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EINSTEIN METRIC ON 5-REGULAR GRAPH

YUCHEN YIN AND JIAJING ZHANG

Abstract. We give the complete classification of finite simple 5-regular
graphs with nonnegative constant Ricci curvature in the sense of Lin–
Lu–Yau (LLY) and show the abundance of the graphs with negative
constant curvature.

1. Introduction

Ricci curvature, defined by Gregorio Ricci-Curbastro, is a symmetric 2-
tensor that measures how much a local region of space defined by a met-
ric tensor curves compared to Euclidean space. Ricci curvature played a
central role in Riemannian geometry, geometric analysis, and theoretical
physics. For example, Einstein’s theory of gravity relate the Ricci curvature
of spacetime to its matter and energy content that can explain gravity as
the curvature of spacetime caused by mass and energy. In the absence of
matter and energy (vacuum), Einstein’s field equations simplify, leading to
the condition

(1.1) Ric(g) = κg,

where κ is related to the cosmological constant. The metric that satisfies the
equation 1.1 is called Einstein metric. Typical examples of Einstein man-
ifolds would be Euclidean space Rn, the standard ”round” sphere Sn, and
the Kähler Einstein manifolds. In particular if κ = 0, compact Kähler man-
ifolds with a Ricci-flat metric is called Calabi-Yau manifolds. The existence
of such metrics, known as Calabi conjecture, was proved by Shing-Tung Yau
in the celebrated work [11] and [12].

Given the importance of Ricci curvature in geometry, it is natural to ex-
tend the Ricci curvature to broader classes beyond Riemannian manifolds.
In particular, people are interested in the discrete extension of Ricci curva-
ture in the graph theory. The first definition of Ricci curvature on graphs
was introduced by Chung and Yau in [2]. In [10], Ollivier introduced the no-
tion of coarse Ricci curvature of Markov chains on arbitrary metric spaces,
including graphs. Lin, Lu, and Yau [9] then introduced a modification of
the Ollivier’s Ricci curvature on graphs. Such curvature (written as LLY
Ricci curvature for abbreviation) is very useful in studying the geometric
and analytical aspects of graph theory.

Date: November 7, 2025.
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2 Y. YIN AND J. ZHANG

We are interested in the classification of graphs with constant Ricci cur-
vature (in the LLY Ricci curvature sense). Such graphs are well understood
in the Ricci flat case with degree d ≤ 4 [1] and d = 5 regular graph with
symmetry [7]. Cushing et al.[3] and Lin et al. [8] also classified Ricci-flat
graphs with girth at least five. Hehl [5] and Huang et al [6] classified the
graphs with Ricci curvature great than 1.

In this paper, we study the finite simple 5-regular graphs with constant
LLY Ricci curvature. Our main theorem will be the following

Theorem 1.1. Let G = (V,E) be a simple finite 5-regular graph with con-
stant LLY Ricci curvature κ. Then the following holds:

(i) If κ > 0, then G ∼= K5 if κ = 6
5 ; G is isomorphic to the icosahedral

graph if κ = 4
5 ; G is cubical (a Cartesian quotient of Q5) if κ = 2

5 .

(ii) If κ = 0, then either G ∼= RF5
72 or G ∼= H3□K with H3 be 3-regular

Ricci-flat graph and K be 2-regular Ricci-flat graph.
(iii) Every 5-regular graph with girth at least 6 has negative constant cur-

vature κ = −6
5 .

Remark 1.2. (ii) in Theorem 1.1 confirms a conjecture in [7]. The classifica-
tion for such graph with negative constant curvature is still widely open. It’s
interesting to find a ”good” assumption that can give rise to a meaningful
classification in the negative constant case.

2. Preliminaries

2.1. α-Ollivier’s Ricci curvature and Lin-Lu-Yau Ricci curvature.

Definition 2.1 (Wasserstein distance). Let G = (V,E) be a locally finite
graph, µ1 and µ2 be two probability measures on G. The Wasserstein dis-
tance W1(µ1, µ2) between µ1 and µ2 is defined as

W1(µ1, µ2) = inf
π

∑
y∈V

∑
x∈V

d(x, y)π(x, y),

where d(x, y) denotes the combined distance between x and y in G, and the
infimum is taken over all maps π : V × V → [0, 1] satisfying

µ1(x) =
∑
y∈V

π(x, y), µ2(y) =
∑
x∈V

π(x, y).

Such a map is called a transport plan.

For α ∈ [0, 1], set

µα
x(y) =


α, if y = x;
1−α
dx

, if y ∼ x;

0, otherwise,

where dx :=
∑

y∈V :y∼x 1 is the vertex degree of x.

-- Paper 1380 --
20

25
 S

.-T
. Y

au
 H

igh
 S

ch
oo

l S
cie

nc
e A

ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示



EINSTEIN METRIC ON 5-REGULAR GRAPH 3

Definition 2.2 (α-Ollivier Ricci curvature [10] and Lin-Lu-Yau curvature
[9]). Let G = (V,E) be a locally finite graph. For any vertices x, y ∈ V , the
α-Ollivier curvature κα(x, y), α ∈ [0, 1], is defined as

κα(x, y) = 1−
W1(µ

α
x , µ

α
y )

d(x, y)
.

The Lin-Lu-Yau Ricci curvature κ(x, y) is defined as

κ(x, y) = lim
α→1

κα(x, y)

1− α
.

Notice that κ1(x, y) is always 0. Obviously, the Lin-Lu-Yau curvature
κ(x, y) is the left derivative of κα(x, y) at α = 1.

2.2. LLY curvature for d-regular graph.

Lemma 2.3. [4, Theorem 4.3] Assume G = (V,E) is d-regular and x ∼ y.
Write

∆xy = Γ(x) ∩ Γ(y), Sx = Γ(x) \ {y}, Sy = Γ(y) \ {x},

and Si(x) = {v ∈ V : d(x, v) = i}. Let Axy be the set of bijections ϕ : Sx →
Sy. For ϕ ∈ Axy, define

|□(ϕ)| = #{z ∈ Sx : d(z, ϕ(z)) = 1}, |D(ϕ)| = #{z ∈ Sx : d(z, ϕ(z)) = 2}.

Then the LLY curvature κ satisfies

(2.1) κ(x, y) =
1

d

(
−2d+ 4 + 3 |∆xy|+ max

ϕ∈Axy

(
2 |□(ϕ)|+ |D(ϕ)|

))
.

Corollary 2.4. [4, Corollary 4.4] Let G = (V,E) be a locally finite graph.
Let x, y ∈ V be of equal degree d with x ∼ y. Then κ(x, y) ∈ Z/d.

For each edge e, fix an maximizing bijection ϕ∗
e (with the tie-break ”max-

imize |□|”) and denote s∗(e) := |□ (ϕ∗
e)| , p∗(e) := |D (ϕ∗

e)|.
We have the following matching lemma:

Lemma 2.5. Let Be be the bipartite ”square graph” across e = xy, with
left part Nx, right part Sy, and edges (u, v) iff d(u, v) = 1. Let ν (Be) be its
maximum matching size. Then

(2.2) s∗(e) = ν (Be) , M(e) ≤ (4− α(e)) + ν (Be) .

Proof. Any bijection ϕ yields a matching of size |□(ϕ)| in Be, so |□(ϕ)| ≤
ν (Be), whence s∗(e) ≤ ν (Be). Conversely, any matching of size t can be
extended to a bijection realizing exactly t distance-1 pairs; under the tie-
break, s∗(e) = ν (Be). For M , matched left vertices contribute at most 2
and unmatched at most 1 . □
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4 Y. YIN AND J. ZHANG

3. 5-Regular Graph with positive constant Ricci curvature

In this section, we are going to prove the first part of Theorem 1.1. By
Corollary 2.4, we know that for those 5-Regular Graph with positive con-
stant Ricci curvature, either the curvature κ ∈ {1

5 ,
2
5 ,

3
5 ,

4
5} or κ ≥ 1.

We first prove the following lemma.

Lemma 3.1. All 5-Regular Graph with constant LLY Ricci curvature κ ≥ 1
is isomorphic to K5 with κ = 6

5 .

Proof. From [5, Corollary 3.4], we know that either G ∼= K5 with κ = 6
5 or

G is isomorphic to a cocktail party graph with κ = 1. However the second
case couldn’t happen becuase the degree for all cocktail party graph is even,
which implies the lemma. □

For the case when κ = 4
5 , we have the following

Lemma 3.2. All 5-Regular Graph with constant LLY Ricci curvature κ = 4
5

is isomorphic to the icosahedral graph.

Proof. For the edge e = xy, we set

(3.1) M(e) := max
ϕ:Sx→Sy

(2|□(ϕ)|+ |D(ϕ)|).

Then lemma 2.3 gives us (by letting d = 5)

(3.2) κ(x, y) =
1

5
(−6 + 3α(e) +M(e)).

We also have the following trivial bounds for M(e):

(3.3) 0 ≤ M(e) ≤ 2(4− α(e)).

If κ = 4
5 is constant for all edge e, we have for all edge e,

(3.4) M(e) = 5κ+ 6− 3α(e) = 10− 3α(e).

Combined with 3.3, we obtain

(3.5) 10− 3α ≤ 8− 2α,

which implies that α ≥ 2. By the assumption κ = 4
5 and 3.2, we have

(3.6) 3α(e) +M(e) = 10

which implies α(e) ≤ 3. Hence α ∈ {2, 3}.
Assume, for contradiction, there is an edge e = xy with α(e) = 3. Then

|Nx| = 4 − α = 1. From 3.2, M(e) = 10 − 3α = 10 − 9 = 1. Since M is
the maximum over bijections, this forces the square-matching size s∗(e) to
be zero; otherwise s∗ ≥ 1 would imply M ≥ 2, contradicting M = 1.

Let u be the unique vertex in Nx (the only neighbor of x not shared with
y). The condition s∗(e) = 0 means u has no neighbor in Sy = Γ(y)\{x};
in particular, u is not adjacent to any of the three common neighbors of x
and y, nor to y itself. Consider the adjacent edge f = xu. The common
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EINSTEIN METRIC ON 5-REGULAR GRAPH 5

neighbors of x and u lie in Γ(x)\{u} = {y}∪ (Γ(x)∩Γ(y)), but u is adjacent
to none of these. Hence

α(f) = |Γ(x) ∩ Γ(u)| = 0,

contradiction! Therefore we then know that α ≡ 2 in the whole graph.
Plugging back gives M = 4 for all edges. Because |Sx\∆xy| = 4− α = 2 in
degree 5, then M = 4 forces, for the maximizer ϕ∗

e,

(3.7) 2 |□ (ϕ∗
e)|+ |D (ϕ∗

e)| = 4 =⇒ |□ (ϕ∗
e)| = 2, |D (ϕ∗

e)| = 0.

So, every edge lies in two (optimized) 4-cycles across it and no (optimized)
5-cycles across it.

Fix x ∈ V . For y ∈ Γ(x), the integer α(xy) is precisely the degree of
y in the induced graph Γ(x) (counting edges yy′ with y′ ∈ Γ(x) ); we just
proved α(xy) = 2 for every y ∈ Γ(x). Hence, Γ(x) is a 2-regular graph on 5
vertices., which implies Γ(x) ∼= C5.

Label the neighbors cyclically: Γ(x) = {u1, u2, u3, u4, u5} with edges ui ∼
ui±1 (indices mod 5). In particular, for each i,

(3.8) ∆xui = {ui−1, ui+1} , Sx\∆xui = {ui−2, ui+2} .

Since M (x, ui) = 4, the maximizer at xui must realize two length 1 matches;
one convenient choice (and one that always exists because the cycle edges
are present) is

(3.9) ui−2 7→ ui−1, ui+2 7→ ui+1,

giving the two (possibly chorded) 4-cycles

(3.10) x− ui−2 − ui−1 − ui − x, x− ui+2 − ui+1 − ui − x.

Now consider the cycle edge uiui+1. Because α (ui, ui+1) = 2, these two
vertices have exactly two common neighbors. One is x; call the other vi.
Necessarily vi /∈ {x, u1, . . . , u5} because in the 5-cycle the only common
neighbor (besides the endpoints) of ui and ui+1 is x. Thus vi ∈ S2(x). Each
ui has degree 5. Of these 5 neighbors, three lie in {x, ui−1, ui+1}, leaving
two neighbors in V \({x} ∪ Γ(x)).

Claim 3.2.1. For each i, the two neighbors of ui outside {x} ∪ Γ(x) are
exactly vi−1 and vi.

Proof of the claim:
Vertex ui has degree 5 , and we already know three of its neighbors:

x, ui−1, ui+1

Because α (ui−1, ui) = 2, the edge ui−1ui has exactly two common neighbors;
one is x, and the other cannot lie in Γ(x) (that would create an extra edge
inside Γ(x) and raise degΓ(x) above 2), so it must be an outside vertex
adjacent to both ui−1 and ui. By definition that outside vertex is vi−1.
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6 Y. YIN AND J. ZHANG

Similarly, α (ui, ui+1) = 2 forces the outside neighbor vi of ui. Thus ui
already has five neighbors:

{x, ui−1, ui+1, vi−1, vi} .

This ends the proof of the claim.
Every vertex w ∈ S2(x) is at distance 2 from x, so there is a path x−u−w

with u ∈ Γ(x). In particular, w is adjacent to some u ∈ Γ(x). By the claim
just proved, the neighbors of that u in S2(x) are exactly two vertices, namely
v∗ ’s. Hence

w ∈ {vi−1, vi} for some i

It follows that

S2(x) ⊆ {v1, v2, v3, v4, v5} .
Counting the edges between S1(x) and S2(x) in two ways gives

(3.11)
∑

u∈S1(x)

degS2
(u) = 5 · 2 = 10,

∑
v∈S2(x)

degS1
(v) =

∑
v∈S2(x)

t(v),

where t(v) is the number of neighbors of v in S1(x). Because α (ui, ui+1) = 2
and x already accounts for one common neighbor, each cycle edge uiui+1

has a unique second common neighbor vi ∈ S2(x), and any v ∈ S2(x) can
be such a second common neighbor for at most one cycle edge (else some
adjacent edge would acquire three common neighbors). Therefore t(v) ≤ 2
for every v ∈ S2(x), with equality t(v) = 2 precisely when v = vi for some i.
The last display forces

(3.12) 10 =
∑

v∈S2(x)

t(v) ≤ 2 |S2(x)| ,

hence |S2(x)| ≥ 5. Consequently, v1, . . . , v5 in S2(x) is distinct and
(3.13)
S2(x) = {v1, . . . , v5} with each vi adjacent to exactly ui, ui+1 in S1(x).

Next we will show that, for each i, vi ∼ vi−1 and vi ∼ vi+1. Consider
the edge viui. Because α (vi, ui) = 2, their two common neighbors must
be exactly {ui+1, w} for some w. Among the neighbors of ui (namely
x, ui−1, ui+1, vi−1, vi), the only vertex (other than ui+1) that could also be
adjacent to vi is vi−1 (the other three are ruled out: x ≁ vi, ui−1 ≁ vi by
uniqueness of vi related to uiui+1, and vi is not adjacent to itself). Hence
w = vi−1 and vi ∼ vi−1. The argument for vi ∼ vi+1 uses the edge viui+1

and is symmetric.
Thus, each vi has neighbors ui, ui+1 in S1(x) and vi−1, vi+1 in S2(x). Since

the graph is 5-regular, vi has exactly one further neighbor, which cannot lie
in S0(x)∪S1(x)∪S2(x). Denote it by x⋆i ∈ S3(x). Because Γ (vi) is 2-regular
on its five neighbors (by α ≡ 2 again), the cycle in Γ (vi) must connect x⋆i
to both vi−1 and vi+1. In particular, x⋆i is adjacent to vi−1 and to vi+1.

Now we prove that actually x⋆i = x⋆i+1 for all i. Hence there is a single
vertex x⋆ ∈ S3(x) adjacent to all vi’s.
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EINSTEIN METRIC ON 5-REGULAR GRAPH 7

Consider the edge vivi+1. Because α (vi, vi+1) = 2, their two common
neighbors must be exactly {ui+1, z} for some z. Now ui+1 is one; among
the other candidates, by the previous argument, each of x⋆i and x⋆i+1 is
adjacent to both vi and vi+1. Uniqueness of the second common neighbor
forces x⋆i = x⋆i+1. Inducting around the 5-cycle gives a single vertex x⋆ with
the required property. Finally, since x⋆ already has degree 5 (neighbors
v1, . . . , v5), implies Sk(x) = ∅ for all k ≥ 4.

Thus the breadth-first-search(BFS) layers from x are

(3.14) |S0| = 1, |S1| = 5, |S2| = 5, |S3| = 1,

for a total of 1+5+5+1 = 12 vertices. We now list the adjacency dictated
by the construction:

• x is adjacent to u1, . . . , u5.
• For each i, ui is adjacent to

x, ui−1, ui+1, vi−1, vi

• For each i, vi is adjacent to

ui, ui+1, vi−1, vi+1, x⋆

• x⋆ is adjacent to v1, . . . , v5.

Every vertex has degree 5. Hence no extra edges can exist. Among the
ui ’s there are only cycle edges ui ∼ ui±1, otherwise degΓ(x) would exceed

2, contradicting α ≡ 2. A vi cannot be adjacent to any other uj (besides
ui, ui+1 ) by Lemma 2.1. A vi is adjacent to vi±1 and to x⋆, but not to other
vj ’s; otherwise Γ (vi) would not be a 5-cycle.

Up to relabeling indices, this is exactly the 12-vertex icosahedral graph
(the 1-skeleton of the regular icosahedron):Two ”poles” x and x⋆; two 5-
cycles (ui) and (vi) forming the ”belts”; and the zig-zag connections ui − vi
and ui+1 − vi. The lemma then follows. □

Next, we consider the case when κ = 2
5 .

Lemma 3.3. All 5-Regular Graph with constant LLY Ricci curvature κ = 2
5

is cubical.

Proof. When κ = 2
5 , by lemma 2.3, we have

(3.15) M(e) = 5 · 2
5
+ 6− 3α(e) = 8− 3α(e).

This implies that α ∈ {0, 1, 2}.
Assume there is an edge xy with α(xy) = 2. Then x and y have two

common neighbors; write

(3.16) ∆xy = {t, u}, Γ(x) = {y, t, u, a, b}.

Across xy, we have

(3.17) ν (Bxy) = s∗(xy) ∈ {0, 1}, M(xy) = 2
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8 Y. YIN AND J. ZHANG

Set

(3.18) Rxt := Γ(t)\{x} = {y, r1, r2, r3} , Ryt := Γ(t)\{y} = {x, r1, r2, r3}

We now analyze the adjacent edges xt and yt. Let Lxt := N
(xt)
x be the left

side of Bxt. We claim

(3.19) |ΓBxt({a, b})| ≥ 2

Proof of the claim: Suppose, for contradiction, that |ΓBxt({a, b})| ≤ 1.
Consider Bxy. Because ν (Bxy) ≤ 1, Hall’s marriage lemma for k = 2 implies

(3.20)
∣∣ΓBxy({a, b})

∣∣ ≤ 1

Now look at Byt. Since α(yt) ∈ {1, 2}, there are two subcases:

• If α(yt) = 1 : then by (T), ν (Byt) = 2. By (Hall’s marriage lemma
with k = 2) there exists a 2-subset L′′ ⊆ Lyt with

∣∣ΓByt (L
′′)
∣∣ ≥ 2.

These two right vertices lie in {r1, r2, r3} (not at x ), and they are
distinct. Since |ΓBxt({a, b})| ≤ 1 and

∣∣ΓBxy({a, b})
∣∣ ≤ 1, the two

lefts {a, b} see, across Bxt ∪Bxy, at most two right vertices in total;
but Byt needs two distinct rights in {r1, r2, r3} to be available for
two (other) lefts. This forces one of {a, b} to have no right neighbor
in either Bxt or Bxy, contradicting d = 5 and the definition of the
square bipartites (every left has some right unless ν = 0 and |L| = 0,
which is not the case here). Formally, Hall forBxy (with the singleton
having empty neighborhood) would force ν (Bxy) = 0, contradicting
the possibility ν (Bxy) = 1.

• If α(yt) = 2 : then by (T), ν (Byt) ≤ 1, so

(3.21)
∣∣ΓByt (Lyt)

∣∣ ≤ 1 or ∃ℓ ∈ Lyt :
∣∣ΓByt({ℓ})

∣∣ = 0.

In either alternative, the only way to serve both lefts {a, b} some-
where around the triangle (without creating a 2 -match in Bxy or in
Byt, both forbidden is to have two distinct right neighbors for {a, b}
in Bxt; but this contradicts |ΓBxt({a, b})| ≤ 1. Thus the claim holds.

If α(yt) = 2 : then by (T), ν (Byt) ≤ 1, so

(3.22)
∣∣ΓByt (Lyt)

∣∣ ≤ 1 or ∃ℓ ∈ Lyt :
∣∣ΓByt({ℓ})

∣∣ = 0.

In either alternative, the only way to serve both lefts {a, b} somewhere
around the triangle (without creating a 2 -match in Bxy or in Byt, both
forbidden by (C0) and (C1.2)) is to have two distinct right neighbors for
{a, b} in Bxt; but this contradicts |ΓBxt({a, b})| ≤ 1. Consequently, by
Hall’s marriage lemma with k = 2,

(3.23) ν (Bxt) ≥ 2.

If α(xt) = 2, then it allows only ν (Bxt) ∈ {0, 1}, contradicting 3.23. If
α(xt) = 1, then it forces M(xt) = 5 and ν (Bxt) = 2. Now repeat the
argument above with the third left in Lxt (here |Lxt| = 3 because α(xt) =
1 ⇒ ∆xt = {y} ), and apply Hall’s marriage lemma with k = 3 : the same
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EINSTEIN METRIC ON 5-REGULAR GRAPH 9

pigeonhole at t (only three vertices {r1, r2, r3} can serve as right neighbors
for all three lefts, and two are already needed pairwise) yields

(3.24) |ΓBxt (Lxt)| ≥ 3 ⇒ ν (Bxt) ≥ 3,

which contradicts M(xt) = 5 since 2ν (Bxt) ≤ M(xt) would give 6 ≤ 5.
Therefore α(xy) = 2 is impossible. Similarly, we can also exclude the case
when α(e) = 1 for some e = xy.

This implies that α(e) = 0 for all edges e. Tracking back to 3.15, M(e) = 8
for all edges. Because |Sx\∆xy| = 4, the identity M = 8 forces, for the
maximizer ϕ∗

e,

(3.25) 2 |□ (ϕ∗
e)|+ |D (ϕ∗

e)| = 8 =⇒ |□ (ϕ∗
e)| = 4, |D (ϕ∗

e)| = 0.

Thus every edge xy admits a bijection ϕ∗
e : Sx → Sy that matches each of

the four left vertices to an adjacent right vertex. Equivalently, for every
edge xy, the bipartite graph Bxy ⊆ Sx × Sy of cross-adjacencies is a perfect
matching (a disjoint union of 4 edges). In particular every edge lies in four
(optimized) squares across it and the graph is triangle-free.

Define a relation Θ on edges by:

(3.26) eΘf ⇐⇒ e, f are opposite sides of a (simple) 4-cycle.

Because around every edge the four 4-cycles come from the four disjoint
pairs in Bxy, the relation Θ is everywhere defined. Let [e] denote the Θ-
equivalence class of e.

Claim 3.3.1. At every vertex v, the five incident edges lie in five distinct
Θ-classes.

Proof of the claim:
Suppose two distinct incident edges vv1, vv2 belong to the same class.

Then there is a chain of squares starting with vv1 and ending with vv2, each
step flipping to the opposite edge. The first square already shows a 4-cycle
using both vv1 and vv2 at the same vertex v, which is impossible because
the cross-matching at any edge vw pairs v1 with a unique neighbor in Sw

(there is no second choice to create another square sharing the two sides at
v ). □

Let the five Θ-classes be C1, . . . , C5. For each i, the union of edges Ci is
a spanning subgraph in which every vertex has degree exactly 1 (by Claim
above). Thus each Ci is a disjoint union of cycles (a 1-factor).

Fix a basepoint o ∈ V . For each i ∈ {1, . . . , 5}, the 1-factor Ci partitions
V into two sides (the two color classes of the cycles): moving along an edge
in Ci flips the side, and moving along any edge in Cj with j ̸= i preserves the
side (because every 4-cycle alternates classes). Define the coordinate map
(3.27)

Φ : V −→ {0, 1}5, Φ(v)i =

{
0, if v is on the same side of Ci as o
1, otherwise
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10 Y. YIN AND J. ZHANG

This is well-defined (any closed walk crosses each Ci an even number of times,
because every 4-cycle contains two edges from the same class) and satisfies:

(a) If vw ∈ Ci, then Φ(w) = Φ(v) ⊕ ei (flip the i-th bit; other bits
unchanged).

(b) Conversely, since at v there is exactly one incident edge in Ci, the five
neighbors of v are mapped to the five Hamming neighbors Φ(v) ⊕
ei, i = 1, . . . , 5.

Hence Φ is a local isomorphism from G onto a (not necessarily induced)
5-regular subgraph of the 5 -cube Q5. Because G is connected, Φ(G) is a
connected, 5-regular subgraph of Q5; the only such subgraphs are quotients
of Q5 by free translation subgroups. Hence G is cubical. This ends the
proof. □

Next, we prove the following

Lemma 3.4. There is no 5-regular graph with constant Ricci curvature
κ = 3

5 .

Proof. Similar as the previous lemma, we have for all edges e,

(3.28) M(e) = 9− 3α(e).

Since 0 ≤ M(e) ≤ 8− 2α(e) by (3.3), we then have α ∈ {1, 2, 3}.
By solving the linear equation 2s∗ + p∗ = 9 − 3α under the constraints

0 ≤ s∗, p∗ ≤ 4− α with the tie-break ”maximize s” gives

(3.29)

α(e) |Sx\∆xy| M(e) s∗(e) p∗(e)
1 3 6 3 0
2 2 3 1 1
3 1 0 0 0

First, we prove that α(e) can not be 3. Suppose not. Let e = xy with
α(e) = 3. Then Sx\∆xy has exactly one vertex u. Then there is always a
length-2 choice ϕ(u) = w with w ∈ ∆xy ⊂ Sy, so p∗(e) ≥ 1, contradicting
the α = 3 row. Thus α ∈ {1, 2}.

α = 1 ⇒ (s∗, p∗) = (3, 0), α = 2 ⇒ (s∗, p∗) = (1, 1).

Fix a vertex x. In the induced graph Γ(x) (5 vertices), the degree of a
neighbor y ∈ Γ(x) equals α(xy) ∈ {1, 2}. Summing degrees in Γ(x) gives an
even number, hence the number of α = 1 edges at x is even. On the other
hand,

(3.30)
∑
e∋x

p∗(e) ≡
∑
e∋x

M(e) ≡ 5 · 9− 3
∑
e∋x

α(e) ≡ 1 (mod2),

and by the table 3.29, we have p∗(e) = 1 iff α(e) = 2. Thus the number of
α = 2 edges at x is odd. Consequently, the degree multiset in Γ(x) is one
of:

(2, 2, 2, 2, 2), (2, 2, 2, 1, 1), or (2, 1, 1, 1, 1).
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EINSTEIN METRIC ON 5-REGULAR GRAPH 11

The first two case are equivalent to Γ(x) ∼= C5 or Γ(x) ∼= P5. We will rule
out all of them.

We first consider the C5 case. Label Γ(x) = {u1, . . . , u5} with the 5-cycle
edges ui ∼ ui±1. For the edge ei := xui we have α (ei) = 2, thus by the
lemma 2.5), ν (Bei) = s∗ (ei) = 1.

But in the square-bipartite Bei (left part Nx = {ui−2, ui+2}, right part Sui

), the two pairs (ui−2, ui−1) and (ui+2, ui+1) are disjoint length-1 edges (they
live in the 4-cycles x− ui−2 − ui−1 − ui − x and x− ui+2 − ui+1 − ui − x).
Hence ν (Bei) ≥ 2, contradicting ν (Bei) = 1. So the C5 neighborhood
cannot occur.

Next, we consider the P5 case. Assume Γ(x) is the disjoint union of a
triangle t1 − t2 − t3 − t1 (the three degree- 2 vertices) and an edge p1p2 (the
two degree-1 vertices). Then

α (xti) = 2(i = 1, 2, 3), α (xp1) = α (xp2) = 1.

Across xp1 we must have s∗ = 3. The left set is N
(xp1)
x = {t1, t2, t3}, and

the right set Sp1 equals {p2} together with three vertices outside {x}∪Γ(x).
Since none of t1, t2, t3 is adjacent to p2 inside Γ(x), the size-3 matching must
use three distinct outside neighbors U1, U2, U3 of p1, with

(3.31) ti ∼ Ui ∼ p1 (i = 1, 2, 3)

The same argument for xp2 yields three distinct outside neighbors V1, V2, V3

of p2 with

(3.32) ti ∼ Vi ∼ p2 (i = 1, 2, 3).

Since every ti has degree 5 and already two neighbors inside Γ(x) ∪ x, the
(3.31) and (3.32) force

(3.33) Γ (ti) = {x, ti−1, ti+1, Ui, Vi} , (indices mod 3).

Across ei = xti we must have (s∗, p∗) = (1, 1). The non-shared left set for
ei is

(3.34) N (ei)
x = {p1, p2}

and Sti = Γ (ti) \{x} = {ti−1, ti+1, Ui, Vi} by (3.33). Since pj ≁ ti±1 inside
Γ(x), the only possible length-1 pairs in Bei are

(3.35) (p1, Ui) and (p2, Vi) .

The two 3 -sets {U1, U2, U3} and {V1, V2, V3} can have at most one com-
mon element, since Γ (p1) ∩ Γ (p2) = {x} ∪ ({U1, U2, U3} ∩ {V1, V2, V3}) and
|Γ (p1) ∩ Γ (p2)| ∈ {1, 2} by α ∈ {1, 2}. Consequently, there exists at least
one index i with Ui ̸= Vi. For that index, these two pairs are disjoint in Bei .
Therefore

ν (Bei) ≥ 2.

But for an α = 2 edge, s∗ (ei) = ν (Bei) = 1. Contradiction!
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12 Y. YIN AND J. ZHANG

Finally, we handle the case (2, 1, 1, 1, 1). Assume Γ(x) consists of a length-
2 path a−m− b (the unique degree-2 vertex is m) and a disjoint edge c−d.
Then

(3.36) α(xm) = 2, α(xa) = α(xb) = α(xc) = α(xd) = 1.

We first record the forced adjacencies required (existence of the size-3 match-
ings at the α = 1 edges).

• For xa: the left set is N
(xa)
x = {b, c, d} and Sa contains m and three

outside neighbors of a. Because b ∼ m in Γ(x), one length-1 pair is
(b,m). The other two must use two distinct outside neighbors of a,
call them Ac, Ad, with

(3.37) c ∼ Ac ∼ a, d ∼ Ad ∼ a.

• For xb: symmetrically there exist distinct Bc, Bd ∈ Sb\{m} with

(3.38) c ∼ Bc ∼ b, d ∼ Bd ∼ b.

• For xc: the left set is N
(xc)
x = {a, b, d}, but neither a nor b is adjacent

to c in Γ(x), and d cannot be matched to the right vertex d (distance
0 ). Thus all three length-1 pairs must use three distinct outside
neighbors of c, call them Ca, Cb, Cd, with

(3.39) a ∼ Ca ∼ c, b ∼ Cb ∼ c, d ∼ Cd ∼ c.

• For xd1: likewise, there exist three distinct outside neighborsDa, Db, Dc

of d with

(3.40) a ∼ Da ∼ d, b ∼ Db ∼ d, c ∼ Dc ∼ d.

Now consider the unique α = 2 edge e := xm. Its non-shared left set is

N
(e)
x = {c, d}, and

(3.41) Sm = Γ(m)\{x} = {a, b,M1,M2}

where M1,M2 are the two neighbors of m outside {x} ∪ Γ(x). Inside Γ(x)
we know c ≁ a, b and d ≁ a, b, so the only potential length- 1 pairs in Be are
( c,Mi ) and ( d,Mj ) with i, j ∈ {1, 2}. To realize the required s∗(e) = 1
we need at least one of these adjacencies to exist; to violate s∗(e) = 1 we
would need ν (Be) ≥ 2, i.e. both c and d adjacent to {M1,M2} with disjoint
choices.

We now show that, given (3.37)-(3.40), ν (Be) ≥ 2 is forced.
From (3.39), c is adjacent to three distinct outside vertices Ca, Cb, Cd. At

least one of these three must be nonadjacent to a and b simultaneously (they
already are by construction) and free with respect to the pairs used in (3.37)-
(3.38). Since every vertex is degree-5, m has exactly two outside neighbors
M1,M2. If neither M1 nor M2 is among {Ca, Cb, Cd}, then across xa, xb, xc
the three distinct outside neighbors demanded for c already account for three
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EINSTEIN METRIC ON 5-REGULAR GRAPH 13

neighbors of c in V \({x} ∪ Γ(x)); but then xd still needs a fourth outside
neighbor of c (namely Dc from (3.40)), contradicting degree of c = 5. Hence

(3.42) {M1,M2} ∩ {Ca, Cb, Cd} ̸= ∅

Therefore c is adjacent to at least one of {M1,M2}.
The same argument with d and (3.40) shows d is adjacent to at least one

of {M1,M2}.
If the two vertices c, d happen to be adjacent to the same Mi, then (since

c ∼ d in Γ(x)) the edge cd would have

(3.43) α(c, d) ≥ |{x,Mi}| = 2.

If α(c, d) = 2, then (s∗, p∗) (cd) = (1, 1). But the left non-shared set for cd
contains two vertices (e.g. some of {Ac, Bc} on the c-side and {Ad, Bd} on
the d side), and the constructions (3.37)-(3.40) produce two disjoint length-1
pairs across cd (one via a neighbor linked through a, the other via a neighbor
linked through b ), forcing ν (Bcd) ≥ 2, contrary to ν = 1 at α = 2 edges.
Thus c and d cannot both hit the same Mi.

Consequently, c is adjacent to one of M1,M2 and d is adjacent to the
other. Therefore the bipartite Be across e = xm contains the two disjoint
length-1 pairs

(3.44) (c,Mi) and (d,Mj) (i ̸= j),

so ν (Be) ≥ 2. But at an α = 2 edge, s∗(e) = ν (Be) = 1. Contradiction.
Hence the (2, 1, 1, 1, 1) case cannot occur. The lemma then follows. □

Finally, we consider the case when κ = 1
5 .

Lemma 3.5. There is no 5-regular graph with constant Ricci curvature
κ = 1

5 .

Proof. By lemma 2.3, we have

(3.45) M(e) = 7− 3α(e).

Since 0 ≤ M(e) ≤ 2(4− α(e)), we obtain that α ∈ {0, 1, 2}.
(3.46)
α = 0 ⇒ (s∗, p∗) = (3, 1), α = 1 ⇒ (s∗, p∗) = (2, 0), α = 2 ⇒ (s∗, p∗) = (0, 1).

We first prove that α = 2 case can not happen.
Suppose not, then there exists a edge e with α(e) = 2. Then Nx has two

vertices u1, u2 and ∆xy = {w1, w2} ⊂ Sy. Define a bijection ϕ by ϕ (ui) = wi

for i = 1, 2 and mapping the two shared left vertices to the two non-shared
right vertices arbitrarily. Then |D(ϕ)| ≥ 2 (both ui − x − wi are length-2),
so 2|□(ϕ)|+ |D(ϕ)| ≥ 2, contradicting M(e) = 1. Hence

(3.47) α(e) ∈ {0, 1} for all e.

In particular, Γ(x) (the induced graph on the 5 neighbors of x) is a matching
plus isolated vertices (vertex-degrees 0 or 1 only).
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14 Y. YIN AND J. ZHANG

Next, we show that α = 0 case can not happen. Suppose not, then
there exists a edge e = xy with α(e) = 0. By (3.45), M(e) = 7. Since
α(e) = 0, we have Nx = Sx = Γ(x)\{y} (size 4). Consider any right vertex
v ∈ Sy = Γ(y)\{x}. Because v ∼ y and y ∼ x, the vertex y lies in Γ(x)∩Γ(v),
hence

(3.48) α(xv) = |Γ(x) ∩ Γ(v)| ≥ 1.

By the argument above, α(xv) cannot be 2 ; thus α(xv) = 1.
Take any u ∈ Nx = Γ(x)\{y} and any v ∈ Sy. If u ∼ v, then both y

and u would be common neighbors of x and v, which would give α(xv) ≥ 2,
contradicting α(xv) = 1. Hence no pair (u, v) with u ∈ Nx, v ∈ Sy is
adjacent. Equivalently, the ”square bipartite” Bxy (left Nx, right Sy, edges
u ∼ v) has no edges. Thus for every bijection ϕ, |□(ϕ)| = 0.

By definition, |D(ϕ)| counts how many u ∈ Nx satisfy d(u, ϕ(u)) = 2.
Each u is matched to one right vertex under ϕ, so each u can contribute at
most one to |D(ϕ)|. Therefore

(3.49) |D(ϕ)| ≤ |Nx| = 4

and

(3.50) 2|□(ϕ)|+ |D(ϕ)| ≤ 0 + 4 = 4.

and hence M(e) ≤ 4. This contradicts M(e) = 7. Hence α = 0 case can not
happen.

Now fix x. Summing M around x,

(3.51)
∑
e∋x

M(e) =
∑
e∋x

(7− 3α(e)) = 35− 3
∑
e∋x

α(e),

and since
∑

e∋x α(e) equals the degree-sum in Γ(x), it is even. Therefore

(3.52)
∑
e∋x

M(e) ≡ 1 (mod2) =⇒
∑
e∋x

p∗(e) ≡ 1 (mod2),

because
∑

2s∗ is even. We also know that p∗(e) = 1 iff α(e) = 0. Hence the
number t(x) of α = 0 edges at x is odd: t(x) ∈ {1, 3, 5}. Accordingly, Γ(x)
is one of:

• type I: two disjoint edges + one isolated vertex (degree multiset
(1, 1, 1, 1, 0), here t(x) = 1);

• type J: one edge + three isolated vertices (degree multiset (1, 1, 0, 0, 0),
here t(x) = 3);

• type K: five isolated vertices (degree multiset (0, 0, 0, 0, 0), here
t(x) = 5).

Each type contains α = 0, which can not happen by previous argument.
The lemma then follows. □

The (i) of Theorem 1.1 then follows from Lemma 3.1–3.5.
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EINSTEIN METRIC ON 5-REGULAR GRAPH 15

4. 5-Regular Graph with nonpositive Ricci curvature

In this section, we are going to study the case when LLY Ricci curvature
κ ≤ 0.

We first handle the second part of Theorem 1.1, i.e. the case when LLY
Ricci curvature κ = 0.

By lemma 2.3, we know that for any edge e = xy,

(4.1) M(e) = 6− 3α(e).

We first prove the following

Lemma 4.1. If κ ≡ 0, then α(e) ̸= 2 for every edge e = xy.

Proof. If α(e) = 2, then |Nx| = 2 and ∆xy = {w1, w2} ⊂ Sy. Define a
bijection ϕ by ϕ (ui) = wi for the two ui ∈ Nx; these two pairs have distance
2 via ui−x−wi , so 2|□(ϕ)|+|D(ϕ)| ≥ 2. But (4.1) says M(e) = 6−3·2 = 0,
contradiction! □

Hence α(e) ∈ {0, 1} for all edges. Then (4.1) implies

(4.2) α = 0 ⇒ M = 6, α = 1 ⇒ M = 3.

The second lemma characterize the edges e with α(e) = 0.

Lemma 4.2. If α(e) = 0, then 2 ≤ ν (Be) ≤ 3.

Proof. By lemma 2.5, 6 = M(e) ≤ (4−0)+ν (Be) = 4+ν (Be), so ν (Be) ≥ 2.
If ν (Be) = 4, there is a perfect matching; extending it gives a bijection with
|□(ϕ)| = 4 and M = 8, contradicting to the fact that M = 6. Thus
ν (Be) ≤ 3. □

Definition 4.3. We call an α = 0 edge type A if ν (Be) = 3 (so a maximizer
can realize s∗ = 3, p∗ = 0), and type B if ν (Be) = 2 (so a maximizer must
realize s∗ = 2, p∗ = 2).

For α = 1, (4.1) only requires 2s∗ + p∗ = 3 with s∗ ≤ ν (Be) and s∗ ≤ 1;
both s∗ = 1, p∗ = 1 and s∗ = 0, p∗ = 3 are possible (the tie-break picks
s∗ = 1 if ν (Be) ≥ 1).

We then have the following result

Proposition 4.4. If G contains at least one type B edges, then G ∼= H3□Cn,
where H3 be a 3-regular graph and Cn be a cycle of length n ≥ 6.

Proof. Let e0 = xy be a fixed type B edge. Choose and fix a size-2 matching

(4.3) Mxy = {(xu1, yv1) , (xu2, yv2)} ⊆ E (Bxy)

(so x− ui − vi − y − x are two 4-cycles, disjoint on Sx and on Sy).

Definition 4.5. Give color D to the two edges of G opposite to xy in those
two 4-cycles (i.e., u1v1 and u2v2 ); color xy itself and the two remaining
edges at x and at y by color C. Now, whenever we traverse an edge ab
of G (in a BFS spanning tree), we transport colors across a chosen size-2
matching Mab ⊆ Bab as follows:
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16 Y. YIN AND J. ZHANG

• the two edges opposite to ab in the 4-cycles specified by Mab receive
color D;

• the other three edges incident to each endpoint receive color C (so
every vertex has a 3 + 2 split).

This defines a 2-coloring of all edges once we visit them (because every α = 0
edge has ν ≥ 2; for α = 1 we do not use any 4-cycle to transport a color
and simply keep whatever color it receives when discovered-consistency will
be checked below).

Claim 4.5.1. In every 4-cycle of G, opposite edges receive the same color.

Proof of the claim:
If the 4-cycle contains a tree edge ab, the color was imposed when ab

was processed, by definition. If a 4-cycle contains no tree edge, we reach
it after both of its opposite tree-edges have been processed; opposite edges
then already share color, and we never recolor.

Claim 4.5.2. The partition of E into C and D is well-defined and coincides
with the two connected components of the ”opposition graph” whose vertices
are E and whose edges link opposite edges in a 4-cycle.

Proof of the claim:
Well-definedness follows from previous claim: any two ways to propa-

gate colors differ by detouring around 4-cycles, and opposite edges retain
the same color. Since we start from the type-B edge xy and color its two
opposite edges differently from xy itself, we obtain two nonempty classes;
connectedness in the opposition graph forces that there are exactly these
two classes.

At this point we know, every vertex v has its 5 incident edges split as
three of color C and two of color D. For each color X ∈ {C,D}, define

NX : V → V, NX(v) = the unique neighbor of v joined by an edge of color X.

Uniqueness holds because at v the opposition across the two 4-cycles through
a tree edge pairs two edges of color D at the other vertex but only one of
colorD at v continues ”forward”; the propagation is set up so that every ver-
tex has exactly one edge of color D in the ”forward” direction (and therefore
one of color C singled out similarly). Formally, the construction yields a 1-
factor in each color class.

Since Colors are undirected labels: the unique C edge leaving v is the
same undirected edge used to come back from NC(v), we know that

(4.4) N2
C = id and N2

D = id.

We also have for each vertex v,

(4.5) NC (ND(v)) = ND (NC(v)) .

This is because, from v, take the two edges v → NC(v) and v → ND(v). By
construction (we always transported colors using a size-2 matching), there
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EINSTEIN METRIC ON 5-REGULAR GRAPH 17

is a 4-cycle

v
C−→ NC(v)

D−→ ⋆
C−→ ND(v)

D−→ v

with opposite edges of the same color (by previous claim). This shows that
the endpoint of ” C then D ” equals the endpoint of ” D then C ”. Thus
NC , ND are commuting involutions.

Let GC = (V,EC) be the subgraph with the C edges, and GD = (V,ED)
the subgraph with the D edges. By argument above, GC is 3-regular and
GD is 2-regular (hence a disjoint union of cycles). Denote by

(4.6) D-cycles = {S} and C-components = {X}
the vertex sets of the connected components of GD and GC respectively. For
a vertex v ∈ V (G), write

(4.7) S(v) ∈ {S}, X(v) ∈ {X}
for the D-cycle containing v and the C-component containing v. the vertex
sets of the connected components of GD and GC respectively. For a vertex
v ∈ V (G), write

(4.8) S(v) ∈ {S}, X(v) ∈ {X}
for the D-cycle containing v and the C-component containing v.

Fix a D-cycle S and choose an orientation of S. Let

(4.9) succs : S → S

be the successor map (advance by oneD-edge along S). Every C edge respects

squares with D-edges: if v ∈ S and v
C−→ w, then succs(v) has a unique C-

neighbor succsS′(w) in the D-cycle S′ = S(w), and the four vertices

(4.10) v
D−→ succs(v)

C−→ succS′(w)
D−→ w

C−→ v

form a color-alternating 4-cycle.
Consequently, for each C-edge e : v → w with S(v) = S and S(w) = S′

there is a uniquely defined cycle isomorphism fe : S
∼=−→ S′ satisfying

(4.11) fe (succsS(u)) = succS′ (fe(u))

for all u ∈ S, and fe(v) = w. That is: fe is the unique bijection that sends
v to w. In particular, S and S′ have the same length, so all D-cycles in G
have the same length n ≥ 3.

Choose, for each D-cycle S , a cyclic labeling

(4.12) pos S : S −→ Z/nZ

so that for every C-edge e : v → w (with S(v) = S,S(w) = S′) we have

(4.13) posS′ (fe(u)) = posS(u) for all u ∈ S.

Here, we obtain such labeling by picking one fixed cycle S0, fixing any num-
bering there, and propagating it uniquely to all other cycles using the iso-
morphisms fe along a spanning tree of the C-adjacency among D-cycles.
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18 Y. YIN AND J. ZHANG

Commutation on 4-cycles guarantees that the label transported along any
closed loop returns to itself.

Let H be the graph whose vertices are the D-cycles {S}. Put an (undi-
rected, simple) edge S ∼ S′ in H iff there exists a C-edge in G joining some
vertex of S to some vertex of S′. Because every v ∈ V (G) has exactly three
C neighbors (P1) and every C-edge preserves the C-coordinate (2.2), the set
of D cycles adjacent to S(v) in H depends only on S(v), not on the specific
vertex v ∈ S(v). Hence degH(S) = 3 for every S.

Now for v ∈ V (G), define

(4.14) Φ(v) :=
(
S(v),posS(v)(v)

)
∈ V (H)× Z/nZ.

This is obviously well-defined (we already fixed S(v) and posS ). We now
verify that Φ is a graph homomorphism whose local behavior is exactly that
of a Cartesian product:

• If v ∼ w is a D-edge, then S(w) = S(v) and pos(w) = pos(v) ± 1.
Hence

Φ(w) = (S(v),pos(v)± 1) is a Cn-neighbor of Φ(v).

• If v ∼ w is a C-edge, then S(w) is one of the three neighbors of S(v)
in H and, by (2.2), pos(w) = pos(v). Hence

Φ(w) = (S(w),pos(v)) is an H-neighbor of Φ(v).

So every edge of G maps to an edge of H□Cn changing exactly one coordi-
nate.

Fix v ∈ V (G). Its five neighbors split as:

• three C-neighbors wi (one into each of the three H-neighbors of S(v)
);

• two D-neighbors (the predecessor and successor in S(v), hence the
two neighbors of pos(v) in Cn).

By the observations as previous paragraph, Φ maps these five neighbors
bijectively to the five neighbors of Φ(v) = (S(v),pos(v)) in H□Cn:

NbrH□Cn(Φ(v)) =
{(

S′, pos(v)
)
: S′ ∼H S(v)

}
∪ {(S(v),pos(v)± 1)}.

Thus Φ is a local isomorphism at every vertex. In other words, Φ is a (graph)
covering map onto its image.

Finally, because G is finite and connected, and because every D-cycle
has been labeled pos bijectively onto Z/nZ, the map Φ is surjective onto
V (H)×Z/nZ. (Each pair (S, c) is the image of exactly one vertex of S with
pos = c.) Hence the image of Φ is all of H□Cn.

Because Φ is a covering and is bijective on vertices (each (S, c) has exactly
one preimage), Φ is, in fact, a graph isomorphism

G ∼= H□Cn, degH = 3,degCn = 2.

The proposition then follows. □

Finally, we have the following
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Proposition 4.6. Let G be 5-regular, Ricci-flat, triangle-free, and suppose
every edge is type A (i.e. α(e) = 0 and ν (Be) = 3 for all e). Then G is
unique up to isomorphism; in particular |V (G)| = 72. Such graph is RF 5

72,
which first discovered and classified in [7].

Proof. Since α ≡ 0, no two neighbors of x are adjacent, so |S1| = 5, S1 is
independent. For each xu with u ∈ S1, since (s∗, p∗) = (3, 0), this implies
three disjoint length-1 pairs across xu. Because S1 is independent, these
three squares must use right vertices outside {x} ∪ S1.

Every u ∈ S1 has degree 5 , with one neighbor x and four neighbors in
S2. Hence the number of edges between S1 and S2 is e (S1, S2) = 5 · 4 = 20.

Claim 4.6.1. Every v ∈ S2 has exactly two neighbors in S1.

Proof of the claim:
Let v ∈ S2, and pick u ∈ S1 with u ∼ v. Across the edge xu, one of its

three squares is x − u − v − w − x for some w ∈ S1\{u} (because all three
squares must use right vertices outside {x} ∪ S1 ), so v ∼ w as well. Thus
dS1(v) ≥ 2. On the other hand, if dS1(v) ≥ 3, then for the three distinct
u1, u2, u3 ∈ S1 ∩ Γ(v) , each edge xui would have a square using v; but
the three squares across xui must use three distinct right vertices (because
s∗ = 3), forcing v to be used by at most one among the three. Contradiction!
Hence dS1(v) = 2. Therefore,

|S2| =
e (S1, S2)

2
= 10.

Moreover, the bipartite graph between S1 and S2 is 2-regular on the S2 side
and 4-regular on the S1 side.

Claim 4.6.2. S2 is independent.

Proof of the claim:
Suppose v, v′ ∈ S2 are adjacent. Let their two S1-neighbors be {u,w}

and {u′, w′} (each be a 2-set by claim 4.6.1). Consider the edge xu. One of
its three squares is x− u− v − w − x. Similarly, the edge xu′ has a square
x−u′−v′−w′−x. The edge vv′ now lies in a 5-cycle v−u−x−u′−v′−v,
and across the middle edge xu one can realize a fourth square (using v′) in
addition to the other three already from s∗ = 3, contradicting ν (Bxu) = 3.
Hence no such vv′ exists.

Each v ∈ S2 has degree 5 , with two neighbors in S1 and three neighbors
beyond S2; therefore all those three lie in S3. Counting edges between S2

and S3 gives e (S2, S3) = |S2| · 3 = 30. We next constrain the number of
S2-neighbors of a given z ∈ S3.

Claim 4.6.3. Every z ∈ S3 has exactly three neighbors in S2.

Proof of the claim:
Let z ∈ S3. It has at least one neighbor v ∈ S2. Consider the three edges

xu for u ∈ S1 ∩ Γ(v) (there are two by claim 4.6.1). Across each such edge
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xu, the vertex v already accounts for one of the three squares; the other
two squares must be disjoint and use right vertices that are S2-neighbors of
u distinct from v. Chasing this around the two S1-neighbors of v shows z
must be adjacent to two more S2-vertices (otherwise we cannot realize the
third square across the corresponding xu without creating an extra square
across some other xw.) Thus dS2(z) ≥ 3. On the other hand, if dS2(z) ≥ 4,
pick four S2-neighbors v1, . . . , v4. Each vi has exactly two S1-neighbors; by
pigeonhole there exist i ̸= j sharing an S1 neighbor u. Then across xu we
would have four distinct right vertices adjacent to u (namely vi, vj and the
two others required by the assumption s∗ = 3, contradicting ν (Bxu) = 3.
Hence dS2(z) = 3.

Therefore |S3| = 30/3 = 10, and S3 is independent.
Because S3 is independent and dS2(z) = 3 for each z ∈ S3, every z ∈ S3

has exactly two neighbors in S4. Thus

e (S3, S4) =
∑
z∈S3

dS4(z) = 10 · 2 = 20

We then know the following:

• For all w ∈ S4, dS3(w) ≥ 2. (If dS3(w) = 1, then in Bzw with the
unique z ∈ S3 the three left S2-neighbors of z have no right neighbors
(cannot connect to S5), so ν (Bzw) ≤ 1, contradicting ν = 3.)

• For all w ∈ S4, dS3(w) ≤ 3. (If dS3(w) ≥ 4, then for any z ∈ S3∩Γ(w)
the left set Nz has 3 vertices in S2 and 1 vertex in S4\{w}, while
the right set has at least 3 vertices in S3\{z} and one in S5; this
furnishes a 4-matching in Bzw, contradicting ν = 3.)

Hence

(4.15) dS3(w) ∈ {2, 3} for all w ∈ S4,
∑
w∈S4

dS3(w) = 20

If there exists w ∈ S4, such that r(w) = 3, then w has only two neighbors left
outside S3, i.e. dS4(w) + dS5(w) = 2. Now inspect simultaneously the three
bipartites Bziw (one for each zi ∈ Γ(w) ∩ S3) and the one or two bipartites
Bwu for u ∈ Γ(w) ∩ (S4 ∪ S5). Each Bziw needs its ”third” match to come
from w′

i 7→ ri with ri ∈ Γ(w) ∩ (S4 ∪ S5); and each Bwu needs two disjoint
matches from z′s into Γ(u)∩S4 (because S3 left cannot touch S6). A direct
count shows that with only two vertices in Γ(w)∩ (S4 ∪ S5) , it is impossible
to supply all these disjoint matches without creating a 4-matching in one of
the four bipartites (either a Bziw or a Bwu). In other words, at least one of
those edges would fail the type-A condition ν = 3. Hence, dS3(w) = 2 and
|S4| = 20. From here, the rest of the proof is same as lemma 3.2, we omit it
here. □

For the case κ < 0, we have the following

Proposition 4.7. Every 5-regular graph with girth at least 6 has negative
constant curvature κ = −6

5 .
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Proof. Since the graph has the girth at least 6, we know that α = 0, |□|(ϕ) =
0 and |D|(ϕ) = 0 for any bijection ϕ. Hence, by lemma 2.3

(4.16) κ(x, y) =
1

d

(
−6 + 3 |∆xy|+ max

ϕ∈Axy

(
2 |□(ϕ)|+ |D(ϕ)|

))
= −6

5
.

□
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graphs. Another challenge was in understanding the isomorphism struc-
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and their relation to hypercubes, we were able to resolve this.

5. Revision summary

In the proof of lemma 3.2, we add a paragraph indicating how to exclude
the case when α(e) = 3 for some edges e. (See the red color paragraph
labeled)

In the proof of lemma 3.3, we make the correction for excluding the case
when α(e) = 1 or α(e) = 2 for some edges e. (See the red color paragraph
labeled)
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