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Abstract

We construct, for any diarget > 0, a subset of a Euclideanspace with Haus-
dorff dimension diarget. The fractional partiisirealized by a linear, symmetric
two-strip Smale horseshoe on [0, 1]? with.expansion/A >.2/(horizontal contrac-
tion 1/)), C'**smoothed off the invariant set; in this model the invariant set
has dimension D(\) = 2In2/In A, a continuous, strictly decreasing map with
range (0,2). The integer part follows.from dim (A x [0,1]") = dimg(A) + n.
We briefly recall the needed tools and give explic¢it-examples.
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1 Introduction

In classical Euclidean geometry, the dimension of a set is a nom-negative integer,
adequately describing smooth subsets, polyhedra, and otheriregular objects. How-
ever, sets generated by iterative processes in dynamical systems; such as invariant
sets under specific maps, often exhibit intricate.self-similar or self-affine structures
that defy integer-dimensional classification. These sets; characterized by scaling be-
haviors across multiple scales, necessitate a generalized motion of dimension that
can take non-integer values. While some dynamical systems may produce integer-
dimensional sets, such as periodic orbits, our focus'is on complex sets with fractal
properties. The development of fractal geometry and geometric measure theory pro-
vides a rigorous framework to, assign real-valued dimensions to such sets, enabling
precise quantification of their complexity. in'metric spaces.

The foundation for generalized dimensions was established by Hausdorff in his
seminal 1918 paper [3], introducing Hausdorff measure and dimension. By defining
a measure based on coverings with. sets of arbitrary diameter, Hausdorff formalized
fractional dimensionsfor any setin’a.metric space. This framework, refined by Abram
Besicovitch and others, is sometimes called the Hausdorff-Besicovitch dimension [2].
Initially theoretical euriosities, non-integer dimensional sets gained prominence with
dynamical systems theoty, which provided systematic mechanisms for their genera-
tion.

[n1967, Smale’s survey outlined the horseshoe mechanism: a surface diffeomor-
phism that stretches, folds, and re-inserts a rectangle to create a totally disconnected
hyperbolic invariant set (a “horseshoe”) [10]. This provided a clean bridge between
chaotic dynamics and fractal geometry. In parallel, dissipative models with so-called
strange attractors—notably the Hénon map and the Lorenz flow—motivated quan-
titative notions of complexity via fractal dimensions; here rigorous results primarily
concern existence (e.g., [1] for Hénon; [11] for Lorenz), while most reported dimension
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values are numerical or refer to non-Hausdorff notions. The Kaplan—Yorke formula
[5] is a widely used conjectural estimate from Lyapunov exponents. By contrast;
for uniformly hyperbolic sets such as horseshoes, thermodynamic formalism_yields
rigorous formulas: on surfaces, Mané proved the additivity

dimy(A) = d* + d*,

where d*/" are given by pressure equations [6, 13]. In our linear two-strip model this
reduces to d* = d* =1In2/In \.

To construct sets with higher dimensions, the behavior of Hausdorff-dimension
under Cartesian products is essential. Classical results, going, back-to Marstrand,
provide bounds rather than a general identity: for Borel (or.analytic) sets A C R™
and B C R",

dimg(Ax B) > dimg(A)+dimg(B) and dimg(Ax B)~< dimg(A)+dimp(B),

see Falconer [2, Ch. 7, Product formulae 7.2<7:3]; cf. [7]. Equality need not hold
in general. However, since dimy([0,1]"*) = dimg(]0, 1]")-=n, Falconer [2, Cor. 7.4]
yields the identity dimg(A x [0,1]") =.dimg(A) 4+ n, which is the only product
case we will use (formalized below as- Theorem 2.8 and Corollary 2.9). In parallel,
Moran and Hutchinson formalized the dimension of self-similar sets via the Moran—
Hutchinson equation under the open set condition’[4, 8]. These tools enable precise
dimension computations in dynamieal and geometric contexts.

This paper synthesizes these.concepts to constructively prove that any positive
real number diarger > 0 can be the Hausdorff dimension of a set in a metric space. The
main theorem (Theorem 3:2).decomposes.diarget into an integer part n = | diarget | and
a fractional part dg,. € [031). The fractional part is realized by tuning the expansion
parameter of a Smale horseshoe map; whose invariant set’s dimension is a continuous
function on (0, 2)~«(Proposition’3.1). The integer part is contributed by a Euclidean
hypercube [0,71]".0 The final set, formed as their Cartesian product, has its dimension
verified by“the.product rule (Theorem 2.8). Explicit examples for dimensions like
V2, 7, and a near-boundary case are provided, alongside a discussion of alternative
dynamical generators, emphasizing the horseshoe’s simplicity and explicit parameter
dependence.

This paper is organized as follows. Section 2 reviews the essential concepts of
Hausdorff ' measure, dimension, self-similar sets, and the Smale horseshoe map. Sec-
tion 3 presents the main theorem, proving the tunability of the horseshoe’s invariant
set dimension and constructing sets with arbitrary positive dimensions. Section 4
provides explicit constructions for specific dimensions, including typical non-integer
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and near-boundary cases. Section 5 discusses alternative fractal generators and po-
tential extensions, highlighting the method’s modularity and future research direc-
tions.

2 Preliminaries

This section reviews the essential concepts from geometric measure theory and dy-
namical systems that underpin the main construction of this paper. We introduce
the definitions and key results for Hausdorff measure and dimension, the dimension
theory of self-similar sets generated by iterative maps, and/the. Smale horseshoe map
with its hyperbolic invariant set. These tools provide the mathematical framework to
construct sets with arbitrary positive real Hausdorff dimensions: The primary refer-
ence for standard definitions and results is the comprehensive textbook by Falconer

[2].

2.1 Hausdorff Measure and Dimension

Hausdorff measure and dimension give a.rigorous way to assign real-valued dimen-
sions to sets in metric spaces, including invariant sets;in dynamical systems.

Definition 2.1 (Hausdorff outer measure). Let S C R*, d > 0, and § > 0. The
d-approzimate d-dimensional Hausdorff outer measure is

#j(S) = int{ f: (diam U5)™: S C G U, diam U <6 }.
=1

i=1

The d-dimensional*Hausdorff measure is

HUS) = sup HE(S) = lim HI(S).
§>0 340

We use the unnormalized Version (no dimensional constants), which does not affect

the value of the Hausdorft dimension.

The definition above is standard in fractal geometry. Alternative formulations,
such as the spherical Hausdorff measure, include a normalizing constant (e.g., ¢ =
742 /T(d/2+1)) to align with Lebesgue measure in integer dimensions. Since this pa-
per focuses on Hausdorff dimension, where constant factors do not affect the critical
exponent, the simpler form suffices.
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Definition 2.2 (Hausdorff dimension). The Hausdorff dimension of S is the thresh-
old at which the Hausdorff measure drops from oo to 0:

dimg(S) = inf{d > 0: H*S) =0} =sup{d >0: HS) = oc}.

These definitions allow non-integer dimensions for sets such as Cantor-like invari-
ant sets generated by hyperbolic maps. For example, countable sets have dimyg = 0;
whereas any n-dimensional set with positive Lebesgue measure in R™ has dimyg'= n.

2.2 Dimension of Self-Similar and Product Sets

To compute the Hausdorff dimension of fractal sets generated by iterativeuanaps, such
as the invariant set of the Smale horseshoe, we rely on the theory. of self-similar sets.
This framework, pioneered by Moran and formalized by Hutchinson, provides explicit
formulas for dimensions under specific conditions-{4,"8]. We first. define self-similar
sets and present a key result for their dimension calculation.

Definition 2.3 (Box-counting dimensions). Let B C R¥bebounded and let N(F, ¢)
denote the minimal number of closed balls‘of radius £ needed to cover E. The upper
and lower boz-counting dimensions (also called Minkowski dimensions) are

S log N(E log N(E
dimp(FE) = lim sup log N(Fie) ’8), dim g (F) = lim inf log N(E, ¢) 78).
o log(l/e) =0 log(1/e)
If the two coincide we write dimpg(F) for their common value. Always dimpy(E) <
dimg(F) < dimg(FE).
Definition 2.4 (Packing measure.and.packing dimension). Let E C R*, s > 0,
0 > 0. Define the packing premeasure

P5(F) = sup { Z (diam B;)” : {B; = B(x;, p;)} pairwise disjoint closed balls, z; € E, p; < (5},

where diam.B; = 2p;.
Put P§(E) = lims=o P;(E) and define the s-dimensional packing measure

P(E) = inf { N PiE): EC UEJ}.
J J
The packing dimension is
dimp(E) = inf{s: P*(E) =0} =sup{s: P*(F) = oo}.
References: Falconer [2, §3.4, egs. (3.22)—(3.25)].
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Definition 2.5. A set E C R is self-similar if it is the unique non-empty compact
set satisfying F = Ul]\il Si(E), where each S; : R¥ — R* is a contracting similatity
with scaling ratio r; € (0,1).

The dimension of such sets can be determined under a geometric constraint.
The following proposition, named after [4, 8], provides a precise formula when the
similarities satisfy a separation condition.

Proposition 2.6 (Moran-Hutchinson formula under the open set condition (OSC)).
Let E = JY, Si(E) be a self-similar set generated by contra¢ting similarities with
ratios r; € (0,1). If the open set condition (OSC) holds (i.e., there exists an open set
O C R* such that JY, S;(0) € O with disjoint images), thé Hausdorff dimension
dimp (E) = d is the unique solution to the Moran-Hutchifison equation’S_ 0 rd = 1.

i=1"1
If all ratios are equal, r; = r, then d = lnl’(fll% 7

Proposition 2.7 (OSC self-similar sets: equality of dimernisions). Let £ C R* be a
self-similar set generated by similarities with ratios r; € (0, 1) satistying the open set
condition (OSC), and let s be the unique solution of 3 %= 1. Then

dimpy(F) = dimg(E) = dimp(E) = dimz(E) = s,

and moreover 0 < H*(FE) < oo.

References: Falconer [2, Ch, 9, Thm. 9.3,egs. (9.9),(9.11)]; see also Hutchinson [4,
§5.2].

This result is critical fortanalyzing-the Smale horseshoe’s invariant set, which
decomposes locally inte self-similar. Cantor sets along stable and unstable direc-
tions. To construct sets with higher dimensions, we need a mechanism to combine
lower-dimensional components. The following theorem, a standard result in fractal
geometry, addresses the dimension of Cartesian products.

Theorem 2.8 (Produet bounds). Let A C R™ and B C R" be Borel (or analytic)
sets. Then

References: Falconer [2, Ch. 7, Product formulae 7.2-7.3].

Corollary 2.9. For any set A C R™ and any integer n > 0,
dimpy (A x [0,1]") = dimpy(A) + n.
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Proof. By Theorem 2.8,

dimy (A x [0,1]") > dimg(A) 4+ dimg([0,1]") = dimg(A) + n.
For the upper bound, Theorem 2.8 gives

dimg (A x [0,1]") < dimg(A) + dimp([0,1]") = dimg(A)=+ n

since dimp ([0, 1]") = n. Hence equality holds.
References: Falconer [2, Ch. 7, Product formulae 7.2-7.3, Cor.;7.4].
]

Proposition 2.10 (Product additivity for OSC self-similar Cantorsets). Let C,, C
R (i = 1,2) be two-map self-similar Cantor sets, with+common ratios r; € (0, 1)
satisfying the open set condition. Then

In2
dimyy (Cy, x C,) = dimp (C) +dimy (C), | iy (Cr) = (‘11 o
Proof. By the Moran-Hutchinson formulasand Proposition 2.7, each C,, satisfies
dimy(C,,) = dimg(C,,) = m(lil% For arbitraryBorel(or analytic) sets A, B one has

the general product bounds (Falconer.2; Ch. 7, Product formulae 7.2-7.3]):

Applying these with A = C,jand B =.C,, and using dimp(C,,) = dimy(C,,) gives
dimg (C,, x C,,) < dimy(C,,)+dim g (C,,). Together with the lower bound we obtain
equality.

References: product bounds — Falconer [2, Ch. 7, Product formulae 7.2-7.3];
equality for OSC self-similar sets #— Falconer [2, Ch. 9, Thm. 9.3].

O]
Corollary 2.11. As ry,r5€ (0, %) vary, the map

B In2 . In2
CIn(1/r)  In(1/ry)

(7”177'2) — dlmH(Cr1 X CTQ)

is continuous with range (0, 2).
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2.3 The Smale Horseshoe and the Invariant Set

The Smale horseshoe map, a cornerstone of hyperbolic dynamical systems, provides
the primary mechanism for generating fractal sets in our construction. Its invariant
set, characterized by a Cantor-like structure, serves as a tunable fractal component
whose Hausdorff dimension can be precisely controlled. We first define the horseshoe
map and its action on a compact region.

Definition 2.12. The Smale horseshoe map f : S — S is a diffeomorphism on-a
compact region S C R? (e.g., the unit square [0, 1]?). It stretches S"in one direction
(typically vertical) with expansion factor A > 1, contracts.in~another. (typically
horizontal) with factor u € (0,1), and folds the resulting set back intoyS. For a
symmetric linear horseshoe with N = 2 strips, we set(p.="1/A\.

This map’s hyperbolic dynamics generate a complex invariant set under iteration.
The next definition formalizes this set, which i§ critical for our dimension-tuning
strategy.

Definition 2.13. The invariant set A of the Smale  horseshoe map f is the set of
points that remain in S under all forward and backward iterations:

A= (1) F5(S):

keZ

For a hyperbolic horseshoe, A‘is a.Cantor. set with a local product structure, home-
omorphic in a neighborhood te the Cartesian product of two Cantor sets C; and C,,
in the stable (contracting) and unstable (expanding) directions, respectively.

Standing assumptions (H) for the model horseshoe. We fix the square S =
[0,1]? and conmsider & (piecewise affine) two-strip horseshoe fy : S — S with vertical
expansion A > 2 and horizontal contraction = 1/\ < %, such that:

(H1) fA(S) N S is the disjoint union of two vertical rectangles Vi, Vi C S, each of
width p and height 1, whose horizontal projections are [0, u] and [1 — p, 1];
hence the strips are strictly disjoint (equivalently, with r := = 1/X, 2r < 1,
ie. A>2).

(H2) f71(S)AS is the disjoint union of two horizontal rectangles Hy, H; C S, each of
height i and width 1, with vertical projections [0, u] and [1—p, 1] (equivalently,
2 <1 with r =1/), ie. A > 2).
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x4 )

N S
f f

Figure 1: A geometric illustration of the Smale Horseshoe map. The map”f stretches,
contracts, and folds a square, while the inverse map f~! pérforms the reverse op-
eration, revealing the fractal structure. (Credit: XaosBits, licensed under FAL.
Source: Wikimedia Commons, https://commons:wikimedia.org/w/index.php?
curid=9034592)

(H3) (Smoothing supported off the dnvariant set) There exists an open neighbor-
hood U C S of the hyperbolie§et A, and-a Ot diffeomorphism fy defined
on a neighborhood of S such that: (i) fx = f\ on U (hence, on Ay and a
neighborhood of it the dynamics and derivatives coincide with those of the
piecewise-affine model fA); (ii) outside U we replace the corners of fr by a
O smoothing that folds thé elongated image back into S without creating
overlaps across the two-Markov branches. In particular, the two-branch Markov
structure and the derivative data'relevant to the invariant set are unchanged.

(H4) The hyperbolic invariantset Ay = (5 f(S) is a saddle-type horseshoe with
local produet structure:

Remark 2.14 (Parameter regime). For the one-dimensional slice IFS on (0,1) the
open set condition alreadyholds for A > 2 (equivalently r = 1/A < 1); see Lemma 2.16(i).
In the two-dimensional horseshoe, however, we shall work throughout with A > 2

so that the two-branch rectangles in (H1)—-(H2) are strictly separated (i.e., 2r < 1),
avoiding boundary contact at A = 2 and yielding a clean two-symbol Markov par-
tition. This choice is geometric; the slice-IFS OSC at A = 2 is not needed in our
construction.

Lemma 2.15 (Smoothing off Ay preserves slice IFS and pressure data). Under (H1),


https://commons.wikimedia.org/w/index.php?curid=9034592
https://commons.wikimedia.org/w/index.php?curid=9034592
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(H2), (H3), we have fy = f\ on a neighborhood U O A,. Consequently, the one-
dimensional first-return maps on local stable/unstable foliations of A, coincide with
those of the piecewise-affine model f \, yvielding the same two-map similarity IES with
common ratio r = 1/ and the same open set condition. Equivalently, the Holder
potentials ¢* = log | D fx|ps| and ¢* = log || D fx|g«|| on A, agree with_those of fxs
hence the associated pressures are identical.

Proof. By (H3), f\ = fx on an open neighborhood U of A,. AllNoeal (un)stable
plaques and their first-return maps are contained in U. Thereforethe induced-slice
dynamics, the two similarity maps with ratio r = 1/, the' open set condition, and
the thermodynamic potentials restricted to A, are exactly/those of fi [

Lemma 2.16 (OSC for slice IFS and the role of the’strict gap). Tiet r = 1/A.
Consider the two-map IFS on (0, 1) given by Sy(z).= ra=and S, (z) =rz + (1 —r).

(i) (Slice IFS & OSC) For r < 1 (equivalently A > 2) we have Sy(O), 51(0) C O
and Sp(0) N S1(0) = @ with O = (0, 1), so the open sét condition holds. In
particular, at r = % the two images ate the digjoint open intervals (0,%) and

1 2
(57 1)

(ii) (Strict gap for a 2D horseshoe) T6 Obtain a two-branch horseshoe in
S = [0,1]* with disjoint Markov' rectangles (a strictly positive separation),
we impose 2r < 1, i.e. A >"2. This ensures a clean symbolic dynamics and

uniform hyperbolicity on.the invariant'set. Hence, throughout the paper we
work under A > 2.

Proof. For the slice IFSitake O =.(051). Then Sy(O) = (0,r) and S;(0) = (1 —r,1)
are disjoint open intervals whenéver < % (equivalently A > 2), so the OSC holds;
at r = % they meetionly at # = % in the closure, not in O. For the two-dimensional
horseshoe, (H1)#(H2) ensure the two branch rectangles are strictly disjoint precisely
when 2r < 1(i.e.*A > 2), which yields a clean Markov partition and uniform hy-
perbolicity; henee throughout we assume A > 2 for the 2D model, even though the

slice-IES OSC already holds at A\ = 2. ]

The local product structure of A is a key feature. In the general C1** surface case,
Mané [6] proved the additivity dimgy(A) = d° +d*, where d®, d" are given by pressure
equationsdrom thermodynamic formalism. In our linear symmetric two-strip model,
each slice is self-similar, so the formula reduces to dimgy (A) = dimgy (Cy) +dimg(C,,).
This‘property, combined with the parameter dependence of A, enables the precise
tuning.of dimy(A) in our main proof, as detailed in Section 3.
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3 Main Result and Constructive Proof

With the foundational tools from geometric measure theory and dynamical-systems
established in Section 2, we now present the core results of this paper. Our objective
is to construct sets with any positive real Hausdorff dimension through a.systematie
approach. The key insight is to leverage the Smale horseshoe map as a tunable fractal
generator, producing an invariant set whose dimension can be precisely controlled
within the interval (0, 2). This fractal component is then combined with a Euclidean
component via the Cartesian product to achieve the desired dimension. We begin
by proving the tunability of the horseshoe’s invariant set dimension, followed by the
main theorem constructing sets for arbitrary positive dimensions.

3.1 Tunability of the Horseshoe Invariant Set Dimension

We establish that the Smale horseshoe map can'generate ‘an invariant set with any
Hausdorff dimension in (0,2) by adjusting its expansion,parameter. This result is
pivotal for constructing the fractal compenent, required.- by, the main theorem.

Proposition 3.1. Under the standing assumptions (H) for a linear, symmetric two-
strip horseshoe with A > 2 and p ="1/\ < %, the invariant set A, of the C'*@
diffeomorphism f) satisfies

21n2
In\°

Consequently, for any dg.¢ €.(0, 2)-there exists A = 4!/9mc > 2 such that dimy(Ay) =
dfrac-

Proof. Consider the.linear,’symmetric two-strip family {f\} on S = [0,1]? under
(H1)-(H2) with'\ >2 andy =1/ < 3. By (H3) we take a C'** diffeomorphism
fx that coineides with £y on arfieighborhood of Ay; hence, by Lemma 2.15, the slice
IFS (two similarities-with ratio » = 1/)) and the OSC are unchanged on A,.

The invariant set A is’hyperbolic with local product structure (e.g. [9, Thm. 4.3]),
and fy i$.C'"*. By Mané’s additivity on surfaces [6], dimg(Ay) = ds + d,,, and by
Lemma 2.15 together with Proposition 2.6 the stable/unstable slice dimensions are

dg=d, =122¢ Hetice D(\) = 212,
By Lemma 2.16 and Lemma 2.15, both stable/unstable slices are two-map self-
similarssets with common ratio r = 1/ satisfying the OSC, so by Proposition 2.6

we'compute d; = dimpy(C;) and d, = dimg(C,).
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(1). Stable Dimension (d;): The set Cy is formed by N = 2 similarities of
common ratio r = 1/\ < %; hence, by Proposition 2.6,

~ InN  In2
CIn(1/r)  InX

ds = dlmH<Cs)

(2). Unstable Dimension (d,): Similarly,

InN In2

dy = dimy(Co) = In(1/r) BTN

Summing the dimensions, we obtain the total dimension as a function of \:

In2 In2 2102
D p— P— pr— %
O\) ds + du In A + In\ In A

Continuity. Since In ) is continuous and strictly positive on (2, 00), the map A —

- is continuous there. Hence D(X) = 21In 2 (lm'A)~*is continuous on (2, c0).

Monotonicity. A direct derivative computation shows

d /2Iln2 2In?2
DY) = (555) = - A>2
=G0 X <0 (A>2)
so D is strictly decreasing on (2;c0)-
Range. The endpoint limits are
. 2In 2 ) 2In2
/\ligl+ DNG In2 2 ,\IEEOD(A) oo 0.

Because the domain (2;00) is open, the value 2 is not attained (only approached as
A — 2F), and 0 is only a limit as A — oo. Combining the strict monotonicity with
these limits yields

D((2,00)) = (0,2).

Since we adopt A > 2 for strict separation (Remark 2.14), the value 2 is not
attained and.only appears in the limit A — 2%,
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Solving for )\ (existence and uniqueness). Given any target dg.. € (0,2),
the intermediate value theorem and strict monotonicity imply there exists a unigue
Ao € (2,00) such that D(X\g) = dgac. Solving

2In2 I\ 2In2
rac — 7\ — n -
! In )\0 0 dfrac

2In2

= )\ozeXp< ) = feby ea

frac

Note that dga. < 2 implies Ao > 41/2 = 2, so indeed Ay € (2,00), and.as dgae~> 0F
we have Ay — 00.

Therefore, for this Ay the horseshoe map f,, yields aninvariant set Ay, with
dimpg(Ay,) = dgac. Moreover, by the branch-preserving smoothing condition (H3)
together with Lemma 2.15, the slice IFS and their ¢ontraction ratior = 1/\ are
unchanged by smoothing near the two branches; hence the above formula for D(\)
coincides with that of the piecewise-affine model and.is unaffected by the smoothing
step. This completes the proof.

[

3.2 Construction of Any Positive Real Hausdorff Dimension

Having established the tunability of the Smale horseshoe’s invariant set dimension in
Proposition 3.1, we now construet.a set with'any positive real Hausdorff dimension.
The proof combines the fractal component. from the horseshoe with a Euclidean
component via the Cartesian product; leveraging the dimension product rule.

Theorem 3.2. For any positive Teal number diaget > 0, there exists a set S such
that its Hausdorft dimension satisfies dimy (S) = diarget-

Proof. Let diarger> O.be the desired Hausdorff dimension. We construct the set S in
four explicit steps.

(1). Dimension Decomposition: Decompose diarget into its integer part n =
| dtarget ] and fractional\part/dyac = diarget — 1. By definition, n > 0 is an integer, and
dac €0, 1):

(2). Fractal Component: Construct a set M C R? with dimg (M) = dgac-
(2.1). If dae = 0, let M = {p} C R? be a singleton, so dimz(M) = 0 by the
definition‘of Hausdorff dimension. (2.2). If dgac € (0,1), note that (0,1) C (0,2).
By Proposition 3.1, there exists a Smale horseshoe map f, with invariant set M =
Ay @'R? such that dimy (M) = dgac, achieved by setting A = 41/direc,
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(3). Integer Component: Construct a set £ C R” with dimy(F) =n. (3.1).
Ifn=0,let E={q} C R be a singleton (where R® denotes a point), so dimg (B)=
0. In this case, S = M x E = M. (3.2). If n > 0, let £ = [0,1]" C.R", the
n-dimensional unit hypercube, with dimy(E) = n (cf. [2]).

(4). Combination and Verification: Define the final set S = M x-E C R*™
By Corollary 2.9 with F = [0, 1], the Hausdorff dimension is:

dlmH<S) = dlmH(M) + dlmH(E) = dfpac + 1 = dtarget-

This construction produces a set S with the desired dimension, completing the
proof.

O

The embedding space R?>™ ensures the Cartesian product is, well-defined, but its
dimension does not affect dimg(.S). Alternative embeddings or choices of M and FE
may alter topological properties, as discussed in-Seetion 5.

4 Examples

To illustrate the constructive proof of Theorem 3.2, this section provides explicit
constructions of sets with specifictHausdorff dimensions, showcasing the versatility
of the four-step method outlined'in Section 3. We first present examples for typical
non-integer dimensions /2. and m, demonstrating the Smale horseshoe’s tunability
for moderate fractional parts (Subsection.4.1). We then analyze the expansion pa-
rameter \’s behavior and construct’ amnear-boundary example for a dimension close to
an integer, highlighting the method’s performance under extreme dynamical tuning
(Subsection 4.2). These examples illustrate the method’s flexibility across a range of
target dimensions:

4.1 Construction .of Sets with Specific Dimensions

We present two detailed constructions, applying the method of Theorem 3.2 to tar-
get dimension§ v/2'and 7. A summary table compares the key parameters of each
construction.

(1).“Construction for diarget = V2

(1.1). Dimension Decomposition: Compute the integer part n = [v/2| = 1 and
fractional part dg.. = V2 - 1.
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(1.2). Fractal Component: Since dg,e € (0,1) C (0,2), apply Proposition 3.1
to construct a Smale horseshoe map fy with invariant set M = Ay C R? such that
dimg (M) = v/2 — 1. From Proposition 3.1, set

A=4v-1,

(1.3). Integer Component: For n =1, let E = [0,1] C R}, the unit interval swith
(1.4). Combination and Verification: Form S = M x E C R®. By Corollary 2.9,

dimp (S) = dimg (M) + dimy (E) = (V2 — 1) +1'= V2.

(2). Construction for diarget = 7

(2.1). Dimension Decomposition: Compute thevinteger. part.n = |7] = 3 and
fractional part dac = 7™ — 3.

(2.2). Fractal Component: Since dg,. €7(0,1) C (052),“apply Proposition 3.1
to construct a Smale horseshoe map fy with invariant.set/ M = Ay C R? such that
dimpg (M) =7 — 3. Set

X =i,

(2.3). Integer Component: For n = 3, let’ .= [0,1]* C R?, the unit cube, with
dimg(F) = 3.

(2.4). Combination and Verifications Form S = M x E C R®. By Corollary 2.9,
dimy(S) = dimg (M) + dimp(E) = (x =3) + 3 = 7.

Parameter diarget = V2 diarget = T
Integer. Part (n) 1 3
Fractional Part’ (dfac) V2 -1 T —3
Expansion Rate () 4721 47
Fraetal Component (M) A\ CR? A\ CR?
Integer Component (E) 0,1 cR! | [0,1]® Cc R?
Final'Set (= M x E) CR3 CRS
Hausdorfl Dimension (dimg(5)) V2 T

Table 1: Summary of constructions for dimensions V2 and .
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4.2 Parameter Analysis and Near-Boundary Example

The examples in Subsection 4.1, constructing sets with non-integer dimensions.y/2
and 7, illustrate the Smale horseshoe’s ability to tune the fractal component-for
moderate fractional dimensions. Here, we analyze the behavior of the expansion
parameter A and provide a near-boundary (i.e., near-integer) example for; diarget =
3.01 to demonstrate the method’s performance when the fractional part is very small.

From Proposition 3.1, the dimension of the Smale horseshoe’svinvariant set is
D()\) = 2In2/InA. In our construction we only need fractional parts in (0, 1), in
which case we set A = 41/drac g0 that D(\) = dgae. Over this range, A is strictly
decreasing in dpyae, With A — 00 as dyae — 07 and A —@" as dyae = 1 Thus,
small fractional parts are the genuinely expensive regime (requiring extremely large
unstable expansion), while fractional parts close to 1 correspond-te moderate values
of A\ near 4.

To illustrate this behavior, we construct a set With diarest=3.01, whose fractional
part is dgac = 0.01.

Construction for diarget = 3.01:

(1). Dimension Decomposition: Compute the integer.part n = |3.01] = 3 and
the fractional part dg.. = 3.01 — 3 =0.01:

(2). Fractal Component: Since dgae = 0.01 €7(0,1), apply Proposition 3.1 to
construct a Smale horseshoe map. fy with invariant set M = A, C R? such that
dimgy (M) = 0.01. Set

A= oor = 410029200 o 1 6 % 10%,
The set M is a Cantor-like set, totally disconnected with zero Lebesgue measure (cf.
9, §4.3]).
(3). Integer Component: For n = 3, let £ = [0,1]> C R3, the unit cube, with
dimg (F) = 3
(4). Combination and-Verification: Form S = M x E C R®. By Corollary 2.9,

dimp (§) = dimy (M) + dimy (E) = 0.01 + 3 = 3.01.

The resulting set..S combines a Cantor-like fractal with a 3-dimensional Euclidean
component, embedded in R®.

This near“integer example requires extreme tuning of \: here A = 4% ~ 1.6 x
109, reflecting a very strong unstable expansion when the fractional part dg.. is tiny.
This‘highlights the true dynamical cost of approaching an integer dimension in our
construction.
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5 Other Methods and Generalizations

The constructive proof in Section 3 and the examples in Section 4 demenstrate
a systematic method to achieve any positive real Hausdorff dimension using the
Smale horseshoe map as a tunable fractal generator. This section explores.alternative
approaches to generate the fractal component and discusses the broader implications
of the construction. We first examine other systems capable of producing fractal sets
with tunable dimensions, highlighting the modularity of our framework. Then, we
reflect on the method’s generality and potential extensions withinndynamical systems
and geometric measure theory.

5.1 Alternative Fractal Generators

The construction in Theorem 3.2 is modular: the fractional.component need not be
produced by a horseshoe. Other parameter—dependent fractals can be used, provided
we can control their Hausdorff dimension on' a target_interval.” When the desired
dimension exceeds the integer dimension.of the ambient space, we simply increase
the ambient dimension; in practice we take, R™ with m > [diareet]. Concretely,
when dg.. € (0,1) one may work in R hwith a 1D fractal factor x[0, 1]*, while for
dirac € [1,2) one may work in R""? with a 2D fractal factor x[0,1]".

Self-similar Cantor sets (OSC). A versatile replacement of the horseshoe is
the generalized two-map Cantor, set C,. C.R:start with [0,1] and, at each step,
remove the open middle interval, of length.1 — 2r, keeping two intervals of length

r € (0,3). This self-similar, set satisfies the open set condition (OSC), and the
Moran—Hutchinson formula yields
dimy (Gy) = _log2 0 < Hima () <00 [2, 4, 8§
MM T log(1/r)” ’ e

As 771 4, dimg(C,) T 1/50.(0,1) is covered continuously. Hence for any dgac € (0, 1)
we may take
r= 2_1/dfra° € (0, %), dlmH(Cr) = dfram

and use M = C,. as the fractional component in Theorem 3.2.

To cover (0,2) with purely self-similar factors, consider a product C;, x C,, C R?
with r; €0, %) Since each 1D factor is an OSC self-similar set, one has dimy = dimpg
for each factor [2, Thm. 9.3]. Combining this with the general product bounds [2,
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Eq. (7.6) and Eq. (7.7)] yields the equality

_ log2 n log 2
log(1/r1)  log(1/r2)"

Therefore the range (0, 2) is obtained continuously by varying (rq,r2). In particular,
for any dpac € (1,2) one can choose dimy (C,,) = dimg(C,,) = %dfrac (e.gyry =19 =
272/dirac) 50 that dimy(Cy, X Cp,) = dac. This 2D Cantor produet, can replace the
horseshoe component M when a 1D Cantor factor does not suffice.

dimH (Cr1 X Cr2> = dlmH(Crl) + dlmH(Cm)

Chaotic attractors as numerical substitutes. Chaotic attractorsfrom other
dynamical systems also offer parameter—dependent fractals. “For the Hénon map
f(x,y) = (1—azx?+y, bz), there are foundational rigorous results on.¢haotic dynamics
and SRB-type behavior [1], but we do not rely on a rigorous Hausdorff-dimension for-
mula; reported “dimension values” in the literaturé-are typically. numerical estimates
(and in practice may refer to information/correlation/KaplanYorke dimensions).
For the classical Lorenz system (o, p, ) = (10, 28, 8/3), numerical studies also report
fractal-dimension estimates near 2 (often around 2.06);'scey c.g., Viswanath [12] for
an analysis of fractal properties of the Lorenz attractor. These systems thus provide
numerically tunable alternatives to the horseshoe, but, unlike the explicit formula in
Proposition 3.1, they do not furnish’an.analytic-dimension function covering the full
(0,2) range.

5.2 Generalizations and Future Directions

The alternative generatorstin'Subsection 5.1 illustrate the modularity of our con-
struction, allowing flexibility in the fractal component. Here, we explore broader
generalizations, leveraging iterated function systems (IFS) as a general framework
for fractal generation, and discuss topological properties and future research direc-
tions in dynamical systems.and geometric measure theory.

The construction in Theorem 3.2 relies on the additive property of Hausdorff
dimensions under Cartesian products (Theorem 2.8). This approach extends be-
yond the Smale horseshoe and the alternatives in Subsection 5.1. Any parameter-
dependent IF'S producing a fractal set with a continuous dimension function over a
sufficient range can replace the horseshoe. For example, an IFS with variable con-
traction ratios in R™ can generate fractal components with dimensions in (0, k) for
some k<> 0 (cf. [4]). Combining such a component with a Euclidean set in R"
extends the method to dimensions beyond (0, 2), provided the dimension function’s
continuity.is verified.



5 Other Methods and Generalizations 20

The topological properties of the constructed sets offer another avenue for gener-
alization. The Smale horseshoe’s invariant set Ay is a Cantor set, totally disconneéted
with zero Lebesgue measure [9]. The final set S = M x E inherits properties from
its components; for instance, modifying E to a fractal set with integer dimension,
under conditions ensuring Borel set properties, preserves dimy(.S) while altering con=
nectedness or compactness [2]. Analyzing the Hausdorff measure of S ‘at’its critical
dimension could further elucidate its geometric structure.

Future research could investigate the uniqueness of the constructed sets: While
Theorem 3.2 ensures existence, comparing sets generated by different systems (e.g.,
Smale horseshoe versus Hénon map) for the same dimension. may reveal variations
in symbolic dynamics or stability [9]. Extending the construction to non-Fuclidean
metric spaces, such as hyperbolic manifolds, could also enhance its applicability in
dynamical systems. These directions highlight the synergy‘between fractal geometry
and chaotic dynamics, opening new paths for studying sets with prescribed dimen-
sions.
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