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EINSTEIN METRIC ON 5-REGULAR GRAPH

YUCHEN YIN AND JIAJING ZHANG

ABSTRACT. We give the complete classification of finite simple 5-regular
graphs with nonnegative constant Ricci curvature in the sense of Lin—
Lu—Yau (LLY) and show the abundance of the graphs with negative
constant curvature.

1. INTRODUCTION

Ricci curvature, defined by Gregorio Ricei-Curbastro, is/a_symmetric 2-
tensor that measures how much a local region of,space’defined by a met-
ric tensor curves compared to Euclidean space. Rieei curvature played a
central role in Riemannian geomettry, geometri¢: analysis, and theoretical
physics. For example, Einstein’s theory of gravity relate the Ricci curvature
of spacetime to its matter and energy content that can explain gravity as
the curvature of spacetime caused by mass and energy. In the absence of
matter and energy (vacuum), Einstein’s field equations simplify, leading to
the condition

(1.1) Ric(g) = kg,

where & is related t0 the cosmological constant. The metric that satisfies the
equation is. called FEinstein metric. Typical examples of Einstein man-
ifolds would be Euclidean space R"”, the standard "round” sphere S™, and
the Kéahler'Einstein manifolds. In particular if K = 0, compact Kéhler man-
ifolds with a Ricci-flat ‘metric is called Calabi-Yau manifolds. The existence
of suchrmetrics, known as Calabi conjecture, was proved by Shing-Tung Yau
in the celebrated work [11] and [12].

Given the importance of Ricci curvature in geometry, it is natural to ex-
tend the Ricci curvature to broader classes beyond Riemannian manifolds.
In particular;.people are interested in the discrete extension of Ricci curva-
turein the graph theory. The first definition of Ricci curvature on graphs
was introduced by Chung and Yau in [2]. In [10], Ollivier introduced the no-
tion/oficoarse Ricci curvature of Markov chains on arbitrary metric spaces,
including graphs. Lin, Lu, and Yau [9] then introduced a modification of
the Ollivier’s Ricci curvature on graphs. Such curvature (written as LLY
Rieci curvature for abbreviation) is very useful in studying the geometric
and analytical aspects of graph theory.

Date: November 7, 2025.
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We are interested in the classification of graphs with constant Ricci cur-
vature (in the LLY Ricci curvature sense). Such graphs are well understood
in the Ricci flat case with degree d < 4 [1] and d = 5 regular graph with
symmetry [7]. Cushing et al.[3] and Lin et al. [§] also classified Ricci-flat
graphs with girth at least five. Hehl [5] and Huang et al |6] classified the
graphs with Ricci curvature great than 1.

In this paper, we study the finite simple 5-regular graphs with constant
LLY Ricci curvature. Our main theorem will be the following

Theorem 1.1. Let G = (V, E) be a simple finite 5-reqular graph with con-
stant LLY Ricci curvature k. Then the following holds:
(i) If K > 0, then G =2 K5 if k = g; G is isomorphic to the icosahedral
graph if Kk = %; G is cubical (a Cartesian quotient of Qg) if x'= %
(ii) If k = 0, then either G = RF3, or G = H3OK with/Hs be 3-regular
Ricci-flat graph and K be 2-regular Ricci-flat graph.
(iii) Every 5-regular graph with girth atleast-6 has negative constant cur-

vature kK = —g.

Remark 1.2. (i) in Theorem [1.1|confirms a conjecture in |7]. The classifica-
tion for such graph with negative.constant curvature is still widely open. It’s
interesting to find a ”good” assumption that can give rise to a meaningful
classification in the negative constant case:

2. PRELIMINARIES

2.1. a-Ollivier’s Ricei curvature and Lin-Lu-Yau Ricci curvature.

Definition 2.1 (Wasserstein distance). Let G = (V, E) be a locally finite
graph, py and ps betwo probability measures on G. The Wasserstein dis-
tance W1 (p14p2) between piand g is defined as

Wl (/1’17 /-1’2) = Hﬂl_f Z Z d(l‘, y)ﬂ'(l‘, y)7
yeV xeV

where d(x,y) denotes the combined distance between z and y in G, and the
infimum is taken over all maps 7 : V' x V — [0, 1] satisfying

() =Y mla,y), paly) =) w(ey).
yev eV

Such a map is called a transport plan.

For a' € [0, 1], set

«Q, if y =u;
pi(y) = 172, ify~a
0, otherwise,

where d :== )" 1 is the vertex degree of x.

yeViy~z
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Definition 2.2 («a-Ollivier Ricci curvature |10] and Lin-Lu-Yau curvature
[9]). Let G = (V, E) be a locally finite graph. For any vertices =,y € V', the
a-Ollivier curvature kq(z,y), a € [0,1], is defined as
Wi(ug, 1)

d(z,y)

The Lin-Lu-Yau Ricci curvature x(x,y) is defined as

/{a($7y) =1-

Notice that ki(x,y) is always 0. Obviously, the Lin-Lu-Yau curvature
k(xz,y) is the left derivative of kq(z,y) at a = 1.

2.2. LLY curvature for d-regular graph.

Lemma 2.3. [4, Theorem 4.3] Assume G =V, E) ‘s d-regular and = ~ y.
Write

Ay =T(@)NT(y),  Se T\ A{yfy S =I(y) \{z},

and Si(z) = {v € V : d(x,v) =li}« Let A,y be the set of bijections ¢ : Sy —
Sy. For ¢ € Ayy, define

O(9) = #{z € Sz : d(2,8(2)) =1}, 0(d)] = #{z € S : d(2,9(2)) = 2}.
Then the LLY curvature.x satisfies

(2.1) k(z,y) = ;(—Qd—i- 44 3 |Agy| + ¢I‘£ji<y(2 |O(e)| + ]O((]ﬁ)\)) )

Corollary 2.4. |4, Corollary 4.4] Let G = (V, E) be a locally finite graph.
Let z,y €V be. of equal degree d with x ~y. Then r(x,y) € Z/d.

For-each edge ¢; fix an maximizing bijection ¢} (with the tie-break ”"max-
imize |0]") and-denote s*(e) := |0 (¢})|, p*(e) :== |0 (p})].
We have the following matching lemma:

Lemma_2.5. Let B, be the bipartite ”square graph” across e = xy, with
left part Ny, right part Sy, and edges (u,v) iff d(u,v) = 1. Let v(Be) be its
maximum matching size. Then

(2.2) s*(e)=v(B.), M(e)<(4—ale))+v(B.).

Proof. Any bijection ¢ yields a matching of size |d(¢)| in Be, so |O(¢)] <
v(B.), whence s*(e) < v (B). Conversely, any matching of size ¢ can be
extended to a bijection realizing exactly ¢ distance-1 pairs; under the tie-
break, s*(e) = v (B). For M, matched left vertices contribute at most 2
and unmatched at most 1 . g
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3. 5-REGULAR GRAPH WITH POSITIVE CONSTANT RICCI CURVATURE

In this section, we are going to prove the first part of Theorem By
Corollary we know that for those 5-Regular Graph with positive con-
stant Ricci curvature, either the curvature s € {%, %, %, %} or Kk > 1.

We first prove the following lemma.

Lemma 3.1. All 5-Regular Graph with constant LLY Ricci curvature k >"1

is isomorphic to K5 with k = g.

Proof. From , Corollary 3.4], we know that either G = K5 with x = g or
G is isomorphic to a cocktail party graph with x = 1. However the_ second

case couldn’t happen becuase the degree for all cocktail party graph is even,
which implies the lemma. U

For the case when k = %, we have the following

Lemma 3.2. All 5-Regular Graph with constantLLY Ricci curvature k = %
is isomorphic to the icosahedral graph.

Proof. For the edge e = xy, we set
(3.1) M(e) := max (2[0()] ¥ |0(0)])-
¢:52 5%

Then lemma [2.3| gives us (by letting d = 5)

(3.2) k(zpy)= %(—6 + 3a(e)+ M(e)).

We also have the following trivial-beunds for M (e):

(3.3) 0 <M(e) <2(4—ale)).

If k= % is constant for all ‘edge e, we have for all edge e,

(3.4) M(e) =5k + 6 — 3a(e) = 10 — 3a(e).

Combined with we obtain

(3.5) 10 — 3a < 8 — 2a,

which implies that @ > 2. By the assumption x = % and we have
(3:6) 3a(e) + M(e) = 10

which implies' a(e) < 3. Hence a € {2,3}.

Assitme, for contradiction, there is an edge e = xy with a(e) = 3. Then
INJy=4—a =1 From[3.2] M(e) =10—3a =10 -9 = 1. Since M is
the maximum over bijections, this forces the square-matching size s*(e) to
be zero; otherwise s* > 1 would imply M > 2, contradicting M = 1.

Let u be the unique vertex in N, (the only neighbor of x not shared with
y). The condition s*(e) = 0 means u has no neighbor in S, = I'(y)\{z};
in particular, u is not adjacent to any of the three common neighbors of x
and y, nor to y itself. Consider the adjacent edge f = zu. The common
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neighbors of x and w lie in I'(x)\{u} = {y} U(I'(z) NT'(y)), but u is adjacent
to none of these. Hence

a(f) = [I'(x) NT(u)] =0,

contradiction! Therefore we then know that o = 2 in the whole ‘graph.
Plugging back gives M = 4 for all edges. Because |S;\Agy| =4+ a=21in
degree 5, then M = 4 forces, for the maximizer ¢7,

(3.7) 2[0(2)] + 0 (o)l = 4 = [T (6)| = 2|0 (¢)[Z 0.

So, every edge lies in two (optimized) 4-cycles across it-andwno (optimized)
5-cycles across it.

Fix x € V. For y € T'(x), the integer a(xy) is precisely ‘the degree of
y in the induced graph I'(z) (counting edges yy' with'y’ € T'(z).); we just
proved a(zy) = 2 for every y € I'(x). Hence, I'(x).is a 2;regular graph on 5
vertices., which implies I'(z) = Cs.

Label the neighbors cyclically: I'(x) = {u1yuz; us, ug, us }rwith edges u; ~
u;+1 (indices mod 5). In particular, for each.,

(3.8) Agy, = {ui—1, w1}, 78\ Dgu, =A{Ui~2suivo}.

Since M (z,u;) = 4, the maximizer-at ru; must realize two length 1 matches;
one convenient choice (and one that always exists because the cycle edges
are present) is

(3.9) Uimg = Wity Uik2 B> Ui,
giving the two (possibly. chorded) 4~cycles
(3.10) T —j—o — Uy =U; — T, T — Uiy — Uil — U — T

Now consider the cycle edge wju; 1. Because «a (uj,ui+1) = 2, these two
vertices have exactly two/common neighbors. One is «; call the other v;.
Necessarily w; ¢ {zjuy;..wsus} because in the 5-cycle the only common
neighbor (besides the endpoints) of u; and ;41 is . Thus v; € Sa(z). Each
u; has degree 5. Of these 5 neighbors, three lie in {z,u;—1,u;11}, leaving
two neighbors/in V\({z} UT'(z)).

Claim 3.2.1. For each i, the two neighbors of u; outside {x} UT'(x) are
exactly w;—y and v;.

Proof of the claim:
Vertex u; has degree 5 , and we already know three of its neighbors:

T,  Ui—1, Ui+l

Because a (u;—1,u;) = 2, the edge u;—1u; has exactly two common neighbors;
one is z, and the other cannot lie in I'(x) (that would create an extra edge
inside I'(z) and raise degp(,) above 2), so it must be an outside vertex
adjacent to both w;,_; and w;. By definition that outside vertex is v;_1.



-- Paper 1380 --

6 Y. YIN AND J. ZHANG

Similarly, « (u;,u;+1) = 2 forces the outside neighbor v; of w;. Thus wu;
already has five neighbors:

{, wi-1, wig1, vie1, vi}
This ends the proof of the claim.

Every vertex w € Sa(z) is at distance 2 from x, so there is a path’x —u—w
with u € I'(z). In particular, w is adjacent to some u € I'(x). By the'claim
just proved, the neighbors of that u in Sa(x) are exactly two vertices, namely
v ’s. Hence

w € {vi_1,v;}  for some i
It follows that
SQ(ZE) - {Ul, V2, V3, U4, U5} .
Counting the edges between Si(x) and Sa(z) in two ways gives

(3.11) D degg,(u)=5-2=10, D[ degg, (v) =13 t(v),

u€Si(x) veSa(x) vES2 ()

where t(v) is the number of neighbors.of v:in"S; (). Because o (u;, uit1) = 2
and x already accounts for one common neighbor, ‘each cycle edge wu;u;41
has a unique second common neighbor v; €%53(z),and any v € Sa(z) can
be such a second common neighber for at most one cycle edge (else some
adjacent edge would acquire three.common neighbors). Therefore t(v) < 2
for every v € So(x), with.equality ¢(v) = 2 precisely when v = v; for some i.
The last display forces

(3.12) 10.= ) Yo Hv) < 2|5 ()],

vESS ()
hence |S2(x)| > 5. Consequently; vy, ..., vs in Se(x) is distinct and
(3.13)
Sa(z) = {v1ye.,v5} with each v; adjacent to exactly w;, u;+1 in S1(x).

Next we will 'show that, for each i, v; ~ v;—1 and v; ~ v;y1. Consider
the edge v;u;. Because a (v;,u;) = 2, their two common neighbors must
be exactly {ujsy, w} for some w. Among the neighbors of u; (namely
Z,Ui—1,Ui+1,Vi—1, Vi), the only vertex (other than w;y;) that could also be
adjacent to v; is v;—1 (the other three are ruled out: = ~ v, u;—; » v; by
uniqueness of.v; related to u;u;4+1, and v; is not adjacent to itself). Hence
w =w;—1 and v; ~ v;—1. The argument for v; ~ v;41 uses the edge v;u;1
and is/.symmetric.

Thus, each v; has neighbors u;, ;41 in S1(z) and v;_1,v;y1 in Sa(z). Since
the graph is 5-regular, v; has exactly one further neighbor, which cannot lie
in Sp(z)US1(x)US2(x). Denote it by x} € S3(z). Because I' (v;) is 2-regular
on its five neighbors (by a = 2 again), the cycle in I' (v;) must connect x7
to both v;—1 and v;41. In particular, z7 is adjacent to v;—; and to vi41.

Now we prove that actually z7 = x7,, for all i. Hence there is a single
vertex z* € S3(z) adjacent to all v;’s.
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Consider the edge v;v;+1. Because « (v;,vi11) = 2, their two common
neighbors must be exactly {u;y1,2} for some z. Now w1 is one; among
the other candidates, by the previous argument, each of z} and z7, ; 18
adjacent to both v; and v;41. Uniqueness of the second common neighbor
forces x7 = x7, ;. Inducting around the 5-cycle gives a single vertex #*with
the required property. Finally, since x* already has degree 5 (neighbors
v1,...,05), implies Sk(z) = @ for all k > 4.

Thus the breadth-first-search(BFS) layers from z are

(3.14) |So| = 1,|51] =5, |S2| =5, [S3[ =1,
for a total of 14+5+541 = 12 vertices. We now list the adjacency dictated
by the construction:
e 1 is adjacent to uq,...,us.
e For each i, u; is adjacent to
Ty Ui—1, Uitl,  Vi—i, Ui
e For each i, v; is adjacent to
Uq, ui+17 Vi—15 v’i+la fE*
e 1* is adjacent to vy, ... Us.

Every vertex has degree 5. Hence no extra edges can exist. Among the
u; 's there are only cycle edges u; ~ w4, otherwise degp(z) would exceed
2, contradicting o = 2. A w; cannot be adjacent to any other u; (besides
U, ui+1 ) by Lemma 2.1+°A v, is adjacent to v;+1 and to z*, but not to other
vj’s; otherwise I (v;) would not«bea‘b-cycle.

Up to relabeling indices, this‘is exactly the 12-vertex icosahedral graph
(the 1-skeleton of'the regular icosahedron):Two "poles” z and z*; two 5-
cycles (u;) ands(v;) forming the "belts”; and the zig-zag connections u; — v;
and u;y+1 — v, The lemma then follows. O

Next, we/consider the case when xk = %

Lemma 3.3. All 5:Regular Graph with constant LLY Ricci curvature k = %
is cubical.

Proof. When r= %, by lemma we have

2
(3.15) M(e):5-g+6—3a(e) =8 — 3af(e).
This implies that « € {0, 1,2}.
Assume there is an edge xy with a(zy) = 2. Then x and y have two
common neighbors; write
(3v16) Agy =A{t,u}, T'(z)={y,t,u,a,b}.

Across xy, we have

(3.17) v (Bgy) = s (xy) € {0,1}, M(zy) =2
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Set
(3.18) Ry :=T(t)\{z} ={y,r1,72,73}, Ryt :=T(t)\{y} ={z,r1,72,73}

We now analyze the adjacent edges =t and yt. Let Ly := Na(cxt) be the, left
side of B,;. We claim

(3.19) IUp..({a,b})] > 2

Proof of the claim: Suppose, for contradiction, that [I'g,, ({a,b})| <4
Consider By,. Because v (By,) < 1, Hall’s marriage lemma for'ky= 2 implies
(3.20) T, ({a,b})| <1
Now look at B,;. Since a(yt) € {1,2}, there are two subcases:
o If a(yt) =1 : then by (T), v (By) = 2. By (Hall’s mariage-femma
with k = 2) there exists a 2-subset L” &.L,; with ‘FBW (L”)‘ > 9.
These two right vertices lie in {ry, rofr3}) (not at/z/)/and they are
distinct. Since [I'g,,({a,b})] < 1and™' 5, o({a;b})| X 1, the two
lefts {a,b} see, across By U Byymatanost two right vertices in total;
but By needs two distinct rights i {ri,/734rs} t6 be available for
two (other) lefts. This forceg ong ‘of {a,bfto have no right neighbor
in either By; or By, cohtradieting .d ~/54nd the definition of the
square bipartites (every¥éft has somérightjunless v = 0 and |L| = 0,
which is not the case here)."FormallypHall for B,, (with the singleton
having empty neighborhood) wéuld,force v (B,,) = 0, contradicting
the possibility 1By, )= 1,
o If a(yt) = 2.1 then by (T),wAB,p <1, so

(3.21) R, /(Bye)| <Vor e Ly, - T, ({£})] = 0.

In either alternative, gligronly way to serve both lefts {a,b} some-
where around the triangle (without creating a 2 -match in By, or in
Bygboth forbiddén is to have two distinct right neighbors for {a, b}
in By but thistcontradicts [I'p,, ({a,b})| < 1. Thus the claim holds.

If°a(yt). = 2 : thembydT), v (By) <1, so
(3.22) D, (Ly)| <1or3leLy:|Tp,{})]=0.

In, either alternative, the only way to serve both lefts {a,b} somewhere
around ghe triangle (without creating a 2 -match in By, or in By, both
forbidden by/(C0) and (C1.2)) is to have two distinct right neighbors for
{afb} An B,; but this contradicts |I'p,,({a,b})] < 1. Consequently, by
Hall’s ' marriage lemma with k = 2,

(3.23) v (Bgt) > 2.

Ifsa(2t) = 2, then it allows only v (Bg) € {0,1}, contradicting If
e(xt) = 1, then it forces M(xt) = 5 and v (Bz) = 2. Now repeat the
argument above with the third left in Ly (here |Lg| = 3 because a(xt) =
1= Ay = {y} ), and apply Hall’s marriage lemma with & = 3 : the same
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pigeonhole at ¢ (only three vertices {ri, 9,73} can serve as right neighbors
for all three lefts, and two are already needed pairwise) yields

(3.24) T, (Lat) 23 = v(Bat) >3,

which contradicts M (xt) = 5 since 2v (By) < M(xt) would give 6/<15.
Therefore a(zy) = 2 is impossible. Similarly, we can also excludé the case
when a(e) =1 for some e = zy.

This implies that a(e) = 0 for all edges e. Tracking back to[3.15 M(e) ='8
for all edges. Because |S;\Agy| = 4, the identity M = 8 forces, for-the
maximizer ¢,

(3.25) 2[0(¢2)] + 10 (o) = 8 = [T (¢)| = 4,.0(9¢)| =0

Thus every edge xy admits a bijection ¢f : Sz — Sy-that matches each of
the four left vertices to an adjacent right vertex. Equivalently, for every
edge xy, the bipartite graph B, C S, x S, of cross-adjacencies is a perfect
matching (a disjoint union of 4 edges). Inparticularevery edge lies in four
(optimized) squares across it and the graph.is triangle-free.

Define a relation © on edges by:

(3.26) e®f <= e, f areopposite sides of a (simple) 4-cycle.

Because around every edge the four 4-cycles come from the four disjoint
pairs in By, the relation O.is everywhere defined. Let [e] denote the O-
equivalence class of e.

Claim 3.3.1. At every wertex v, the five incident edges lie in five distinct
O-classes.

Proof of the claim:

Suppose twondistinct incident edges vvy,vve belong to the same class.
Then there is a chain of squares starting with vv; and ending with vvs, each
step flipping tor the oppositeedge. The first square already shows a 4-cycle
using both vv; and vvsat’ the same vertex v, which is impossible because
the cross-matching/at any edge vw pairs v; with a unique neighbor in S,
(there is no second choice to create another square sharing the two sides at
v). @

Let the five @-classes be Cq,...,C5. For each i, the union of edges C; is
a spanning subgraph in which every vertex has degree exactly 1 (by Claim
above).» Thus each C; is a disjoint union of cycles (a 1-factor).

Fix a basepoint o € V. For each ¢ € {1,...,5}, the 1-factor C; partitions
V' into two sides (the two color classes of the cycles): moving along an edge
inC; flips the side, and moving along any edge in C; with j # ¢ preserves the
side (because every 4-cycle alternates classes). Define the coordinate map
(3.27)

BV — {0, 1}57 B(v); = {O, if v is on the same side of C; as o

1, otherwise



-- Paper 1380 --

10 Y. YIN AND J. ZHANG

This is well-defined (any closed walk crosses each C; an even number of times,
because every 4-cycle contains two edges from the same class) and satisfies:
(a) If vw € C;, then ®(w) = ®(v) & e; (flip the i-th bit; other bits
unchanged).
(b) Conversely, since at v there is exactly one incident edge in C;, the five
neighbors of v are mapped to the five Hamming neighbots ®(v) @®
ei,i = 1,...,5.
Hence @ is a local isomorphism from G onto a (not necessarily induced)
5-regular subgraph of the 5 -cube Q5. Because G is connected, ®(G) is a
connected, 5-regular subgraph of (Q5; the only such subgraphs are quotients
of @5 by free translation subgroups. Hence G is<cubical. This ends:the
proof. O

Next, we prove the following

Lemma 3.4. There is no 5-reqular graph with constant Ricci curvature

-3
K=%.

Proof. Similar as the previous lemma, we have for all"edges e,
(3.28) M(e) =9 — 3a(e).

Since 0 < M (e) < 8 — 2a(e) by (3.3]), we thenhave a € {1,2,3}.
By solving the linear equation 2s* +p* = 9 — 3o under the constraints
0 < s* p" <4 — «a with the tie-break "maximize s” gives

afe) | [Se\Aayl ~M(e) s™(e) p*(e)
o RS 3
3 1 0 0 0

First, we prove that a(e) can‘not be 3. Suppose not. Let e = zy with
a(e) = 3. /Then S;\ A,y has exactly one vertex w. Then there is always a
length-2 choice ¢(u) ='w with w € A,y C Sy, so p*(e) > 1, contradicting
the a#=3 row. Thus-a €{1,2}.

a=1=4"p")=3,0), a=2=(sp")=(11).
Fix a vertex x. In the induced graph I'(z) (5 vertices), the degree of a
neighbory €.L'(x) equals a(xy) € {1,2}. Summing degrees in I'(x) gives an

even,numbery hence the number of a = 1 edges at z is even. On the other
hand,

(3.30) D pe)=> M(e)=5-9-3> ale)=1 (mod2),

esx esSx esr

and by the table we have p*(e) = 1 iff a(e) = 2. Thus the number of
o = 2 edges at x is odd. Consequently, the degree multiset in I'(z) is one
of:

(2,2,2,2,2), (2,2,2,1,1), or (2,1,1,1,1).
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The first two case are equivalent to I'(x) = C5 or I'(x) = P;. We will rule
out all of them.

We first consider the C5 case. Label I'(z) = {uq,...,us} with the 5-cycle
edges u; ~ wu;y1. For the edge e; := zu; we have «a (e;) = 2, thus by the
lemma [2.5), v (B,) = s* (&) = 1.

But in the square-bipartite Be, (left part N, = {u;—2, uit2}, right part Sy,
), the two pairs (u;—2, u;—1) and (u;42, u;+1) are disjoint length-l-edges (they
live in the 4-cycles * — uj—9 — uj—1 — u; — x and & — Ui — Ujpq — U; — T).
Hence v (Be;) > 2, contradicting v (B,) = 1. So the Cs mneighborhood
cannot occur.

Next, we consider the P5 case. Assume I'(z) is_the disjoint union of a
triangle t; — tg — t3 — t; (the three degree- 2 vertices) and an edge pip2 (the
two degree-1 vertices). Then

a(xt;) =2(i=1,2,3), «a(zp)=a(xpr)=1
Across xp; we must have s* = 3. The left set is N;Expl) ={t1,t9,t3}, and
the right set S, equals {p2} together with three verticesoutside {z} UI'(x).

Since none of ¢1, t9, t3 is adjacent to py inside I'(z), the'size-3 matching must
use three distinct outside neighbors Uy ,.Us, Us of p1, with

(3.31) t; ~ Ui ~ D1 (’L = 1,2,3)

The same argument for xpy yields three distinct outside neighbors Vi, Vs, V3
of po with

(3.32) t; AV ~phati=1,2,3).

Since every t; has degree 5 and already two neighbors inside I'(z) U z, the
(3.31)) and (3.32)) force

(3.33) I'(t;) = {«, tic1, tiv1, Ui, Vi},  (indices mod 3).

Across e; = xt; we must have (s*,p*) = (1,1). The non-shared left set for
e; is

(3.34) N = {p1,pa}

and Sy, = Ii(t;) \{2} = {ti—1,tis1, Ui, Vi} by (3.33). Since p; » t;11 inside
I'(x), the only possible length-1 pairs in B, are

(3.35) (p1,U;) and (p2,V;).

The two 3 -sets {Uy,Us,Us} and {Vi, Va2, V3} can have at most one com-
mon element, since I' (p1) N T (p2) = {x} U ({U1, U2, Us} N{V1, Vo, V3}) and
IT.(p1) NT (p2)| € {1,2} by a € {1,2}. Consequently, there exists at least
oneindex ¢ with U; # V;. For that index, these two pairs are disjoint in Be,.

Therefore
v (Be,) > 2.

But for an a = 2 edge, s* (e;) = v (Be,;) = 1. Contradiction!
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Finally, we handle the case (2,1,1,1,1). Assume I'(z) consists of a length-
2 path a —m — b (the unique degree-2 vertex is m) and a disjoint edge ¢ —d:
Then

(3.36) alzm) =2, azra) = a(zb) = a(zc) = a(zd) = 1.

We first record the forced adjacencies required (existence of the size-3 match-
ings at the a = 1 edges).

o For za: the left set is N = {b,¢,d} and S, contains'm and three
outside neighbors of a. Because b ~ m in I'(z), one length-1 pair is
(b,m). The other two must use two distinct outside neighbors of a;
call them A., Ay, with

(3.37) c~Ac~a, d~Agea.
e For zb: symmetrically there exist distinet B, Bg € Sp\{m} with
(3.38) ¢~ Be~b, d~fBy~b.

e For zc: the left set is N:E“) = {a,b,d}, but neither a nor b is adjacent
to c¢in I'(x), and d cannot be matched to'the right vertex d (distance
0 ). Thus all three length-1 pairs must use three distinct outside
neighbors of ¢, call them CyyCy, Cy, with

(3.39) a~Cyalc,nb~Cy~el d~Cy~ec.

e For xd;: likewise, there existthree distinct outside neighbors Dy, Dy, D,
of d with

(3.40) @i Dy ~dy b~ Dy~d, c~ D~ d.

Now consider the unique av="2 edge e := xm. Its non-shared left set is
N = {c,d}, and

(3.41) Sm=T(m)\{z} = {a,b, M1, M>}

where My, My are the two neighbors of m outside {z} UT'(x). Inside I'(x)
we know ¢ ~ a,b and d ~ a,b, so the only potential length- 1 pairs in B, are
(v, M; ) and (d, M; ) with 4,5 € {1,2}. To realize the required s*(e) = 1
we need-at least one of these adjacencies to exist; to violate s*(e) = 1 we
would need v/(B.) > 2, i.e. both ¢ and d adjacent to {M;, M2} with disjoint
choices.

We now show that, given -, v (B.) > 2 is forced.

From , ¢ is adjacent to three distinct outside vertices Cg, Cp, Cy. At
least one of these three must be nonadjacent to a and b simultaneously (they
already are by construction) and free with respect to the pairs used in —
(3.38). Since every vertex is degree-5, m has exactly two outside neighbors
My, Ms. If neither M; nor My is among {Cy, Cy, Cy}, then across xa, xb, xc
the three distinct outside neighbors demanded for ¢ already account for three
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neighbors of ¢ in V\({z} UT'(x)); but then zd still needs a fourth outside
neighbor of ¢ (namely D, from (3.40])), contradicting degree of ¢ = 5. Hence

(3.42) {Ml, Mg} N {Ca, Cy, Cd} * O

Therefore ¢ is adjacent to at least one of {M;, Ms}.

The same argument with d and shows d is adjacent to at/least one
of {Ml, MQ}

If the two vertices ¢, d happen to be adjacent to the same M;; then (since
¢~ din I'(x)) the edge ¢d would have

(3.43) ale,d) > |{z, M;}| = 2.

If a(c,d) = 2, then (s*,p*) (ed) = (1,1). But the left. non-shared. set for cd
contains two vertices (e.g. some of {A., B.} on the c-side and {Ag,By} on
the d side), and the constructions — produce two disjoint length-1
pairs across cd (one via a neighbor linked through.a, the other via a neighbor
linked through b ), forcing v (B.q) > 2, contrary to v =1 atia = 2 edges.
Thus ¢ and d cannot both hit the same M;.

Consequently, ¢ is adjacent to one, of My, Mo/ and, d is adjacent to the
other. Therefore the bipartite B, acrossie = xm, contains the two disjoint
length-1 pairs

(3.44) (¢, M;) and / (d,M;) Ai# j),
so v(Be) > 2. But at an.@ = 2 edge, s*(¢) = v (B.) = 1. Contradiction.
Hence the (2,1,1,1,1) case eannot.occur. The lemma then follows. O

Finally, we considerthe‘case when'x = %
Lemma 3.5. There is no“d~reqular graph with constant Ricci curvature
1

R = 5-

Proof. By lemma we_have

(3.45) M(e) =7 —3a(e).

Since 0 <M (e) <.2(4 = a(e)), we obtain that « € {0,1,2}.
(3.46)

a=0= (sp") =(3,1),a=1= (s"p") =(2,0), a =2 = (s*,p*) = (0,1).

We firstprove.that o = 2 case can not happen.

Suppose not, then there exists a edge e with «(e) = 2. Then N, has two
vertices ui,us and Ay = {wi, w2} C Sy. Define a bijection ¢ by ¢ (u;) = w;
for i¥=.1,2 and mapping the two shared left vertices to the two non-shared
right vertices arbitrarily. Then |0(¢)| > 2 (both u; — z — w; are length-2),
50 2|0(¢)| + |0(¢)| > 2, contradicting M (e) = 1. Hence

(3.47) ale) € {0,1} for all e.

In particular, I'(z) (the induced graph on the 5 neighbors of x) is a matching
plus isolated vertices (vertex-degrees 0 or 1 only).
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Next, we show that @ = 0 case can not happen. Suppose not, then
there exists a edge e = zy with a(e) = 0. By (3.45)), M(e) = 7. Since
a(e) = 0, we have N, = S; = I'(z)\{y} (size 4). Consider any right vertex
ve Sy, =T(y)\{z}. Becausev ~ yandy ~ x, the vertex y lies in I'(x) L (v),
hence

(3.48) a(zv) = |T'(z)NT(v)| > 1.

By the argument above, a(zv) cannot be 2 ; thus a(zv) = L.

Take any u € N, = I'(z)\{y} and any v € S,. If w ~ v, then both y
and u would be common neighbors of 2 and v, which would\give a(av)> 2,
contradicting a(zv) = 1. Hence no pair (u,v) with'w &€ Ny,u €Sy is
adjacent. Equivalently, the "square bipartite” By, (left\N,, right .Sy, edges
u ~ v) has no edges. Thus for every bijection ¢, |O(¢)|'= 0.

By definition, |O(¢)| counts how many u € N, satisfy d(u,¢(u)) = 2.
Each v is matched to one right vertex under (¢, so each-u/can/contribute at
most one to |O(¢)|. Therefore

(3.49) [0(¢)] SNz =4
and
(3.50) 20(g)| +40(0)| <044 =4.

and hence M (e) < 4. This coentradicts M(e) = 7. Hence a = 0 case can not
happen.
Now fix . Summing(M around’ z,

(3.51) > Me)=">_(7+30(e)) =35-3>_afe),

[k e es>x

and since ) 5 a(e) equalsithe degree-sum in I'(x), it is even. Therefore

(3.52) Yo M(e)=A. (mod2) = > p*(e)=1 (mod2),
esx esx
because Y 2s* is even. We also know that p*(e) = 1 iff a(e) = 0. Hence the
number t(z) of ot = 0 edges at x is odd: ¢(z) € {1,3,5}. Accordingly, I'(x)
is one of:
e type L. two disjoint edges + one isolated vertex (degree multiset
(1,1,1,1,0), here t(x) = 1);
e type J: one edge + three isolated vertices (degree multiset (1,1,0,0,0),
here t(z) = 3);
e type K: five isolated vertices (degree multiset (0,0,0,0,0), here

t(x) =5).
Fach type contains @ = 0, which can not happen by previous argument.
The lemma then follows. [l

The (i) of Theorem [L.1| then follows from Lemma
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4. 5-REGULAR GRAPH WITH NONPOSITIVE RICCI CURVATURE

In this section, we are going to study the case when LLY Ricci curvature
Kk <0.

We first handle the second part of Theorem i.e. the case when LLY
Ricci curvature k = 0.

By lemma [2.3] we know that for any edge e = xy,
(4.1) M(e) =6 — 3a(e).
We first prove the following
Lemma 4.1. If k =0, then a(e) # 2 for every edge e = xy.

Proof. If a(e) = 2, then |Ny| = 2 and A,y = {wiswe} C .Sy~ Define a
bijection ¢ by ¢ (u;) = w; for the two u; € N,; these two pairs have distance
2 via u;—x—w; , s0 2|0(4)|+|0(4)| > 2. But (4.1)) says M(e)=6—-3-2 =0,

contradiction! O
Hence a(e) € {0,1} for all edges. Then/ (4.1)) implies
(4.2) a=0=M=6"0=1=M=3.

The second lemma characterize theledges e with «(e) = 0.
Lemma 4.2. If a(e) =0, then 2<v (B,) <'3:

Proof. By lemmal2.5] 6 = M(e) < (4—0)+v(B.) = 4+v (B.),sov (Be) > 2.
If v (Be) = 4, there is a perfect matching; extending it gives a bijection with
|0(¢)] = 4 and M =8 contradicting to the fact that M = 6. Thus
v(B) < 3. O

Definition 4.3..We'call an o= 0'edge type A if v (B,) = 3 (so a maximizer
can realize s* = 3,p* = 0), and type B if v (B.) = 2 (so a maximizer must
realize s* = 2,p* = 2).

For a =1, only requires 2s* + p* = 3 with s* < v (B,) and s* < 1;
both s* =1,p* = 1 and s* = 0,p* = 3 are possible (the tie-break picks
s* =1if v (Be) >1).

We then haye.the following result

Proposition.4.4. If G contains at least one type B edges, then G = H3[C,,,
where Hs be a 3-reqular graph and Cy, be a cycle of length n > 6.

Proof. Let eg.= xy be a fixed type B edge. Choose and fix a size-2 matching
(43) Mxy = {(.T’Uzl,y’l)l) ) (37“2731112)} - E (Bxy)

(so'x —m; —v; —y — x are two 4-cycles, disjoint on S, and on Sy).

Definition 4.5. Give color D to the two edges of G opposite to zy in those
two 4-cycles (i.e., ujv; and ugvy ); color xy itself and the two remaining
edges at z and at y by color C. Now, whenever we traverse an edge ab
of G (in a BFS spanning tree), we transport colors across a chosen size-2
matching My, C By, as follows:
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e the two edges opposite to ab in the 4-cycles specified by M, receive
color D;

e the other three edges incident to each endpoint receive color C (so
every vertex has a 3 + 2 split).

This defines a 2-coloring of all edges once we visit them (because every.a = 0
edge has v > 2; for « = 1 we do not use any 4-cycle to transport a:color
and simply keep whatever color it receives when discovered-consistency will
be checked below).

Claim 4.5.1. In every 4-cycle of G, opposite edges receive the same color.

Proof of the claim:

If the 4-cycle contains a tree edge ab, the color-was impoesed when ab
was processed, by definition. If a 4-cycle contains no tree edge, we reach
it after both of its opposite tree-edges have been'processed; opposite edges
then already share color, and we never recolor.

Claim 4.5.2. The partition of E into C and D is well-defined and coincides
with the two connected components of.the Zopposition_graph” whose vertices
are B and whose edges link oppositeredges in a 4-cycle.

Proof of the claim:

Well-definedness follows from previous.claim: ‘any two ways to propa-
gate colors differ by detouring around 4-cycles, and opposite edges retain
the same color. Since we start'from the type-B edge xy and color its two
opposite edges differently from zy itself, we obtain two nonempty classes;
connectedness in the ‘oppesition graph forces that there are exactly these
two classes.

At this point we know, every vertex v has its 5 incident edges split as
three of color Crand two of‘color D. For each color X € {C, D}, define

Nx : V =V, “Nx(v) = the unique neighbor of v joined by an edge of color X.

Uniqueness holds because at v the opposition across the two 4-cycles through
a tree edge pairs(tworedges of color D at the other vertex but only one of
color D at v continues.” forward”; the propagation is set up so that every ver-
tex has exactly one edge of color D in the ”forward” direction (and therefore
one of color C singled out similarly). Formally, the construction yields a 1-
factor in each+eolor class.

Since Colors are undirected labels: the unique C edge leaving v is the
same undirected edge used to come back from N¢(v), we know that

(4.4) NZ =id and N3 = id.
We also have for each vertex v,
(4.5) Ne (Np(v)) = Np (Ne(v)) -

This is because, from v, take the two edges v — N¢(v) and v — Np(v). By
construction (we always transported colors using a size-2 matching), there
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is a 4-cycle
v S Ne(v) LR Np(v) Lu

with opposite edges of the same color (by previous claim). This shows that
the endpoint of ” C then D ” equals the endpoint of ” D then C ”./Thus
N¢, Np are commuting involutions.

Let G¢ = (V, E¢) be the subgraph with the C edges, and Gp = (V, Ep)
the subgraph with the D edges. By argument above, G¢ is 3-regular and
Gp is 2-regular (hence a disjoint union of cycles). Denote by

(4.6) D-cycles = {S} and C-components = {X}

the vertex sets of the connected components of Gp and G respectively. For
a vertex v € V(G), write

(4.7) S(v) € {S}, X(v) € {X}
for the D-cycle containing v and the C-component containingw. the vertex
sets of the connected components of Gp and.G¢ respectively.. For a vertex
v e V(Q), write
(4.8) S(v) € {S},~ X(v) € {X}
for the D-cycle containing v and the €C-component/containing v.

Fix a D-cycle S and choose an orientationof 5 Let

(4.9) succs : S'=.8

be the successor map (advance by one D-edge along S). Every C edge respects

squares with D-edges: ifw € S.andw < w, then succs(v) has a unique C-
neighbor succsg (w) in the D-cycle'S"= S(w), and the four vertices

(4.10) s suces(v) S succg (w) ZowSw
form a color-alternating 4-cycle.

Consequently, for each C-edge e¢ : v — w with S(v) = S and S(w) = &'
there is a uniquelydefined/cycle isomorphism f, : S — S’ satisfying

(4.11) fe (sucesg(u)) = succg (fe(u))

for allu € S, and f.(v) = w. That is: f. is the unique bijection that sends
v'to w. In particular, S and S’ have the same length, so all D-cycles in G
have the same-length n > 3.

Choose, for each D-cycle S , a cyclic labeling

(4.12) pos g :S — Z/nZ
so that for every C-edge e : v — w (with S(v) =S, S(w) = S') we have
(4.13) posy (fe(u)) = posg(u) for allu e S.

Here, we obtain such labeling by picking one fixed cycle Sy, fixing any num-
bering there, and propagating it uniquely to all other cycles using the iso-
morphisms f, along a spanning tree of the C-adjacency among D-cycles.
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Commutation on 4-cycles guarantees that the label transported along any
closed loop returns to itself.

Let H be the graph whose vertices are the D-cycles {S}. Put an (undi-
rected, simple) edge S ~ S’ in H iff there exists a C-edge in G joining some
vertex of S to some vertex of S’. Because every v € V(G) has exactly three
C neighbors (P1) and every C-edge preserves the C-coordinate (2.2), the set
of D cycles adjacent to S(v) in H depends only on S(v), not on‘the specifie
vertex v € S(v). Hence degy(S) = 3 for every S.

Now for v € V(G), define

(4.14) o(v) = (S(U),poss(v) (U)) € V(H) x ZInZ.

This is obviously well-defined (we already fixed S(v)“and posg ): We now
verify that ® is a graph homomorphism whose local behavior is exactly that
of a Cartesian product:
o If v ~ w is a D-edge, then S(w) = S(v) and pos(w) = pos(v) + 1.
Hence

®(w) = (S(v), pos(v) £ 1)+, fds'a C,-neighbor of ®(v).
o If v ~ w is a C-edge, then S(w) is*one of the three neighbors of S(v)
in H and, by (2.2), pos(w) =pos(v). Hence
®(w) = (S(w), pos(v)) + is an.H-neighbor of ®(v).
So every edge of G maps«to an edge of HLIC), changing exactly one coordi-

nate.
Fix v € V(G). Its'five neighbors split. as:

e three C-neighbors w; (one into.each of the three H-neighbors of S(v)
);
e two D-neighbors (the.predecessor and successor in S(v), hence the
two neighbors of pos(v)'in C),).
By the observations as previous paragraph, ® maps these five neighbors
bijectively to.the five neighbors of ®(v) = (S(v), pos(v)) in HOC,:

Nbrpte, (2(v)).={ (S pos(v)) : 8"~ S(v)} U{(S(v), pos(v) £ 1)}.
Thus @ is a local isomorphism at every vertex. In other words, ® is a (graph)
covering map onto’'its image.

Finally;. because G is finite and connected, and because every D-cycle
has been labeled pos bijectively onto Z/nZ, the map ® is surjective onto
V(H) X Z/nZ. (Each pair (S, c) is the image of exactly one vertex of S with
pos =.c.) Hence the image of @ is all of HOC,,.

Because @ is a covering and is bijective on vertices (each (S, ¢) has exactly
one preimage), @ is, in fact, a graph isomorphism

G = HUOC,, degH =3,degC,, =2.
The proposition then follows. U

Finally, we have the following
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Proposition 4.6. Let G be 5-reqular, Ricci-flat, triangle-free, and suppose
every edge is type A (i.e. a(e) =0 and v (Be) = 3 for all e). Then G s
unique up to isomorphism; in particular |V(G)| = 72. Such graph is RF2,,
which first discovered and classified in |7].

Proof. Since a@ = 0, no two neighbors of x are adjacent, so |S1| =5,"Sy is
independent. For each zu with u € Sy, since (s*,p*) = (3,0), this implies
three disjoint length-1 pairs across zu. Because S is independent, these
three squares must use right vertices outside {z} U Sj.

Every u € 57 has degree 5 , with one neighbor = and«four_neighbors in
Sy. Hence the number of edges between S and Sy is e (S1,.52) = 5- 4 = 20:

Claim 4.6.1. FEvery v € Sy has exactly two neighborsin Si.

Proof of the claim:

Let v € S2, and pick u € S7 with u ~ v. Across the edge zu, one of its
three squares is  — u — v — w — z for some w €'57\{u} (because all three
squares must use right vertices outside {x} U\S] ), so.v ~aw as well. Thus
ds,(v) > 2. On the other hand, if dg,(v) >3, then-for.the three distinct
ui,uz,uz € S1 NI(v) , each edge zu;wwould have a ‘square using v; but
the three squares across zu; must use three distinct right vertices (because
s* = 3), forcing v to be used by/at mest one among the three. Contradiction!
Hence dg, (v) = 2. Therefore,

e (51,52)
2
Moreover, the bipartite graph between.Sy and S5 is 2-regular on the Ss side

and 4-regular on the S side.

1S, = = 10.

Claim 4.6.2. Sy is.independent.

Proof of the claim:

Suppose v, v'€ Sy’ are adjacent. Let their two Sj-neighbors be {u,w}
and {u/,w'} (each be a2-set by claim[4.6.1). Consider the edge zu. One of
its three squares iS .— u — v — w — x. Similarly, the edge zu' has a square
x—u' —v'—w' =z The edge vv’ now lies in a 5-cycle v —u—x—u' —v' — v,
and across the middle edge xu one can realize a fourth square (using v') in
addition to the.other three already from s* = 3, contradicting v (By,) = 3.
Hence no'such vv’ exists.

Each'v € S5 has degree 5 , with two neighbors in S; and three neighbors
beyond So; therefore all those three lie in S3. Counting edges between S
and Ss. gives e (S2,53) = |S2]| - 3 = 30. We next constrain the number of
So-neighbors of a given z € S3.

Claim 4.6.3. Every z € S3 has exactly three neighbors in Ss.

Proof of the claim:
Let z € S3. It has at least one neighbor v € Sy. Consider the three edges
zu for u € Sy NT'(v) (there are two by claim [4.6.1)). Across each such edge
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zu, the vertex v already accounts for one of the three squares; the other
two squares must be disjoint and use right vertices that are Ss-neighbors ©f
u distinct from v. Chasing this around the two Si-neighbors of v shows z
must be adjacent to two more Sa-vertices (otherwise we cannot realize the
third square across the corresponding xzu without creating an extra square
across some other zw.) Thus dg,(z) > 3. On the other hand, if dg,(z) > 4,
pick four Ss-neighbors vy, ...,v4. Each v; has exactly two Si-neighbors; by
pigeonhole there exist i # j sharing an S neighbor u. Then across zu we
would have four distinct right vertices adjacent to u (namely vy v; and-the
two others required by the assumption s* = 3, contradicting v (Bg,) = 3.
Hence dg,(z) = 3.

Therefore |S3| = 30/3 = 10, and S3 is independent.

Because S3 is independent and dg,(z) = 3 for each 2z € S5, every-z € Ss
has exactly two neighbors in S4. Thus

e(S3,81) = Y dg,(2) =102 =20

2€Ss3
We then know the following:

o For all w € S4,ds,(w) > 2/ (If dg,(w) = 1, then in B,,, with the
unique z € S3 the three left S2-neighbors.of 2 have no right neighbors
(cannot connect to Ss), 80 v(B,,) <1, contradicting v = 3.)

e Forallw € Sy, dg, (w) < 37(If dgy(w).> 4, then for any z € S3NI'(w)
the left set N, has(3 vertices in Sy and 1 vertex in Sq\{w}, while
the right set has‘at least 3 vertices in S3\{z} and one in Ss; this
furnishes a 4-matching in B, contradicting v = 3.)

Hence

(4.15) ds,(w) € {2,3}~orallw € Sy, > dg,(w) =20

wWESy

If there exists w-€ Sy4,/such that r(w) = 3, then w has only two neighbors left
outside Sz, i.e. dg, (w4 dg;(w) = 2. Now inspect simultaneously the three
bipartites B, (one for each z; € I'(w) N S3) and the one or two bipartites
By for w e I'(w) M (S4 U S5). Each B, needs its "third” match to come
from w) — r; with ; € I'(w) N (S4U S5); and each By, needs two disjoint
matches from #’s into I'(u) NSy (because Ss left cannot touch Sg). A direct
count shows that with only two vertices in I'(w) N (S4 U S5) , it is impossible
to supply all these disjoint matches without creating a 4-matching in one of
thefour bipartites (either a B, or a By,). In other words, at least one of
those edges would fail the type-A condition ¥ = 3. Hence, dgs(w) = 2 and
|S4] = 20. From here, the rest of the proof is same as lemma[3.2] we omit it
here. ]

For the case k < 0, we have the following

Proposition 4.7. Every 5-reqular graph with girth at least 6 has negative

constant curvature Kk = —g.
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Proof. Since the graph has the girth at least 6, we know that o = 0, |O|(¢)
0 and |0O|(¢) = 0 for any bijection ¢. Hence, by lemma

(416)  k(z,y) = ;(—6+3]Aw! +J£ﬁfy(2‘m(¢)‘ - ]Q(¢)D) = _g
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Ricci-flat and/megative curvature cases, proving that the 72-vertex graph
RF752 is unique and that graphs with girth at least six necessarily have
constant negative curvature. She also handled edge cases such as k = % and
K = %, showing they cannot occur. Both authors collaborated on writing,
editing,, and/refining the overall structure, with Yuchen focusing on LaTeX
formatting and Jiajing on diagrams and clarity.

During this research, we face several difficulties. At one stage, our at-
tempt to classify graphs with curvature xk = % led to contradictions, which
initially puzzled us. Our mentor advised us to retrace the assumptions and
test edge cases systematically, eventually revealing the impossibility of such



-- Paper 1380 --

EINSTEIN METRIC ON 5-REGULAR GRAPH 23

graphs. Another challenge was in understanding the isomorphism struc-
tures in the cubical case; by examining the ©-equivalence classes of edges
and their relation to hypercubes, we were able to resolve this.

5. REVISION SUMMARY

In the proof of lemma [3.2] we add a paragraph indicating how to exclude
the case when a(e) = 3 for some edges e. (See the red color paragraph
labeled)

In the proof of lemma [3.3] we make the correction forrexcluding the-case
when a(e) =1 or a(e) = 2 for some edges e. (See the red eolor paragraph
labeled)
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