reinforcement learning,” Chinese Journal of Computers, vol. 41, no. 1, pp. 1–27, 2018.

[27] W. Yang, L. Zhang, and F. Zhu, “Multi-agent reinforcement learning based traffic signal control for
integrated urban network: survey of state of art,” Application Research of Computers, vol. 35, no. 6,
pp. 1613–1618, 2018, in Chinese.

[28] M. L. Puterman, “Markov decision processes,” Handbooks in operations research and management
science, vol. 2, pp. 331–434, 1990.

[29] D. Fudenberg and D. K. Levine, The Theory of Learning in Games, ser. Economic Learning and
Social Evolution. The MIT Press, 1998, paperback edition.

[30] D. F. Labaree, Someone Has to Fail: The Zero-Sum Game of Public Schooling. Harvard University
Press, April 2012, first edition.

[31] P. Murphy, “The limits of symmetry: A game theory approach to symmetric and asymmetric public
relations,” Public Relations Research Annual, vol. 3, no. 1-4, pp. 115–131, 1991.

[32] R. W. Cottle, J.-S. Pang, and R. E. Stone, The Linear Complementarity Problem. Society for
Industrial and Applied Mathematics, 2009.

55

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

Acknowledgments

My first encounter with strategic thinking came from mathematics and informatics
competitions in junior high school. Problems about “winning strategies” in math contests
and greedy algorithms in informatics training showed me how local choices can shape
global outcomes. These experiences planted the seed for my later study of game theory.

In the second semester of Grade 10, inspired by these early experiences, I decided to
explore this field more systematically. It was the classic scenarios in game theory—such
as the individual rationality leading to collective loss in the Prisoner’s Dilemma, the coor-
dination challenge in the Battle of the Sexes, and the free-rider problem in the Boxed Pigs
Game—that deepened my fascination with strategic decision-making. Coincidentally, I
observed a real-world instance of such interactions in my own community: multiple drivers
competing for limited parking spaces, resulting in wasted time and widespread dissatis-
faction. This everyday scene mirrored those classic models and solidified my interest in
studying multi-agent decision-making systematically.

Through extended reading, I became fascinated by the intersection of game theory and
multi-agent systems. A course project on reinforcement learning further revealed the limi-
tations of classical algorithms in multi-agent settings, where individual optimization often
leads to collective inefficiency. This gap between single-agent methods and multi-agent
realities sparked the idea of using game-theoretic equilibria to improve coordination. I be-
came convinced that this was not merely contest problem-solving but meaningful scientific
research, and I gradually narrowed my focus to multi-agent reinforcement learning—which
eventually evolved into the topic of this paper.

During the Ross Mathematics Program, I attended several lectures on mathematics
and game theory given by Professor Jim Fowler and counselor Blaze Okonogi-Neth. In
private conversations, both were generous with their time and encouraged me to continue
my investigation, offering valuable perspectives at the early stage. They also helped me
brainstorm directions when my initial plan was too broad. For example, Professor Fowler
pointed out that my original design might be too large to carry out and suggested that I
narrow it down. This advice was important when I restructured my research and focused
on the Nash-Q penalty mechanism.

I am especially grateful to Ms. Lingyun Chang, my high-school mathematics teacher.
Her guidance was essential at key moments. She discussed topic selection with me, helping
me think about scope and feasibility. She suggested testing my ideas through computer
simulation and gave insights that strengthened the convergence analysis. In the process,
she helped me identify the Nash-Q penalty as a useful framework, but I built the environ-
ment, set up the model, proved the results, and connected the pieces myself. She also read
my drafts, gave comments on how to highlight the main contributions, and encouraged
me to refine the analysis in later sections. She advised me on how to explain why my
adjustments from the original, overly ambitious idea still kept the project meaningful.
These suggestions helped me present the work more clearly and to academic standards.
Her steady encouragement was a great source of motivation throughout this journey.

The source of the topic came from my own daily observation, while most parts of

56

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

REFERENCES

this paper—including the idea, theory development, algorithm design, simulations, and
writing—were completed independently. The only exception was that my teacher guided
me in recognizing the Nash-Q penalty module, though its refinement and final use were
completed independently. During the course of this research, I ran into some tough
challenges. My first plan was to solve the convergence issue of Nash-Q in a very general
Markov game framework, but the scope was too broad to complete. Under Ms. Chang’s
advice, I scaled down the project but kept the key theoretical contributions. At times,
I also struggled to connect the theory with applications. Ms. Chang suggested that the
“wasteful parking” example could serve as a good scenario, and this made my abstract
ideas easier to understand.

I thank all teachers and friends who helped me along the way. The following list is
complete to the best of my knowledge and is ordered alphabetically by last name:

Lingyun Chang, Jim Fowler, Yisai Gao, Caiying Huang, Blaze Okonogi-Neth, Ying
Shang, Wenrui Xie.

I apologize for any unintentional omissions.
The guidance and encouragement I received from everyone named above were offered

freely and without any form of compensation.
Finally, I am grateful to the S.-T. Yau High School Science Award for providing a

platform for this work, and to everyone who supported me during its preparation.

57

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示

	Abstract
	Contents
	Introduction
	Background and Significance
	Related Work
	Reinforcement Learning
	Multi-Agent Reinforcement Learning and Game Theory

	Modeling the Community Parking Resource Allocation Problem
	Main Research Content and Organizational Structure

	Theoretical Frameworks in Reinforcement Learning
	Reinforcement Learning
	Markov Decision Processes (MDPs)
	Value Function and Optimal Policy
	Significance of the Value Function
	Bellman Equations for Value Functions and Optimal Policy

	Game-Theoretic Analysis in Parking Scenarios
	Safe Strategy and Conflict Equilibrium
	Mixed Strategy Nash Equilibrium and Efficiency Enhancement

	Strategy Evaluation and Improvement
	Summary of This Chapter

	Algorithms of Reinforcement Learning
	Monte Carlo Update Method (MC Method)
	Monte Carlo Algorithm (MC Algorithm)
	The Core Principle of the MC Algorithm

	Temporal Difference Method (TD(0)-based Update Approach)
	Conceptual Framework of the Temporal Difference Method
	Q-learning Algorithm

	Summary of This Chapter

	Embedding Nash Equilibrium Strategies into Reinforcement Learning
	Two-Player Zero-Sum Games
	Matrix Games
	Min-Max Strategy

	Two-Person Normal-Form Games
	Two-Player Randomized Game
	Mixed Strategy Nash Equilibrium

	Markov Game Framework (Markov games)
	Multi-Agent Reinforcement Learning

	Penalty Mechanism and Convergence Analysis
	Insufficient Convergence of the Nash-Q Algorithm in Multi-Nash Equilibrium and Policy Oscillation in Parking Scenarios
	Penalty Mechanism
	Proof of Convergence Invariance
	Proof of Optimal Strategy Invariance
	Proof of Iterative Convergence for Action Value Functions

	Summary of this Chapter

	Game Experiments and Data Analysis
	Experimental Environment
	Parking Grid Game
	Nash Equilibrium Strategy
	Experimental Results

	Summary and Outlook
	Innovations, Contributions, and Limitations of This Research
	Outlook

	References
	Acknowledgments

